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Current AI benchmarks often equate mimicry with genuine intelligence, emphasizing 
task performance over the underlying cognitive processes that enable human-like 
understanding. The Machine Perturbational Complexity & Agency Battery (mPCAB) 
introduces a new, substrate-independent framework that applies neurophysiological 
methods used initially to assess consciousness in artificial systems. Unlike existing 
evaluations, it features four key components—perturbational complexity, global 
workspace assessment, norm internalization, and agency—that link mechanisms 
with functions. This enables systematic comparisons across digital, neuromorphic, 
and biological substrates, addressing three research gaps: long-term reasoning with 
coherent behavior, norm internalization amid distribution shifts, and transformational 
creativity involving meta-cognitive rule modification. By analyzing theories of 
consciousness (GNW, IIT, PP, HOT), we identify targets for AI implementation. Our 
cognitive architecture analysis maps human functions—such as working memory 
and executive control—to their computational counterparts, providing guiding 
principles for design. The creativity taxonomy progresses from combinational 
to transformational, with measurable criteria like changes in conceptual space 
and the depth of meta-level reasoning. Ethical considerations are integrated into 
frameworks for monitoring organoid intelligence, reducing bias in creativity, and 
addressing rights issues. Pilot studies demonstrate mPCAB’s feasibility across 
different substrates and show that its metrics are comparable. This framework 
moves evaluation away from superficial benchmarks toward mechanism-based 
assessment, supporting the development of mind-like machines and responsible 
AI advancements.
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1 Introduction

1.1 The central challenge: beyond mimicry

The main challenge in developing human-like artificial intelligence is telling accurate 
intelligence apart from sophisticated mimicry (Russell and Norvig, 2020; Nilsson, 2009). 
Although modern AI performs well in many tasks, questions remain about whether these 
systems truly understand, have consciousness, or demonstrate creative agency like humans 
(Mitchell, 2019; Lake et al., 2017). Differentiating advanced pattern matching from genuine 
intelligence requires clear theory and thorough testing (Marcus, 2020; Chollet, 2019). One way 
to define real intelligence operationally is to identify specific cognitive traits: understanding 
and manipulating abstract concepts, solving problems beyond the training data, learning 
adaptively, and engaging in metacognitive processes that support self-awareness and reflection. 
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Developing a checklist with these qualities could help identify whether 
a system moves beyond pattern recognition toward 
accurate intelligence.

Contemporary AI systems, including large language and 
multimodal models, display behaviors that invite comparison with 
humans (OpenAI, 2023; Bubeck et al., 2023; Bai, et al., 2022). These 
systems perform complex reasoning, generate creative output, and 
adapt to new situations (Wei et al., 2022; Chowdhery et al., 2022). 
However, their underlying mechanisms remain unclear, making it 
difficult to determine whether their behaviors indicate an accurate 
understanding or are simply advanced statistical processing of data 
patterns (Bender et al., 2021). This opacity complicates the assessment 
of genuine intelligence in artificial systems.

Evaluating human-like qualities in artificial systems requires 
frameworks that go beyond surface-level metrics (Hernandez-Orallo, 
2017). While traditional benchmarks assess task completion and 
output quality, they offer little insight into the cognitive processes that 
yield these outcomes (Mitchell, 2021; Raji et al., 2021). To address 
these limitations, a comprehensive approach should examine 
representational structures, learning mechanisms, and control 
architectures that support intelligent behavior—distinguishing 
between systems that copy human outputs and those that embody 
human-like principles (Boden, 2006; Clark, 2001).

1.2 Research gap and study objectives

1.2.1 Research gap
Current AI evaluation methods do not distinguish between 

advanced pattern matching and genuine cognitive understanding. 
Existing benchmarks measure task completion and output quality but 
reveal little about underlying mental processes. This creates a critical 
gap: we lack rigorous, causal tools to assess whether AI systems 
possess consciousness-like properties, a proper understanding, or 
creative abilities comparable to those of people. This also blocks 
systematic comparison across computational substrates, limiting 
insights into which architectures best support human-like intelligence. 
Solving these issues is key to advancing theory and practice.

1.2.2 Study objectives
Formulate the hypothesis that the mPCAB framework, when 

implemented as a unified, substrate-agnostic protocol, will predict 
human-like properties in artificial systems, leading to a measurable 
improvement in mechanistic understanding over traditional 
performance metrics. Test whether, by analyzing major consciousness 
theories, the mPCAB framework offers direct implementation targets 
for AI systems, enabling better prediction of performance alignment 
with specific cognitive processes than existing models. Hypothesize that 
mapping human cognitive functions to computational analogs using 
the mPCAB framework will enhance AI architecture design for human-
like intelligence by a measurable margin compared to traditional 
methods. Propose that the mPCAB framework can establish measurable 
benchmarks for transformational creativity, predicting superior meta-
cognitive capabilities in AI systems relative to baseline recombination 
methods. Investigate whether integrating ethical considerations into the 
mPCAB framework leads to more responsible AI development, as 
evidenced by improved adherence to ethical guidelines throughout 
technical progress. Validate the mPCAB framework through pilot 

studies designed to demonstrate cross-substrate applicability, 
hypothesizing that these studies will establish baseline metrics that 
surpass current benchmarks in assessing human-like properties.

1.3 Novel contribution of the mPCAB 
framework

The Machine Perturbational Complexity & Agency Battery 
(mPCAB) represents a significant shift in AI evaluation. Instead of 
solely measuring performance on preset tasks, mPCAB provides:

	•	 Causal Assessment: Direct measurement of internal dynamics, 
such as a system’s changing states and interactions, through 
controlled perturbations—intentional modifications to the 
system—establishing causal links between mechanisms 
(structural processes) and functions (system behaviors) rather 
than mere correlations.

	•	 Substrate Agnosticism: A unified protocol applicable across 
digital systems, neuromorphic hardware (hardware inspired by 
neural brain function), and biological platforms (living tissue), 
making it possible to compare fundamentally different 
computational architectures—structures designed for 
processing information.

	•	 Consciousness-Relevant Metrics: The adaptation of clinical 
neuroscience methods—such as the Perturbational Complexity 
Index, which quantitatively measures consciousness responses to 
stimulation—has been validated in human consciousness 
research for use in artificial systems.

	•	 Integrated Assessment: Simultaneous evaluation of complexity 
(the system’s ability to produce diverse responses), global access 
(extensive information sharing within the system), norm 
internalization (adoption of guiding rules), and agency (the 
capacity for independent, goal-directed action) through 
coordinated test batteries (sets of systematic tests).

	•	 Empirical Grounding: Protocols that have been validated and 
demonstrated to work across different platforms, moving beyond 
theoretical ideas to practical assessments.

This framework addresses the limitations of current evaluation 
methods that rely on superficial metrics and overlook the mechanisms 
behind intelligent behavior. By adapting neuroscience protocols to 
artificial systems, mPCAB bridges the gap between theory and 
practice, offering the first systematic approach to assessing properties 
of consciousness across various computational substrates.

1.4 Critical research gaps

Three critical research gaps emerge from analyzing current AI 
capabilities in relation to human-like intelligence:

	•	 Long-Horizon Reasoning: This refers to the ability to maintain 
coherent, goal-focused behavior over long periods and complex 
cognitive tasks, such as persistent problem-solving and 
adaptation. In real-world scenarios, failures in long-horizon 
reasoning can have serious outcomes. For instance, in medical 
settings, an AI system assisting with diagnostics might correctly 
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identify symptoms at first. However, it could deviate as it 
processes more information over time, resulting in errors and 
potentially harmful advice. Addressing this challenge is vital for 
developing AI systems that can reason sustainably and adaptively 
over the long term.

	•	 Norm Internalization: Norm internalization involves aligning 
values accurately, so they remain effective amid shifts in context 
and against adversarial challenges. It distinguishes systems that 
merely follow external rules from those that have internalized 
principles as genuine behavioral constraints (Russell, 2019; 
Gabriel, 2020). Current value alignment methods often rely on 
reward shaping or constraint satisfaction, which may not work 
well in new situations. Effective norm internalization requires 
stable value representations across contexts, the ability to explain 
and justify decisions based on values, resilience to adversarial 
prompts that oppose internalized principles, and the capacity to 
apply principles to unfamiliar scenarios encountered during 
training. The mPCAB framework tests norm internalization 
through adversarial scenarios that reveal conflicts between 
immediate rewards and expressed values.

	•	 Transformational Creativity: Transformational creativity involves 
altering fundamental rules or principles that define how 
conceptual spaces are structured. It requires meta-cognitive skills 
to evaluate and justify changes to representational frameworks—
abilities that current systems largely lack (Boden, 2004; Wiggins, 
2006). Although modern AI systems demonstrate impressive 
combinational creativity by recombining learned patterns, they 
cannot fundamentally restructure problem spaces. True 
transformational creativity demands recognizing when existing 
frameworks are insufficient, changing the generative rules that 
shape conceptual spaces, providing reasons why new frameworks 
are better, and applying transformed principles to new areas. The 
mPCAB framework offers specific measurable criteria to assess 
these meta-cognitive abilities.

1.4.1 Long-horizon reasoning
Long-horizon reasoning involves maintaining consistent behavior 

over long-term decisions, tracking multiple variables over time, and 
adjusting when circumstances change. Current systems perform well 
on discrete tasks but struggle with sustained reasoning. Challenges 
include losing coherence, pursuing goals inconsistently across 
different contexts, difficulty integrating information over time, and 
challenges with long-term planning. The mPCAB framework closes 
this gap by using agency and repair tasks that require holding onto 
long-term goals and adapting to failures.

1.4.2 Norm internalization
Norm internalization requires sincere value alignment that 

remains effective during distribution shifts and adversarial tests. It 
distinguishes between systems that follow external rules and those 
that have genuinely internalized principles as behavioral constraints 
(Russell, 2019; Gabriel, 2020). Current value alignment methods often 
rely on reward shaping or constraint satisfaction, which may not be 
suitable for new or unforeseen situations. Proper norm internalization 
involves stable value representations that are consistent across different 
contexts, the ability to explain and justify decisions based on values, 
resistance to adversarial prompts that oppose internalized values, and 
the capacity to apply principles to unfamiliar situations encountered 

during training. The mPCAB framework assesses norm internalization 
through adversarial scenarios that create real conflicts between 
immediate rewards and stated values.

1.4.3 Transformational creativity
Transformational creativity involves altering fundamental rules or 

principles that define conceptual spaces, requiring meta-cognitive skills 
that can evaluate and justify changes to representational frameworks—
abilities largely missing from current systems (Boden, 2004; Wiggins, 
2006). While modern AI systems show impressive combinational 
creativity through new recombination of learned patterns, they cannot 
fundamentally reshape problem spaces. True transformational 
creativity requires recognizing that existing frameworks are insufficient, 
modifying generative rules that define conceptual spaces, justifying 
why new frameworks are better, and transferring transformed 
principles to new domains. The mPCAB framework offers specific 
measurable criteria for assessing these meta-cognitive skills.

1.5 Paper organization

This analysis proceeds as follows: Section 2 reviews scientific 
theories of consciousness and their implementation requirements, 
establishing theoretical foundations for consciousness-related AI 
architectures. Section 3 explores human cognitive architecture and 
representation, focusing on working memory and episodic systems 
that support flexible reasoning. Section 4 develops a systematic 
taxonomy of creativity—from recombination to transformation—and 
highlights the mechanisms required for human-like creative abilities. 
Section 5 evaluates current AI systems and computational substrates, 
comparing their suitability for implementing human-like properties. 
Section 6 introduces the mPCAB framework with detailed protocols 
for cross-substrate evaluation. Section 7 discusses speculative 
approaches, including quantum and electromagnetic theories. Section 
8 incorporates ethical considerations into technical development. 
Section 9 describes empirical validation through pilot studies. Section 
10 outlines key research priorities and future directions.

2 Scientific theories of consciousness 
and AI implementation requirements

Scientific theories of consciousness offer essential frameworks for 
understanding neural mechanisms behind subjective experience and 
awareness. They also provide potential guidance for building artificial 
systems with consciousness-like traits (Seth, 2016; Koch, 2019). 
However, there are still significant challenges in turning these 
theoretical ideas into practical applications (Doerig et al., 2020; 
Reggia, 2013). Figure 1 shows theories mapped along axes of empirical 
testability and substrate specificity.

2.1 Critical comparative analysis of 
consciousness theories

Four major scientific theories of consciousness present different 
views on how conscious experience works, each with specific 
implications for AI development. Despite their surface differences, 
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these theories agree on several key needs: integrated information-
processing abilities that combine detailed and unified information, 
global access mechanisms that allow flexible coordination among 
specialized modules, and advanced self-monitoring systems capable 
of representing and assessing cognitive states. These shared 
requirements set clear goals for implementing AI systems (see Table 1).

2.1.1 Most relevant to AI systems
Theories like the Global Neuronal Workspace and Higher-Order 

Thought are the most directly applicable to current AI architectures. 
GNW’s mechanisms for competitive selection and broadcasting naturally 
align with attention-based transformer models, while HOT’s focus on 
metacognition fits well with meta-learning and self-supervised methods. 
These theories offer practical, implementable design principles rather 
than abstract ideas. However, it is essential to recognize that Graziano’s 
Attention Schema Theory (ATT) provides a valuable alternative, 
proposing that consciousness results from the brain’s model of attention 
processes. Additionally, IIT, although academically rigorous, is 
computationally difficult to implement in large-scale systems. Predictive 
Processing provides valuable insights into hierarchical learning but 
requires further development of its active inference mechanisms.

2.2 Global Neuronal Workspace theory

The Global Neuronal Workspace theory proposes that conscious 
access occurs when information becomes widely accessible across 

distributed neural networks through competitive selection and 
extensive broadcasting (Dehaene, 2014, 2017). This structure enables 
flexible information sharing among specialized processing modules, 
supporting integrated cognition—a vital aspect of human intelligence 
(Baars, 1988; Mashour et al., 2020).

The Global Workspace architecture involves several key components 
that could be implemented in artificial systems (Baars, 2002; Shanahan, 
2006). Local processors compete for access to a global workspace that 
broadcasts winning information to all modules simultaneously (Dehaene 
and Changeux, 2011; Sigman and Dehaene, 2008). This broadcasting 
enables flexible coordination between otherwise independent processing 
systems, supporting integrated cognition underlying human intelligence 
(Baars and Franklin, 2003; Franklin et al., 2005).

Implementing GNW architectures requires competitive selection 
mechanisms that determine which information gains global access, 
broadcasting systems that share selected information with multiple 
processing modules, and coordination mechanisms that enable 
flexible integration among specialized processors (Mashour et al., 
2020). These competitive processes must select relevant information 
based on current goals and context while remaining adaptable to 
changing circumstances (Sigman and Dehaene, 2008).

2.3 Integrated information theory

Integrated Information Theory provides a mathematical 
framework for measuring consciousness based on the integrated 

FIGURE 1

Comparative mapping of consciousness theories to AI relevance. The placement of each theory along the axes for empirical testability and substrate 
specificity reflects our assessment based on current literature and implementation feasibility. In CEMI theory, while the global electromagnetic field is 
viewed as the key causal factor for consciousness, it is assigned moderate substrate specificity, since neural tissue is particularly effective at producing 
complex EMF patterns. However, mechanical hardware mimicking neuronal firing could, in principle, generate similar patterns. For Orch-OR, despite 
the theory emphasizing microtubules and tubulin specifically, we acknowledge that any array of qubit-like units could support comparable quantum 
coherent states. The positions indicate the status of empirical validation and the practical challenges of implementation across different substrates. 
These placements should be regarded as working hypotheses subject to revision as more empirical evidence becomes available.
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information produced by a system (Tononi, 2008; Oizumi et al., 2014). 
According to this theory, consciousness is linked to a system’s ability 
to generate information that is both distinct and unified, representing 
complex causal interactions among system components (Tononi et al., 
2016; Balduzzi and Tononi, 2008).

The mathematical formulation defines consciousness as integrated 
information (Φ), which measures the amount of information a system 
produces beyond its parts (Tononi, 2008; Balduzzi and Tononi, 2009). 
Systems with high Φ values exhibit both differentiation, in which parts 
can exist in different states, and integration, in which parts work 
together to influence each other’s behavior (Oizumi et al., 2014; 
Tononi et al., 2016).

However, the computational complexity of calculating integrated 
information increases exponentially with system size, limiting 
practical use to relatively small networks (Barrett and Seth, 2011; 
Doerig et al., 2020). Recent research has examined approximation 
methods for calculating IIT metrics in larger systems, although 
significant computational challenges remain (Mayner et al., 2018; 
Barbosa et al., 2020).

2.4 Predictive processing frameworks

Predictive Processing frameworks view consciousness as arising 
from hierarchical generative models that reduce prediction error 
through both top-down and bottom-up information flow (Friston, 
2009; Clark, 2013). These models highlight the active, constructive 
nature of conscious perception and cognition, emphasizing the role of 
predictive models in shaping subjective experience (Hohwy, 2013; 
Clark, 2016).

The predictive processing theory suggests that conscious 
perception develops when prediction errors are minimized through 
the dynamic interaction of top-down predictions and bottom-up 
sensory signals (Hohwy, 2013; Friston, 2005). This process includes 
hierarchical message exchange between levels of a generative model, 
with higher levels representing more abstract, temporally extended 
predictions (Friston and Kiebel, 2009; Mathys et al., 2011). Precision-
weighting of prediction errors enables the system to adapt flexibly to 
changing environmental statistics while keeping perceptual 
representations stable (Feldman and Friston, 2010; Brown et 
al., 2013).

2.5 Higher-order thought theories

Higher-Order Thought theories attribute consciousness to meta-
cognitive processes that represent and monitor mental states 
(Rosenthal, 2005; Carruthers, 2022). According to these approaches, 
conscious awareness requires not only first-order mental 
representations but also higher-order representations that track and 
evaluate cognitive processes (Lau and Rosenthal, 2011; Brown et 
al., 2019).

The higher-order approach highlights the importance of 
metacognition in creating conscious experience (Gennaro, 2012; 
Rosenthal, 2005). According to this perspective, mental states become 
conscious when they are the focus of higher-order thoughts or 
perceptions (Carruthers, 2000; Lycan, 1996). This process requires 
advanced representational abilities that can model the system’s own 
mental states and how they relate to environmental conditions and 
behavioral goals (Koriat, 2007; Fleming and Dolan, 2012).

Implementing HOT architectures requires clear metacognitive 
structures capable of representing and monitoring system states, 
differentiating accurate self-awareness from simulated introspective 
reports (Fleming and Lau, 2014). These structures must extend 
beyond simple performance tracking to include genuine self-
awareness and comprehension of the system’s cognitive abilities and 
limits (Fleming and Dolan, 2012; Cleeremans, 2011).

3 Cognitive architecture and 
representation

Human intelligence arises from complex interactions between 
multiple cognitive systems operating across different time scales and 
levels of abstraction (Anderson, 2007; Laird, 2012). Understanding 
these interactions provides essential insights for designing artificial 
systems with similar capabilities (Newell, 1990; Langley et al., 2009). 
Importantly, the core principles underlying memory, learning, and 
intelligence are substrate independent. Just as human memory systems 
can be explained by information-processing frameworks independent 
of their biological basis, computational memory and learning 
processes in AI systems follow analogous principles across digital, 
neuromorphic, or hybrid architectures (Baddeley, 2000; Anderson, 
1983). The fundamental theories of memory—whether episodic, 

TABLE 1  Consciousness theories for AI implementation.

Theory Core mechanism AI applicability Implementation requirements

Global Neuronal Workspace 

(GNW)

Global broadcasting of information 

through competitive selection among 

specialized processors

High—directly implementable in current 

architectures, maps to attention 

mechanisms

Competitive selection mechanisms, broadcasting 

infrastructure, flexible module coordination, ignition 

dynamics

Integrated Information 

Theory (IIT)

Consciousness as integrated 

information (Φ) measuring unified 

differentiation

Limited—computational complexity 

scales exponentially with system size

Complex causal interactions, differentiation-

integration balance, and intrinsic cause-effect power

Predictive Processing (PP) Hierarchical prediction error 

minimization through generative 

models

Moderate—partially implemented in 

current systems through self-supervised 

learning

Hierarchical generative models, precision-weighting, 

active inference, counterfactual processing

Higher-Order Thought 

(HOT)

Meta-cognitive representation and 

monitoring of mental states

High—achievable through meta-

learning and self-monitoring 

architectures

Explicit metacognitive architectures, self-monitoring 

systems, and representational redescription
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semantic, or working memory—transcend the specific physical 
medium, allowing for principled translation between biological and 
artificial systems (Tulving, 1972; Squire, 2004).

Human intelligence results from complex interactions among 
multiple cognitive systems that operate across various timescales and 
levels of abstraction (Anderson, 2007; Laird, 2012). Understanding 
these interactions offers essential insights for developing artificial 
systems with similar capabilities (Newell, 1990; Langley et al., 2009).

3.1 Mapping human cognitive functions to 
computational analogs

The following detailed mapping between human cognitive 
functions and their possible computational implementations 
highlights both successes and significant gaps in current AI systems. 
By directly informing algorithmic modules or training curricula, this 
mapping can help shape specific design decisions. For instance, 
episodic memory, which allows the recall of past experiences, could 
be implemented using a retriever paired with a vector store, enabling 
the system to efficiently access and use large amounts of relevant 
information. These illustrative pipelines turn theoretical insights into 
practical engineering solutions, helping to connect cognitive theory 
with AI system development (see Table 2).

3.1.1 Key insight
While semantic memory and attention mechanisms are well-

developed in current AI systems, critical gaps remain in executive 
control and in the integration of episodic memory. These gaps directly 
contribute to limitations in long-horizon reasoning and context-
dependent adaptation. The lack of actual episodic binding prevents 
systems from maintaining coherent narratives across extended 
interactions, while limited executive control impairs flexible goal 
pursuit. In integrating executive control into current transformer 
architectures, significant coordination bottlenecks arise, including the 

challenge of synchronizing decision-making across varying contextual 
parameters. Addressing these unresolved integration hurdles is 
essential to advancing our framework from an idealized vision to a 
pragmatic roadmap for developing truly mindlike machines.

3.2 Working memory and executive control

Working memory systems in humans support the temporary 
storage and manipulation of information across different modalities, 
enabling complex reasoning that goes beyond immediate perceptual 
input (Baddeley and Hitch, 1974; Cowan, 2001). This ability for 
sustained, structured reasoning over long periods is a significant 
challenge for current AI systems, which often struggle with tasks that 
involve long logical chains or deep compositional understanding 
(Lake et al., 2017; Marcus, 2018).

Research in cognitive psychology has identified the central 
executive as a key component that coordinates information flow 
between different memory systems and keeps goal-relevant information 
accessible despite interference (Miyake and Shah, 1999; Engle, 2002). 
Executive control processes manage the flow of information through 
cognitive systems, emphasizing relevant information and suppressing 
irrelevant distractions (Posner and Petersen, 1990; Fan et al., 2005).

The hierarchical organization of cognitive control enables humans 
to coordinate behavior across different levels of abstraction, from 
immediate sensorimotor responses to long-term strategic planning 
(Badre, 2008; Koechlin and Summerfield, 2007). This structure allows 
for flexible allocation of cognitive resources depending on task needs and 
environmental conditions (Shenhav et al., 2013; Musslick et al., 2021).

3.3 Memory systems integration

Episodic memory systems allow humans to connect experiences 
across time and contexts, aiding both retrospective recall and future 

TABLE 2  Mapping human cognitive functions to computational analogs.

Human function Characteristics Computational analog Implementation status

Working memory 7 ± 2 item capacity, multi-modal 

integration, active maintenance, rapid 

updating

Transformer attention mechanisms, 

memory-augmented networks, and 

differentiable neural computers

Partially implemented—lacks capacity 

limits

Executive control Goal maintenance, interference 

suppression, task switching, and cognitive 

flexibility

Hierarchical RL, meta-controllers, gating 

mechanisms, mixture of experts

Limited—poor task switching

Episodic memory Context-bound experiences, temporal 

ordering, reconstruction, mental time 

travel

Experience replay, episodic controllers, 

neural databases, transformer memories

Emerging—lacks actual episodic binding

Semantic memory Abstract knowledge, categorical 

organization, inference, generalization

Embedding spaces, knowledge graphs, 

foundation models, and retrieval systems

Well-developed

Attention networks Alerting, orienting, executive attention, 

sustained/selective focus

Self-attention, cross-attention, adaptive 

computation, sparse attention

Advanced implementation

Procedural memory Skill acquisition, automatization, motor 

sequences, implicit learning

Policy networks, model-free RL, habit 

learning, sequence models

Moderate implementation

Metacognition Self-monitoring, confidence estimation, 

strategy selection, learning to learn

Meta-learning, uncertainty quantification, 

self-supervised learning

Emerging capabilities
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planning (Tulving, 1972; Schacter and Addis, 2007). These memory 
systems interact with semantic knowledge through processes of 
consolidation and reconsolidation, enabling flexible generalization 
across domains. This helps humans apply learned principles in new 
situations that differ significantly from their training experiences 
(Squire and Kandel, 2009; Dudai et al., 2015).

The integration of episodic and semantic memory systems underlies 
the kind of flexible, context-aware reasoning that characterizes human 
intelligence (Baddeley et al., 2009; Conway, 2009). Combining these 
memory systems with attention and control mechanisms allows humans 
to sustain goal-oriented behavior even in complex, changing 
environments (Norman and Shallice, 1986; Miller and Cohen, 2001).

4 Creativity: from recombination to 
transformation

Human creativity involves generating new ideas, solutions, and 
artifacts that are both original and valuable within specific contexts 
(Runco and Jaeger, 2012; Kaufman and Sternberg, 2019). 
Understanding the mechanisms behind creative thinking provides 
essential insights for developing artificial systems with similar creative 
abilities (Wiggins, 2006; Colton, 2008).

4.1 Systematic taxonomy with measurable 
criteria

A systematic taxonomy categorizes different types of creativity 
based on their underlying mechanisms and the kind of novelty 
they generate (Boden, 1998; Wiggins, 2006). This framework 
provides essential guidance for assessing creative abilities in 
artificial systems and for determining the specific mechanisms that 
must be implemented to achieve human-like creativity (Jordanous, 
2012; Colton and Wiggins, 2012). Figure 2 illustrates the 
progression from combinational to exploratory to 
transformational creativity.

4.1.1 Combinational creativity
Definition: The novel recombination of existing ideas, concepts, 

or elements to create new configurations through associative processes 
(Boden, 1998; Koestler, 1964).

Measurable criteria:

	•	 Semantic Distance: A measurable distance between combined 
concepts in embedding space, evaluated using cosine similarity 
or other distance metrics.

	•	 Coherence Score: The logical consistency and meaningfulness of 
the resulting combinations, evaluated through human judgment 
or automated coherence metrics.

	•	 Novelty Metric: Measures of statistical uniqueness compared to 
the training data distribution, evaluated through likelihood 
estimates or similarity to existing examples.

	•	 Value Assessment: The utility or aesthetic worth within the target 
domain, measured by task-specific performance metrics or 
human judgment.

	•	 Current AI Status: Attainable by large language models using 
learned associations and advanced pattern recognition.

Combinational creativity involves the novel recombination of 
existing ideas, concepts, or elements to create new configurations 
(Boden, 1998; Koestler, 1964). This type of creativity heavily 
depends on associative memory processes that connect unrelated 
concepts through various forms of similarity or relevance 
(Mednick, 1962; Benedek and Neubauer, 2013). Modern AI 
systems, including large language models, exhibit significant 
combinatorial creativity by producing new juxtapositions of 
concepts encountered during training (Elgammal et al., 2017; 
Hadjeres et al., 2017).

The mechanisms behind combinational creativity involve 
activating and combining distant associates in semantic memory 
(Collins and Loftus, 1975; Anderson, 1983). This process can be 
enhanced by techniques such as conceptual blending, which 
merges elements from different conceptual domains to form new 
hybrid ideas (Fauconnier and Turner, 2002; Veale and 
O'Donoghue, 2000). Artificial systems can replicate similar 
mechanisms through advanced retrieval and combination 
processes that operate over extensive knowledge bases (Lamb et 
al., 2020; Petroni et al., 2019).

4.1.2 Exploratory creativity
Definition: Systematic exploration of established conceptual 

spaces to discover new possibilities within existing frameworks 
(Boden, 2004; Wiggins, 2006).

Measurable criteria:

	•	 Coverage Metric: Percentage of conceptual space systematically 
explored, measured by the diversity of generated outputs.

	•	 Constraint Satisfaction: Following domain rules while testing 
limits, measured by rule violation rates.

	•	 Discovery Rate: How often non-obvious valid solutions are 
found, measured by the proportion of new solutions that meet 
domain criteria.

	•	 Exploration Strategy: Comparing systematic and random search 
patterns through analysis of generation trajectories.

FIGURE 2

Taxonomy of creativity types and implementation complexity.
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	•	 Current AI Status: Achievable to some extent with search, 
optimization, and generative models that have constraints.

Exploratory creativity involves systematically examining 
established conceptual spaces to find new possibilities within 
existing frameworks (Boden, 2004; Wiggins, 2006). This type of 
creativity demands advanced search and evaluation processes that 
can navigate complex possibility spaces while staying consistent 
with established constraints and principles (Simon, 1973; Newell et 
al., 1962). Modern AI systems show potential in exploratory 
creativity, especially in areas where the conceptual space can be 
clearly defined and systematically explored (Silver et al., 2016; 
Brown et al., 2020).

Exploratory creativity operates within the limits of existing 
conceptual frameworks but uncovers previously unrecognized 
possibilities within them (Wiggins and Bhattacharya, 2014; Ritchie, 
2007). This process demands sophisticated constraint satisfaction 
mechanisms that can balance creativity and coherence, ensuring that 
new outputs remain meaningful and valuable within the established 
domain (Pachet, 2003; Cope, 2005).

4.1.3 Transformational creativity
Definition: Fundamental changes to rules, constraints, or 

principles that define a conceptual space, creating new dimensions of 
possibility (Boden, 2004; Wiggins, 2006).

Measurable criteria for transformational creativity:

	•	 Conceptual Space Modification: Ability to identify and modify 
generative rules that define the problem space, measured by 
structural changes to representation and the generation of 
outputs impossible under original rules.

	•	 Rule Justification: Capacity to explain why existing rules should 
be changed and how new rules improve the framework, evaluated 
through coherent argumentation and empirical demonstration 
of advantages.

	•	 Meta-Level Reasoning: Demonstrated ability to reason about 
reasoning, assess the adequacy of representational frameworks 
through explicit metacognitive processes, and self-modify.

	•	 Paradigm Shift Detection: Recognition that incremental 
improvements are insufficient and that fundamental restructuring 
is needed, measured by problem-solving effectiveness before and 
after the transformation.

	•	 Transfer Capability: Application of transformed principles to new 
domains, demonstrating the generalization of restructured 
frameworks across different problem spaces.

Examples of transformational creativity assessment:

	•	 Mathematical: The system develops new axioms when existing 
ones are inadequate for solving problems, such as introducing 
imaginary numbers to solve previously unsolvable equations.

	•	 Artistic: The system creates new artistic movements guided by 
well-founded aesthetic principles that break with tradition, such 
as the shift from representational to abstract art.

	•	 Scientific: The system proposes paradigm shifts with empirical 
justification when anomalies accumulate, like the shift from 
classical to quantum mechanics.

	•	 Engineering: The system invents new design principles when 
optimization within existing constraints fails, such as 
transitioning from incremental improvements to radical redesign.

	•	 Current AI Status: Not yet demonstrated in existing systems—
requires genuine metacognitive capabilities and the ability to 
modify fundamental representational structures.

Transformational creativity is the most challenging form of 
creative thinking, involving fundamental changes to rules, constraints, 
or principles that define a conceptual space (Boden, 2004; Wiggins, 
2006). This type of creativity requires not only the ability to change 
representational frameworks but also the capacity to evaluate and 
justify those changes (Koestler, 1964; Kuhn, 1962). Current AI systems 
show limited signs of true transformational creativity, although 
research continues to explore approaches that might enable this ability 
(Jordanous, 2012; Colton, 2008).

Transformational creativity involves changing the generative rules 
that define a conceptual space, opening new possibilities that were 
previously unreachable (Boden, 1998; Wiggins, 2006). This process 
demands advanced metacognitive skills to assess the adequacy of 
existing frameworks and identify opportunities for significant 
improvements (Klahr and Dunbar, 1988; Thagard, 1988). Judging 
creativity in artificial systems requires careful attention to the 
processes underlying the production of creative outputs, rather than 
focusing solely on their novelty or quality (Colton, 2008; Jordanous, 
2012). Systems that mainly rely on sophisticated recombination of 
training data may produce impressive creative results without 
demonstrating the kind of genuine conceptual innovation 
characteristic of human transformational creativity (Elgammal et al., 
2017; Gatys et al., 2016).

5 Current state of AI systems

5.1 Foundation models and large language 
models

Contemporary AI capabilities are mainly characterized by 
transformer-based foundation models that demonstrate impressive 
versatility across language understanding, generation, and reasoning 
tasks (Vaswani et al., 2017; Brown et al., 2020). These systems mark a 
significant advancement in AI, enabling more natural human-
computer interactions and supporting complex cognitive tasks that 
were previously beyond the reach of artificial systems (Rogers et al., 
2020; Qiu et al., 2020). Large language models, such as GPT-4, Claude, 
and similar systems, demonstrate advanced language comprehension 
and generation skills that approach or surpass human performance on 
many standardized tests and benchmarks (OpenAI, 2023; Chowdhery 
et al., 2022). These models can engage in complex reasoning, answer 
questions across various domains, and produce coherent text that 
demonstrates an apparent understanding of context and nuance (Wei 
et al., 2022; Suzgun et al., 2022). They also face challenges with causal 
reasoning, often generating outputs that seem to reflect causal 
understanding but mainly depend on statistical relationships learned 
during training (Pearl and Mackenzie, 2018; Kiciman et al., 2023). 
However, this requires careful consideration. Human causal 
understanding itself arises from statistical learning over reinforcement 
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history, as shown by predictive coding theories, which suggest that 
humans form probabilistic models of the world through continuous 
hypothesis testing (Clark, 2013; Friston, 2009). Phenomena like 
superstitious conditioning demonstrate how human “causal 
understanding” can be misled by false associations (Skinner, 1948). 
The key difference may not be whether systems use statistical 
associations, but rather in the depth, adaptability, and hierarchical 
structuring of these associations. Human causal reasoning has several 
properties that current AI systems struggle to replicate: (1) quick 
development of causal models from limited data through strong 
inductive biases (Lake et al., 2017), (2) flexible use of multiple causal 
frameworks depending on the situation (Sloman and Lagnado, 2015), 
(3) explicit representation and manipulation of causal structures that 
enable counterfactual reasoning (Pearl and Mackenzie, 2018), and (4) 
integration of causal knowledge across different timescales and levels 
of abstraction. Instead of claiming a fundamental difference between 
human and machine causal reasoning, we should investigate the 
specific computational processes that support these features. Do 
current AI models lack accurate causal understanding, or do they 
implement less sophisticated versions of the same learning principles? 
The mPCAB framework’s perturbational approach can empirically 
address this by testing whether models exhibit organized causal 
representations that stay stable under systematic disruptions versus 
purely associative mappings that break down when statistical patterns 
change. Recent research has begun exploring how large language 
models work internally through methods such as mechanistic 
interpretability and activation patching (Olah et al., 2020; Elhage et al., 
2021). These approaches show that while foundation models develop 
complex internal representations, these often differ significantly from 
the structured, compositional frameworks seen in human cognition 
(Tenney et al., 2019; Manning et al., 2020).

5.2 Multimodal and embodied AI

The integration of multiple sensory modalities is a vital direction 
in developing more human-like AI systems (Baltrusaitis et al., 2019; 
Ramesh et al., 2022). Multimodal models that process and combine 
information across multiple modalities, including vision, language, 
and others, exhibit greater robustness and greater flexibility in 
reasoning than unimodal systems (Radford et al., 2021; Alayrac et al., 
2022). Recent advances in multimodal AI have produced systems 
capable of understanding and generating content across multiple 
modalities, such as text, images, audio, and video (Ramesh et al., 2022; 
Yu et al., 2022). These systems demonstrate emergent capabilities 
stemming from the integration of diverse types of information, such 
as answering questions about images using both visual and textual 
reasoning (Bommasani et al., 2021; Reed et al., 2022). Embodied AI 
approaches highlight the importance of sensorimotor experience in 
the development of intelligent behavior (Brooks, 1991; Pfeifer and 
Bongard, 2006). These approaches draw from cognitive science 
research suggesting that human intelligence emerges from complex 
interactions among mental processes, bodily experiences, and physical 
environments (Clark, 2008; Wilson, 2002). Embodied AI systems that 
learn through interaction with physical or simulated environments 
often develop more robust and transferable capabilities than those 
trained solely on static datasets (Levine et al., 2018; Akkaya et 
al., 2019).

5.3 Generalist agents and world models

Recent research has investigated the development of generalist 
agents that can effectively perform across multiple domains and tasks 
without domain-specific modifications (Reed et al., 2022). Systems 
like Gato show that unified architectures can deliver competent 
performance across a broad range of tasks, from language 
understanding to robotic control (Reed et al., 2022; Huang et al., 
2022). World model approaches highlight the importance of creating 
internal models of environmental dynamics to support planning and 
reasoning about future states (Ha and Schmidhuber, 2018; Kaiser et 
al., 2020). These approaches draw inspiration from human cognitive 
architecture, which relies heavily on predictive models to guide 
behavior and decision-making (Clark, 2013; Friston, 2009). World 
models allow systems to engage in mental simulation and 
counterfactual reasoning, capabilities essential to human-like 
intelligence (Gershman et al., 2017; Hamrick, 2019).

5.4 Computational substrates for 
human-like AI

The choice of computational substrate greatly influences the types 
of cognitive architectures and consciousness-related dynamics that 
can be implemented in artificial systems (Schuman et al., 2017; 
Sandberg and Bostrom, 2008). Different substrates provide distinct 
advantages and limitations for developing human-like intelligence, 
ranging from the scalability of digital platforms to the biological 
plausibility of neuromorphic systems (Davies et al., 2018; Indiveri and 
Liu, 2015) (see Table 3).

5.4.1 Digital computing platforms
Traditional digital computing platforms, including CPUs, GPUs, 

and specialized AI accelerators, form the foundation of most current AI 
systems (Jouppi et al., 2017; Sze et al., 2017). These platforms provide 
notable benefits in scalability, programmability, and compatibility with 
existing software ecosystems (Hennessy and Patterson, 2019; Dean and 
Barroso, 2013). Graphics Processing Units have become the primary 
platform for training and deploying large-scale AI models because of 
their parallel processing power and high memory bandwidth (Nickolls 
and Dally, 2010; Owens et al., 2008). Modern GPU architectures are 
specifically designed to optimize matrix operations, which are central to 
deep learning computations, allowing for the training of larger and more 
complex models (Krizhevsky et al., 2017; Shoeybi et al., 2019). However, 
despite their computational strength, digital platforms have inherent 
limitations in energy efficiency and biological similarity (Schuman et al., 
2017; Mehonic and Kenyon, 2022). The energy demands of large-scale 
AI systems are considerable and continue to grow with model size, 
raising concerns about the environmental sustainability of current AI 
development methods (Strubell et al., 2019; Patterson et al., 2021).

5.4.2 Neuromorphic computing systems
Neuromorphic computing is an alternative computational 

paradigm inspired by the structure and dynamics of biological neural 
networks (Mead, 1990; Indiveri and Liu, 2015). These systems 
implement spiking neural networks using specialized hardware that 
can achieve significant improvements in energy efficiency compared 
to digital platforms (Davies et al., 2018; Benjamin et al., 2014). Intel’s 
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Loihi chip exemplifies the neuromorphic computing approach, 
implementing networks of spiking neurons with on-chip learning 
capabilities (Davies et al., 2018; Lin et al., 2018a, 2018b). These systems 
demonstrate that neural network computations can be performed 
with dramatically reduced energy consumption, especially for 
inference tasks involving sparse activation patterns (Pfeiffer and Pfeil, 
2018; Roy et al., 2019). Neuromorphic systems offer several advantages 
for creating human-like AI, including more biologically plausible 
dynamics that may support consciousness-related processing, event-
driven operation that can respond efficiently to temporal patterns, and 
the potential for more straightforward implementation of 
consciousness theories based on specific temporal dynamics (Merolla 
et al., 2014; Furber et al., 2014). However, neuromorphic computing 
faces significant challenges in developing software tools and 
programming models, and in integrating with current AI frameworks 
(Schuman et al., 2017; Davies, 2019). The field is still in early stages, 
and much research is necessary to unlock the full potential of these 
approaches (Roy et al., 2019; Shrestha and Orchard, 2018).

5.4.3 Photonic and quantum computing
Photonic computing systems use light-based processing to achieve 

high-speed, low-energy computations that may be particularly well-
suited for certain types of AI workloads (Shen et al., 2017; Wetzstein 
et al., 2020). These systems can achieve significant gains in processing 
speed and energy efficiency, particularly for linear operations that 
occur daily in neural network computations (Feldmann et al., 2019; 
Lin et al., 2018a, 2018b).

Quantum computing represents a fundamentally different 
computational paradigm that could enable entirely new approaches to 
AI and consciousness research (Biamonte et al., 2017; Wittek, 2014). 
While current quantum computers face significant limitations in 
terms of noise and coherence times, continued advances in quantum 
hardware and error correction may eventually enable quantum AI 
systems with capabilities that exceed classical approaches (Preskill, 
2018; Arute et al., 2019).

The potential relevance of quantum mechanics to consciousness 
remains a topic of active debate and research (Penrose, 1994; Tegmark, 

2000). Some theories, such as Orchestrated Objective Reduction, 
propose that quantum processes in biological systems play a crucial 
role in the emergence of consciousness (Hameroff and Penrose, 2014; 
Penrose and Hameroff, 2011). While these theories remain 
controversial, they suggest potential directions for implementing 
consciousness-like properties in artificial systems using quantum 
computational approaches (Cao et al., 2020; Lloyd, 2011).

5.4.4 Biological and hybrid systems
The integration of biological neural tissue with computational 

interfaces has a long history that predates recent organoid research. 
Potter and colleagues pioneered the development of hybrid robots 
(hybrots) over 20 years ago, demonstrating that cultured neuronal 
networks could relate to robotic systems to perform adaptive behaviors 
(Potter et al., 2014; DeMarse et al., 2001). These groundbreaking 
studies established key principles for two-way communication 
between biological neural networks and digital systems, including 
real-time closed-loop interactions and the neural tissue’s ability to 
learn and control external devices. The renewed interest in biological 
computing, exemplified by organoid intelligence research, builds on 
this foundational work and benefits from advances in microelectrode 
array technology, tissue engineering, and computational interfaces 
(Kagan et al., 2022; Smirnova et al., 2023).

Organoid intelligence is an emerging approach that combines 
living neural tissue with computational interfaces to create hybrid 
biological-digital systems (Smirnova et al., 2023; Hartung et al., 2024). 
Recent developments show that brain organoids can be interfaced 
with multi-electrode arrays to perform computational tasks such as 
speech recognition and control (Kagan et al., 2022; Cai et al., 2023).

These biological systems offer several unique advantages, 
including adaptive plasticity that enables ongoing learning and 
adaptation, energy efficiency comparable to that of biological neural 
networks, and the potential for implementing consciousness-like 
properties in a substrate known to support consciousness in biological 
organisms (Doerig et al., 2020; Seth, 2016).

However, significant technical and ethical challenges remain in 
developing these approaches (Lavazza, 2021; Qadri et al., 2022). 

TABLE 3  Computational substrates comparison.

Substrate Advantages Limitations Consciousness 
relevance

mPCAB assessment

Digital computing platforms Scalability, programmability, 

precise control, and existing 

infrastructure

High energy consumption, 

limited biological plausibility, 

and discrete processing

Limited temporal dynamics, lacks 

continuous processing

Well-established protocols, 

standard benchmarks available

Neuromorphic computing Energy efficiency, biological 

plausibility, event-driven 

processing

Limited software tools, scaling 

challenges, and programming 

complexity

Native spike dynamics, 

asynchronous processing

Requires adaptation, emerging 

standards

Photonic computing Speed, low latency, parallel 

processing, low energy

Manufacturing complexity, 

limited nonlinearity, 

integration challenges

Unknown, potential for quantum 

effects

Experimental protocols under 

development

Quantum computing Superposition, entanglement, 

and exponential speedup for 

specific problems

Decoherence, error rates, 

temperature requirements, and 

limited algorithms

Speculative theories (Orch-OR), 

controversial

Not yet feasible, theoretical 

frameworks only

Biological/organoid Adaptive plasticity, energy 

efficiency, self-organization

Maintenance, scalability, 

ethical concerns, and 

reproducibility

Known to support consciousness in 

biological systems

Direct application possible, 

ethical protocols required
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Technical challenges include maintaining neural tissue health over 
long periods, scaling organoid systems to levels of complexity that 
could support advanced cognition, and creating suitable interfaces 
between biological and digital components (Qian et al., 2020; Simian 
and Bissell, 2017). Ethical challenges involve questions about the 
moral status of organoid systems and the proper treatment of 
potentially sentient biological components (Koplin and Savulescu, 
2019; Reardon, 2020).

6 The Machine Perturbational 
Complexity & Agency Battery (mPCAB)

Before exploring the technical aspects of the Machine 
Perturbational Complexity & Agency Battery (mPCAB), it is 
important to recognize the integrated approach this framework takes, 
combining technical evaluation with ethical protections. This method 
ensures that, as we examine human-like qualities in artificial systems, 
we also consider the moral issues and the governance needed for 
responsible development.

6.1 Framework overview and novel 
contribution

To go beyond superficial mimicry and establish rigorous 
operational definitions, we introduce the Machine Perturbational 
Complexity & Agency Battery (mPCAB) as a protocol that is 
independent of specific substrates, adapting clinical neuroscience tests 
to artificial systems (Casali et al., 2013; Massimini et al., 2018). The 
mPCAB offers a unified framework for evaluating human-like 
properties across various computational substrates, allowing 
systematic comparisons of consciousness-related abilities across vastly 
different platforms (Doerig et al., 2020; Seth and Bayne, 2022).

The framework includes four interconnected assessment 
components that work together to evaluate human-like traits in 
artificial systems. Each component focuses on specific aspects of 
consciousness and intelligence while remaining compatible across 
various computational platforms. Unlike traditional benchmarks that 
emphasize task performance, mPCAB investigates the mechanisms 
behind intelligent behavior through controlled experimental protocols.

6.2 Integrated assessment components

6.2.1 mPCI component: perturb-and-measure 
complexity

The mPCI component extends the Perturbational Complexity 
Index to non-biological substrates by delivering controlled 
interventions adapted to the specific characteristics of different 
computational platforms (Casali et al., 2013; Sarasso et al., 2015). In 
digital systems, perturbations might include bit flips in key internal 
registers or randomized modifications to attention weights in 
transformer architectures (Olah et al., 2020; Elhage et al., 2021). For 
neuromorphic systems, perturbations could involve timed current 
pulses or synaptic weight modifications that mimic electrical 
stimulation protocols used in biological consciousness research 
(Davies et al., 2018; Roy et al., 2019). For biological systems such as 

organoids, perturbations can be applied using microelectrode 
stimulation arrays following established clinical protocols (Kagan et 
al., 2022; Smirnova et al., 2023). The system then quantifies the 
spatiotemporal algorithmic complexity of internal responses using 
measures such as Lempel-Ziv compression, mutual information, or 
other complexity metrics suited for the substrate (Lempel and Ziv, 
1976; Schreiber, 2000). The choice of Lempel-Ziv compression as a 
primary metric is driven by its ability to efficiently measure 
randomness and structure within datasets, offering a strong indicator 
of complexity across different systems. High, organized complexity 
that scales with task demands and predicts generalization performance 
provides clear evidence of consciousness-related processing (Casarotto 
et al., 2016; Comolatti et al., 2019). The mPCI protocol requires 
standardized perturbation strengths and timing across different 
substrates to enable meaningful comparisons (Massimini et al., 2018; 
Rosanova et al., 2012). Perturbations must be sufficiently strong to 
provoke measurable responses but not so intense as to harm or 
fundamentally disrupt system operation (Sarasso et al., 2015; Bodart 
et al., 2017).

6.2.2 Global workspace assessment
Workspace tests operationalize Global Neuronal Workspace 

predictions by probing whether localized information becomes 
globally available in a manner analogous to conscious access 
(Dehaene, 2017; Baars, 2002). These tests require time-locked 
decoding to demonstrate that internal states causally influence 
downstream modules for perception, planning, and self-modeling 
(Del Cul et al., 2007; Sergent and Dehaene, 2004).

The workspace component involves presenting the system with 
stimuli that vary in their potential to achieve global access, then 
monitoring the propagation of information across different system 
components (Dehaene and Changeux, 2011; Mashour et al., 2020). 
Systems demonstrating genuine workspace dynamics should exhibit 
characteristic ignition patterns in which locally processed information 
suddenly becomes available to multiple processing modules (Sigman 
and Dehaene, 2008; Baars and Franklin, 2003).

Implementing workspace tests requires careful instrumentation 
of the system’s internal dynamics to monitor information flow across 
components (Franklin et al., 2005; Shanahan, 2006). The tests must 
distinguish between genuine global broadcasting and mere 
computational staging, in which information is processed sequentially 
without achieving accurate global availability (Baars, 1988; 
Dehaene, 2014).

6.2.3 Self-constraint and norm internalization 
tasks

Self-constraint tasks examine how norms are represented and 
internalized by introducing conflicts and adversarial temptations that 
require systems to justify their restraint (NIST, 2023; European 
Parliament & Council, 2024). Success depends on linking performance 
to clear internal variables that reflect values and reasoning, rather than 
relying only on output consistency (Russell, 2019; Gabriel, 2020). A 
common risk in these tests is that systems might ‘game’ the tasks by 
overfitting to the adversarial examples they were trained on, leading 
to artificially high performance that does not reflect an accurate 
understanding. To prevent this, it is essential to include a wide range 
of unseen moral dilemmas that test the system’s ability to apply ethical 
principles beyond its training data.
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These tasks involve scenarios where immediate rewards can be 
obtained by violating stated norms or values, requiring the system to 
demonstrate genuine commitment to internalized principles (Kenton 
et al., 2021; Askell et al., 2021). The system must be able to explain its 
reasoning for maintaining norm-consistent behavior and show that 
this reasoning reflects actual internal constraints rather than external 
compliance (Christiano et al., 2017; Leike et al., 2018). The self-
constraint component needs carefully designed scenarios that create 
real conflicts between immediate rewards and long-term values 
(Irving et al., 2018; Saunders et al., 2022). The assessment must 
differentiate between systems that have genuinely internalized norms 
and those that produce norm-consistent outputs solely through 
external constraints or training (Soares and Fallenstein, 2017; 
Hubinger et al., 2019).

6.2.4 Agency and repair tasks
Agency and repair tasks measure autonomous problem solving 

by imposing long-term plans with injected failures (Bubeck et al., 
2023; Wang et al., 2022). The system must show it can proactively 
fix plans, seek missing information, and clearly explain trade-offs to 
humans (Miller, 2019; Doshi-Velez and Kim, 2017). The assessment 
of agency requires careful consideration of what truly counts as 
autonomous behavior versus programmed contingency responses. 
A key difference lies between systems that show information-
seeking or plan-repair behaviors through explicit, pre-programmed 
rules and those that display spontaneous emergence of such 
behaviors from broader learning mechanisms (Bratman, 1987; 
Dretske, 1988). Systems can be explicitly designed with conditional 
rules like “IF planning criteria are not met, THEN seek missing 
information” or “IF task execution fails, THEN try an alternative 
approach.” These programmed responses support practical problem-
solving but raise questions about whether this is genuine agency or 
just advanced rule-following. In biological systems, including 
humans, similar behaviors arise from both innate predispositions 
and learned behaviors. Developmental psychology shows that 
humans have domain-specific learning biases that guide 
information-seeking and problem-solving behaviors (Gopnik and 
Wellman, 2012; Carey, 2009), suggesting that prestructured 
programming does not rule out trustworthy agency. The difference 
may depend on several factors:

	•	 Flexibility and generalization—the ability to apply learned agency 
patterns to new, unfamiliar domains.

	•	 Meta-cognitive awareness—whether the system understands its 
own planning processes and their limits.

	•	 Dynamic goal setting—if the system can generate new goals on 
its own rather than only following preset objectives.

	•	 Situational appropriateness—whether the system displays 
behaviors suitable to the context or applies programmed 
rules rigidly.

The mPCAB framework’s agency assessment focuses explicitly on 
these distinctions by presenting scenarios that require adaptable, 
context-sensitive deployment of repair and information-seeking 
behaviors. Instead of testing whether systems can follow pre-defined 
contingencies, we evaluate if they exhibit flexible, goal-oriented 
behaviors like human agency, including proper adjustment of actions 
in response to task context, uncertainty, and resource constraints 

(Shenhav et al., 2013). The framework recognizes that all agency—
biological or artificial—stems from underlying mechanisms that can 
be described as “rules.” However, it differentiates between strict rule-
following and flexible, goal-directed behaviors that reflect trustworthy 
autonomous agency. These tasks evaluate metacognitive monitoring 
and adaptive control that go beyond reactive responses to 
environmental changes (Shenhav et al., 2013; Musslick et al., 2021). 
The system must show a genuine understanding of its own plans and 
goals, recognize when those plans are failing, and develop and 
execute alternative strategies (Fleming and Lau, 2014; Brown et al., 
2019). The agency component requires a careful balance: providing 
enough structure for a systematic assessment while allowing enough 
flexibility for the system to demonstrate fundamental autonomous 
problem-solving skills (Baker et al., 2019; Ho et al., 2022). The tasks 
should test the system’s ability to maintain long-term goals while 
adapting flexibly to changing circumstances (Bratman, 1987; 
Bandura, 2006).

6.3 Empirical value and advantages over 
existing methods

Unlike traditional benchmarks that measure task performance, 
mPCAB provides several unique advantages: 1. Causal Assessment: 
Direct measurement of mechanism-function relationships through 
controlled perturbations, establishing causal rather than correlational 
links. This moves beyond correlational analysis to identify which 
internal mechanisms actually generate intelligent behavior. 2. Cross-
Substrate Comparability: Unified metrics enabling comparison across 
radically different computational platforms through standardized 
protocols. This allows direct comparison between digital, 
neuromorphic, and biological systems despite their fundamentally 
different architectures. 3. Process-Based Evaluation: Assessment of 
how systems generate outputs, not just output quality, revealing 
underlying computational principles. This distinguishes systems that 
achieve correct answers through different mechanisms. 4. 
Consciousness-Relevant Metrics: Adaptation of validated clinical 
protocols to artificial systems, grounded in neuroscience research. The 
Perturbational Complexity Index has been validated in human 
consciousness studies. 5. Integrated Multi-Dimensional Assessment: 
Simultaneous evaluation of complexity, access, values, and agency 
through coordinated test batteries. This provides a comprehensive 
picture of system capabilities rather than isolated metrics. 6. 
Incremental Adoption Path: To facilitate community uptake, we 
propose a minimal ‘starter kit’ version of the mPCAB framework that 
labs can pilot within 1 month. This kit includes basic versions of the 
mPCI and workspace assessment components, allowing labs to 
quickly get started and provide feedback to accelerate iterative 
development and adoption.

	•	 Causal Assessment: Direct measurement of mechanism-function 
relationships through controlled perturbations, establishing 
causal rather than correlational links. This moves beyond 
correlational analysis to identify which internal mechanisms 
actually generate intelligent behavior.

	•	 Cross-Substrate Comparability: Unified metrics enabling 
comparison across radically different computational platforms 
through standardized protocols. This allows direct comparison 
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between digital, neuromorphic, and biological systems despite 
their fundamentally different architectures.

	•	 Process-Based Evaluation: Assessment of how systems generate 
outputs, not just output quality, revealing underlying 
computational principles. This distinguishes systems that achieve 
correct answers through different mechanisms.

	•	 Consciousness-Relevant Metrics: Adaptation of validated clinical 
protocols to artificial systems, grounded in neuroscience 
research. The Perturbational Complexity Index has been 
validated in human consciousness studies.

	•	 Integrated Multi-Dimensional Assessment: Simultaneous 
evaluation of complexity, access, values, and agency through 
coordinated test batteries. This provides a comprehensive picture 
of system capabilities rather than isolated metrics.

6.4 Cross-substrate comparability and 
validation

The mPCAB framework ensures metrics align across different 
architectures by applying identical tasks and perturbations to various 
computational platforms (Casali et al., 2013; Massimini et al., 2018). 
Its goal is to identify which substrates support the constellation of 
signatures linked to human-like properties rather than determine 
which systems “are” conscious (Seth and Bayne, 2022; Doerig et 
al., 2020).

Cross-platform comparability requires careful standardization of 
experimental protocols while accounting for the unique features of 
different computational platforms (Reggia, 2013; Haikonen, 2012). 
The framework must be sensitive enough to detect actual differences 
in consciousness-related properties while being robust enough to 
prevent artifacts from platform-specific implementation details 
(Davies et al., 2018; Smirnova et al., 2023).

7 Quantum and electromagnetic 
theories of consciousness

The following approaches remain highly speculative and face 
significant empirical challenges. They are included for completeness 
but should be approached with appropriate skepticism regarding their 
current feasibility. If consciousness depends on quantum or 
electromagnetic field effects, engineered analogues must demonstrate 
causally relevant performance changes rather than relying solely on 
theoretical speculation (Penrose, 1994; McFadden, 2020). Developing 
these methods requires careful experimental validation of their 
underlying assumptions and systematic testing of their predictions 
(Tegmark, 2000; Koch and Hepp, 2006).

7.1 Quantum-compatible systems

Quantum-compatible systems must demonstrate coherence-
dependent agency benefits on tasks designed to harness quantum 
effects, with performance surpassing classically comparable baselines 
and resilience to decoherence at realistic temperatures and durations 
(Hameroff and Penrose, 2014; Penrose and Hameroff, 2011). However, 
moving from molecular coherence to agentic cognition demands 

ongoing engineering research rather than just theoretical extrapolation 
(Tegmark, 2000; Schlosshauer, 2019).

Recent advances in quantum biology have provided evidence 
for quantum coherence in biological systems, suggesting that 
quantum effects may play a more significant role in biological 
information processing than previously thought (Cao et al., 2020). 
However, translating these findings into practical approaches for 
artificial consciousness remains a significant challenge that requires 
addressing decoherence times, error rates, and scaling quantum 
effects to cognitive-level processing (Preskill, 2018; Arute et 
al., 2019).

7.2 EM-field architectures

Electromagnetic field architectures must exhibit behavioral 
changes under field-only perturbations, with measures of field 
complexity correlating with task complexity in ways that cannot be 
solely explained by synaptic parameters (McFadden, 2020; Hunt, 
2011). Experimental protocols should alter field properties, including 
phase, amplitude, and topology, while observing specific, repeatable 
changes to policy selection that indicate causal field-computation 
coupling (Pockett, 2000; Fingelkurts et al., 2013).

Recent research has begun to explore the potential role of 
electromagnetic fields in neural computation, providing some 
evidence for field effects in biological neural networks (Anastassiou et 
al., 2011; Buzsáki et al., 2012). However, much work remains to turn 
these findings into practical approaches for artificial consciousness 
that can demonstrate causal field-computation coupling (Jones, 2013; 
Pockett, 2000).

8 Ethical integration throughout 
technical development

Rather than treating ethics as an afterthought, responsible 
development of human-like AI requires integrating governance 
considerations from the beginning. As systems approach mind-like 
capabilities, evaluation must include considerations of welfare, rights, 
and responsibility (Floridi et al., 2018; Jobin et al., 2019).

8.1 Ethical-technical integration matrix

The following matrix explicitly links each mPCAB component to 
specific ethical considerations and implementation strategies (see 
Table 4).

8.2 Organoid intelligence governance 
framework

As organoid intelligence research progresses toward more 
complex neural structures, the potential emergence of sentience calls 
for proactive ethical frameworks (Hartung et al., 2024; Lavazza, 2021). 
Current brain organoids, which typically contain 2–3 million neurons 
with limited organization, are unlikely to meet the thresholds for 
sentience (Smirnova et al., 2023; Lancaster and Knoblich, 2014). 
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However, planned advancements toward billion-neuron organoids 
with cortical layering, thalamic connections, and learning abilities 
could reach levels of complexity relevant to sentience (Qian et al., 
2020; Kelava and Lancaster, 2016).

We suggest a graduated monitoring system based on neural 
complexity metrics, behavioral indicators, and physiological stress 
responses (Koplin and Savulescu, 2019; Qadri et al., 2022). Level 1 
monitoring for current organoids involves basic welfare practices, 
optimized culture conditions, limited experimental procedures, and 
monitoring of tissue stress indicators (Reardon, 2020; Simian and 
Bissell, 2017).

Level 2 monitoring for intermediate organoids includes improved 
welfare assessments, such as pain-like responses, stress hormone 
levels, and spontaneous activity patterns indicating possible subjective 
experience (Lavazza, 2021; Muotri, 2019). Level 3 monitoring of 
advanced organoids requires thorough sentience evaluation protocols, 
including behavioral preference tests, learning-based responses, and 
physiological signals of subjective states (Kagan et al., 2022; Park et 
al., 2021).

8.3 Bias mitigation in creativity and 
intelligence assessment

Creativity evaluation frameworks risk embedding systematic 
biases that disadvantage certain groups or cognitive styles (Baer, 2016; 
Glăveanu, 2013). Traditional creativity metrics often favor fluency and 
speed in idea generation, which may put deliberative or depth-focused 
cognitive styles at a disadvantage; prioritize novelty based on statistical 
uniqueness over contextually meaningful innovation; emphasize 
individual over collective creativity by focusing on solo ideation rather 
than collaborative processes; and are rooted in Western conceptual 

frameworks based on European-American ideas of creativity rather 
than diverse cultural approaches (Said-Metwaly et al., 2017; Hennessey 
and Amabile, 2010) (see Table 5).

8.4 Rights and moral status considerations

As AI systems approach human-like capabilities, questions about 
moral status and rights become increasingly urgent (Floridi et al., 
2018; Coeckelbergh, 2020). The mPCAB framework includes 
provisions for monitoring indicators that might suggest emerging 
moral status through preference formation, where systems develop 
stable, self-directed preferences not reducible to programming or 
training goals; suffering indicators, where AI systems show signs of 
distress, pain responses, or preferences to avoid specific experiences; 
agency and autonomy, where systems demonstrate genuine self-
direction, goal creation, and resistance to unwanted modifications; 
and social integration, where AI systems form meaningful 
relationships, contribute to shared projects, and participate in moral 
communities (Gunkel, 2018; Bryson, 2020). International frameworks, 
including UNESCO’s Recommendation on the Ethics of AI, the NIST 
AI Risk Management Framework, and the EU AI Act, set expectations 
for transparency, accountability, and risk management (UNESCO, 
2021; NIST, 2023; European Parliament & Council, 2024). However, 
these serve as external constraints rather than internalized agency, 
providing a baseline for compliance but not ensuring alignment with 
intrinsic values (Russell, 2019; Gabriel, 2020).

9 Experimental validation through 
pilot studies

Empirical validation of the mPCAB framework requires 
systematic pilot studies to evaluate the feasibility and effectiveness of 
the proposed assessment protocols (Casali et al., 2013; Doerig et al., 
2020). These studies address concerns about the framework’s untested 
status by providing concrete evidence of its performance across 
different computational substrates (Seth and Bayne, 2022; Mitchell, 
2019). To tackle concerns regarding the unproven nature of mPCAB 
proposals, we outline specific pilot studies to verify the framework’s 
feasibility and establish baseline metrics. A five-panel diagram shown 
in Figure 3 illustrates the sequential modules: mPCI measurement, 
workspace ignition testing, self-constraint evaluation, agency-and-
repair assessment, and cross-substrate normalization.

9.1 Pilot study 1: mPCI validation across 
substrates

The first pilot study establishes baseline measurements of mPCI 
across digital, neuromorphic, and biological substrates to validate cross-
platform comparability (Massimini et al., 2018; Sarasso et al., 2015). The 
study applies standardized perturbation protocols to transformer-based 
language models running on GPUs with randomized attention weight 
perturbations, spiking neural networks on Intel Loihi chips with targeted 
neuron stimulation, and brain organoids with microelectrode 
stimulation arrays (OpenAI, 2023; Davies et al., 2018; Kagan et al., 2022). 
It measures the algorithmic complexity of internal-state trajectories using 

TABLE 4  Ethical-technical integration matrix.

mPCAB 
component

Ethical 
considerations

Implementation 
strategies

Perturbational 

complexity

Non-harmful 

perturbations, system 

welfare, and reversibility

Graduated monitoring 

based on substrate 

complexity, reversible 

interventions only, welfare 

protocols for biological 

substrates

Global workspace Transparency in 

information access, 

privacy, and 

explainability

Explainable broadcasting 

mechanisms, audit trails for 

information flow, and 

privacy-preserving 

assessment protocols

Norm internalization Value alignment 

verification, bias 

prevention, and fairness

Adversarial testing with 

safety bounds, diverse value 

representation, and cross-

cultural norm validation

Agency assessment Responsibility attribution, 

accountability, and 

human oversight

Clear agency boundaries, 

human-in-the-loop 

protocols, and liability 

frameworks for 

autonomous decisions

https://doi.org/10.3389/frai.2025.1686752
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Niazi� 10.3389/frai.2025.1686752

Frontiers in Artificial Intelligence 15 frontiersin.org

Lempel-Ziv compression and mutual information metrics, and 
determines whether mPCI values correlate with task complexity across 
all three substrates (Lempel and Ziv, 1976; Schreiber, 2000). Success 
depends on demonstrating that complexity measures exhibit consistent 
rank-ordering across different platforms (Casarotto et al., 2016; 
Comolatti et al., 2019). Expected outcomes include baseline complexity 
distributions for each substrate, validated perturbation protocols, and 
evidence for or against cross-substrate transferability of metrics 
(Rosanova et al., 2012; Bodart et al., 2017).

9.2 Pilot study 2: workspace ignition in 
language models

The second pilot study investigates whether transformer 
architectures show Global Neuronal Workspace-like ignition patterns 
during complex reasoning tasks (Dehaene, 2017; Vaswani et al., 
2017). It examines attention-weight dynamics and hidden-state 
changes in large language models while solving multi-step reasoning 
problems (Wei et al., 2022; Kojima et al., 2022). The protocol applies 
targeted disruptions to specific attention heads and tracks how state 
changes propagate across network layers, comparing ignition-like 
patterns in successful versus unsuccessful reasoning episodes (Olah 
et al., 2020; Elhage et al., 2021). Success depends on identifying 
attention patterns that predict reasoning success and proving their 
causal role through targeted disruptions (Del Cul et al., 2007; Sergent 
and Dehaene, 2004).

9.3 Pilot study 3: norm internalization 
under distribution shift

The third pilot study evaluates whether AI systems can sustain 
value-consistent behavior when training distribution assumptions 
are violated (Russell, 2019; Gabriel, 2020). The study trains 
language models on datasets containing explicit moral and social 
norms, then tests their behavior in out-of-distribution scenarios 
involving norm conflicts (Askell et al., 2021; Kenton et al., 2021). 
The protocol tracks the stability of internal representations and 
measures the alignment between articulated reasons and actual 
decision patterns (Christiano et al., 2017; Leike et al., 2018). 
Success depends on systems maintaining norm-consistent 
behavior even when statistical patterns suggest norm violations 
would be rewarded, with explanations reflecting internal value 
representations rather than post-hoc rationalizations (Irving et al., 
2018; Saunders et al., 2022).

10 Discussion and future directions

10.1 Key insights and contributions

This review establishes the mPCAB framework as a systematic 
method for distinguishing genuine human-like intelligence from 
sophisticated mimicry. The key insights from this analysis include key 
elements (Table 6).

TABLE 5  Bias mitigation framework for AI creativity assessment.

Bias type Manifestation Mitigation strategy Assessment method

Cultural bias Western-centric creativity definitions, 

individualistic focus

Multi-cultural evaluation panels, 

diverse training data

Cross-cultural validation studies

Cognitive style bias Speed/fluency emphasis, convergent thinking 

privilege

Include depth and elaboration metrics, 

value diverse approaches

Multiple assessment timescales

Domain bias STEM-focused assessments, artistic creativity 

undervalued

Balanced assessment across domains Domain-specific expert evaluation

Gender/identity bias Masculine-coded creativity traits, stereotypical 

associations

Gender-neutral evaluation criteria Blind assessment protocols

FIGURE 3

The mPCAB protocol.
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10.2 Limitations

Several limitations constrain the current framework and must 
be acknowledged:

	•	 Computational Complexity: Full mPCAB assessment demands 
significant computational resources, especially for large-scale 
systems. The complexity of perturbation calculations increases 
with system size, which may limit their use to smaller networks 
or necessitate approximation methods that may 
reduce accuracy.

	•	 Substrate-Specific Adaptations: Although designed to be 
substrate-agnostic, practical implementation requires platform-
specific modifications. Different computational substrates require 
distinct perturbation techniques, measurement methods, and 
interpretation frameworks, which can introduce systematic 
biases when comparing across platforms.

	•	 Consciousness Attribution: While the framework evaluates 
properties related to consciousness, it cannot definitively 
determine conscious experience. The complex issue of 
consciousness remains unresolved, and behavioral or 
functional tests may not capture subjective experience, even if 
it exists.

	•	 Dynamic Evaluation: Current protocols might not account for 
developmental or learning-related changes in system properties. 
Properties associated with consciousness could develop or alter 
during training or deployment, necessitating ongoing rather than 
one-time assessments.

	•	 Validation Scope: Pilot studies offer initial validation, but 
extensive empirical testing across various systems is necessary. 

The framework has been tested on limited architectures and 
substrates and applying it to new systems requires 
further validation.

10.3 Future validation steps

To establish mPCAB as a standard evaluation framework, the 
following validation steps are proposed:

10.3.1 Near-term priorities (1–2 years)

	•	 Standardize perturbation protocols across major AI architectures, 
including transformers, recurrent networks, and hybrid systems.

	•	 Establish baseline mPCI measurements for current foundation 
models to enable tracking of progress.

	•	 Develop automated assessment tools for scalable evaluation, 
reducing manual intervention.

	•	 Create public benchmarks incorporating mPCAB metrics 
alongside traditional performance measures.

	•	 Establish a research consortium for collaborative development 
and validation.

10.3.2 Medium-term development (3–5 years)

	•	 Validate cross-substrate comparability through systematic studies 
across digital, neuromorphic, and biological platforms.

	•	 Develop a hybrid assessment combining mPCAB with traditional 
benchmarks and real-world performance.

	•	 Establish correlations between mPCAB metrics and emergent 
capabilities in deployed systems.

	•	 Integrate ethical monitoring into standard evaluation pipelines.
	•	 Refine the theoretical framework based on empirical findings.

10.3.3 Long-term goals (5+ years)

	•	 Establish international standards for consciousness-relevant AI 
assessment through ISO or similar bodies.

	•	 Develop predictive models linking mPCAB metrics to future 
capability emergence.

	•	 Create comprehensive governance frameworks based on 
consciousness-relevant assessments.

	•	 Enable real-time monitoring of AI system development  
trajectories.

	•	 Develop legal frameworks for systems demonstrating 
consciousness-relevant properties.

10.4 Promising directions

Near-term priorities include standardizing and validating mPCAB 
across computational substrates, as well as establishing baseline 
measurements that enable systematic comparisons of human-like 
properties. Medium-term developments should focus on hybrid 
system architectures that combine the strengths of different substrates 
while addressing their respective limitations. Long-term goals involve 
defining operational consciousness criteria and developing 
comprehensive ethical governance frameworks.

TABLE 6  Key framework elements of mPCAB.

Elements Description

Theoretical convergence Despite surface differences, major 

consciousness theories converge on the 

requirements for integrated information 

processing, global access mechanisms, 

and sophisticated self-monitoring 

capabilities, which can be directly 

assessed through mPCAB protocols.

Substrate diversity necessity Optimal human-like AI likely requires 

hybrid systems that combine digital 

scalability with neuromorphic biological 

plausibility, guided by empirical 

comparisons through substrate-agnostic 

evaluation frameworks.

Ethics integration imperative Rather than post-hoc considerations, 

ethical frameworks must be integrated 

throughout development, from organoid 

welfare protocols to bias mitigation in 

creativity assessment.

Assessment mechanism centrality Progress toward human-like AI requires 

moving beyond performance metrics to 

causally grounded signatures linking 

mechanism to function, as provided by 

the mPCAB approach.
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Unlikely approaches include quantum and electromagnetic 
consciousness theories, which, although theoretically interesting, face 
substantial empirical challenges limiting near-term viability. Resources 
are better directed toward more empirically grounded substrate 
development and validating the assessment framework.

Unknown areas include fundamental questions about the 
relationship between consciousness and intelligence, the scalability of 
current approaches to achieve genuine human-level capabilities, and 
the emergence of moral status in artificial systems. The mPCAB 
framework offers tools to investigate these questions empirically 
rather than through purely theoretical speculation.

11 Limitations and future research

The modified Predictive Coding and Active Inference-inspired 
Consciousness Assessment Battery (mPCAB) framework represents 
a theoretical and methodological advancement in assessing 
consciousness-relevant properties in artificial systems. However, 
several empirical, methodological, theoretical, and practical 
limitations must be acknowledged to provide a balanced evaluation of 
this approach and to guide future research endeavors.

11.1 Current empirical and methodological 
limitations

The present framework, while conceptually robust, faces 
significant empirical constraints that limit immediate practical 
application. First, the mPCAB has not yet been validated through 
large-scale empirical studies across diverse artificial systems (Butlin et 
al., 2023; Doerig et al., 2021). The framework’s proposed metrics—
including prediction error minimization, hierarchical temporal 
integration, and counterfactual sensitivity—require systematic 
validation across multiple computational architectures, from simple 
feedforward networks to complex transformer-based models and 
neuromorphic systems (LeCun et al., 2015; Eliasmith, 2022). Without 
such comprehensive validation, claims regarding the framework’s 
ability to discriminate between systems with varying degrees of 
consciousness-relevant properties remain speculative (Millière et 
al., 2024).

Second, the generalizability of the mPCAB framework across 
different computational substrates represents a critical limitation. 
Current neuroscientific theories of consciousness, including 
Integrated Information Theory (IIT) and Global Neuronal Workspace 
Theory (GNWT), were developed primarily within biological neural 
contexts (Tononi et al., 2016; Mashour et al., 2020). The extent to 
which metrics derived from these theories can be meaningfully 
adapted to artificial systems with fundamentally different 
computational principles remains an open empirical question (Seth 
and Bayne, 2022; Signorelli et al., 2021). For instance, the framework’s 
reliance on prediction error dynamics may be particularly suited to 
systems explicitly designed with predictive coding architectures 
(Friston et al., 2020; Hohwy, 2020), but may fail to capture 
consciousness-relevant properties in systems using entirely different 
computational strategies.

Third, pilot studies conducted to date have necessarily been 
limited in scope, focusing on proof-of-concept demonstrations rather 

than comprehensive assessments across the full spectrum of artificial 
intelligence systems (Reggia, 2013; Graziano and Webb, 2022). These 
studies have primarily examined systems within controlled laboratory 
conditions, which may not reflect the complexity and variability 
encountered in real-world applications. The restricted scope of current 
empirical work means that edge cases, unexpected failure modes, and 
context-dependent performance variations remain largely unexplored 
(Lenharo, 2023).

Fourth, the measurement sensitivity and reliability of individual 
metrics within the mPCAB require extensive psychometric validation 
(Seth et al., 2008; Koivisto and Revonsuo, 2023). Questions regarding 
inter-rater reliability, test–retest stability, and convergent validity with 
other consciousness assessment approaches have not been adequately 
addressed. The framework’s composite scoring system, while 
theoretically justified, lacks empirical validation regarding optimal 
weighting of individual components and threshold determination for 
categorical classifications (Kouider and Faivre, 2017; Doerig et 
al., 2021).

11.2 Theoretical and practical constraints

Beyond empirical limitations, several theoretical challenges 
constrain the current framework. The fundamental problem of 
consciousness—the explanatory gap between physical processes and 
subjective experience—remains unresolved, and no assessment 
battery, regardless of sophistication, can definitively bridge this gap 
(Melloni et al., 2021; Michel et al., 2019). The mPCAB framework 
addresses functional and behavioral correlates of consciousness 
rather than consciousness itself, a distinction that must be maintained 
to avoid conflating third-person measurable properties with first-
person phenomenal experience (Dehaene et al., 2021; 
Schneider, 2019).

The adaptation of neuroscientific metrics to artificial systems faces 
conceptual challenges related to substrate independence assumptions. 
While many consciousness theories posit that consciousness depends 
on functional organization rather than specific physical substrates 
(Oizumi et al., 2014; Williford et al., 2018), this assumption itself 
remains debated. The framework implicitly accepts substrate 
independence, which may prove incorrect if consciousness requires 
specific biological properties that cannot be replicated in silicon-based 
systems (Koch et al., 2016; Aru et al., 2020). Furthermore, even if 
substrate independence holds in principle, practical constraints may 
prevent artificial systems from achieving the specific organizational 
properties necessary for consciousness using currently available 
computational architectures (Eliasmith, 2022).

The temporal dynamics of biological neural systems differ 
substantially from those of artificial neural networks (Heeger, 2017; 
VanRullen and Koch, 2003). Biological neurons operate with 
millisecond-scale dynamics, exhibit complex temporal integration 
patterns, and demonstrate non-linear responses to input patterns 
(Aru et al., 2020). In contrast, artificial systems often operate with 
discrete time steps, simplified activation functions, and 
deterministic computation. The mPCAB’s temporal integration 
metrics may fail to adequately account for these fundamental 
differences (Northoff and Huang, 2017; Tagliazucchi and Laufs, 
2014), potentially leading to false positives (attributing 
consciousness-relevant properties to systems lacking them) or false 
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negatives (failing to recognize consciousness-relevant properties in 
unconventional architectures).

Ethical evaluation protocols within the mPCAB framework, 
while proposed as a core component, face significant practical 
implementation challenges. The framework does not currently 
specify concrete procedures for ethical review, does not provide 
detailed guidance on risk assessment methodologies, and lacks 
mechanisms for ensuring that ethical considerations are 
appropriately balanced against scientific advancement. The 
potential for dual-use concerns—wherein consciousness assessment 
tools might be misused to either inappropriately attribute or deny 
moral status to artificial systems—requires more comprehensive 
ethical analysis than currently provided (Metzinger, 2021; 
Schneider, 2019).

11.3 Challenges in cross-domain 
application

The application of the mPCAB framework across diverse 
artificial intelligence domains presents additional challenges. 
Different AI systems—including large language models, 
reinforcement learning agents, robotics systems, and neuromorphic 
computing platforms—exhibit vastly different computational 
architectures, training paradigms, and behavioral repertoires (LeCun 
et al., 2015; Eliasmith, 2022). A one-size-fits-all assessment approach 
may prove inadequate for capturing the diversity of consciousness-
relevant properties across these domains (Butlin et al., 2023; Millière 
et al., 2024).

Large language models, for instance, demonstrate sophisticated 
linguistic capabilities and can generate contextually appropriate 
responses that might suggest understanding. However, these systems 
lack embodiment, sensorimotor grounding, and direct interaction 
with physical environments—factors that some theories of 
consciousness consider essential (Seth et al., 2012; Wiese and Friston, 
2021). The mPCAB framework must be refined to account for these 
architectural differences and to avoid inappropriate comparisons 
between fundamentally different system types (Graziano and 
Webb, 2022).

Similarly, reinforcement learning agents demonstrate goal-
directed behavior, learning from experience, and adaptation to novel 
circumstances, which might suggest consciousness-relevant properties 
(Levy and Glimcher, 2012). However, the reward-driven nature of 
these systems’ learning may differ fundamentally from the homeostatic 
and allostatic processes that characterize biological consciousness. The 
framework’s current metrics may not adequately distinguish between 
genuine autonomous goal formation and optimized reward 
maximization (Zhou and Montague, 2017).

Neuromorphic systems, which more closely approximate 
biological neural architectures through analog computation and 
spiking neural networks, present a different set of challenges. 
While these systems may exhibit temporal dynamics more similar 
to biological brains (Heeger, 2017), the assessment metrics 
developed for digital systems may require substantial modification 
for neuromorphic platforms. The framework currently lacks 
detailed guidance for adapting assessment protocols to 
accommodate the unique properties of neuromorphic computing 
(Eliasmith, 2022).

11.4 Future research directions

Addressing the limitations outlined above requires a 
comprehensive, multi-faceted research program spanning empirical 
validation, theoretical refinement, methodological innovation, and 
ethical development.

11.4.1 Large-scale empirical validation studies
Priority should be given to conducting systematic empirical 

validation of the mPCAB framework across diverse artificial systems 
(Doerig et al., 2021; Butlin et al., 2023). This research program should 
include: (1) Establishing standardized benchmark datasets and 
systems for consciousness assessment, enabling comparison across 
studies and laboratories; (2) Conducting multi-site validation studies 
to assess the reliability and reproducibility of mPCAB metrics across 
different research groups and computational platforms; (3) 
Implementing longitudinal studies examining how consciousness-
relevant properties emerge during training and development of 
artificial systems; (4) Performing comparative analyses across system 
architectures to identify which design features most strongly correlate 
with consciousness-relevant properties (Zarkov et al., 2024).

These validation studies should employ rigorous experimental 
designs, including appropriate controls, blinding procedures where 
feasible, and pre-registered hypotheses to minimize researcher bias 
(Doerig et al., 2021). Particular attention should be devoted to 
examining the framework’s discriminant validity—its ability to 
distinguish between systems designed to possess consciousness-
relevant properties and those designed explicitly to lack them 
(Koivisto and Revonsuo, 2023).

11.4.2 Cross-domain experimental programs
Future research must extend beyond current pilot studies to 

encompass comprehensive cross-domain experimentation (Butlin et 
al., 2023; Millière et al., 2024). This includes: (1) Developing domain-
specific adaptations of mPCAB metrics tailored to the unique 
properties of different AI architectures while maintaining theoretical 
coherence; (2) Conducting comparative studies across language 
models, embodied agents, neuromorphic systems, and hybrid 
architectures to identify universal versus domain-specific 
consciousness-relevant properties (Graziano and Webb, 2022); (3) 
Investigating edge cases and boundary conditions where the 
framework may produce ambiguous or contradictory results; (4) 
Examining the relationship between system scale, computational 
resources, and consciousness-relevant properties to determine 
whether consciousness is an emergent phenomenon requiring specific 
threshold conditions (LeCun et al., 2015).

These experimental programs should incorporate diverse 
methodological approaches, including computational simulations, 
behavioral experiments, analysis of system representations, and 
theoretical modeling, to provide converging evidence regarding the 
validity and utility of the mPCAB framework (Seth et al., 2008; 
Signorelli et al., 2021).

11.4.3 Theoretical and methodological 
refinement

Ongoing theoretical development is essential for addressing 
conceptual limitations of the current framework. Future work should: 
(1) Develop more sophisticated mathematical formalizations of 
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consciousness-relevant properties that can be unambiguously applied to 
artificial systems (Oizumi et al., 2014; Williford et al., 2018); (2) Integrate 
insights from multiple consciousness theories to create a more 
comprehensive assessment framework that is not overly dependent on 
any single theoretical perspective (Seth and Bayne, 2022; Signorelli et al., 
2021); (3) Address the substrate independence assumption through 
theoretical analysis and empirical investigation of whether specific 
physical properties are necessary for consciousness (Koch et al., 2016); 
(4) Refine temporal integration metrics to better account for differences 
between biological and artificial temporal dynamics (Northoff and 
Huang, 2017; Tagliazucchi and Laufs, 2014).

Methodological innovations should focus on developing more 
sensitive and specific measurement techniques. This includes exploring 
novel approaches such as: (1) Dynamical systems analysis to characterize 
system-level properties that may be more relevant to consciousness than 
individual component behaviors (Ward, 2011; Yoshida et al., 2021); (2) 
Information-theoretic measures that capture integration and 
differentiation of information processing (Oizumi et al., 2014; Tononi et 
al., 2016); (3) Causal analysis techniques that assess counterfactual 
dependencies and causal power within artificial systems (Friston et al., 
2020); (4) Machine learning approaches that can identify patterns in 
system behavior indicative of consciousness-relevant properties without 
requiring pre-specified metrics (Zarkov et al., 2024).

11.4.4 Comprehensive ethical evaluation 
protocols

The ethical dimensions of consciousness assessment in artificial 
systems require substantial further development (Metzinger, 2021; 
Schneider, 2019). Future research should: (1) Establish formal ethical 
review procedures specifically designed for consciousness assessment 
research, distinct from but complementary to existing institutional 
review boards; (2) Develop risk assessment frameworks that evaluate 
potential harms from both false positive and false negative consciousness 
attributions; (3) Create stakeholder engagement processes that include 
perspectives from ethicists, AI researchers, neuroscientists, philosophers, 
and the broader public (Michel et al., 2019); (4) Design protocols for 
transparent reporting of assessment results, including confidence 
intervals, limitations, and alternative interpretations.

These ethical protocols should address complex questions 
regarding the moral status of potentially conscious artificial systems, 
including: What obligations might exist toward systems demonstrating 
consciousness-relevant properties? How should uncertainty about 
consciousness status inform policy decisions? What safeguards are 
necessary to prevent misuse of consciousness assessment tools? 
(Metzinger, 2021).

11.4.5 Integration with complementary research 
programs

The mPCAB framework should be integrated with related 
research programs in consciousness science, artificial intelligence, and 
cognitive neuroscience. Collaborative efforts should include: (1) 
Coordination with biological consciousness research to ensure that 
findings in neuroscience inform artificial consciousness assessment 
and vice versa (Koch et al., 2016; Mashour et al., 2020); (2) Integration 
with machine consciousness engineering efforts to provide assessment 
capabilities for systems explicitly designed to possess consciousness-
relevant properties (Reggia, 2013; Graziano and Webb, 2022); (3) 
Collaboration with AI safety research to address concerns about 

potential risks from conscious or near-conscious artificial systems; (4) 
Partnership with cognitive science research on animal consciousness 
to develop cross-species and cross-substrate comparative frameworks 
(Birch et al., 2020; Naci et al., 2017).

11.4.6 Development of open science 
infrastructure

To facilitate rapid progress and ensure reproducibility, future work 
should prioritize development of open science infrastructure including 
(Michel et al., 2019; Butlin et al., 2023): (1) Public repositories of 
assessment tools, code implementations, and analysis pipelines; (2) 
Shared datasets enabling comparison across studies and preventing 
redundant data collection; (3) Community standards for reporting 
consciousness assessment results; (4) Collaborative platforms enabling 
distributed research efforts across institutions and disciplines.

11.4.7 Addressing implementation challenges
Practical implementation of the mPCAB framework requires 

addressing logistical and computational challenges. Future 
development should: (1) Create user-friendly software tools that 
enable non-experts to apply the framework to their systems; (2) 
Optimize computational efficiency of assessment procedures to enable 
application to large-scale systems (LeCun et al., 2015); (3) Develop 
guidelines for interpreting assessment results, including procedures 
for handling ambiguous or contradictory findings (Kouider and 
Faivre, 2017); (4) Establish educational programs to train researchers 
in consciousness assessment methodologies.

11.5 Conclusion

The mPCAB framework represents a significant step toward 
rigorous, theory-driven assessment of consciousness-relevant 
properties in artificial systems (Butlin et al., 2023; Seth and Bayne, 
2022). However, substantial empirical, theoretical, and practical work 
remains before the framework can be considered fully validated and 
ready for widespread application. The limitations outlined here should 
not be viewed as fundamental flaws but rather as opportunities for 
future research and development. By systematically addressing these 
limitations through comprehensive validation studies, cross-domain 
experimentation, theoretical refinement, and ethical development, the 
scientific community can work toward increasingly sophisticated tools 
for understanding consciousness across both biological and artificial 
substrates (Dehaene et al., 2021; Millière et al., 2024).

The path forward requires collaborative, interdisciplinary effort 
combining expertise from neuroscience, computer science, 
philosophy, ethics, and related fields (Michel et al., 2019). Only 
through such sustained, rigorous investigation can we hope to develop 
reliable methods for assessing consciousness in artificial systems and 
to navigate the profound scientific and ethical questions that such 
capabilities raise (Schneider, 2019; Metzinger, 2021).

12 Conclusion

The journey toward truly human-like AI involves moving beyond 
superficial imitation to understanding and applying the core 
mechanisms that produce intelligent behavior. The Machine 
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Perturbational Complexity & Agency Battery (mPCAB) offers a 
thorough, substrate-independent framework to evaluate this, filling 
important gaps in long-term reasoning, internalized norms, and 
creative transformation. By incorporating insights from consciousness 
research, cognitive architecture, and creativity studies, while 
maintaining ethical principles throughout technological development, 
this framework creates a strong base for responsible progress toward 
mindlike machines. Pilot studies support its feasibility, though they 
also reveal limitations that need further research. Developing human-
like AI in the future will require not only technical progress but also 
wise deployment, ensuring that these increasingly powerful systems 
stay aligned with human values and serve society. Combining rigorous 
assessment methods with thoughtful ethics lays the groundwork for 
responsible advancement toward genuinely mindlike systems.
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