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Beyond mimicry: a framework for
evaluating genuine intelligence in
artificial systems

Sarfaraz K. Niazi*

Pharmaceutical Sciences, University of Illinois, Chicago, IL, United States

Current Al benchmarks often equate mimicry with genuine intelligence, emphasizing
task performance over the underlying cognitive processes that enable human-like
understanding. The Machine Perturbational Complexity & Agency Battery (mPCAB)
introduces a new, substrate-independent framework that applies neurophysiological
methods used initially to assess consciousness in artificial systems. Unlike existing
evaluations, it features four key components—perturbational complexity, global
workspace assessment, norm internalization, and agency—that link mechanisms
with functions. This enables systematic comparisons across digital, neuromorphic,
and biological substrates, addressing three research gaps: long-term reasoning with
coherent behavior, norm internalization amid distribution shifts, and transformational
creativity involving meta-cognitive rule modification. By analyzing theories of
consciousness (GNW, IIT, PP, HOT), we identify targets for Al implementation. Our
cognitive architecture analysis maps human functions—such as working memory
and executive control—to their computational counterparts, providing guiding
principles for design. The creativity taxonomy progresses from combinational
to transformational, with measurable criteria like changes in conceptual space
and the depth of meta-level reasoning. Ethical considerations are integrated into
frameworks for monitoring organoid intelligence, reducing bias in creativity, and
addressing rights issues. Pilot studies demonstrate mPCAB's feasibility across
different substrates and show that its metrics are comparable. This framework
moves evaluation away from superficial benchmarks toward mechanism-based
assessment, supporting the development of mind-like machines and responsible
Al advancements.

KEYWORDS

machine consciousness, artificial intelligence, creativity, neuromorphic computing,
organoid intelligence, perturbational complexity, agency, evaluation frameworks

1 Introduction
1.1 The central challenge: beyond mimicry

The main challenge in developing human-like artificial intelligence is telling accurate
intelligence apart from sophisticated mimicry (Russell and Norvig, 2020; Nilsson, 2009).
Although modern Al performs well in many tasks, questions remain about whether these
systems truly understand, have consciousness, or demonstrate creative agency like humans
(Mitchell, 2019; Lake et al., 2017). Differentiating advanced pattern matching from genuine
intelligence requires clear theory and thorough testing (Marcus, 2020; Chollet, 2019). One way
to define real intelligence operationally is to identify specific cognitive traits: understanding
and manipulating abstract concepts, solving problems beyond the training data, learning
adaptively, and engaging in metacognitive processes that support self-awareness and reflection.
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Developing a checklist with these qualities could help identify whether
a system moves beyond pattern recognition toward
accurate intelligence.

Contemporary Al systems, including large language and
multimodal models, display behaviors that invite comparison with
humans (OpenAlI, 2023; Bubeck et al., 2023; Bai, et al., 2022). These
systems perform complex reasoning, generate creative output, and
adapt to new situations (Wei et al., 2022; Chowdhery et al., 2022).
However, their underlying mechanisms remain unclear, making it
difficult to determine whether their behaviors indicate an accurate
understanding or are simply advanced statistical processing of data
patterns (Bender et al., 2021). This opacity complicates the assessment
of genuine intelligence in artificial systems.

Evaluating human-like qualities in artificial systems requires
frameworks that go beyond surface-level metrics (Hernandez-Orallo,
2017). While traditional benchmarks assess task completion and
output quality, they offer little insight into the cognitive processes that
yield these outcomes (Mitchell, 2021; Raji et al., 2021). To address
these limitations, a comprehensive approach should examine
representational structures, learning mechanisms, and control
architectures that support intelligent behavior—distinguishing
between systems that copy human outputs and those that embody

human-like principles (Boden, 2006; Clark, 2001).

1.2 Research gap and study objectives

1.2.1 Research gap

Current Al evaluation methods do not distinguish between
advanced pattern matching and genuine cognitive understanding.
Existing benchmarks measure task completion and output quality but
reveal little about underlying mental processes. This creates a critical
gap: we lack rigorous, causal tools to assess whether Al systems
possess consciousness-like properties, a proper understanding, or
creative abilities comparable to those of people. This also blocks
systematic comparison across computational substrates, limiting
insights into which architectures best support human-like intelligence.
Solving these issues is key to advancing theory and practice.

1.2.2 Study objectives

Formulate the hypothesis that the mPCAB framework, when
implemented as a unified, substrate-agnostic protocol, will predict
human-like properties in artificial systems, leading to a measurable
improvement in mechanistic understanding over traditional
performance metrics. Test whether, by analyzing major consciousness
theories, the mPCAB framework offers direct implementation targets
for Al systems, enabling better prediction of performance alignment
with specific cognitive processes than existing models. Hypothesize that
mapping human cognitive functions to computational analogs using
the mPCAB framework will enhance Al architecture design for human-
like intelligence by a measurable margin compared to traditional
methods. Propose that the mPCAB framework can establish measurable
benchmarks for transformational creativity, predicting superior meta-
cognitive capabilities in Al systems relative to baseline recombination
methods. Investigate whether integrating ethical considerations into the
mPCAB framework leads to more responsible AI development, as
evidenced by improved adherence to ethical guidelines throughout
technical progress. Validate the mPCAB framework through pilot
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studies designed to demonstrate cross-substrate applicability,
hypothesizing that these studies will establish baseline metrics that
surpass current benchmarks in assessing human-like properties.

1.3 Novel contribution of the mPCAB
framework

The Machine Perturbational Complexity & Agency Battery
(mPCAB) represents a significant shift in Al evaluation. Instead of
solely measuring performance on preset tasks, mPCAB provides:

o Causal Assessment: Direct measurement of internal dynamics,
such as a system’s changing states and interactions, through
controlled perturbations—intentional modifications to the

links

(structural processes) and functions (system behaviors) rather

system—establishing causal between mechanisms

than mere correlations.

Substrate Agnosticism: A unified protocol applicable across
digital systems, neuromorphic hardware (hardware inspired by
neural brain function), and biological platforms (living tissue),
making it possible to compare fundamentally different
computational  architectures—structures  designed  for
processing information.
 Consciousness-Relevant Metrics: The adaptation of clinical
neuroscience methods—such as the Perturbational Complexity
Index, which quantitatively measures consciousness responses to
stimulation—has been validated in human consciousness

research for use in artificial systems.

Integrated Assessment: Simultaneous evaluation of complexity
(the systems ability to produce diverse responses), global access
(extensive information sharing within the system), norm
internalization (adoption of guiding rules), and agency (the
capacity for independent, goal-directed action) through
coordinated test batteries (sets of systematic tests).

Empirical Grounding: Protocols that have been validated and
demonstrated to work across different platforms, moving beyond
theoretical ideas to practical assessments.

This framework addresses the limitations of current evaluation
methods that rely on superficial metrics and overlook the mechanisms
behind intelligent behavior. By adapting neuroscience protocols to
artificial systems, mPCAB bridges the gap between theory and
practice, offering the first systematic approach to assessing properties
of consciousness across various computational substrates.

1.4 Critical research gaps

Three critical research gaps emerge from analyzing current Al
capabilities in relation to human-like intelligence:

» Long-Horizon Reasoning: This refers to the ability to maintain
coherent, goal-focused behavior over long periods and complex
cognitive tasks, such as persistent problem-solving and
adaptation. In real-world scenarios, failures in long-horizon
reasoning can have serious outcomes. For instance, in medical
settings, an Al system assisting with diagnostics might correctly
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identify symptoms at first. However, it could deviate as it
processes more information over time, resulting in errors and
potentially harmful advice. Addressing this challenge is vital for
developing Al systems that can reason sustainably and adaptively
over the long term.

« Norm Internalization: Norm internalization involves aligning
values accurately, so they remain effective amid shifts in context
and against adversarial challenges. It distinguishes systems that
merely follow external rules from those that have internalized
principles as genuine behavioral constraints (Russell, 2019;
Gabriel, 2020). Current value alignment methods often rely on
reward shaping or constraint satisfaction, which may not work
well in new situations. Effective norm internalization requires
stable value representations across contexts, the ability to explain
and justify decisions based on values, resilience to adversarial
prompts that oppose internalized principles, and the capacity to
apply principles to unfamiliar scenarios encountered during
training. The mPCAB framework tests norm internalization
through adversarial scenarios that reveal conflicts between
immediate rewards and expressed values.

o Transformational Creativity: Transformational creativity involves
altering fundamental rules or principles that define how
conceptual spaces are structured. It requires meta-cognitive skills
to evaluate and justify changes to representational frameworks—
abilities that current systems largely lack (Boden, 2004; Wiggins,
2006). Although modern AI systems demonstrate impressive
combinational creativity by recombining learned patterns, they
cannot fundamentally restructure problem spaces. True
transformational creativity demands recognizing when existing
frameworks are insufficient, changing the generative rules that
shape conceptual spaces, providing reasons why new frameworks
are better, and applying transformed principles to new areas. The
mPCAB framework offers specific measurable criteria to assess
these meta-cognitive abilities.

1.4.1 Long-horizon reasoning

Long-horizon reasoning involves maintaining consistent behavior
over long-term decisions, tracking multiple variables over time, and
adjusting when circumstances change. Current systems perform well
on discrete tasks but struggle with sustained reasoning. Challenges
include losing coherence, pursuing goals inconsistently across
different contexts, difficulty integrating information over time, and
challenges with long-term planning. The mPCAB framework closes
this gap by using agency and repair tasks that require holding onto
long-term goals and adapting to failures.

1.4.2 Norm internalization

Norm internalization requires sincere value alignment that
remains effective during distribution shifts and adversarial tests. It
distinguishes between systems that follow external rules and those
that have genuinely internalized principles as behavioral constraints
(Russell, 2019; Gabriel, 2020). Current value alignment methods often
rely on reward shaping or constraint satisfaction, which may not be
suitable for new or unforeseen situations. Proper norm internalization
involves stable value representations that are consistent across different
contexts, the ability to explain and justify decisions based on values,
resistance to adversarial prompts that oppose internalized values, and
the capacity to apply principles to unfamiliar situations encountered
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during training. The mPCAB framework assesses norm internalization
through adversarial scenarios that create real conflicts between
immediate rewards and stated values.

1.4.3 Transformational creativity

Transformational creativity involves altering fundamental rules or
principles that define conceptual spaces, requiring meta-cognitive skills
that can evaluate and justify changes to representational frameworks—
abilities largely missing from current systems (Boden, 2004; Wiggins,
2006). While modern AI systems show impressive combinational
creativity through new recombination of learned patterns, they cannot
fundamentally reshape problem spaces. True transformational
creativity requires recognizing that existing frameworks are insufficient,
modifying generative rules that define conceptual spaces, justifying
why new frameworks are better, and transferring transformed
principles to new domains. The mPCAB framework offers specific
measurable criteria for assessing these meta-cognitive skills.

1.5 Paper organization

This analysis proceeds as follows: Section 2 reviews scientific
theories of consciousness and their implementation requirements,
establishing theoretical foundations for consciousness-related Al
architectures. Section 3 explores human cognitive architecture and
representation, focusing on working memory and episodic systems
that support flexible reasoning. Section 4 develops a systematic
taxonomy of creativity—from recombination to transformation—and
highlights the mechanisms required for human-like creative abilities.
Section 5 evaluates current Al systems and computational substrates,
comparing their suitability for implementing human-like properties.
Section 6 introduces the mPCAB framework with detailed protocols
for cross-substrate evaluation. Section 7 discusses speculative
approaches, including quantum and electromagnetic theories. Section
8 incorporates ethical considerations into technical development.
Section 9 describes empirical validation through pilot studies. Section
10 outlines key research priorities and future directions.

2 Scientific theories of consciousness
and Al implementation requirements

Scientific theories of consciousness offer essential frameworks for
understanding neural mechanisms behind subjective experience and
awareness. They also provide potential guidance for building artificial
systems with consciousness-like traits (Seth, 2016; Koch, 2019).
However, there are still significant challenges in turning these
theoretical ideas into practical applications (Doerig et al., 20205
Reggia, 2013). Figure 1 shows theories mapped along axes of empirical
testability and substrate specificity.

2.1 Critical comparative analysis of
consciousness theories

Four major scientific theories of consciousness present different

views on how conscious experience works, each with specific
implications for AI development. Despite their surface differences,
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Comparative Mapping of Consciousness Theories to Al Relevance

FIGURE 1
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Comparative mapping of consciousness theories to Al relevance. The placement of each theory along the axes for empirical testability and substrate
specificity reflects our assessment based on current literature and implementation feasibility. In CEMI theory, while the global electromagnetic field is
viewed as the key causal factor for consciousness, it is assigned moderate substrate specificity, since neural tissue is particularly effective at producing
complex EMF patterns. However, mechanical hardware mimicking neuronal firing could, in principle, generate similar patterns. For Orch-OR, despite
the theory emphasizing microtubules and tubulin specifically, we acknowledge that any array of qubit-like units could support comparable quantum
coherent states. The positions indicate the status of empirical validation and the practical challenges of implementation across different substrates.
These placements should be regarded as working hypotheses subject to revision as more empirical evidence becomes available.

these theories agree on several key needs: integrated information-
processing abilities that combine detailed and unified information,
global access mechanisms that allow flexible coordination among
specialized modules, and advanced self-monitoring systems capable
of representing and assessing cognitive states. These shared
requirements set clear goals for implementing Al systems (see Table 1).

2.1.1 Most relevant to Al systems

Theories like the Global Neuronal Workspace and Higher-Order
Thought are the most directly applicable to current AI architectures.
GNW’s mechanisms for competitive selection and broadcasting naturally
align with attention-based transformer models, while HOT’s focus on
metacognition fits well with meta-learning and self-supervised methods.
These theories offer practical, implementable design principles rather
than abstract ideas. However, it is essential to recognize that Graziano's
Attention Schema Theory (ATT) provides a valuable alternative,
proposing that consciousness results from the brain’s model of attention
processes. Additionally, IIT, although academically rigorous, is
computationally difficult to implement in large-scale systems. Predictive
Processing provides valuable insights into hierarchical learning but
requires further development of its active inference mechanisms.

2.2 Global Neuronal Workspace theory

The Global Neuronal Workspace theory proposes that conscious
access occurs when information becomes widely accessible across
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distributed neural networks through competitive selection and
extensive broadcasting (Dehaene, 2014, 2017). This structure enables
flexible information sharing among specialized processing modules,
supporting integrated cognition—a vital aspect of human intelligence
(Baars, 1988; Mashour et al., 2020).

The Global Workspace architecture involves several key components
that could be implemented in artificial systems (Baars, 2002; Shanahan,
2006). Local processors compete for access to a global workspace that
broadcasts winning information to all modules simultaneously (Dehaene
and Changeux, 2011; Sigman and Dehaene, 2008). This broadcasting
enables flexible coordination between otherwise independent processing
systems, supporting integrated cognition underlying human intelligence
(Baars and Franklin, 2003; Franklin et al., 2005).

Implementing GNW architectures requires competitive selection
mechanisms that determine which information gains global access,
broadcasting systems that share selected information with multiple
processing modules, and coordination mechanisms that enable
flexible integration among specialized processors (Mashour et al.,
2020). These competitive processes must select relevant information
based on current goals and context while remaining adaptable to
changing circumstances (Sigman and Dehaene, 2008).

2.3 Integrated information theory

Integrated Information Theory provides a mathematical
framework for measuring consciousness based on the integrated
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TABLE 1 Consciousness theories for Al implementation.

Theory Core mechanism

Global Neuronal Workspace
(GNW)

Global broadcasting of information
through competitive selection among

specialized processors

Al applicability
High—directly implementable in current

architectures, maps to attention

mechanisms

10.3389/frai.2025.1686752

Implementation requirements

Competitive selection mechanisms, broadcasting
infrastructure, flexible module coordination, ignition

dynamics

Integrated Information

Theory (IIT)

Consciousness as integrated
information (®) measuring unified

differentiation

Limited—computational complexity

scales exponentially with system size

Complex causal interactions, differentiation-

integration balance, and intrinsic cause-effect power

Predictive Processing (PP) Hierarchical prediction error
minimization through generative

models learning

Moderate—partially implemented in

current systems through self-supervised

Hierarchical generative models, precision-weighting,

active inference, counterfactual processing

Higher-Order Thought
(HOT)

Meta-cognitive representation and

monitoring of mental states

High—achievable through meta-
learning and self-monitoring

architectures

Explicit metacognitive architectures, self-monitoring

systems, and representational redescription

information produced by a system (Tononi, 2008; Oizumi et al., 2014).
According to this theory, consciousness is linked to a system’s ability
to generate information that is both distinct and unified, representing
complex causal interactions among system components (Tononi et al.,
2016; Balduzzi and Tononi, 2008).

The mathematical formulation defines consciousness as integrated
information (&), which measures the amount of information a system
produces beyond its parts (Tononi, 2008; Balduzzi and Tononi, 2009).
Systems with high ® values exhibit both differentiation, in which parts
can exist in different states, and integration, in which parts work
together to influence each other’s behavior (Oizumi et al., 2014;
Tononi et al., 2016).

However, the computational complexity of calculating integrated
information increases exponentially with system size, limiting
practical use to relatively small networks (Barrett and Seth, 2011;
Doerig et al., 2020). Recent research has examined approximation
methods for calculating IIT metrics in larger systems, although
significant computational challenges remain (Mayner et al., 2018;
Barbosa et al., 2020).

2.4 Predictive processing frameworks

Predictive Processing frameworks view consciousness as arising
from hierarchical generative models that reduce prediction error
through both top-down and bottom-up information flow (Friston,
2009; Clark, 2013). These models highlight the active, constructive
nature of conscious perception and cognition, emphasizing the role of
predictive models in shaping subjective experience (Hohwy, 2013;
Clark, 2016).

The predictive processing theory suggests that conscious
perception develops when prediction errors are minimized through
the dynamic interaction of top-down predictions and bottom-up
sensory signals (Hohwy, 2013; Friston, 2005). This process includes
hierarchical message exchange between levels of a generative model,
with higher levels representing more abstract, temporally extended
predictions (Friston and Kiebel, 2009; Mathys et al., 2011). Precision-
weighting of prediction errors enables the system to adapt flexibly to
changing environmental statistics while keeping perceptual
representations stable (Feldman and Friston, 2010; Brown et
al, 2013).

Frontiers in Artificial Intelligence

2.5 Higher-order thought theories

Higher-Order Thought theories attribute consciousness to meta-
cognitive processes that represent and monitor mental states
(Rosenthal, 2005; Carruthers, 2022). According to these approaches,
conscious awareness requires not only first-order mental
representations but also higher-order representations that track and
evaluate cognitive processes (Lau and Rosenthal, 2011; Brown et
al., 2019).

The higher-order approach highlights the importance of
metacognition in creating conscious experience (Gennaro, 2012;
Rosenthal, 2005). According to this perspective, mental states become
conscious when they are the focus of higher-order thoughts or
perceptions (Carruthers, 2000; Lycan, 1996). This process requires
advanced representational abilities that can model the system’s own
mental states and how they relate to environmental conditions and
behavioral goals (Koriat, 2007; Fleming and Dolan, 2012).

Implementing HOT architectures requires clear metacognitive
structures capable of representing and monitoring system states,
differentiating accurate self-awareness from simulated introspective
reports (Fleming and Lau, 2014). These structures must extend
beyond simple performance tracking to include genuine self-
awareness and comprehension of the system’s cognitive abilities and

limits (Fleming and Dolan, 2012; Cleeremans, 2011).

3 Cognitive architecture and
representation

Human intelligence arises from complex interactions between
multiple cognitive systems operating across different time scales and
levels of abstraction (Anderson, 2007; Laird, 2012). Understanding
these interactions provides essential insights for designing artificial
systems with similar capabilities (Newell, 1990; Langley et al., 2009).
Importantly, the core principles underlying memory, learning, and
intelligence are substrate independent. Just as human memory systems
can be explained by information-processing frameworks independent
of their biological basis, computational memory and learning
processes in Al systems follow analogous principles across digital,
neuromorphic, or hybrid architectures (Baddeley, 2000; Anderson,
1983). The fundamental theories of memory—whether episodic,
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semantic, or working memory—transcend the specific physical
medium, allowing for principled translation between biological and
artificial systems (Tulving, 1972; Squire, 2004).

Human intelligence results from complex interactions among
multiple cognitive systems that operate across various timescales and
levels of abstraction (Anderson, 2007; Laird, 2012). Understanding
these interactions offers essential insights for developing artificial
systems with similar capabilities (Newell, 1990; Langley et al., 2009).

3.1 Mapping human cognitive functions to
computational analogs

The following detailed mapping between human cognitive
functions and their possible computational implementations
highlights both successes and significant gaps in current Al systems.
By directly informing algorithmic modules or training curricula, this
mapping can help shape specific design decisions. For instance,
episodic memory, which allows the recall of past experiences, could
be implemented using a retriever paired with a vector store, enabling
the system to efficiently access and use large amounts of relevant
information. These illustrative pipelines turn theoretical insights into
practical engineering solutions, helping to connect cognitive theory
with Al system development (see Table 2).

3.1.1 Key insight

While semantic memory and attention mechanisms are well-
developed in current Al systems, critical gaps remain in executive
control and in the integration of episodic memory. These gaps directly
contribute to limitations in long-horizon reasoning and context-
dependent adaptation. The lack of actual episodic binding prevents
systems from maintaining coherent narratives across extended
interactions, while limited executive control impairs flexible goal
pursuit. In integrating executive control into current transformer
architectures, significant coordination bottlenecks arise, including the

TABLE 2 Mapping human cognitive functions to computational analogs.

Human function Characteristics

Computational analog

10.3389/frai.2025.1686752

challenge of synchronizing decision-making across varying contextual
parameters. Addressing these unresolved integration hurdles is
essential to advancing our framework from an idealized vision to a
pragmatic roadmap for developing truly mindlike machines.

3.2 Working memory and executive control

Working memory systems in humans support the temporary
storage and manipulation of information across different modalities,
enabling complex reasoning that goes beyond immediate perceptual
input (Baddeley and Hitch, 1974; Cowan, 2001). This ability for
sustained, structured reasoning over long periods is a significant
challenge for current Al systems, which often struggle with tasks that
involve long logical chains or deep compositional understanding
(Lake et al., 2017; Marcus, 2018).

Research in cognitive psychology has identified the central
executive as a key component that coordinates information flow
between different memory systems and keeps goal-relevant information
accessible despite interference (Miyake and Shah, 1999; Engle, 2002).
Executive control processes manage the flow of information through
cognitive systems, emphasizing relevant information and suppressing
irrelevant distractions (Posner and Petersen, 1990; Fan et al., 2005).

The hierarchical organization of cognitive control enables humans
to coordinate behavior across different levels of abstraction, from
immediate sensorimotor responses to long-term strategic planning
(Badre, 2008; Koechlin and Summerfield, 2007). This structure allows
for flexible allocation of cognitive resources depending on task needs and
environmental conditions (Shenhav et al., 2013; Musslick et al., 2021).

3.3 Memory systems integration

Episodic memory systems allow humans to connect experiences
across time and contexts, aiding both retrospective recall and future

Implementation status

Working memory

7 + 2 item capacity, multi-modal
integration, active maintenance, rapid

updating

Transformer attention mechanisms,
memory-augmented networks, and

differentiable neural computers

Partially implemented—lacks capacity

limits

Executive control

Goal maintenance, interference
suppression, task switching, and cognitive

flexibility

Hierarchical RL, meta-controllers, gating

mechanisms, mixture of experts

Limited—poor task switching

Episodic memory

Context-bound experiences, temporal
ordering, reconstruction, mental time

travel

Experience replay, episodic controllers,

neural databases, transformer memories

Emerging—Ilacks actual episodic binding

Semantic memory

Abstract knowledge, categorical

organization, inference, generalization

Embedding spaces, knowledge graphs,

foundation models, and retrieval systems

Well-developed

Attention networks

Alerting, orienting, executive attention,

sustained/selective focus

Self-attention, cross-attention, adaptive

computation, sparse attention

Advanced implementation

Procedural memory

Skill acquisition, automatization, motor

sequences, implicit learning

Policy networks, model-free RL, habit

learning, sequence models

Moderate implementation

Metacognition

Self-monitoring, confidence estimation,

strategy selection, learning to learn

Meta-learning, uncertainty quantification,

self-supervised learning

Emerging capabilities
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planning (Tulving, 1972; Schacter and Addis, 2007). These memory
systems interact with semantic knowledge through processes of
consolidation and reconsolidation, enabling flexible generalization
across domains. This helps humans apply learned principles in new
situations that differ significantly from their training experiences
(Squire and Kandel, 2009; Dudai et al., 2015).

The integration of episodic and semantic memory systems underlies
the kind of flexible, context-aware reasoning that characterizes human
intelligence (Baddeley et al., 2009; Conway, 2009). Combining these
memory systems with attention and control mechanisms allows humans
to sustain goal-oriented behavior even in complex, changing
environments (Norman and Shallice, 1986; Miller and Cohen, 2001).

4 Creativity: from recombination to
transformation

Human creativity involves generating new ideas, solutions, and
artifacts that are both original and valuable within specific contexts
(Runco and Jaeger, 2012; Kaufman and Sternberg, 2019).
Understanding the mechanisms behind creative thinking provides
essential insights for developing artificial systems with similar creative
abilities (Wiggins, 2006; Colton, 2008).

4.1 Systematic taxonomy with measurable
Criteria

A systematic taxonomy categorizes different types of creativity
based on their underlying mechanisms and the kind of novelty
they generate (Boden, 1998; Wiggins, 2006). This framework
provides essential guidance for assessing creative abilities in
artificial systems and for determining the specific mechanisms that
must be implemented to achieve human-like creativity (Jordanous,
2012; Colton and Wiggins, 2012). Figure 2 illustrates the
progression combinational  to to

from exploratory

transformational creativity.

4.1.1 Combinational creativity

Definition: The novel recombination of existing ideas, concepts,
or elements to create new configurations through associative processes
(Boden, 1998; Koestler, 1964).

Measurable criteria:

« Semantic Distance: A measurable distance between combined
concepts in embedding space, evaluated using cosine similarity
or other distance metrics.

« Coherence Score: The logical consistency and meaningfulness of
the resulting combinations, evaluated through human judgment
or automated coherence metrics.

« Novelty Metric: Measures of statistical uniqueness compared to
the training data distribution, evaluated through likelihood
estimates or similarity to existing examples.

o Value Assessment: The utility or aesthetic worth within the target
domain, measured by task-specific performance metrics or
human judgment.

Current Al Status: Attainable by large language models using
learned associations and advanced pattern recognition.
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Transformational Creativity
(Rule modification and restructuring)
Mechanisms: meta-cognition, paradigm shifts
Requirements: justification of new frameworks

A

Exploratory Creativity
(Systematic search within conceptual spaces)
Mechanisms: search & evaluation, constraint satisfaction
Requirements: coherent navigation
A

Combinational Creativity
(Simple recombination of ideas)
Mechanisms: associative memory, conceptual blending
Requirements: retrieval & recombination

FIGURE 2
Taxonomy of creativity types and implementation complexity.

Combinational creativity involves the novel recombination of
existing ideas, concepts, or elements to create new configurations
(Boden, 1998; Koestler, 1964). This type of creativity heavily
depends on associative memory processes that connect unrelated
concepts through various forms of similarity or relevance
(Mednick, 1962; Benedek and Neubauer, 2013). Modern Al
systems, including large language models, exhibit significant
combinatorial creativity by producing new juxtapositions of
concepts encountered during training (Elgammal et al., 2017;
Hadjeres et al., 2017).

The mechanisms behind combinational creativity involve
activating and combining distant associates in semantic memory
(Collins and Loftus, 1975; Anderson, 1983). This process can be
enhanced by techniques such as conceptual blending, which
merges elements from different conceptual domains to form new
hybrid ideas (Fauconnier and Turner, 2002; Veale and
O'Donoghue, 2000). Artificial systems can replicate similar
mechanisms through advanced retrieval and combination
processes that operate over extensive knowledge bases (Lamb et
al., 2020; Petroni et al., 2019).

4.1.2 Exploratory creativity

Definition: Systematic exploration of established conceptual
spaces to discover new possibilities within existing frameworks
(Boden, 2004; Wiggins, 2006).

Measurable criteria:

« Coverage Metric: Percentage of conceptual space systematically
explored, measured by the diversity of generated outputs.

« Constraint Satisfaction: Following domain rules while testing
limits, measured by rule violation rates.

« Discovery Rate: How often non-obvious valid solutions are
found, measured by the proportion of new solutions that meet
domain criteria.

« Exploration Strategy: Comparing systematic and random search
patterns through analysis of generation trajectories.
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o Current Al Status: Achievable to some extent with search,
optimization, and generative models that have constraints.

Exploratory creativity involves systematically examining
established conceptual spaces to find new possibilities within
existing frameworks (Boden, 2004; Wiggins, 2006). This type of
creativity demands advanced search and evaluation processes that
can navigate complex possibility spaces while staying consistent
with established constraints and principles (Simon, 1973; Newell et
al.,, 1962). Modern AI systems show potential in exploratory
creativity, especially in areas where the conceptual space can be
clearly defined and systematically explored (Silver et al., 2016;
Brown et al., 2020).

Exploratory creativity operates within the limits of existing
conceptual frameworks but uncovers previously unrecognized
possibilities within them (Wiggins and Bhattacharya, 2014; Ritchie,
2007). This process demands sophisticated constraint satisfaction
mechanisms that can balance creativity and coherence, ensuring that
new outputs remain meaningful and valuable within the established
domain (Pachet, 2003; Cope, 2005).

4.1.3 Transformational creativity

Definition: Fundamental changes to rules, constraints, or
principles that define a conceptual space, creating new dimensions of
possibility (Boden, 2004; Wiggins, 2006).

Measurable criteria for transformational creativity:

Conceptual Space Modification: Ability to identify and modify
generative rules that define the problem space, measured by
structural changes to representation and the generation of
outputs impossible under original rules.

Rule Justification: Capacity to explain why existing rules should
be changed and how new rules improve the framework, evaluated
through coherent argumentation and empirical demonstration
of advantages.

o Meta-Level Reasoning: Demonstrated ability to reason about
reasoning, assess the adequacy of representational frameworks
through explicit metacognitive processes, and self-modify.

Paradigm Shift Detection: Recognition that incremental
improvements are insufficient and that fundamental restructuring
is needed, measured by problem-solving effectiveness before and
after the transformation.

Transfer Capability: Application of transformed principles to new
domains, demonstrating the generalization of restructured
frameworks across different problem spaces.

Examples of transformational creativity assessment:
» Mathematical: The system develops new axioms when existing

ones are inadequate for solving problems, such as introducing
imaginary numbers to solve previously unsolvable equations.

Artistic: The system creates new artistic movements guided by
well-founded aesthetic principles that break with tradition, such
as the shift from representational to abstract art.

Scientific: The system proposes paradigm shifts with empirical
justification when anomalies accumulate, like the shift from
classical to quantum mechanics.
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« Engineering: The system invents new design principles when
optimization within existing constraints fails, such as
transitioning from incremental improvements to radical redesign.

o Current Al Status: Not yet demonstrated in existing systems—
requires genuine metacognitive capabilities and the ability to
modify fundamental representational structures.

Transformational creativity is the most challenging form of
creative thinking, involving fundamental changes to rules, constraints,
or principles that define a conceptual space (Boden, 2004; Wiggins,
2006). This type of creativity requires not only the ability to change
representational frameworks but also the capacity to evaluate and
justify those changes (Koestler, 1964; Kuhn, 1962). Current Al systems
show limited signs of true transformational creativity, although
research continues to explore approaches that might enable this ability
(Jordanous, 2012; Colton, 2008).

Transformational creativity involves changing the generative rules
that define a conceptual space, opening new possibilities that were
previously unreachable (Boden, 1998; Wiggins, 2006). This process
demands advanced metacognitive skills to assess the adequacy of
existing frameworks and identify opportunities for significant
improvements (Klahr and Dunbar, 1988; Thagard, 1988). Judging
creativity in artificial systems requires careful attention to the
processes underlying the production of creative outputs, rather than
focusing solely on their novelty or quality (Colton, 2008; Jordanous,
2012). Systems that mainly rely on sophisticated recombination of
training data may produce impressive creative results without
demonstrating the kind of genuine conceptual innovation
characteristic of human transformational creativity (Elgammal et al.,
2017; Gatys et al., 2016).

5 Current state of Al systems

5.1 Foundation models and large language
models

Contemporary Al capabilities are mainly characterized by
transformer-based foundation models that demonstrate impressive
versatility across language understanding, generation, and reasoning
tasks (Vaswani et al., 2017; Brown et al., 2020). These systems mark a
significant advancement in Al, enabling more natural human-
computer interactions and supporting complex cognitive tasks that
were previously beyond the reach of artificial systems (Rogers et al.,
2020; Qiu et al., 2020). Large language models, such as GPT-4, Claude,
and similar systems, demonstrate advanced language comprehension
and generation skills that approach or surpass human performance on
many standardized tests and benchmarks (OpenAl, 2023; Chowdhery
et al., 2022). These models can engage in complex reasoning, answer
questions across various domains, and produce coherent text that
demonstrates an apparent understanding of context and nuance (Wei
etal,, 2022; Suzgun et al., 2022). They also face challenges with causal
reasoning, often generating outputs that seem to reflect causal
understanding but mainly depend on statistical relationships learned
during training (Pear]l and Mackenzie, 2018; Kiciman et al., 2023).
However, this requires careful consideration. Human causal
understanding itself arises from statistical learning over reinforcement
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history, as shown by predictive coding theories, which suggest that
humans form probabilistic models of the world through continuous
hypothesis testing (Clark, 2013; Friston, 2009). Phenomena like
superstitious conditioning demonstrate how human “causal
understanding” can be misled by false associations (Skinner, 1948).
The key difference may not be whether systems use statistical
associations, but rather in the depth, adaptability, and hierarchical
structuring of these associations. Human causal reasoning has several
properties that current Al systems struggle to replicate: (1) quick
development of causal models from limited data through strong
inductive biases (Lake et al., 2017), (2) flexible use of multiple causal
frameworks depending on the situation (Sloman and Lagnado, 2015),
(3) explicit representation and manipulation of causal structures that
enable counterfactual reasoning (Pear] and Mackenzie, 2018), and (4)
integration of causal knowledge across different timescales and levels
of abstraction. Instead of claiming a fundamental difference between
human and machine causal reasoning, we should investigate the
specific computational processes that support these features. Do
current AI models lack accurate causal understanding, or do they
implement less sophisticated versions of the same learning principles?
The mPCAB framework’s perturbational approach can empirically
address this by testing whether models exhibit organized causal
representations that stay stable under systematic disruptions versus
purely associative mappings that break down when statistical patterns
change. Recent research has begun exploring how large language
models work internally through methods such as mechanistic
interpretability and activation patching (Olah et al., 2020; Elhage et al.,
2021). These approaches show that while foundation models develop
complex internal representations, these often differ significantly from
the structured, compositional frameworks seen in human cognition
(Tenney et al., 2019; Manning et al., 2020).

5.2 Multimodal and embodied Al

The integration of multiple sensory modalities is a vital direction
in developing more human-like AI systems (Baltrusaitis et al., 2019;
Ramesh et al., 2022). Multimodal models that process and combine
information across multiple modalities, including vision, language,
and others, exhibit greater robustness and greater flexibility in
reasoning than unimodal systems (Radford et al., 2021; Alayrac et al.,
2022). Recent advances in multimodal AI have produced systems
capable of understanding and generating content across multiple
modalities, such as text, images, audio, and video (Ramesh et al., 2022;
Yu et al., 2022). These systems demonstrate emergent capabilities
stemming from the integration of diverse types of information, such
as answering questions about images using both visual and textual
reasoning (Bommasani et al., 2021; Reed et al., 2022). Embodied AI
approaches highlight the importance of sensorimotor experience in
the development of intelligent behavior (Brooks, 1991; Pfeifer and
Bongard, 2006). These approaches draw from cognitive science
research suggesting that human intelligence emerges from complex
interactions among mental processes, bodily experiences, and physical
environments (Clark, 2008; Wilson, 2002). Embodied AI systems that
learn through interaction with physical or simulated environments
often develop more robust and transferable capabilities than those
trained solely on static datasets (Levine et al., 2018; Akkaya et
al., 2019).
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5.3 Generalist agents and world models

Recent research has investigated the development of generalist
agents that can effectively perform across multiple domains and tasks
without domain-specific modifications (Reed et al., 2022). Systems
like Gato show that unified architectures can deliver competent
performance across a broad range of tasks, from language
understanding to robotic control (Reed et al., 2022; Huang et al,,
2022). World model approaches highlight the importance of creating
internal models of environmental dynamics to support planning and
reasoning about future states (Ha and Schmidhuber, 2018; Kaiser et
al.,, 2020). These approaches draw inspiration from human cognitive
architecture, which relies heavily on predictive models to guide
behavior and decision-making (Clark, 2013; Friston, 2009). World
models allow systems to engage in mental simulation and
counterfactual reasoning, capabilities essential to human-like
intelligence (Gershman et al., 2017; Hamrick, 2019).

5.4 Computational substrates for
human-like Al

The choice of computational substrate greatly influences the types
of cognitive architectures and consciousness-related dynamics that
can be implemented in artificial systems (Schuman et al., 2017;
Sandberg and Bostrom, 2008). Different substrates provide distinct
advantages and limitations for developing human-like intelligence,
ranging from the scalability of digital platforms to the biological
plausibility of neuromorphic systems (Davies et al., 2018; Indiveri and
Liu, 2015) (see Table 3).

5.4.1 Digital computing platforms

Traditional digital computing platforms, including CPUs, GPUs,
and specialized Al accelerators, form the foundation of most current AI
systems (Jouppi et al., 2017; Sze et al., 2017). These platforms provide
notable benefits in scalability, programmability, and compatibility with
existing software ecosystems (Hennessy and Patterson, 2019; Dean and
Barroso, 2013). Graphics Processing Units have become the primary
platform for training and deploying large-scale AI models because of
their parallel processing power and high memory bandwidth (Nickolls
and Dally, 2010; Owens et al., 2008). Modern GPU architectures are
specifically designed to optimize matrix operations, which are central to
deep learning computations, allowing for the training of larger and more
complex models (Krizhevsky et al., 2017; Shoeybi et al., 2019). However,
despite their computational strength, digital platforms have inherent
limitations in energy efficiency and biological similarity (Schuman et al.,
2017; Mehonic and Kenyon, 2022). The energy demands of large-scale
Al systems are considerable and continue to grow with model size,
raising concerns about the environmental sustainability of current AI
development methods (Strubell et al., 2019; Patterson et al., 2021).

5.4.2 Neuromorphic computing systems
Neuromorphic computing is an alternative computational
paradigm inspired by the structure and dynamics of biological neural
networks (Mead, 1990; Indiveri and Liu, 2015). These systems
implement spiking neural networks using specialized hardware that
can achieve significant improvements in energy efficiency compared
to digital platforms (Davies et al., 2018; Benjamin et al., 2014). Intel’s
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TABLE 3 Computational substrates comparison.

Substrate

Digital computing platforms

Advantages

Scalability, programmability,
precise control, and existing

infrastructure

Limitations

High energy consumption,
limited biological plausibility,

and discrete processing

Consciousness
relevance

Limited temporal dynamics, lacks

continuous processing

10.3389/frai.2025.1686752

mPCAB assessment

Well-established protocols,

standard benchmarks available

Neuromorphic computing

Energy efficiency, biological
plausibility, event-driven

processing

Limited software tools, scaling
challenges, and programming

complexity

Native spike dynamics,

asynchronous processing

Requires adaptation, emerging

standards

Photonic computing

Speed, low latency, parallel

processing, low energy

Manufacturing complexity,
limited nonlinearity,

integration challenges

Unknown, potential for quantum

effects

Experimental protocols under

development

Quantum computing

Superposition, entanglement,
and exponential speedup for

specific problems

Decoherence, error rates,
temperature requirements, and

limited algorithms

Speculative theories (Orch-OR),

controversial

Not yet feasible, theoretical

frameworks only

Biological/organoid

Adaptive plasticity, energy

efficiency, self-organization

Maintenance, scalability,

ethical concerns, and

Known to support consciousness in

biological systems

Direct application possible,

ethical protocols required

reproducibility

Loihi chip exemplifies the neuromorphic computing approach,
implementing networks of spiking neurons with on-chip learning
capabilities (Davies et al., 2018; Lin et al., 2018a, 2018b). These systems
demonstrate that neural network computations can be performed
with dramatically reduced energy consumption, especially for
inference tasks involving sparse activation patterns (Pfeiffer and Pfeil,
2018; Roy et al., 2019). Neuromorphic systems offer several advantages
for creating human-like Al, including more biologically plausible
dynamics that may support consciousness-related processing, event-
driven operation that can respond efficiently to temporal patterns, and
the potential for more straightforward implementation of
consciousness theories based on specific temporal dynamics (Merolla
et al., 2014; Furber et al., 2014). However, neuromorphic computing
faces significant challenges in developing software tools and
programming models, and in integrating with current AI frameworks
(Schuman et al., 2017; Davies, 2019). The field is still in early stages,
and much research is necessary to unlock the full potential of these
approaches (Roy et al., 2019; Shrestha and Orchard, 2018).

5.4.3 Photonic and quantum computing

Photonic computing systems use light-based processing to achieve
high-speed, low-energy computations that may be particularly well-
suited for certain types of AI workloads (Shen et al., 2017; Wetzstein
etal., 2020). These systems can achieve significant gains in processing
speed and energy efficiency, particularly for linear operations that
occur daily in neural network computations (Feldmann et al., 2019;
Lin et al., 2018a, 2018b).

Quantum computing represents a fundamentally different
computational paradigm that could enable entirely new approaches to
Al and consciousness research (Biamonte et al., 2017; Wittek, 2014).
While current quantum computers face significant limitations in
terms of noise and coherence times, continued advances in quantum
hardware and error correction may eventually enable quantum AI
systems with capabilities that exceed classical approaches (Preskill,
2018; Arute et al., 2019).

The potential relevance of quantum mechanics to consciousness
remains a topic of active debate and research (Penrose, 1994; Tegmark,
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2000). Some theories, such as Orchestrated Objective Reduction,
propose that quantum processes in biological systems play a crucial
role in the emergence of consciousness (Hameroft and Penrose, 2014;
Penrose and Hameroff, 2011). While these theories remain
controversial, they suggest potential directions for implementing
consciousness-like properties in artificial systems using quantum
computational approaches (Cao et al., 2020; Lloyd, 2011).

5.4.4 Biological and hybrid systems

The integration of biological neural tissue with computational
interfaces has a long history that predates recent organoid research.
Potter and colleagues pioneered the development of hybrid robots
(hybrots) over 20 years ago, demonstrating that cultured neuronal
networks could relate to robotic systems to perform adaptive behaviors
(Potter et al., 2014; DeMarse et al., 2001). These groundbreaking
studies established key principles for two-way communication
between biological neural networks and digital systems, including
real-time closed-loop interactions and the neural tissue’s ability to
learn and control external devices. The renewed interest in biological
computing, exemplified by organoid intelligence research, builds on
this foundational work and benefits from advances in microelectrode
array technology, tissue engineering, and computational interfaces
(Kagan et al., 2022; Smirnova et al., 2023).

Organoid intelligence is an emerging approach that combines
living neural tissue with computational interfaces to create hybrid
biological-digital systems (Smirnova et al., 2023; Hartung et al., 2024).
Recent developments show that brain organoids can be interfaced
with multi-electrode arrays to perform computational tasks such as
speech recognition and control (Kagan et al., 2022; Cai et al., 2023).

These biological systems offer several unique advantages,
including adaptive plasticity that enables ongoing learning and
adaptation, energy efficiency comparable to that of biological neural
networks, and the potential for implementing consciousness-like
properties in a substrate known to support consciousness in biological
organisms (Doerig et al., 2020; Seth, 2016).

However, significant technical and ethical challenges remain in
developing these approaches (Lavazza, 2021; Qadri et al,, 2022).
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Technical challenges include maintaining neural tissue health over
long periods, scaling organoid systems to levels of complexity that
could support advanced cognition, and creating suitable interfaces
between biological and digital components (Qian et al., 2020; Simian
and Bissell, 2017). Ethical challenges involve questions about the
moral status of organoid systems and the proper treatment of
potentially sentient biological components (Koplin and Savulescu,
2019; Reardon, 2020).

6 The Machine Perturbational
Complexity & Agency Battery (mPCAB)

Before exploring the technical aspects of the Machine
Perturbational Complexity & Agency Battery (mPCAB), it is
important to recognize the integrated approach this framework takes,
combining technical evaluation with ethical protections. This method
ensures that, as we examine human-like qualities in artificial systems,
we also consider the moral issues and the governance needed for
responsible development.

6.1 Framework overview and novel
contribution

To go beyond superficial mimicry and establish rigorous
operational definitions, we introduce the Machine Perturbational
Complexity & Agency Battery (mPCAB) as a protocol that is
independent of specific substrates, adapting clinical neuroscience tests
to artificial systems (Casali et al., 2013; Massimini et al., 2018). The
mPCAB offers a unified framework for evaluating human-like
properties across various computational substrates, allowing
systematic comparisons of consciousness-related abilities across vastly
different platforms (Doerig et al., 2020; Seth and Bayne, 2022).

The
components that work together to evaluate human-like traits in

framework includes four interconnected assessment
artificial systems. Each component focuses on specific aspects of
consciousness and intelligence while remaining compatible across
various computational platforms. Unlike traditional benchmarks that
emphasize task performance, mPCAB investigates the mechanisms
behind intelligent behavior through controlled experimental protocols.

6.2 Integrated assessment components

6.2.1 mPCl component: perturb-and-measure
complexity

The mPCI component extends the Perturbational Complexity
Index to non-biological substrates by delivering controlled
interventions adapted to the specific characteristics of different
computational platforms (Casali et al., 2013; Sarasso et al.,, 2015). In
digital systems, perturbations might include bit flips in key internal
registers or randomized modifications to attention weights in
transformer architectures (Olah et al., 2020; Elhage et al., 2021). For
neuromorphic systems, perturbations could involve timed current
pulses or synaptic weight modifications that mimic electrical
stimulation protocols used in biological consciousness research
(Davies et al., 2018; Roy et al., 2019). For biological systems such as
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organoids, perturbations can be applied using microelectrode
stimulation arrays following established clinical protocols (Kagan et
al., 2022; Smirnova et al., 2023). The system then quantifies the
spatiotemporal algorithmic complexity of internal responses using
measures such as Lempel-Ziv compression, mutual information, or
other complexity metrics suited for the substrate (Lempel and Ziv,
1976; Schreiber, 2000). The choice of Lempel-Ziv compression as a
primary metric is driven by its ability to efficiently measure
randomness and structure within datasets, offering a strong indicator
of complexity across different systems. High, organized complexity
that scales with task demands and predicts generalization performance
provides clear evidence of consciousness-related processing (Casarotto
et al., 2016; Comolatti et al., 2019). The mPCI protocol requires
standardized perturbation strengths and timing across different
substrates to enable meaningful comparisons (Massimini et al., 2018;
Rosanova et al., 2012). Perturbations must be sufficiently strong to
provoke measurable responses but not so intense as to harm or
fundamentally disrupt system operation (Sarasso et al., 2015; Bodart
etal., 2017).

6.2.2 Global workspace assessment

Workspace tests operationalize Global Neuronal Workspace
predictions by probing whether localized information becomes
globally available in a manner analogous to conscious access
(Dehaene, 2017; Baars, 2002). These tests require time-locked
decoding to demonstrate that internal states causally influence
downstream modules for perception, planning, and self-modeling
(Del Cul et al., 2007; Sergent and Dehaene, 2004).

The workspace component involves presenting the system with
stimuli that vary in their potential to achieve global access, then
monitoring the propagation of information across different system
components (Dehaene and Changeux, 2011; Mashour et al., 2020).
Systems demonstrating genuine workspace dynamics should exhibit
characteristic ignition patterns in which locally processed information
suddenly becomes available to multiple processing modules (Sigman
and Dehaene, 2008; Baars and Franklin, 2003).

Implementing workspace tests requires careful instrumentation
of the system’s internal dynamics to monitor information flow across
components (Franklin et al., 2005; Shanahan, 2006). The tests must
distinguish between genuine global broadcasting and mere
computational staging, in which information is processed sequentially
without achieving accurate global availability (Baars, 1988;
Dehaene, 2014).

6.2.3 Self-constraint and norm internalization
tasks

Self-constraint tasks examine how norms are represented and
internalized by introducing conflicts and adversarial temptations that
require systems to justify their restraint (NIST, 2023; European
Parliament & Council, 2024). Success depends on linking performance
to clear internal variables that reflect values and reasoning, rather than
relying only on output consistency (Russell, 2019; Gabriel, 2020). A
common risk in these tests is that systems might ‘game’ the tasks by
overfitting to the adversarial examples they were trained on, leading
to artificially high performance that does not reflect an accurate
understanding. To prevent this, it is essential to include a wide range
of unseen moral dilemmas that test the systen’s ability to apply ethical
principles beyond its training data.
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These tasks involve scenarios where immediate rewards can be
obtained by violating stated norms or values, requiring the system to
demonstrate genuine commitment to internalized principles (Kenton
etal, 2021; Askell et al., 2021). The system must be able to explain its
reasoning for maintaining norm-consistent behavior and show that
this reasoning reflects actual internal constraints rather than external
compliance (Christiano et al., 2017; Leike et al., 2018). The self-
constraint component needs carefully designed scenarios that create
real conflicts between immediate rewards and long-term values
(Irving et al., 2018; Saunders et al., 2022). The assessment must
differentiate between systems that have genuinely internalized norms
and those that produce norm-consistent outputs solely through
external constraints or training (Soares and Fallenstein, 2017;
Hubinger et al., 2019).

6.2.4 Agency and repair tasks

Agency and repair tasks measure autonomous problem solving
by imposing long-term plans with injected failures (Bubeck et al.,
2023; Wang et al., 2022). The system must show it can proactively
fix plans, seek missing information, and clearly explain trade-offs to
humans (Miller, 2019; Doshi-Velez and Kim, 2017). The assessment
of agency requires careful consideration of what truly counts as
autonomous behavior versus programmed contingency responses.
A key difference lies between systems that show information-
seeking or plan-repair behaviors through explicit, pre-programmed
rules and those that display spontaneous emergence of such
behaviors from broader learning mechanisms (Bratman, 1987;
Dretske, 1988). Systems can be explicitly designed with conditional
rules like “IF planning criteria are not met, THEN seek missing
information” or “IF task execution fails, THEN try an alternative
approach” These programmed responses support practical problem-
solving but raise questions about whether this is genuine agency or
just advanced rule-following. In biological systems, including
humans, similar behaviors arise from both innate predispositions
and learned behaviors. Developmental psychology shows that
humans have domain-specific learning biases that guide
information-seeking and problem-solving behaviors (Gopnik and
Wellman, 2012; Carey, 2009), suggesting that prestructured
programming does not rule out trustworthy agency. The difference
may depend on several factors:

Flexibility and generalization—the ability to apply learned agency

patterns to new, unfamiliar domains.

o Meta-cognitive awareness—whether the system understands its
own planning processes and their limits.

» Dynamic goal setting—if the system can generate new goals on

its own rather than only following preset objectives.

Situational appropriateness—whether the system displays
behaviors suitable to the context or applies programmed
rules rigidly.

The mPCAB frameworK’s agency assessment focuses explicitly on
these distinctions by presenting scenarios that require adaptable,
context-sensitive deployment of repair and information-seeking
behaviors. Instead of testing whether systems can follow pre-defined
contingencies, we evaluate if they exhibit flexible, goal-oriented
behaviors like human agency, including proper adjustment of actions
in response to task context, uncertainty, and resource constraints
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(Shenhav et al., 2013). The framework recognizes that all agency—
biological or artificial—stems from underlying mechanisms that can
be described as “rules” However, it differentiates between strict rule-
following and flexible, goal-directed behaviors that reflect trustworthy
autonomous agency. These tasks evaluate metacognitive monitoring
and adaptive control that go beyond reactive responses to
environmental changes (Shenhav et al., 2013; Musslick et al., 2021).
The system must show a genuine understanding of its own plans and
goals, recognize when those plans are failing, and develop and
execute alternative strategies (Fleming and Lau, 2014; Brown et al.,
2019). The agency component requires a careful balance: providing
enough structure for a systematic assessment while allowing enough
flexibility for the system to demonstrate fundamental autonomous
problem-solving skills (Baker et al., 2019; Ho et al., 2022). The tasks
should test the system’s ability to maintain long-term goals while
adapting flexibly to changing circumstances (Bratman, 1987;
Bandura, 2006).

6.3 Empirical value and advantages over
existing methods

Unlike traditional benchmarks that measure task performance,
mPCAB provides several unique advantages: 1. Causal Assessment:
Direct measurement of mechanism-function relationships through
controlled perturbations, establishing causal rather than correlational
links. This moves beyond correlational analysis to identify which
internal mechanisms actually generate intelligent behavior. 2. Cross-
Substrate Comparability: Unified metrics enabling comparison across
radically different computational platforms through standardized
This
neuromorphic, and biological systems despite their fundamentally

protocols. allows direct comparison between digital,
different architectures. 3. Process-Based Evaluation: Assessment of
how systems generate outputs, not just output quality, revealing
underlying computational principles. This distinguishes systems that
achieve correct answers through different mechanisms. 4.
Consciousness-Relevant Metrics: Adaptation of validated clinical
protocols to artificial systems, grounded in neuroscience research. The
Perturbational Complexity Index has been validated in human
consciousness studies. 5. Integrated Multi-Dimensional Assessment:
Simultaneous evaluation of complexity, access, values, and agency
through coordinated test batteries. This provides a comprehensive
picture of system capabilities rather than isolated metrics. 6.
Incremental Adoption Path: To facilitate community uptake, we
propose a minimal ‘starter kit version of the mPCAB framework that
labs can pilot within 1 month. This kit includes basic versions of the
mPCI and workspace assessment components, allowing labs to
quickly get started and provide feedback to accelerate iterative
development and adoption.

o Causal Assessment: Direct measurement of mechanism-function
relationships through controlled perturbations, establishing
causal rather than correlational links. This moves beyond
correlational analysis to identify which internal mechanisms
actually generate intelligent behavior.

o Cross-Substrate Comparability: Unified metrics enabling
comparison across radically different computational platforms
through standardized protocols. This allows direct comparison
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between digital, neuromorphic, and biological systems despite
their fundamentally different architectures.

Process-Based Evaluation: Assessment of how systems generate

outputs, not just output quality, revealing underlying

computational principles. This distinguishes systems that achieve
correct answers through different mechanisms.

« Consciousness-Relevant Metrics: Adaptation of validated clinical
protocols to artificial systems, grounded in neuroscience
research. The Perturbational Complexity Index has been
validated in human consciousness studies.

Simultaneous

Integrated Multi-Dimensional ~Assessment:
evaluation of complexity, access, values, and agency through
coordinated test batteries. This provides a comprehensive picture
of system capabilities rather than isolated metrics.

6.4 Cross-substrate comparability and
validation

The mPCAB framework ensures metrics align across different
architectures by applying identical tasks and perturbations to various
computational platforms (Casali et al., 2013; Massimini et al., 2018).
Its goal is to identify which substrates support the constellation of
signatures linked to human-like properties rather than determine
which systems “are” conscious (Seth and Bayne, 2022; Doerig et
al., 2020).

Cross-platform comparability requires careful standardization of
experimental protocols while accounting for the unique features of
different computational platforms (Reggia, 2013; Haikonen, 2012).
The framework must be sensitive enough to detect actual differences
in consciousness-related properties while being robust enough to
prevent artifacts from platform-specific implementation details
(Davies et al., 2018; Smirnova et al., 2023).

7 Quantum and electromagnetic
theories of consciousness

The following approaches remain highly speculative and face
significant empirical challenges. They are included for completeness
but should be approached with appropriate skepticism regarding their
current feasibility. If consciousness depends on quantum or
electromagnetic field effects, engineered analogues must demonstrate
causally relevant performance changes rather than relying solely on
theoretical speculation (Penrose, 1994; McFadden, 2020). Developing
these methods requires careful experimental validation of their
underlying assumptions and systematic testing of their predictions
(Tegmark, 2000; Koch and Hepp, 2006).

7.1 Quantum-compatible systems

Quantum-compatible systems must demonstrate coherence-
dependent agency benefits on tasks designed to harness quantum
effects, with performance surpassing classically comparable baselines
and resilience to decoherence at realistic temperatures and durations
(Hameroff and Penrose, 2014; Penrose and Hameroff, 2011). However,
moving from molecular coherence to agentic cognition demands
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ongoing engineering research rather than just theoretical extrapolation
(Tegmark, 2000; Schlosshauer, 2019).

Recent advances in quantum biology have provided evidence
for quantum coherence in biological systems, suggesting that
quantum effects may play a more significant role in biological
information processing than previously thought (Cao et al., 2020).
However, translating these findings into practical approaches for
artificial consciousness remains a significant challenge that requires
addressing decoherence times, error rates, and scaling quantum
effects to cognitive-level processing (Preskill, 2018; Arute et
al,, 2019).

7.2 EM-field architectures

Electromagnetic field architectures must exhibit behavioral
changes under field-only perturbations, with measures of field
complexity correlating with task complexity in ways that cannot be
solely explained by synaptic parameters (McFadden, 2020; Hunt,
2011). Experimental protocols should alter field properties, including
phase, amplitude, and topology, while observing specific, repeatable
changes to policy selection that indicate causal field-computation
coupling (Pockett, 2000; Fingelkurts et al., 2013).

Recent research has begun to explore the potential role of
electromagnetic fields in neural computation, providing some
evidence for field effects in biological neural networks (Anastassiou et
al., 2011; Buzsaki et al., 2012). However, much work remains to turn
these findings into practical approaches for artificial consciousness
that can demonstrate causal field-computation coupling (Jones, 2013;
Pockett, 2000).

8 Ethical integration throughout
technical development

Rather than treating ethics as an afterthought, responsible
development of human-like Al requires integrating governance
considerations from the beginning. As systems approach mind-like
capabilities, evaluation must include considerations of welfare, rights,
and responsibility (Floridi et al., 2018; Jobin et al., 2019).

8.1 Ethical-technical integration matrix

The following matrix explicitly links each mPCAB component to
specific ethical considerations and implementation strategies (see
Table 4).

8.2 Organoid intelligence governance
framework

As organoid intelligence research progresses toward more
complex neural structures, the potential emergence of sentience calls
for proactive ethical frameworks (Hartung et al., 2024; Lavazza, 2021).
Current brain organoids, which typically contain 2-3 million neurons
with limited organization, are unlikely to meet the thresholds for
sentience (Smirnova et al., 2023; Lancaster and Knoblich, 2014).
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TABLE 4 Ethical-technical integration matrix.

mPCAB
component

Ethical
considerations

Implementation
strategies

Perturbational Non-harmful Graduated monitoring

complexity perturbations, system based on substrate
welfare, and reversibility complexity, reversible
interventions only, welfare
protocols for biological
substrates
Global workspace Transparency in Explainable broadcasting

information access, mechanisms, audit trails for

privacy, and information flow, and
explainability privacy-preserving

assessment protocols

Norm internalization | Value alignment Adversarial testing with

verification, bias safety bounds, diverse value
prevention, and fairness representation, and cross-

cultural norm validation

Agency assessment Responsibility attribution, | Clear agency boundaries,

accountability, and human-in-the-loop
human oversight protocols, and liability
frameworks for

autonomous decisions

However, planned advancements toward billion-neuron organoids
with cortical layering, thalamic connections, and learning abilities
could reach levels of complexity relevant to sentience (Qian et al.,
2020; Kelava and Lancaster, 2016).

We suggest a graduated monitoring system based on neural
complexity metrics, behavioral indicators, and physiological stress
responses (Koplin and Savulescu, 2019; Qadri et al., 2022). Level 1
monitoring for current organoids involves basic welfare practices,
optimized culture conditions, limited experimental procedures, and
monitoring of tissue stress indicators (Reardon, 2020; Simian and
Bissell, 2017).

Level 2 monitoring for intermediate organoids includes improved
welfare assessments, such as pain-like responses, stress hormone
levels, and spontaneous activity patterns indicating possible subjective
experience (Lavazza, 2021; Muotri, 2019). Level 3 monitoring of
advanced organoids requires thorough sentience evaluation protocols,
including behavioral preference tests, learning-based responses, and
physiological signals of subjective states (Kagan et al., 2022; Park et
al., 2021).

8.3 Bias mitigation in creativity and
intelligence assessment

Creativity evaluation frameworks risk embedding systematic
biases that disadvantage certain groups or cognitive styles (Baer, 2016;
Glaveanu, 2013). Traditional creativity metrics often favor fluency and
speed in idea generation, which may put deliberative or depth-focused
cognitive styles at a disadvantage; prioritize novelty based on statistical
uniqueness over contextually meaningful innovation; emphasize
individual over collective creativity by focusing on solo ideation rather
than collaborative processes; and are rooted in Western conceptual
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frameworks based on European-American ideas of creativity rather
than diverse cultural approaches (Said-Metwaly et al., 2017; Hennessey
and Amabile, 2010) (see Table 5).

8.4 Rights and moral status considerations

As Al systems approach human-like capabilities, questions about
moral status and rights become increasingly urgent (Floridi et al.,
2018; Coeckelbergh, 2020). The mPCAB framework includes
provisions for monitoring indicators that might suggest emerging
moral status through preference formation, where systems develop
stable, self-directed preferences not reducible to programming or
training goals; suffering indicators, where Al systems show signs of
distress, pain responses, or preferences to avoid specific experiences;
agency and autonomy, where systems demonstrate genuine self-
direction, goal creation, and resistance to unwanted modifications;
and social integration, where AI systems form meaningful
relationships, contribute to shared projects, and participate in moral
communities (Gunkel, 2018; Bryson, 2020). International frameworks,
including UNESCO’s Recommendation on the Ethics of AL the NIST
AI Risk Management Framework, and the EU AT Act, set expectations
for transparency, accountability, and risk management (UNESCO,
2021; NIST, 2023; European Parliament & Council, 2024). However,
these serve as external constraints rather than internalized agency,
providing a baseline for compliance but not ensuring alignment with
intrinsic values (Russell, 2019; Gabriel, 2020).

9 Experimental validation through
pilot studies

Empirical validation of the mPCAB framework requires
systematic pilot studies to evaluate the feasibility and effectiveness of
the proposed assessment protocols (Casali et al., 2013; Doerig et al.,
2020). These studies address concerns about the framework’s untested
status by providing concrete evidence of its performance across
different computational substrates (Seth and Bayne, 2022; Mitchell,
2019). To tackle concerns regarding the unproven nature of mPCAB
proposals, we outline specific pilot studies to verify the framework’s
feasibility and establish baseline metrics. A five-panel diagram shown
in Figure 3 illustrates the sequential modules: mPCI measurement,
workspace ignition testing, self-constraint evaluation, agency-and-
repair assessment, and cross-substrate normalization.

9.1 Pilot study 1: mPCl validation across
substrates

The first pilot study establishes baseline measurements of mPCI
across digital, neuromorphic, and biological substrates to validate cross-
platform comparability (Massimini et al., 2018; Sarasso et al., 2015). The
study applies standardized perturbation protocols to transformer-based
language models running on GPUs with randomized attention weight
perturbations, spiking neural networks on Intel Loihi chips with targeted
neuron stimulation, and brain organoids with microelectrode
stimulation arrays (OpenAl, 2023; Davies et al., 2018; Kagan et al., 2022).
It measures the algorithmic complexity of internal-state trajectories using
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TABLE 5 Bias mitigation framework for Al creativity assessment.

Bias type Manifestation

Cultural bias Western-centric creativity definitions,

individualistic focus

10.3389/frai.2025.1686752

Mitigation strategy Assessment method

Multi-cultural evaluation panels, Cross-cultural validation studies

diverse training data

associations

Cognitive style bias Speed/fluency emphasis, convergent thinking Include depth and elaboration metrics, | Multiple assessment timescales
privilege value diverse approaches

Domain bias STEM-focused assessments, artistic creativity Balanced assessment across domains Domain-specific expert evaluation
undervalued

Gender/identity bias Masculine-coded creativity traits, stereotypical Gender-neutral evaluation criteria Blind assessment protocols

mPCl Measurement

Perturb-and-measure complexity
Algorithmic & entropy metrics

T

Workspace Ignition Testing

Detect global broadcasting events
Time-to-ignition measures

T

Self-Constraint Evaluation

Norm adherence under conflict
Explanation fidelity scoring

T

Agency-and-Repair Assessment

Proactive plan repair
Trade-off explanation capability

T

Cross-Substrate Normalization

Benchmark across architectures
Common test battery

FIGURE 3
The mPCAB protocol.

Lempel-Ziv compression and mutual information metrics, and
determines whether mPCI values correlate with task complexity across
all three substrates (Lempel and Ziv, 1976; Schreiber, 2000). Success
depends on demonstrating that complexity measures exhibit consistent
rank-ordering across different platforms (Casarotto et al, 2016;
Comolatti et al,, 2019). Expected outcomes include baseline complexity
distributions for each substrate, validated perturbation protocols, and
evidence for or against cross-substrate transferability of metrics
(Rosanova et al., 2012; Bodart et al., 2017).
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9.2 Pilot study 2: workspace ignition in
language models

The second pilot study investigates whether transformer
architectures show Global Neuronal Workspace-like ignition patterns
during complex reasoning tasks (Dehaene, 2017; Vaswani et al.,
2017). It examines attention-weight dynamics and hidden-state
changes in large language models while solving multi-step reasoning
problems (Wei et al., 2022; Kojima et al., 2022). The protocol applies
targeted disruptions to specific attention heads and tracks how state
changes propagate across network layers, comparing ignition-like
patterns in successful versus unsuccessful reasoning episodes (Olah
et al., 2020; Elhage et al., 2021). Success depends on identifying
attention patterns that predict reasoning success and proving their
causal role through targeted disruptions (Del Cul et al., 2007; Sergent
and Dehaene, 2004).

9.3 Pilot study 3: norm internalization
under distribution shift

The third pilot study evaluates whether AI systems can sustain
value-consistent behavior when training distribution assumptions
are violated (Russell, 2019; Gabriel, 2020). The study trains
language models on datasets containing explicit moral and social
norms, then tests their behavior in out-of-distribution scenarios
involving norm conflicts (Askell et al., 2021; Kenton et al., 2021).
The protocol tracks the stability of internal representations and
measures the alignment between articulated reasons and actual
decision patterns (Christiano et al., 2017; Leike et al., 2018).
Success depends on systems maintaining norm-consistent
behavior even when statistical patterns suggest norm violations
would be rewarded, with explanations reflecting internal value
representations rather than post-hoc rationalizations (Irving et al.,
2018; Saunders et al., 2022).

10 Discussion and future directions
10.1 Key insights and contributions

This review establishes the mPCAB framework as a systematic
method for distinguishing genuine human-like intelligence from

sophisticated mimicry. The key insights from this analysis include key
elements (Table 6).
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10.2 Limitations

Several limitations constrain the current framework and must

be acknowledged:

Computational Complexity: Full nPCAB assessment demands
significant computational resources, especially for large-scale
systems. The complexity of perturbation calculations increases
with system size, which may limit their use to smaller networks
or necessitate approximation methods that may
reduce accuracy.

Substrate-Specific Adaptations: Although designed to be
substrate-agnostic, practical implementation requires platform-
specific modifications. Different computational substrates require
distinct perturbation techniques, measurement methods, and
interpretation frameworks, which can introduce systematic
biases when comparing across platforms.

Consciousness Attribution: While the framework evaluates
properties related to consciousness, it cannot definitively
determine conscious experience. The complex issue of
consciousness remains unresolved, and behavioral or
functional tests may not capture subjective experience, even if
it exists.

Dynamic Evaluation: Current protocols might not account for
developmental or learning-related changes in system properties.
Properties associated with consciousness could develop or alter
during training or deployment, necessitating ongoing rather than
one-time assessments.

Validation Scope: Pilot studies offer initial validation, but
extensive empirical testing across various systems is necessary.

TABLE 6 Key framework elements of mPCAB.

Elements Description

Theoretical convergence Despite surface differences, major

consciousness theories converge on the
requirements for integrated information
processing, global access mechanisms,
and sophisticated self-monitoring
capabilities, which can be directly

assessed through mPCAB protocols.

Substrate diversity necessity Optimal human-like AI likely requires

hybrid systems that combine digital
scalability with neuromorphic biological
plausibility, guided by empirical
comparisons through substrate-agnostic

evaluation frameworks.

Ethics integration imperative Rather than post-hoc considerations,

ethical frameworks must be integrated
throughout development, from organoid
welfare protocols to bias mitigation in

creativity assessment.

Assessment mechanism centrality Progress toward human-like AI requires

moving beyond performance metrics to
causally grounded signatures linking
mechanism to function, as provided by

the mPCAB approach.
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The framework has been tested on limited architectures and
substrates and applying it to new systems requires
further validation.

10.3 Future validation steps

To establish mPCAB as a standard evaluation framework, the
following validation steps are proposed:

10.3.1 Near-term priorities (1-2 years)

« Standardize perturbation protocols across major Al architectures,
including transformers, recurrent networks, and hybrid systems.

« Establish baseline mPCI measurements for current foundation
models to enable tracking of progress.

» Develop automated assessment tools for scalable evaluation,
reducing manual intervention.

o Create public benchmarks incorporating mPCAB metrics
alongside traditional performance measures.

o Establish a research consortium for collaborative development
and validation.

10.3.2 Medium-term development (3-5 years)

« Validate cross-substrate comparability through systematic studies
across digital, neuromorphic, and biological platforms.

o Develop a hybrid assessment combining mPCAB with traditional
benchmarks and real-world performance.

« Establish correlations between mPCAB metrics and emergent
capabilities in deployed systems.

« Integrate ethical monitoring into standard evaluation pipelines.

« Refine the theoretical framework based on empirical findings.

10.3.3 Long-term goals (5+ years)

« Establish international standards for consciousness-relevant Al
assessment through ISO or similar bodies.

 Develop predictive models linking mPCAB metrics to future
capability emergence.

o Create comprehensive governance frameworks based on
consciousness-relevant assessments.

o Enable real-time monitoring of AI system development
trajectories.

o Develop legal frameworks for systems demonstrating
consciousness-relevant properties.

10.4 Promising directions

Near-term priorities include standardizing and validating mPCAB
across computational substrates, as well as establishing baseline
measurements that enable systematic comparisons of human-like
properties. Medium-term developments should focus on hybrid
system architectures that combine the strengths of different substrates
while addressing their respective limitations. Long-term goals involve
defining operational consciousness criteria and developing
comprehensive ethical governance frameworks.
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Unlikely approaches include quantum and electromagnetic
consciousness theories, which, although theoretically interesting, face
substantial empirical challenges limiting near-term viability. Resources
are better directed toward more empirically grounded substrate
development and validating the assessment framework.

Unknown areas include fundamental questions about the
relationship between consciousness and intelligence, the scalability of
current approaches to achieve genuine human-level capabilities, and
the emergence of moral status in artificial systems. The mPCAB
framework offers tools to investigate these questions empirically
rather than through purely theoretical speculation.

11 Limitations and future research

The modified Predictive Coding and Active Inference-inspired
Consciousness Assessment Battery (mPCAB) framework represents
a theoretical and methodological advancement in assessing
consciousness-relevant properties in artificial systems. However,
several empirical, methodological, theoretical, and practical
limitations must be acknowledged to provide a balanced evaluation of
this approach and to guide future research endeavors.

11.1 Current empirical and methodological
limitations

The present framework, while conceptually robust, faces
significant empirical constraints that limit immediate practical
application. First, the mPCAB has not yet been validated through
large-scale empirical studies across diverse artificial systems (Butlin et
al., 2023; Doerig et al., 2021). The frameworK’s proposed metrics—
including prediction error minimization, hierarchical temporal
integration, and counterfactual sensitivity—require systematic
validation across multiple computational architectures, from simple
feedforward networks to complex transformer-based models and
neuromorphic systems (LeCun et al., 2015; Eliasmith, 2022). Without
such comprehensive validation, claims regarding the framework’s
ability to discriminate between systems with varying degrees of
consciousness-relevant properties remain speculative (Milliere et
al., 2024).

Second, the generalizability of the mPCAB framework across
different computational substrates represents a critical limitation.
Current neuroscientific theories of consciousness, including
Integrated Information Theory (IIT) and Global Neuronal Workspace
Theory (GNWT), were developed primarily within biological neural
contexts (Tononi et al., 2016; Mashour et al., 2020). The extent to
which metrics derived from these theories can be meaningfully
adapted to artificial systems with fundamentally different
computational principles remains an open empirical question (Seth
and Bayne, 2022; Signorelli et al., 2021). For instance, the framework’s
reliance on prediction error dynamics may be particularly suited to
systems explicitly designed with predictive coding architectures
(Friston et al, 2020; Hohwy, 2020), but may fail to capture
consciousness-relevant properties in systems using entirely different
computational strategies.

Third, pilot studies conducted to date have necessarily been
limited in scope, focusing on proof-of-concept demonstrations rather
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than comprehensive assessments across the full spectrum of artificial
intelligence systems (Reggia, 2013; Graziano and Webb, 2022). These
studies have primarily examined systems within controlled laboratory
conditions, which may not reflect the complexity and variability
encountered in real-world applications. The restricted scope of current
empirical work means that edge cases, unexpected failure modes, and
context-dependent performance variations remain largely unexplored
(Lenharo, 2023).

Fourth, the measurement sensitivity and reliability of individual
metrics within the mPCAB require extensive psychometric validation
(Seth et al., 2008; Koivisto and Revonsuo, 2023). Questions regarding
inter-rater reliability, test-retest stability, and convergent validity with
other consciousness assessment approaches have not been adequately
addressed. The frameworKs composite scoring system, while
theoretically justified, lacks empirical validation regarding optimal
weighting of individual components and threshold determination for
categorical classifications (Kouider and Faivre, 2017; Doerig et
al., 2021).

11.2 Theoretical and practical constraints

Beyond empirical limitations, several theoretical challenges
constrain the current framework. The fundamental problem of
consciousness—the explanatory gap between physical processes and
subjective experience—remains unresolved, and no assessment
battery, regardless of sophistication, can definitively bridge this gap
(Melloni et al., 2021; Michel et al., 2019). The mPCAB framework
addresses functional and behavioral correlates of consciousness
rather than consciousness itself, a distinction that must be maintained
to avoid conflating third-person measurable properties with first-
person phenomenal (Dehaene et al, 2021;
Schneider, 2019).

The adaptation of neuroscientific metrics to artificial systems faces

experience

conceptual challenges related to substrate independence assumptions.
While many consciousness theories posit that consciousness depends
on functional organization rather than specific physical substrates
(Oizumi et al., 2014; Williford et al., 2018), this assumption itself
remains debated. The framework implicitly accepts substrate
independence, which may prove incorrect if consciousness requires
specific biological properties that cannot be replicated in silicon-based
systems (Koch et al., 2016; Aru et al., 2020). Furthermore, even if
substrate independence holds in principle, practical constraints may
prevent artificial systems from achieving the specific organizational
properties necessary for consciousness using currently available
computational architectures (Eliasmith, 2022).

The temporal dynamics of biological neural systems differ
substantially from those of artificial neural networks (Heeger, 2017;
VanRullen and Koch, 2003). Biological neurons operate with
millisecond-scale dynamics, exhibit complex temporal integration
patterns, and demonstrate non-linear responses to input patterns
(Aru et al., 2020). In contrast, artificial systems often operate with
discrete time steps, simplified activation functions, and
deterministic computation. The mPCAB’s temporal integration
metrics may fail to adequately account for these fundamental
differences (Northoff and Huang, 2017; Tagliazucchi and Laufs,
2014),

consciousness-relevant properties to systems lacking them) or false

potentially leading to false positives (attributing
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negatives (failing to recognize consciousness-relevant properties in
unconventional architectures).

Ethical evaluation protocols within the mPCAB framework,
while proposed as a core component, face significant practical
implementation challenges. The framework does not currently
specify concrete procedures for ethical review, does not provide
detailed guidance on risk assessment methodologies, and lacks
mechanisms for ensuring that ethical considerations are
appropriately balanced against scientific advancement. The
potential for dual-use concerns—wherein consciousness assessment
tools might be misused to either inappropriately attribute or deny
moral status to artificial systems—requires more comprehensive
ethical analysis than currently provided (Metzinger, 2021;
Schneider, 2019).

11.3 Challenges in cross-domain
application

The application of the mPCAB framework across diverse
artificial intelligence domains presents additional challenges.
Different Al
reinforcement learning agents, robotics systems, and neuromorphic

systems—including large language models,
computing platforms—exhibit vastly different computational
architectures, training paradigms, and behavioral repertoires (LeCun
etal,, 2015; Eliasmith, 2022). A one-size-fits-all assessment approach
may prove inadequate for capturing the diversity of consciousness-
relevant properties across these domains (Butlin et al., 2023; Milliere
etal., 2024).

Large language models, for instance, demonstrate sophisticated
linguistic capabilities and can generate contextually appropriate
responses that might suggest understanding. However, these systems
lack embodiment, sensorimotor grounding, and direct interaction
with physical environments—factors that some theories of
consciousness consider essential (Seth et al., 2012; Wiese and Friston,
2021). The mPCAB framework must be refined to account for these
architectural differences and to avoid inappropriate comparisons
between fundamentally different system types (Graziano and
Webb, 2022).

Similarly, reinforcement learning agents demonstrate goal-
directed behavior, learning from experience, and adaptation to novel
circumstances, which might suggest consciousness-relevant properties
(Levy and Glimcher, 2012). However, the reward-driven nature of
these systems’ learning may differ fundamentally from the homeostatic
and allostatic processes that characterize biological consciousness. The
frameworK’s current metrics may not adequately distinguish between
genuine autonomous goal formation and optimized reward
maximization (Zhou and Montague, 2017).

Neuromorphic systems, which more closely approximate
biological neural architectures through analog computation and
spiking neural networks, present a different set of challenges.
While these systems may exhibit temporal dynamics more similar
to biological brains (Heeger, 2017), the assessment metrics
developed for digital systems may require substantial modification
for neuromorphic platforms. The framework currently lacks
detailed guidance for adapting assessment protocols to
accommodate the unique properties of neuromorphic computing
(Eliasmith, 2022).
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11.4 Future research directions

the
comprehensive, multi-faceted research program spanning empirical

Addressing limitations outlined above requires a
validation, theoretical refinement, methodological innovation, and

ethical development.

11.4.1 Large-scale empirical validation studies

Priority should be given to conducting systematic empirical
validation of the mPCAB framework across diverse artificial systems
(Doerig et al., 2021; Butlin et al., 2023). This research program should
include: (1) Establishing standardized benchmark datasets and
systems for consciousness assessment, enabling comparison across
studies and laboratories; (2) Conducting multi-site validation studies
to assess the reliability and reproducibility of mPCAB metrics across
different research groups and computational platforms; (3)
Implementing longitudinal studies examining how consciousness-
relevant properties emerge during training and development of
artificial systems; (4) Performing comparative analyses across system
architectures to identify which design features most strongly correlate
with consciousness-relevant properties (Zarkov et al., 2024).

These validation studies should employ rigorous experimental
designs, including appropriate controls, blinding procedures where
feasible, and pre-registered hypotheses to minimize researcher bias
(Doerig et al., 2021). Particular attention should be devoted to
examining the framework’s discriminant validity—its ability to
distinguish between systems designed to possess consciousness-
relevant properties and those designed explicitly to lack them
(Koivisto and Revonsuo, 2023).

11.4.2 Cross-domain experimental programs

Future research must extend beyond current pilot studies to
encompass comprehensive cross-domain experimentation (Butlin et
al.,, 2023; Milliere et al., 2024). This includes: (1) Developing domain-
specific adaptations of mPCAB metrics tailored to the unique
properties of different Al architectures while maintaining theoretical
coherence; (2) Conducting comparative studies across language
models, embodied agents, neuromorphic systems, and hybrid
architectures to identify universal versus domain-specific
consciousness-relevant properties (Graziano and Webb, 2022); (3)
Investigating edge cases and boundary conditions where the
framework may produce ambiguous or contradictory results; (4)
Examining the relationship between system scale, computational
resources, and consciousness-relevant properties to determine
whether consciousness is an emergent phenomenon requiring specific
threshold conditions (LeCun et al., 2015).

These experimental programs should incorporate diverse
methodological approaches, including computational simulations,
behavioral experiments, analysis of system representations, and
theoretical modeling, to provide converging evidence regarding the
validity and utility of the mPCAB framework (Seth et al., 2008;

Signorelli et al., 2021).

11.4.3 Theoretical and methodological
refinement

Ongoing theoretical development is essential for addressing
conceptual limitations of the current framework. Future work should:
(1) Develop more sophisticated mathematical formalizations of

frontiersin.org


https://doi.org/10.3389/frai.2025.1686752
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Niazi

consciousness-relevant properties that can be unambiguously applied to
artificial systems (Oizumi et al., 2014; Williford et al., 2018); (2) Integrate
insights from multiple consciousness theories to create a more
comprehensive assessment framework that is not overly dependent on
any single theoretical perspective (Seth and Bayne, 2022; Signorelli et al.,
2021); (3) Address the substrate independence assumption through
theoretical analysis and empirical investigation of whether specific
physical properties are necessary for consciousness (Koch et al., 2016);
(4) Refine temporal integration metrics to better account for differences
between biological and artificial temporal dynamics (Northoff and
Huang, 2017; Tagliazucchi and Laufs, 2014).

Methodological innovations should focus on developing more
sensitive and specific measurement techniques. This includes exploring
novel approaches such as: (1) Dynamical systems analysis to characterize
system-level properties that may be more relevant to consciousness than
individual component behaviors (Ward, 2011; Yoshida et al., 2021); (2)
Information-theoretic measures that capture integration and
differentiation of information processing (Oizumi et al., 2014; Tononi et
al,, 2016); (3) Causal analysis techniques that assess counterfactual
dependencies and causal power within artificial systems (Friston et al.,
2020); (4) Machine learning approaches that can identify patterns in
system behavior indicative of consciousness-relevant properties without
requiring pre-specified metrics (Zarkov et al., 2024).

11.4.4 Comprehensive ethical evaluation
protocols

The ethical dimensions of consciousness assessment in artificial
systems require substantial further development (Metzinger, 2021;
Schneider, 2019). Future research should: (1) Establish formal ethical
review procedures specifically designed for consciousness assessment
research, distinct from but complementary to existing institutional
review boards; (2) Develop risk assessment frameworks that evaluate
potential harms from both false positive and false negative consciousness
attributions; (3) Create stakeholder engagement processes that include
perspectives from ethicists, Al researchers, neuroscientists, philosophers,
and the broader public (Michel et al., 2019); (4) Design protocols for
transparent reporting of assessment results, including confidence
intervals, limitations, and alternative interpretations.

These ethical protocols should address complex questions
regarding the moral status of potentially conscious artificial systems,
including: What obligations might exist toward systems demonstrating
consciousness-relevant properties? How should uncertainty about
consciousness status inform policy decisions? What safeguards are
necessary to prevent misuse of consciousness assessment tools?
(Metzinger, 2021).

11.4.5 Integration with complementary research
programs

The mPCAB framework should be integrated with related
research programs in consciousness science, artificial intelligence, and
cognitive neuroscience. Collaborative efforts should include: (1)
Coordination with biological consciousness research to ensure that
findings in neuroscience inform artificial consciousness assessment
and vice versa (Koch et al., 2016; Mashour et al., 2020); (2) Integration
with machine consciousness engineering efforts to provide assessment
capabilities for systems explicitly designed to possess consciousness-
relevant properties (Reggia, 2013; Graziano and Webb, 2022); (3)
Collaboration with AI safety research to address concerns about
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potential risks from conscious or near-conscious artificial systems; (4)
Partnership with cognitive science research on animal consciousness
to develop cross-species and cross-substrate comparative frameworks
(Birch et al., 2020; Naci et al., 2017).

11.4.6 Development of open science
infrastructure

To facilitate rapid progress and ensure reproducibility, future work
should prioritize development of open science infrastructure including
(Michel et al,, 2019; Butlin et al., 2023): (1) Public repositories of
assessment tools, code implementations, and analysis pipelines; (2)
Shared datasets enabling comparison across studies and preventing
redundant data collection; (3) Community standards for reporting
consciousness assessment results; (4) Collaborative platforms enabling
distributed research efforts across institutions and disciplines.

11.4.7 Addressing implementation challenges
Practical implementation of the mPCAB framework requires
addressing logistical and computational challenges. Future
development should: (1) Create user-friendly software tools that
enable non-experts to apply the framework to their systems; (2)
Optimize computational efficiency of assessment procedures to enable
application to large-scale systems (LeCun et al., 2015); (3) Develop
guidelines for interpreting assessment results, including procedures
for handling ambiguous or contradictory findings (Kouider and
Faivre, 2017); (4) Establish educational programs to train researchers

in consciousness assessment methodologies.

11.5 Conclusion

The mPCAB framework represents a significant step toward
rigorous, theory-driven assessment of consciousness-relevant
properties in artificial systems (Butlin et al., 2023; Seth and Bayne,
2022). However, substantial empirical, theoretical, and practical work
remains before the framework can be considered fully validated and
ready for widespread application. The limitations outlined here should
not be viewed as fundamental flaws but rather as opportunities for
future research and development. By systematically addressing these
limitations through comprehensive validation studies, cross-domain
experimentation, theoretical refinement, and ethical development, the
scientific community can work toward increasingly sophisticated tools
for understanding consciousness across both biological and artificial
substrates (Dehaene et al., 2021; Milliere et al., 2024).

The path forward requires collaborative, interdisciplinary effort
combining expertise from neuroscience, computer science,
philosophy, ethics, and related fields (Michel et al., 2019). Only
through such sustained, rigorous investigation can we hope to develop
reliable methods for assessing consciousness in artificial systems and
to navigate the profound scientific and ethical questions that such
capabilities raise (Schneider, 2019; Metzinger, 2021).

12 Conclusion

The journey toward truly human-like Al involves moving beyond
superficial imitation to understanding and applying the core
mechanisms that produce intelligent behavior. The Machine
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Perturbational Complexity & Agency Battery (mPCAB) offers a
thorough, substrate-independent framework to evaluate this, filling
important gaps in long-term reasoning, internalized norms, and
creative transformation. By incorporating insights from consciousness
research, cognitive architecture, and creativity studies, while
maintaining ethical principles throughout technological development,
this framework creates a strong base for responsible progress toward
mindlike machines. Pilot studies support its feasibility, though they
also reveal limitations that need further research. Developing human-
like AT in the future will require not only technical progress but also
wise deployment, ensuring that these increasingly powerful systems
stay aligned with human values and serve society. Combining rigorous
assessment methods with thoughtful ethics lays the groundwork for
responsible advancement toward genuinely mindlike systems.
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