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The perception system constitutes a critical component of autonomous driving,
due to factors such as high-speed motion and complex illumination, camera-
captured images often exhibit local blurring, leading to the degradation of lane
structure clarity and even temporary disappearance of lane markings, which
severely compromises the accuracy and robustness of lane detection. Traditional
approaches typically adopt a two-stage strategy of “image enhancement
followed by structural recognition” Initially, the entire image undergoes
deblurring or super-resolution reconstruction, followed by lane detection.
However, such methods rely on the quality of full-image restoration, exhibit
low processing efficiency, and struggle to determine whether the disappearance
of lane markings is genuinely caused by image blurring. To address these
challenges, this paper proposes an Inter-frame Stability-Aware Blur-enhanced
Mamba Network (StaBle-MambaNet), which identifies blurred regions and
assesses the presence of potential lane structures without relying on full-image
restoration. The method first localizes blurred areas and employs a Structure-
Aware Restoration Module to perform directional extrapolation and completion
for potential lane line regions. Subsequently, the Blur-Guided Consistency
Reasoning Module evaluates structural stability to identify genuine lane regions.
Finally, enhanced features are constructed into a spatially continuous token
sequence, which is fed into a lightweight state-space model, Mamba, to
model the dynamic feature variations in blurred regions while preserving the
vertical structural evolution of the image. Experimental results demonstrate
that StaBle-MambaNet significantly outperforms existing mainstream methods
across multiple public lane datasets (e.g., CULane and Curvelanes), particularly
under challenging conditions such as nighttime, occlusion, and curved lanes,
exhibiting clear advantages in both detection accuracy and structural stability.

KEYWORDS

lane detection, blurred scenes, structural confirmation, feature completion, temporal
modeling, blur-aware representation

1 Introduction

With the rapid development of intelligent driving technology, lane detection,
as one of the core perception tasks, holds significant importance for achieving
path planning and safety control (Luo et al, 2025; Yurtsever et al, 2020). Deep
learning techniques have substantially improved the accuracy of lane detection
by leveraging the powerful feature extraction capabilities of Convolutional
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Neural Networks (CNNs) to extract road regions from static
images or video frames, enabling structured modeling through
approaches such as semantic segmentation and keypoint fitting.
Particularly under ideal conditions with clear structures and
balanced illumination, various image-based lane detection methods
have demonstrated strong recognition capabilities. However,
during high-speed operation, cameras subjected to vibration,
varying lighting conditions, or focal length drift often capture
images containing blurred areas, motion ghosting, or even missing
lane markings. Furthermore, challenges like adverse weather,
backlighting environments impede continuous perception of lane
structures. As shown in Figure 1 under high-speed or overexposed
scenarios, lane structures may become invisible due to blur
effects. These low-quality regions typically occur near actual lane
boundaries, making it difficult for networks to determine structural
authenticity and severely compromising detection continuity
and reliability.

To mitigate interference from image blurring on lane
perception, existing studies employ image enhancement or video
modeling strategies to compensate for structural recognition
impairment. One approach adopts an image restoration paradigm,
utilizing deblurring networks, contrast enhancement, or super-
resolution reconstruction to improve input quality, aiming to
recover structural information within blurred areas via global
image sharpening (Ji et al., 2022; Wang et al., 2023a; Dong and
Lan, 2024). Yet such methods suffer from lengthy processing
pipelines after whole-image restoration, failing to focus specifically
on lane regions while exhibiting performance degradation under
restoration failure or excessive noise interference (Mercy et al,
2022). Alternative methods incorporate temporal modeling by
leveraging inter-frame information for feature completion or

10.3389/frai.2025.1687983

sequence modeling using architectures like ConvLSTM and
Transformer to enhance temporal coherence and global context
understanding. Though partially addressing local structure gaps,
these approaches indiscriminately model all regions without
considering blur specificity, leading to resource waste, model
bias, redundant information interference, attention dilution, and
temporal drift issues (Yang et al, 2022). In recent years, the
Mamba model has emerged as a structurally efficient State Space
Model architecture. By employing dynamic weight control and
a sliding window mechanism, it can maintain global modeling
capabilities while significantly reducing computational complexity
and enhancing the modeling effect of long-term dependencies.
This paper proposes an Inter-frame Stability-Aware Blur-
enhanced Network (StaBle-MambaNet) targeting blurred regions.
The method proposed in this paper differs from these paradigms
in two main aspects. First, by focusing only on ambiguous
regions, it avoids the computational overhead and potential
artifacts associated with global restoration. Second, unlike other
approaches that may indiscriminately attempt to enhance any
degraded region, this method introduces a crucial validation step:
before any completion or modeling, it first determines whether the
ambiguous region contains genuine lane structures with temporal
consistency. This ensures that network resources are utilized only
for reliable structural information. A Blur-Guided Consistency
Reasoning Module evaluates region importance, while a Structure-
Aware Restoration Module performs directional extrapolation for
lane completion. Finally, a Blur-enhanced Temporal Modeling
Mamba (BTM-Mamba) selectively enhances and models only
trustworthy blurred regions. Unlike holistic image restoration
pipelines and generic sequence encoders (e.g. Transformer
variants), this study implements blurred region localization,

) .55

FIGURE 1

Lane blurring from overexposure and motion obscures markings, reducing detection accuracy in challenging conditions (reproduced with
permission from the CULane dataset, [https://xingangpan.github.io/projects/CULane.html]), licensed under CC-BY-NC.

NAZr> -

Frontiersin Artificial Intelligence

02

frontiersin.org


https://doi.org/10.3389/frai.2025.1687983
https://xingangpan.github.io/projects/CULane.html
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Zhang et al.

lane structure stability testing, completion restricted to validated
areas, and applies state-space temporal modeling specifically
to corresponding labels. This design circumvents reliance on
global reconstruction while mitigating indiscriminate temporal
aggregation across time dimensions. The core architecture
centers on structural inference of ambiguous features coupled
with selective temporal modeling, rather than executing global
enhancement or uniform sequence processing across entire
frames. This approach minimizes redundant interference while
improving modeling efficiency and stability for latent structures
in degraded scenes, effectively addressing limitations in structural
discrimination, focused modeling, and computational adaptability.
The main contributions are summarized as follows:

e StaBle-MambaNet:
judgment, and adaptive pathways into a unified pipeline for

integrate blur awareness, structural
differentiating degradation artifacts from true road structure
variations under motion blur.

e Dual-module stability mechanism: the Structure-Aware
Restoration Module (SARM) and Blur-Guided Consistency
Reasoning Module (BCRM) jointly compute inter-frame
feature discrepancies to assess the reliability of ambiguous
regions and generate stability masks for selective completion.

e Temporal modeling: blur-enhanced temporal modeling
module (BTMM) with Mamba captures long dependencies
through a state-space formulation applied to stability-
weighted features, providing efficient temporal representation

while

Lecons

without indiscriminate sequence aggregation,
(SSML)

and slope-sensitive LaneloU for accuracy.

multi-objective  optimization combines
e Experiments across public datasets validate our method’s
robustness and continuity in identifying lane structures under
blurred conditions, demonstrating superior generalization

and task adaptability.

The remainder of this paper is organized as follows. Section 2
reviews related work on lane detection, temporal modeling, and
structural completion under degraded visual conditions. Section 3
presents the proposed StaBle-MambaNet framework in detail,
including the Structure-Aware Restoration Module, Blur-Guided
Consistency Reasoning Module, and Blur-enhanced Temporal
Modeling Mamba. Section 4 describes the experimental setup,
datasets, evaluation metrics, and performance comparison with
existing methods, followed by comprehensive ablation studies.
Finally, Section 5 concludes the paper and outlines directions for
future work.

2 Related work

2.1 Lane detection

In 2D lane detection based on camera images, deep learning-
based methods can be categorized into five types according to
their detection heads: classification-based approaches determine
whether features belong to lanes through classification. For
instance, DVCNN partitions the input image and classifies blocks as
either lane or non-lane; SLTNet performs block-wise classification
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on bird’s-eye-view (BEV) images for lane detection (Song et al.,
2023; Xie, 2023). Anchor-based methods generate predefined
anchor lines and regress their offsets relative to ground-truth
lane annotations. LineCNN creates anchor lines with varying
slopes from boundary pixels of the feature map; CurveLane-
NAS generates small anchor lines on multi-scale feature maps
and clusters them, making it suitable for curved lanes (Qin
et al., 2022; Gao and Lu, 2025). Row-wise-based methods select
representative pixels per row and cluster them to form lanes.
UFLD flattens the feature map and employs a multilayer perceptron
(MLP) to select row-wise pixels; CondLaneNet enhances accuracy
through instance segmentation and dynamic kernel parameter
regression (Liu Y. et al., 2021; Chai et al.,, 2024). Polynomial-based
methods directly predict polynomial coefficients to represent lanes.
PolyLaneNet uses an MLP to predict second-order polynomial
coeflicients; PRNet adopts piecewise polynomials to detect complex
curved lanes (Su et al, 2021). Segmentation-based methods
utilize semantic segmentation to identify lane pixels and group
them into complete lanes. SCNN employs spatial CNNs to
aggregate features from neighboring pixels; VPGNet integrates
lane detection with vanishing point estimation in a multi-task
learning framework, with some approaches further refining results
via RANSAC or polynomial fitting (Kaushal et al., 2023; Gao
et al., 2023). The method proposed in this paper falls within
the segmentation-based category, introducing mechanisms for
ambiguous region identification, structural verification, and inter-
frame feature modeling upon conventional semantic segmentation.
Unlike existing segmentation methods that rely solely on pixel-wise
mask outputs, our approach incorporates structural extrapolation,
heatmap differential analysis, and state-space modeling (Mamba)
within a structural-aware pathway, enabling the network to
determine whether ambiguous regions correspond to actual lane
markings and subsequently perform structural completion and
dynamic modeling.

2.2 Temporal modeling with state space
models

State Space Models (SSMs) have long served as an efficient
tool for temporal modeling, widely employed to capture long-range
dependencies in dynamic systems. However, conventional SSMs
typically rely on recursive inference, resulting in low computational
efficiency and difficulties in handling complex tasks involving long
sequences and high-dimensional inputs (Gu and Dao, 2023). To
address this limitation, the Structured State Space Sequence Model
(S4) significantly improved modeling efficiency by introducing
convolution over latent states, thereby validating for the first
time the effectiveness of structured state space models in long-
sequence modeling (Somvanshi and Islam, 2025). Building upon
this foundation, the Mamba model was proposed as an enhanced
variant of S4. By incorporating a dynamic weighting mechanism
and a hardware-friendly parallel scan architecture with sliding
windows, Mamba achieves linear time complexity in sequence
modeling (Gu and Dao, 2023; Liu et al., 2024). The Mamba block
consists of a gated MLP, a state-space transformation (an improved
S4), and residual connections, employing the SiLU or Swish
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activation function to effectively integrate sequential and spatial
modeling capabilities (Bansal et al.,, 2024). Specifically, Mamba
designs the original state matrix A, input matrix B, output matrix
C, and step size S as functions of the input sequence, dynamically
generating parameters through projection mechanisms that adapt
to the input data, thereby enhancing the model’s adaptability
to sequential variations (Rando et al., 2025; Liang et al., 2024).
Equation 16 enables Mamba to model temporal dependencies in
blurred lane regions by dynamically adjusting matrices A, B, C,
and step size S, enhancing detection robustness under varying
conditions.

W (t) = Ah (t) + Bx (t) 1)

S, A, B, C = Linear (x(t)) (2)

Mamba exhibits
modeling tasks. In this work, we incorporate Mamba as the core

exceptional performance in sequence
module for inter-frame structural modeling within lane detection
systems, aiming to extract spatiotemporal dynamic features across
consecutive frames. This approach enhances structural restoration
and temporal awareness capabilities, particularly benefiting robust
judgment of structural stability and information completion
processes under degraded visibility conditions (He and Ji, 2025;

Lin and Chiang, 2024; Zhang et al., 2025).

2.3 Structure completion and contextual
inference

Structure completion constitutes a critical research direction in
lane detection tasks, aiming to generate plausible predictions and
restorations for visually incomplete or obscured lane structures.
Early approaches predominantly relied on conventional image
processing techniques-such as line fitting after edge detection
or RANSAC-based polynomial approximation-to extrapolate
trajectories of lane markings; however, these methods exhibited
limited robustness when confronted with blurry occlusions or
complex curvilinear configurations (Talib et al., 2013). With the
advancement of deep learning, studies have explored temporal
modeling mechanisms for dynamic structural completion of lane
features. At finer granularities of structural recovery, incorporating
edge priors has demonstrated efficacy in enhancing completion
accuracy (Zakaria et al., 2020). Techniques from image inpainting
domains, exemplified by EdgeConnect (Nazeri et al., 2019), which
involve extracting edge maps followed by contextual synthesis,
have markedly improved reconstruction fidelity. This paradigm
holds significant relevance for lane detection: as high-frequency
structural cues, lane edges provide stable orientational guidance
that informs missing region interpolation. Furthermore, leveraging
semantic context has emerged as an evolving trend-certain
methodologies integrate driveable area constraints, vanishing point
cues, or road topology priors to enable principled inference of
fragmented lane instances (Xiao et al., 2021; Xi et al., 2024). This
paper addresses limitations in existing methods by focusing on
localized blur assessment and temporal consistency, enhancing lane
detection in degraded conditions. It effectively discerns whether
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ambiguous regions contain stable lane configurations, thereby
facilitating adaptive structural completion and optimized modeling
while enhancing perceptual robustness and recovery performance
under degraded visibility conditions.

2.4 Lane detection in blurred scenarios

Handling visual degradation caused by blur is a critical
challenge in lane detection. Existing approaches can be broadly
categorized into two main paradigms: two-stage restoration-based
methods and end-to-end blur-robust models.

The first paradigm follows a “restore-then-detect” pipeline.
These methods treat blur as a pre-processing problem, applying
a global image enhancement algorithm to the entire input frame
before feeding it to a downstream lane detector. Techniques
range from classic contrast enhancement to more advanced deep
learning-based deblurring networks and generative adversarial
networks (Liu et al., 2022). While straightforward, this approach
has notable drawbacks. Global restoration is computationally
intensive, often compromising the real-time requirements
these
enhancement methods can introduce unexpected artifacts or fail

of autonomous driving. Furthermore, task-agnostic
to recover the specific high-frequency details crucial for lane
markings, making the final detection accuracy heavily reliant on
the quality of the initial restoration step.

The second paradigm focuses on building end-to-end models
that are inherently robust to blur. This is often achieved by
training networks on datasets augmented with various blur
effects, encouraging the model to learn invariant features.
Other approaches leverage temporal information from video
sequences, using architectures like ConvLSTM (Lin et al., 2020)
or Transformers to infer lane structures from adjacent, clearer
frames (Wang et al., 2023b). While more efficient than two-stage
methods, these end-to-end models often lack a targeted mechanism
for ambiguous regions. They may attempt to model all areas
indiscriminately, leading to wasted computation and potential
attention dilution. Crucially, they typically do not possess an
explicit component to verify whether a blurred region contains a
genuine lane structure or is merely noise. This lack of a structural
verification step can lead to unreliable completions, especially when
scene changes occur.

3 Method

The proposed framework is designed to intelligently handle
blurred regions by first verifying structural integrity before
committing to restoration and temporal modeling, a key distinction
from conventional “restore-then-detect” pipelines. This paper
proposes an Inter-frame Stability-Aware Blur-enhanced Mamba
Network (StaBle-MambaNet) framework for lane detection,
aiming to address the issue of information loss in blurred
scenes. The overall architecture is illustrated in the figure and
primarily consists of the following modules: (1) Structure-
Aware Restoration Module (SARM), which performs blur region
detection/restoration and structural completion within these
areas; (2) Blur-Guided Consistency Reasoning Module (BCRM),
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Structure-Aware Restoration Module’
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Blur-Guided Consistency Reasoning Module

(BCRM)

Blur Heap
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Structural Supervision and Multi-Objective Learning

s N

Blur-Enhanced Temporal Modeling Mamba Network

FIGURE 2

Conceptual framework. Structure-Aware Restoration Module (SARM), Blur-Guided Consistency Reasoning Module (BCRM), and Blur-Enhanced

Temporal Modeling Mamba (BTM-Mamba).

leveraging inter-frame structural discrepancies to infer potential
lane regions; (3) Blur-enhanced Temporal Modeling Mamba
(BTM-Mamba), implementing cross-frame dynamic modeling of
stable structures based on the Mamba architecture; (4) Structural
Supervision and Multi-Objective Learning (SSML), employing
composite loss functions for joint optimization of lane prediction
outcomes. The overall pipeline is illustrated in Figure 2.

3.1 Structure-aware restoration module

First, perform blur analysis on the current input frame L;.
Since regions with sharp details exhibit high variance in Laplacian
responses while blurred areas demonstrate smooth, low-frequency
variations, the Laplacian Variance method-based on the Laplacian
operator-is employed to detect potentially blurred regions within
the image (Bansal et al., 2016).

To detect regions suffering from motion blur, we compute
the Laplacian variance over the input frame F;. A lower variance
indicates a smoother region, likely due to blur. The blur score for
each pixel is defined as follows:

Var; = Var (Lap (F;) = V°F) (3)

L 1 if Var(i,j) <t
Mblur(’»]) = . (4)
0 otherwise

where (i,j) denotes the pixel coordinates, and 7 represents the
blur determination threshold. For ambiguous regions, this paper
employs a directional vector linear extrapolation method based on
the historical lane structure F;—; from the previous frame L;_;
to perform structural completion. Extract the trajectory direction
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vector V; from the end of each lane marking, and generate extended
points along this direction with a step size of § for k iterations.
To extrapolate the lane lines from the previous frame L;_;, first
extract the set of terminal points and compute direction vectors as
shown below:

Loy ={(xiy) [i=1,..,N} ®)

= G =N N ©)

where N denotes the serial number of the terminal point of this lane
marking line. Project the extended points (xivﬂ , yf\lﬂ )back onto the
image and interpolate them to generate a completion mask Mcoyp.
This mask fills in the blurred regions while preserving original
information elsewhere, yielding an enhanced F;. Subsequently, a
CNN network is employed to extract multi-scale features (Pauly
etal., 2003; Qin et al.,, 2020) from F;.

(xf\]+j:)’f\]+j) — (xf\’ +jh- Vix»)’,N +jA- Viy) 7)

where j = 1,...,k, A € [1.0,2.0] is the scaling factor
used to constrain the offset distance. These extrapolated points
are projected back to the image space to form a structural
completion mask, which is used to reconstruct the blurred areas

(see Equation 8).

F;:Ft'(l_Mblur)_"ft'Mblur (8)

3.2 Blur-guided consistency reasoning

To further extract the latent yet non-explicit lane structure
information within blurry regions, this paper designs a Blur-
Guided Consistency Reasoning Module (BCRM) to identify
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whether these areas exhibit structural stability. In such regions,
if the underlying structure remains stable despite being obscured
by motion blur, inter-frame features should demonstrate no
significant variations. Based on this, BCRM first models the
difference between the structural representations of the current

RIXHxW which measures

frame and the previous frame as Hyi €
the per-pixel disparity between the features of two consecutive
frames. To enhance representational capability, structural attention
weights . are introduced (Kim et al,, 2017; Lin et al,, 2021). To
quantify the temporal variation in feature representations across
frames, we compute the weighted pixel-wise difference between two

consecutive frames as:

C
Ha(inj) = Y e - |Fy(c i) — By (c,0,)] )
c=1
where X¢ jac = 1, represents the learned attention weight

for channel ¢, emphasizing more discriminative features during
structural change estimation. The differential heatmap Hgg is
normalized and interpolated with scaling to obtain the final
structural change heatmap Hj..

To determine whether the blurred region contains a stable lane
structure, a two-stage inference strategy is adopted, Global Stability
Assessment, The structural difference heatmap Hdiff between the
current frame and the previous frame is computed according to
Equation 9. Based on this, the average structural stability score
Sscore within the blur region My, is calculated using Equation 10,
which quantifies the overall temporal consistency of the region.
Pixel-wise Stable Mask Generation, If the global score satisfies
Sscore > 6, the region is considered structurally reliable, and pixel-
level refinement is performed to generate the final stable region
mask. Otherwise, if Sscore < &, the region is assumed to have
experienced significant scene changes (e.g., occlusion or object
insertion), and the stable region mask Mgyple is assigned as an
all-zero matrix to suppress unreliable structural completion.

The two-stage inference logic is consolidated into a single,
concise mathematical expression. We employ the Iverson Bracket
notation, [P], which evaluates to 1 if the condition P is true,
and 0 otherwise. The final stable mask, Mgpe, is generated by
multiplying the outcomes of the global stability assessment and the
pixel-wise local variation check. This ensures that a pixel is only
marked as stable if all conditions are met simultaneously, as shown
in Equation 11.

325 (1= Haie(i,)) - Mplur (i, )
Z,’,j Mblur(i’j)

(10)

Sscore =

Mstable(ixj) = [Sscore > 5] . Mblur(i>j) . [Hdiﬂ’(i>j) < 6] (11)

where € denotes the threshold for intensity of variation, which
is determined based on the statistical distribution of inter-frame
feature differences within non-blurred lane regions across the
training set. Stable lane structures should exhibit only minor
fluctuations between consecutive frames, whereas significant
deviations are more likely attributable to occlusion or illumination
changes. Specifically, the mean u and standard deviation o of Hdiff
values in stable regions are computed, with € setto u + ko (k=0.7).
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FIGURE 3
Enhancement of lane marking edge details via Sobel-based edge
extraction, structural attention mapping, and feature fusion.

3.3 Blur-temporal modeling Mamba

In the field of image processing, high-frequency operators are
frequently employed to enhance edge feature information within
images (see Figure 3). Images typically contain characteristics
across both high and low frequencies. Low-frequency features
encompass global structures and color information, whereas high-
frequency components primarily consist of edges and fine details
that distinctly delineate the contours of target objects. For lane
detection tasks, edge contour features hold greater significance than
color distribution patterns. Accordingly, this paper introduces the
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Sobel high-frequency operator to extract edge guidance and designs
a structural attention module for enhancement purposes, thereby
compensating for detail losses incurred during preprocessing
stages due to redundant frame removal (Kanopoulos et al., 1988).
Specifically, for an image feature F € RE<H*W it is first converted
to grayscale and then processed with Sobel filtering to extract edge
feature maps. Subsequently, residual convolution combined with
Sigmoid activation is employed to generate the structural attention

CxHxW

map Astruct € [0,1] . Then, a structural attention map is

generated through a convolutional layer, as detailed below:

Ep = Sobel(Gray(F)) (12)

Astruct = 0(Convs»3(Ep)) (13)

Perform a channel-wise Hadamard product between the
attention map and the original feature map to obtain an enhanced
feature map Fsapm(c,i,7) with prominent edge structures while
preserving original semantic information. To integrate supervision
signals from structurally stable regions, utilize the structural
stability mask Mggpie € RUH*Wlgenerated by the BCRM module
as a weight map for explicit feature fusion, yielding deep feature

embeddings Fsar € RO *HXW

Fsar(c,i,j) = Fsapm(c, 4, 7) - (1 4 A - Mggaple (6> 7)) (14)

where A denotes the fusion weight coefficient, governing the degree
of structural saliency enhancement.

The
enhancement using the Mamba architecture is illustrated in

overall modeling pipeline for temporal feature
Figure 4, which includes patching, long-range modeling, and
unpatching to obtain final temporal-enhanced representations
(TER). This figure visually explains how the StaBle-MambaNet
encodes vertical spatial continuity and inter-frame dynamics. To
fully capture the structural temporal evolution characteristics
of ambiguous regions, this paper employs the Mamba state
space modeler to model the fused features. The Mamba network
effectively models long-range dependencies across frames through
its selective state space (SSM) architecture, thereby enhancing the
model features of lane markings (Patro and Agneeswaran, 2025).

Specifically, we flatten the deep feature zzzzs embedded in Fsar
row-wise, treating each row’s feature vector as a temporal token to
form a sequence of length H fed into the Mamba network. This
approach preserves spatial continuity along the vertical dimension
and facilitates the model’s capture of top-down structural evolution
in lane markings. p; € R? denotes a temporal token in the sequence
of feature vectors by Equation 15.

{PI:PL--»PN} = PatCh(FSAF) (15)

The patch sequence is fed into stacked Mamba blocks, wherein
Mamba employs a state-space recurrent formulation to model
sequence dependencies h; € R? (see Equation 16).

hy = A(x;) - hy—1 + B(xy) (16)
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Unlike traditional SSMs, the parameters A(-)and B(-)in Mamba
are input-dependent functions. By employing a sliding window
mechanism combined with gating mechanisms, it processes
token sequences in parallel, thereby enhancing its capability to
model dynamically varying inputs and improving long-range
dependency awareness. For {hj,h,,...,hy}, to obtain globally
unified representational features, this paper maps them back to
the original feature map spatial distribution. Frgr preserves both
the temporal evolution characteristics of each local structure and

maintains spatial contextual alignment(see Equation 17).

Frgr = Unpatching(hy, hy, ..., hy) € ROH*W (17)

3.4 Structural supervision and
multi-objective learning

In the collected data, due to the angular limitations of
acquisition equipment, lane markings rarely appear perfectly
vertical or horizontal in images. Typically, they exhibit an inclined
configuration within captured frames (Liu et al, 2017). To
ensure the model preserves structural coherence of lane markings
under blurry frames or occlusion scenarios, we incorporate inter-
frame structural consistency loss, which models the structural

discrepancy between temporally enhanced features F(T%R and

F(Tt];}%) across consecutive frames. According to Equation 18, the
inter-frame structural consistency loss quantifies the structural
discrepancy between temporally enhanced features Fiy, and Ftﬁai,
ensuring temporal coherence in lane structure modeling under

blurred conditions.

l:cons = m Zi,j Mstable(Lj)' ” FTER(t)(i;j) (18)

—Frer(t — 1), /) 1 (19)

where ||-||; denotes the L1 norm, which measures the structural
representation discrepancy between two frames at corresponding
spatial locations. This loss function effectively enforces spatial
consistency of lane structures across consecutive frames,
preventing abrupt structural transitions caused by motion
blur or transient occlusion.

To more accurately measure the overlap between predicted
lanes and ground-truth lanes while ensuring alignment between
optimization objectives and evaluation criteria, this paper
introduces a slope-aware LaneloU method that incorporates
consideration of lane width and add directionally adaptive
virtual lane widths’ for each point prediction to simulate human
visual perception of angular variations in lane markings, thereby
further adjusting the virtual width of lane lines. The formula for
virtual width setting is given by Equation 19, where AxX and Ay%
represent the gradient variations of the k-th predicted lane marking
at the n-th sampling point, indicating the local changes within the
n-th row that reflect its slope steepness.

3 Wiane (Axﬁ)z + (Ay];l)z
Wp = 2 ! Ak (20)
Vn

When the lane is in a vertical state, Axﬁ = 0; its width equals
the actual width Wy,,,./2 of the lane markings. However, when
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FIGURE 4

Depth features are stabilized, sequenced, modeled via parallel Mamba Blocks, and reconstructed into a temporal-enhanced representation (TER).

inclined, the width increases with the angle of inclination. Finally,
the calculation formula for LaneIOU is given by Equation 20.

Sl

LanelOU = =1
Zn:O Un

21

where, I, and U, denote the intersection and union between
predicted and ground-truth lanes in the nth row of pixels,
respectively, enabling area estimation through incorporation of
virtual width.
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To achieve end-to-end optimization of the model, the final
training objective function integrates four supervisory signals,
forming a jointly optimized multi-task learning framework. It
comprises: a classification loss L for determining the presence
of lane markings; a regression loss L, for precise localization
of lane coordinates; a structure-aware slope-adaptive LaneloU
loss Lranelous and a temporal consistency loss Lo serving as a
regularization term to ensure structural continuity in ambiguous
scenarios. Additionally, a temporal consistency loss term is
incorporated as a regularization constraint to formulate a joint
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Input: Image sequence D={Fy, Fp, ..., Fn}
Output: Predicted lanes L={lq, Ly, ..., Ln}
Initialize Fy=¢, Lg=9
for t=1 to n do
if |Ft —F_;l <& then
Skip F¢ and continue
end if
Mo1ur =Var(V2Ft)
if Mpyyr #90 then
Fillstruct = Extrapolate(Li_q) within Myyyr
FS=F¢- (1 =Mpiyr) +FillStruct - My,
else
F¢ < Ft
end if
{(Fp2, Fps, Fpa} <= CNN(F%)
Haite = Y n - 1Fpa — Fply |
Mstabie = (Mo1ur © Hyifr <€)
ED = Sobel(FD)
Astruct = Attention(Ep)
FgAEM = Fps © Astruct
SAF < F2, 0y (142 Mstapre)
Patches < Slice(SAF)
Frer < Mamba(Patches)
if t>1 then
Leons = ZMstable(ir ]) : HF%R} - F%E]) ‘
end if

Lt =Prediction(Frer)

:

Ltotal =A1Llc1s + A2L1anetou + 23Lcons + AALcyc
Update model parameters using Liotal
Fy_q < Frer
Leqg <Lt

end for

Algorithm 1. StaBle-MambaNet.

optimization framework.

= rasLes + )‘-xytleytl (22)
+ALaneloULLanetou + AconsLeons (23)

Ltotul

whered s = 2, Ay = 0.2, Ajou = 2, L5 denotes the binary cross-
entropy (BCE) loss for lane existence prediction, £, represents the
coordinate regression loss of lane points (X,y), Lranelou signifies the
slope-aware LaneloU loss, and L,s corresponds to the structural
consistency loss After comprehensive consideration of all factors,
the complete algorithm proposed in this paper is presented as
Algorithm 1.

4 Experiment results

4.1 Experimental set-up

The methods proposed throughout this research were validated
and analyzed both during the training process and testing phase.
To ensure experimental efficiency and result reproducibility, all
relevant experiments were conducted under a Linux operating
system environment. The experimental platform specifications are
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TABLE 1 Hyper-parameter list.

Param. Module Description Value

) SARM Laplacian variance blur threshold 100

K SARM Iterations for directional lane 5
extrapolation

A SARM Scaling factor for extrapolation 1.5
step

8 BCRM Threshold for global stability score 0.85

£ BCRM Threshold for local feature 0.1
variation

A BTM-Mamba Weight for fusing stability mask 1.0
with features

Acons SSML Loss weight for temporal structural 0.1
consistency

Adls SSML Loss weight for lane existence 2.0
classification

Ayt SSML Loss weight for lane coordinate 0.2
regression

Alou SSML Loss weight for slope-aware 2.0
LaneloU

as follows: processor—-AMD Ryzen 9 7950X with 16 cores at 4.5GHz;
graphics card-GeForce RTX 4090 (24GB VRAM); CUDA version
11.8; programming language-Python 3.10. During the experiments
in this chapter, the AdamW optimizer was employed for gradient
descent optimization with a total of 100 training epochs. For image
preprocessing, pixel values were standardized to mitigate variations
across different images. A cosine annealing schedule was applied for
learning rate decay during training, with an initial learning rate (Ir)
set at 0.0006 and a batch size configured to 24.

This paper conducts experiments using the CULane dataset
and the CurveLanes dataset. The CULane dataset contains over
133,000 frames captured in urban driving scenarios, with diverse
environmental conditions including normal illumination, crowded
traffic, nighttime scenes, shadows, and lane disappearance. It
emphasizes large-scale evaluation across challenging factors such
as occlusion by vehicles and strong lighting variations. In contrast,
the CurveLanes dataset specifically focuses on road geometries with
frequent curves and slope variations, comprising approximately
150,000 frames with higher coverage of complex lane topologies
and long-range curvature. Compared with CULane, CurveLanes
places stronger emphasis on curved-road scenarios and structural
continuity under geometric deformation. These complementary
characteristics make the two datasets jointly suitable for assessing
both robustness to environmental degradation and adaptability
to road shape complexity, thereby providing a comprehensive
validation of the proposed approach.

For reproducibility, the key hyperparameters used in modules
are detailed in Table 1.

4.2 Experimental results and analysis

This chapter first conducts training on CULane to evaluate
the detection performance of the proposed method. Subsequently,
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validation is performed on the newly introduced CurveLanes
dataset to assess the generalization capability of the model StaBle-
MambaNet. Finally, ablation experiments are carried out for each
component to verify the rationality of the overall framework
and individual component designs. To validate the effectiveness
of the lane detection framework StaBle-MambaNet proposed
in this chapter, it was trained on the public dataset CULane
with subsequent analysis of results. Among these, ResNet34 and
DLANet34 were selected as backbone networks.

Experimental results on the CULane dataset demonstrate
that the proposed method StaBle-MambaNet achieves superior
performance across multiple scenarios (see Table 2). Overall,
compared with existing approaches, StaBle-MambaNet maintains
high F1 scores in diverse driving conditions. Notably, it exhibits
excellent performance in challenging environments such as
nighttime illumination, curved roads, shadow obstructions, and
lane disappearance-conditions prone to causing blurred lane
images—further demonstrating its adaptability to varying scenarios
and highlighting its practical application value.

Based on the selected backbone network versions, the medium-
sized ResNet34 variant of StaBle-MambaNet demonstrates superior
performance across all metrics compared to mainstream anchor-
based detection models using the same ResNet34 architecture.
For instance, when benchmarked against CondLaneNet (Liu L.
et al,, 2021), StaBle-MambaNet achieves a 1.38 percentage point
improvement in F1 score while exhibiting varying degrees of
performance enhancement across diverse scenarios. Furthermore,
employing DLANet34 (Su et al., 2022) as the backbone network
elevates the overall model performance, attaining an optimal
F1 score of 80.53. Notably, it successfully leverages inter-
frame temporal dynamics to enhance robustness in challenging
conditions such as nighttime illumination, shadows, and wireless
interference-demonstrating broad environmental adaptability and
providing a more stable solution for lane marking detection during
daily driving operations.

Comparative analysis with different anchor-based lane
detection algorithms reveals inherent limitations in UFLD and
UFLDV2 due to architectural constraints, resulting in suboptimal
performance under complex scenarios. Although recent high-
performing anchor-based methods like CondLaneNet and CLRNet
exhibit commendable detection capabilities across multiple
contexts, StaBle-MambaNet consistently outperforms them in
various settings. Particularly in environments with significant
lighting variations (e.g. nighttime, glare, shadows), where multiple
factors adversely affect data quality, StaBle-MambaNet maintains
superior performance stability—further validating its feasibility and
application potential.

Experimental results on the CULane dataset confirm that
StaBle-MambaNet sustains high detection accuracy across diverse
scenarios while demonstrating enhanced generalization capability
in complex situations. When configured with DLA34 as the
backbone network, global feature extraction capacity is significantly
strengthened, enabling higher overall detection precision. These
advantages maximize StaBle-MambaNets potential for rapid
driving scenarios.

To further validate generalization capabilities, evaluation
was conducted on the CurveLanes dataset (see Table 3). The
proposed method achieves favorable performance across F1
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TABLE 2 F1 score comparison on the CULane dataset and other mainstream methods.
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TABLE 3 Performance comparison on the Curvelanes dataset with
different backbones, showing F1 score, accuracy, and recall.

Method Backbone F1 Accuracy Recall
network

SCNN VGGl16 65.02 76.13 56.74

CondLane ResNet18 85.09 87.75 82.58

CondLane ResNet34 85.92 88.29 83.68

CLRNet DLANet34 86.1 91.4 81.3

StaBle-Net DLANet34 86.34 89.5 83.29

Bold values indicate the best performance of that metric among the methods.

score, precision, and recall metrics. Compared to state-of-
the-art networks from recent years (CondLane and CLRNet),
StaBle-MambaNet reaches an F1 score of 86.34. While not
achieving peak values in precision/recall individually, these
metrics remain balanced within acceptable ranges. Specifically, the
recall rate of 83.29 substantiates StaBle-MambaNet’s exceptional
performance and practical utility for lane detection tasks—
particularly its cross-dataset applicability and robustness under
complex environmental conditions.

Compared to CondLane with ResNet34 architecture, StaBle-
MambaNet achieves a 0.32 percentage point increase in F1 score
and an improvement of 1.21 in precision, albeit at the cost of
a 0.39 decrease in recall. These experimental results demonstrate
that StaBle-MambaNet can detect more lane markings under
curved road scenarios. While CLRNet based on DLANet34 exhibits
higher precision, its relatively low recall rate of 81.30 suggests
potential missed detections in curved environments. In contrast,
the DLANet34 variant of StaBle-MambaNet successfully addresses
this issue through feature enhancement strategies leveraging
inter-frame temporal dynamics, thereby ensuring improved recall
on CurveLanes while maintaining high precision at 89.50. The
experimental findings indicate that StaBle-MambaNet effectively
reduces false positive detections while maintaining accurate
lane identification.

Overall performance metrics across F1 score, precision, and
recall on the CurveLanes dataset confirm StaBle-MambaNet’s
superior efficacy. Its feature enhancement approach enables robust
lane recognition in complex scenes, enhancing detection reliability
and practical deployment feasibility. Figure 5 presents qualitative
detection results across three representative scenarios: On the
left is an image of normal quality, in the center is a low-
resolution image, and on the right is an image captured under
blurry scene conditions. As shown in the Figure5, StaBle-
MambaNet consistently maintains lane detection accuracy and
avoids false positives, even under visually degraded conditions.
Visual analysis reveals consistent lane detection capability without
false positives or missed detections even under suboptimal image
quality conditions.

This paper compares the performance in terms of accuracy
and inference time between the two-stage cascade approach “global
restoration followed by lane detection” and Stable-MambaNet.
Using CLAHE and DeblurGAN as preprocessing techniques
respectively, both are connected to the same detection head
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(Baseline). Additionally, an ablation study is conducted on the
SARM and BCRM modules of Stable-MambaNet using Baseline
as reference.

This paper compares the performance in terms of accuracy
and inference time between the two-stage cascade approach “global
restoration followed by lane detection” and Stable-MambaNet.
Using CLAHE and DeblurGAN as preprocessing techniques
respectively, both are connected to the same detection head
(Baseline). For DeblurGAN, to ensure fairness, the network
was not fine-tuned on the lane detection dataset but instead
employed directly as a preprocessing module for the baseline
detector. Inference was performed on the same hardware platform
described in Section 4.1. During testing, the model operated
with a batch size of 1 and utilized default optimization settings.
Additionally, an ablation study is conducted on the SARM
and BCRM modules of Stable-MambaNet using Baseline as
reference. The results are illustrated in Figure 6. Regarding
precision metrics, the CLAHE-based cascade yields only marginal
improvements over the baseline: F1 increases from 0.745 to
0.753 while recall rises from 0.722 to 0.738, demonstrating
limited utility of simple contrast enhancement for structural
recognition. With the introduction of DeblurGAN, F1 further
0.756), indicating that global
restoration can compensate for certain information losses caused

improves to 0.767 (recall =

by blurring. However, this accuracy gain comes at the cost of
significantly increased inference time, reaching 116.4 ms/frame,
which fails to meet real-time application requirements. In contrast,
Stable-MambaNet achieves an F1 score of 0.780 and recall
of 0.769 without global restoration, maintaining an inference
time of merely 36 ms/frame. Compared to the DeblurGAN
cascade, it delivers superior accuracy with reduced latency;
relative to the CLAHE cascade, it exhibits substantial precision
advantages while introducing only slightly higher delay than
the baseline.

To simulate varying degrees of local information loss from
mild to severe conditions, Gaussian blur with standard deviation
o was applied to lane marking regions. The degradation
behaviors of Stable-MambaNet, CondLaneNet, and UFLD were
evaluated through Fl-o curves as shown in Figure7. Under
mild blurring (¢ < 2), all three methods achieve near-
perfect F1 scores with negligible differences. When o =~
3, CondLaneNet begins performance decline, whereas UFLD
enters an earlier decay phase and maintains consistently lower
performance throughout. At an intermediate blur intensity of
approximately o = 5.5, this threshold is demarcated by a
vertical dashed line to indicate the critical point where performance
disparities become amplified; furthermore, all methods exhibit
an accelerating trend in their performance degradation. Under
heavy blurring (¢ > 6), all approaches experience further
degradation, yet Stable-MambaNet demonstrates a gentler slope
of decline, preserving its maximum F1 advantage across a
wider range. Overall, the proposed method exhibits more
stable performance degradation trajectories across the entire
spectrum of blur intensities, reflecting enhanced resilience to local
information loss.

As illustrated in Figure 8, the visualization results of the
top 10 channel feature maps after processing by the SARM
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FIGURE 5

Visualization of lane detection results under various data conditions (images reproduced with permission from the CULane dataset, https://

xingangpan.github.io/projects/CULane.html), licensed under CC-BY-NC.
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FIGURE 6
Comparison of performance and efficiency across four scenarios

module and BTM-Mamba in StaBle-MambaNet are presented.
The original channels exhibit the baseline model’s corresponding
layer feature map visualization, while the processed channels
demonstrate enhanced features characterized by sharper boundary
focus and improved lane separability. Observations indicate that
the augmented feature maps exhibit heightened attention to region-
specific characteristics relevant to lane markings, with significantly
enhanced contrast between lane markings and background regions.
This observation further validates the effectiveness of the proposed
feature enhancement scheme.
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4.3 Ablation experiment
Evaluate the contribution values of each components
functionality within the lane detection framework StaBle-
MambaNet proposed in this chapter. Table 4 demonstrates the
impact of different components in StaBle-MambaNet on the
final model performance. Throughout the ablation study, StaBle-
MambaNet employs ResNet34 as its backbone architecture and
conducts experiments on the CULane dataset. The experimental
results presented in Table 4 indicate that incorporating each
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component yields positive effects on the F1 score-a key detection
StaBle-MambaNet-with optimal
performance achieved when all modules are utilized collectively.
Baseline model: without incorporating the SARM and BTM-
Mamba modules, the baseline model

metric for overall model

achieved an F1 score

of 79.73.
1
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Only SARM: when only the SARM was added, the F1 score
increased to 79.88, demonstrating that SARM effectively restores
and enhances edge features, enabling the model to focus more on
detailed characteristics and thereby improving detection capability.
Only BTM-Mamba module: upon adding only the BTM-Mamba
module, the F1 score further rose to 79.96. This indicates that
BTM-Mamba plays a positive role in global information modeling
and long-range feature enhancement. Concurrently, fused features
containing ambiguous information effectively guide the Mamba
network to attend to trustworthy regions, enhancing lane line
detection performance. This module critically contributes to
accurate lane localization, particularly improving the model’s long-
term tracking ability for lane lines in high-speed driving scenarios.
Only SSML: after solely optimizing SSML, the F1 score ascended
to 79.77, showing that joint optimization of lane classification

TABLE 4 Ablation study.

79.73
79.88
79.96
79.77
79.99

80.05

SEENEENEEN

v 80.00

v v v 80.12

Bold values indicate the best performance of that metric among the methods.
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FIGURE 8

Visualization of Feature Maps Before and After Enhancement, (reproduced with permission from the CULane dataset, https://xingangpan.github.io/

projects/CULane.html), licensed under CC-BY-NC.
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loss, position regression loss, and structure-aware LaneloU loss
enhances the model’s accurate performance evaluation. Any Two-
Module Synergy: Any combination of SSML with either BTM-
Mamba or SARM outperformed individual module additions,
further confirming each module’s positive impact on StaBle-
MambaNet performance.

With all modules fully integrated, the F1 score reached 80.12-
an increase of 0.39 percentage points from the baseline and
superior to using any single component alone. This demonstrates
that collective interaction among modules effectively enhances the
model’s feature learning capacity, leading to improved performance
in complex scenes. These results indicate stronger adaptability of
this approach across diverse environmental conditions for lane
detection tasks.
and SSML
their
synergistic effect further enhances feature representation of

both SARM, BTM-Mamba,
improve

In summary,

individually model performance. However,
lane lines during detection. This ablation study validates the

effectiveness of the proposed method in this chapter.

5 Discussion

To address the challenge of degraded lane detection
performance caused by motion blur in autonomous driving
scenarios such as high speeds and complex lighting conditions,
a method named StaBle-MambaNet,
which employs structural verification within blurred regions

this paper proposes

and completion guidance for lane detection. Departing from
conventional approaches that prioritize global image restoration
followed by detection, our method innovatively focuses on
determining whether stable lane structures exist within localized
blurred areas. Based on this judgment, it performs selective
structural completion and temporal modeling to enhance detection
robustness and efficiency.

Experimental results demonstrate that StaBle-MambaNet
achieves superior performance on public datasets including
CULane and CurveLanes, particularly excelling in challenging
scenarios prone to blur-such as nighttime conditions, shadows,
and curves-where key metrics like F1 score surpass those of
multiple state-of-the-art methods. Ablation studies further validate
the effectiveness of each innovative module within the framework.
In summary, the proposed approach offers an effective and reliable
new solution for lane detection under blurry conditions.

Although the proposed method has achieved promising results,
there remains room for further optimization. Future research could
proceed from the following aspects:

Exploration of Multimodal Fusion Strategies: This study
relies exclusively on visual information; however, under extreme
motion blur or severe sensor contamination conditions, image-
based reconstruction alone may fail to recover structural details.
Subsequent efforts should investigate integrating LIDAR or Radar
data-sensor modalities exhibiting stronger robustness against
illumination variations and adverse weather conditions. Such
geometric priors from active sensors can provide reliable structural
constraints for ambiguous visual regions, enabling more robust
model inference and completion.
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Lightweight Edge Devices:

Mamba’s superior efficiency over conventional Transformers,

Deployment  for Despite
the computational complexity of the entire architecture still
poses challenges for resource-constrained in-vehicle computing
platforms. The selective state-space formulation of Mamba
inherently supports linear-time sequence modeling with lower
memory consumption, providing a structural advantage for
lightweight adaptation. Future work will explore these directions:
(i) knowledge distillation from the full StaBle-MambaNet to
compact student models while retaining blur-specific reasoning
capability, (ii) structured pruning guided by the stability mask to
remove redundant feature channels outside blur-critical regions,
and (iii) low-bit quantization of the Mamba blocks to further
reduce memory footprint and computational latency.
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