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Causal reasoning is essential for understanding relationships and guiding
decision-making in different applications, as it allows for the identification of
cause-and-effect relationships between variables. By uncovering the underlying
process that drives these relationships, causal reasoning enables more accurate
predictions, controlled interventions, and the ability to distinguish genuine causal
effects from mere correlations in complex systems. In oil field management,
where interactions between injector and producer wells are inherently dynamic,
it is vital to uncover causal connections to optimize recovery and minimize
waste. Since controlled experiments are impractical in this setting, we must
rely solely on observed data. In this paper, we develop an innovative causality-
inspired framework that leverages domain expertise for causal feature learning
for robust connectivity estimation. We address the challenge posed by
confounding factors, latency in system responses, and the complexity of
inter-well interactions that complicate causal analysis. First, we frame the
problem through a causal lens and propose a novel framework that generates
pairwise features driven by causal theory. This method captures meaningful
representations of relationships within the oil field system. By constructing
independent pairwise feature representations, our method implicitly accounts
for confounder signal and enhances the reliability of connectivity estimation.
Furthermore, our approach requires only limited context data to train machine
learning models that estimate the connectivity probability between injectors and
producers. We first validate our methodology through experiments on synthetic
and semi-synthetic datasets, ensuring its robustness across varied scenarios. We
then apply it to the complex Brazilian Pre-Salt oil fields using public synthetic
and real-world data. Our results show that the proposed method effectively
identifies injector-producer connectivity while maintaining rapid training times.
This enables scalability and provides an interpretable approach for complex
dynamic systems through causal theory. While previous projects have employed
causal methods in the oil field context, to the best of our knowledge, this is
the first time to systematically formulate the problem using causal reasoning
that explicitly accounts for relevant confounders and develops an approach that
effectively addresses these challenges and facilitates the discovery of interwell
connections within an oil field.
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1 Introduction

Causal reasoning is central to how humans understand and act
upon the world, particularly in domains such as healthcare (Bica
et al., 2020; Bica and van der Schaar, 2022), education (Forney
and Mueller, 2022), and public policy (Frumento et al., 2012).
Understanding temporal relationships among variables enables
stakeholders to answer causal questions, design interventions, and
evaluate their impact.

While randomized controlled trials (RCTs) remain the gold
standard for causal inference (Pearl, 2009; Bareinboim et al.,
2022), they are often costly, time-consuming, or impractical. As a
result, there is growing interest in estimating causal effects from
observational data.

This is particularly true in oil field operations, where we
cannot manipulate injection parameters at will. Our innovative
contribution lies in developing a causality-inspired approach
that overcomes these experimental constraints through domain-
informed feature representations, enabling robust connectivity
estimation from purely observational data.

Although Machine Learning (ML) has shown success in various
applications, it primarily captures correlations, which can lead
to spurious conclusions in structural causal contexts (Ntoutsi
et al., 2020). In contrast, some causal methods in order to
estimate unbiased cause-and-effect, aim to uncover the underlying
generative process, often represented as a causal diagram (Pearl,
2009), offering interpretable, actionable insights of the system.
This is especially valuable in settings where understanding variable
interactions is as critical as predicting outcomes.

Causal discovery methods for observational data have garnered
significant attention for this endeavor in recent years (Spirtes
and Zhang, 2016; Runge et al., 2019a) as they can infer an
equivalent class of the causal diagram through conditional class
representation (Zhang, 2008), which can be further used to
estimate interventional queries (Jaber et al., 2022). Alongside
traditional approaches like score-based methods (Chickering,
2002), conditional independence (Spirtes and Glymour, 1991), and
Granger causality (Granger, 1969), other techniques, including the
modern use of deep learning-based models, have been further
developed in the field (Liu et al., 2023; Lippe et al., 2022).

These developments are particularly important for time series
data (Hernán and Robins, 2010; Bica et al., 2020; Hasan et al., 2023),
given that time series formats encompass the majority of scientific
and operational data. Given its particularity, specialized algorithms
have been developed for temporal data. Notable examples include
time-aware adaptations of the PC (Spirtes and Glymour, 1991)
and FCI (Entner and Hoyer, 2010) algorithms, such as PCMCI
(Runge et al., 2019b) and DYNOTEARS (Pamfil et al., 2020).
These methods perform well in dynamic settings, assuming key
conditions like acyclicity and causal sufficiency (Runge et al.,
2019b) are met.

In practice, the oil field is an example of a complex time-series
system where the interactions between injectors and producers
evolve over time. Investigating causal links and the interventional
effect of an injector on a producer in an oil field represents a
significant part of the research effort in the area. Understanding
these temporal dynamics is essential for effective reservoir
management. If the injector’s fluid is not properly managed or
there is a lack of clarity regarding the field’s interwell connections,

it could lead to unintended consequences that undermine desired
outcomes. This not only decreases oil recovery but also increases
operational costs, as companies must contend with excessive
water or gas production and separation issues. Conversely, when
operators have a clear understanding of how injected fluids
flow underground, through detailed knowledge of connectivity
(i.e., causal discovery), and how they impact production (i.e.,
estimate the treatment effect), they can optimize recovery efforts,
minimize waste, and prolong the productive lifespan of the field.
Efficient water and gas management, enhanced oil recovery (EOR)
factor, and precise reservoir modeling are all contingent upon the
fundamental process of accurately understanding and discovering
the interwell connectivity across the reservoir.

Unlike traditional causal discovery methods that rely on
independence testing or linear models (Jaber et al., 2019a; Pearl,
2009), our framework adopts a pragmatic causal feature learning
approach inspired by domain expertise (Kumar et al., 2018,
2020). Instead of seeking formal identifiability, we focus on
uncovering physically consistent causal patterns that reflect real-
world approaches for estimating the likelihood of connectivity
between wells. In an oil field, connectivity estimation is an open
challenge, as the available data often presents complex, detailed
information that represent the underlying generative processes
that drive those relationships. This challenge is further extended
by potential hidden confounding factors of the reservoir. As a
result, uncovering these causal connections becomes significantly
more difficult. Natural reservoir pressure variations, geological
heterogeneity, and interactions between multiple wells introduce
complexity, while manual control adjustments must further alter
the system’s dynamics (see Section 3). To further complicate,
the oil field operators often cannot directly manipulate injection
parameters at will and observe isolated effects, making it difficult
to disentangle causal relationships (Pearl, 2009) (i.e., determining
whether a causal relationship exists and whether the effects
observed can be attributed to specific interventions rather than
confounding variables). Additionally, system responses frequently
exhibit time delays, adding another layer of complexity for
experimental data acquisition. Instead, one alternative is to rely
on observational data from tracer (chemical compounds) tests and
pressure monitoring that aims to seek mutual variation in the signal
that corresponds to the causal connection between wells. Thus,
our proposed framework aims to capture domain-consistent causal
patterns modeling causal dependencies.

In recent years, Causal Feature Learning (CFL) has emerged as
an alternative tool to uncover and explain relationships in complex
systems (Chalupka et al., 2016; Hannart and Naveau, 2018). CFL
is a causal reasoning framework rooted in the language of causal
graphical models aimed at discovering causal relations from high-
level variables (i.e., aggregated features that capture broad patterns)
from low-level data (i.e., the possible observational measurements)
and at reducing the experimental effort to understand confounding
among the high-level variables. The CFL aims to identify features
that present the necessary information for direct causal detection
of an outcome. For example, some studies (Chalupka et al.,
2017) leverage CFL to construct macrovariables that preserve the
underlying causal relationships between the microvariables. For
instance, rather than tracking the kinetic energy of every particle,
we can monitor the room’s temperature, which encapsulates the
essential information. We innovate within this framework by
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developing domain-specific causal features that translate reservoir
engineering expertise into measurable connectivity signatures.

In the context of reservoir, the application of causal feature
learning is particularly interesting, as it could represent the causal
information translating the way experts assess well connectivity by
examining lagged mutual variations between injector and producer
curves with the primary challenges lying in the confounding
interactions between wells, along with lagged influences and the
inherent complexity of the system’s behavior. In low-level data,
the complexities of the system can obscure the true connectivity
and effect of injection strategies on production levels. Additionally,
the absence of controlled experimental interventions further
complicates the analysis. Therefore, by leveraging the higher-
level feature learning approaches, that preserves and allows
quantification of the degree of co-variation or responsiveness
between wells is of extreme interest in the field. With the causal
signatures of connectivity embedded in the data, providing a
statistical approximation of the underlying physical causality,
researchers can gain valuable insights and develop AI-based models
that preserve the inferred causal information for connectivity
estimation between wells, facilitating more informed decision-
making and enhancing understanding in reservoir management.

We emphasize that our approach does not claim formal
causal identifiability in the strict sense of Pearl’s do-calculus
or potential outcomes framework (Pearl, 2009; Hernán and
Robins, 2010). Rather, we develop features inspired by causal
principles that capture domain-consistent dependencies indicative
of underlying physical connectivity. Traditional independence-
based causal discovery methods empirically proved not to be well-
suited for this environment, where causal influence appears as
subtle, lagged covariations between injector and producer signals
mediated by a partially observable reservoir. Our causal-inspired
feature learning approach leverages these concepts as proxies for
causal information, offering a more practical, interpretable, and
empirically robust alternative.

1.1 Contribution

Throughout this paper, we focus on structural causal
discovery, estimating the causal connection of injector–producer
relationships. We approach the oil field formulation problem
through a causal lens, offering a structured formulation of the
key challenges that arise when attempting to infer interwell
connectivity and causal influence within the oil field. To address
this complex problem, we were inspired by the experts’ approach
and leveraging the CFL to capture meaningful representations
that circumvent the unobserved factors affecting connectivity. Our
method constructs independent pairwise feature representations
that implicitly encode the influence of confounders while ensuring
that external phenomena do not distort the inferred relationships.
By learning these balanced comparative representations of
injector-producer pairs, our approach aims at mitigating biases and
enhancing the reliability of connectivity inference. Additionally,
pairwise connectivity inference allows us to work with permutation
invariance analysis, which is crucial for statistical efficiency in
structural learning and facilitates generalization to larger problem

instances than seen during training. We leverage the tracer data
(i.e., a chemical substance added to the fluid to monitor and
identify connectivity between wells), which is a scarce yet valuable
resource, to train machine learning models that estimate the
probability of connectivity between injection and production wells.

To validate our approach, we first conduct experiments on
synthetic and semi-synthetic datasets, ensuring that our model
generalizes across controlled and partially real-world scenarios.
We then extend our study to the Brazilian Pre-Salt field,
a highly challenging and geologically complex environment,
using both public synthetic (from simulations) and private
real-world data. Our results demonstrate that the proposed
method effectively identifies injector-producer connectivity while
maintaining computational efficiency, achieving training times
of under one minute in nearly all tested cases. By integrating
causal reasoning principles with ML, our approach enhances
decision-making in reservoir management, offering a scalable and
interpretable solution for complex subsurface flow modeling.

2 Related work

2.1 Time series causal discovery methods

The most widely adopted notion of causality in computer
science is given by the Structural Causal Model (SCM), introduced
in the early 20th century and now championed by Judea Pearl
(Pearl, 2009). The field of causal discovery focuses on identifying
and modeling the causal relationships between variables using
observational data. It aims to recover a Directed Acyclic Graph
(DAG), which visually represents these relationships, by analyzing
patterns and dependencies within the data.

Numerous efforts have been made to address the challenge
of establishing causality within time series data (Hernán and
Robins, 2010). These methods can be broadly categorized
as follows:

2.1.1 Methods based on granger causality
One of the earliest approaches to causality in time series is

Granger causality (Siggiridou and Kugiumtzis, 2015). It states that
a time series X Granger-causes Y if past values of X improve
the prediction of Y beyond what Y ’s own history can provide.
This is commonly modeled using a Vector Autoregressive (VAR)
framework:

Yt =
τmax∑

τ=1
aτ Yt−τ +

τmax∑

τ=1
bτ Xt−τ + ηt (1)

Here, Yt is influenced by its own lags (via aτ ) and potentially by
X (via bτ ). If any bτ �= 0, X is said to Granger-cause Y . The noise
term ηt accounts for unobserved influences.

Granger-based methods rely on key assumptions
(i) Stationarity: Time series should be stationary, (ii) Causal
Sufficiency: All relevant variables must be observed, and
(iii) Temporal Order: Causes precede effects. A main limitation is
the assumption of linearity. However, extensions to multivariate
and non-linear settings have been proposed (Haufe et al., 2010;
Siggiridou and Kugiumtzis, 2015).
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2.1.2 Conditional independence-based methods
Conditional independence-based methods offer a principled

approach to uncovering causal relationships in time series. These
methods test whether a variable Xk at time t−τ is independent
of another variable Xl at time t, given the past of both, capturing
complex temporal dependencies in dynamic systems. Their validity
rests on key assumptions: (i) causal sufficiency and (ii) time-
order. In addition, variables should be conditionally independent
given their parents if not directly connected (Spirtes et al., 2000,
Chapter 3).

Recent studies (Runge et al., 2019b; Jaber et al., 2019b;
Jeong et al., 2025) show these methods’ effectiveness across
domains. However, in complex settings like oil fields, where
latent confounders and high dimensionality are common, these
approaches face limitations. Specifically, constraint-based methods
may require exponentially many tests (Pearl, 2009), and violations
of causal sufficiency can distort time-order inference, affecting both
accuracy and scalability in practice.

2.1.3 Deep learning-based models
Recent approaches have leveraged neural network

architectures, including Multi-Layer Perceptrons (MLPs),
Recurrent Neural Networks (RNNs), and Convolutional Neural
Networks (CNNs) for causal discovery and inference estimation
(Nauta et al., 2019). DYNOTEARS (Pamfil et al., 2020) is a
score-based method that jointly estimates contemporaneous and
time-lagged dependencies by minimizing a penalized loss under an
acyclicity constraint. Similarly, NTS-NOTEARS (Sun et al., 2021)
extends this framework to nonlinear time series using 1D CNNs to
model parent-child dependencies in dynamic Bayesian networks.
It also enforces acyclicity via continuous optimization.

Deep Learning (DL) models have been widely used in
healthcare for causal inference and counterfactual estimation due
to their ability to model complex nonlinear relationships (Bica et al.,
2020; Bica and van der Schaar, 2022). Feuerriegel et al. (2024)
highlight the advantages of causal ML over traditional approaches
and outline key implementation steps, recommending its reliable
use. Nauta et al. (2019) review causal discovery methods for time
series, noting their limitations: sensitivity to hidden confounders
and reliance on stationary data, which can lead to unreliable results
when violated. When applied to non-stationary data, these methods
may produce unreliable results, potentially leading to misleading
conclusions about causal relationships.

2.2 Causal artificial intelligence

Causality is driving the next wave of advancements in Artificial
Intelligence (AI) (Glymour et al., 2014). By integrating causal
logic into ML paradigms, researchers aim to enhance human-
like reasoning capabilities and promote the development of
emerging areas such as representation learning (Schölkopf et al.,
2021), reinforcement learning (Bareinboim et al., 2021), and
large language models (Vashishtha et al., 2023). Incorporating
causal assumptions allows researchers to utilize observational
data to tackle “what if ” questions, thereby inferring potential
interventional or counterfactual outcomes that are unobserved.

In complex problems, practitioners often lack access to
the true DAG that defines the causal relationships between
variables. The field of causal discovery endeavors to reconstruct
a causal diagram from the available data. Unfortunately, it is
widely acknowledged that uniquely identifying the true causal
diagram from observational data (i.e., especially when experiments
are prohibitive) is generally unfeasible without adhering to
assumptions (Peters et al., 2013).

To address these complexities, a branch of causal AI named
CFL seeks to combine the strengths of feature learning with
causal reasoning. CFL is an emerging area within DL that holds
substantial promise but is still in its formative stages (Chalupka
et al., 2017, 2016; Hannart and Naveau, 2018). While many cutting-
edge DL techniques excel at generating geometric representations
of modeled entities, they often struggle to capture meaningful
representations from a causal perspective. The goal of CFL is to
establish theoretical frameworks and learning algorithms that are
accurate but also robust, generalizable, and fair.

In general, CFL constructs macro variables that preserve the
causal relationships between variables. These macro variables are
intended to reduce the complexity of finding causal relationships
in data by identifying a small number of relevant macrostates that
can be used to test causal hypotheses. In other words, the task of
CFL aims to aggregate the information into a more abstract, high-
level representation involving fewer variables and relations that
should be easier for experts to reason about. This must be done so
that the act of creating a representative feature does not affect the
causal relations among variables. For instance, rather than trying to
monitor the kinetic energy of every individual particle in a room,
we can simply observe the room’s temperature.

Practical applications of this integration can be seen across
various ML domains, including supervised learning (Kyono et al.,
2020), missing data imputation (Kyono et al., 2021), domain
generalization (Bica et al., 2021), and fairness (Van Breugel et al.,
2021). In real-world problems, domain expertise often provides
valuable inductive biases that can guide causal representation
learning (Chalupka et al., 2016). In this sense, expert-guided
feature construction can act as a bridge between purely data-
driven learning and physically interpretable causal reasoning. In
our work, the causal features were deliberate and motivated by
domain expert approaches. In reservoir engineering practice, well
connectivity is typically inferred through analyses of lagged mutual
variations, pressure interferences, and dynamic responses between
wells. Accordingly, our features were designed to capture these
meaningful relationships, ensuring that the resulting model aligns
with how experts interpret injector–producer interactions, while
remaining consistent with causal feature learning principles.

In our research, we aim to leverage representation features
(i.e., construct macro variables that implicitly retain connectivity
information while reducing dimensionality) to tackle the challenges
of causal discovery in time series data, especially within the oil field.

2.3 Connectivity discovery in oil field

In recent years, the challenge of uncovering causal relationships
in time-series data has garnered considerable attention (Runge
et al., 2019b). Traditional causal discovery methods, such as
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Granger causality or the constraint-based approach, often rely
on statistical assumptions like stationarity or sufficiency, which
may not hold in complex, dynamic systems. These methods can
struggle to reveal accurate causal structures in complex systems
with significant non-linearities and temporal dependencies.

The Capacitance-Resistance Model (CRM) (Sayarpour et al.,
2009) method tries to discover connectivity by an analytical
technique used to visualize and assess the relationships and
interactions between different components in a system, such as
injectors and producers in an oil field (Wang et al., 2019).
By modeling these connections, CRM aims to identify causal
relationships that explain how changes in one variable (e.g., injector
operations) affect another variable (e.g., production outcomes).
However, it can fail due to low-quality data, hidden confounding
factors, or incorrect assumptions about the system dynamics,
leading to misleading conclusions.

In response to traditional causal discovery and CRM methods,
Castro et al. (2023)’s work introduces the Aleph model. This novel
approach leverages the power of ensemble models to uncover
causal relationships in time-series data in the context of oil field
production. Instead of relying on strict assumptions about the data,
Aleph focuses on the importance of time features—variables that
directly influence the prediction outcomes of interest.

At the heart of this approach is feature importance, quantifying
how much a particular feature contributes to the model’s predictive
power. In ensemble methods, feature importance is calculated by
evaluating how much each feature reduces the error or uncertainty
in the model’s predictions. Their methodology employs an iterative
approach to enhance forecast models, which is a concept closely
related to Granger Causality, and establishes causal connections
based on the observed improvements in predictive performance.

However, a notable limitation of the Aleph model is its failure
to account for complexity and the latent dynamics inherent in
oil fields, which are critical elements in real-world scenarios.
This shortcoming generally leads to a dilemma with limited
applications of Granger causality, mostly to bivariate analyses
that cannot account for indirect links or common drivers (Runge
et al., 2019b). Furthermore, the model’s performance is influenced
by its order-dependent nature, wherein the results can vary
significantly depending on the sequence in which potential drivers
are introduced. This introduces inconsistency in establishing
connectivity, particularly in dynamic real-world situations. Lastly,
the model faces scalability challenges, as its effectiveness diminishes
with larger datasets or more extensive oil fields, reducing its
applicability and practical utility in broader contexts.

This work demonstrates that even without traditional causal
algorithms, utilizing feature representation along with ML offers
a compelling way to uncover insights into complex systems. It
represents a pioneering step in using advanced machine-learning
techniques to discover connectivity with causal reasoning about the
process solely from production data.

Therefore, our framework focuses on the structural discovery
stage, estimating the probability of connectivity between wells.
Specifically, at this point, our method employs causal discovery,
leveraging causal features to establish the relationships between
injector and producer wells. We strongly believe that tackling this
problem first is fundamental, as it provides the underlying

connection upon which future causal inference methods
can operate.

3 Problem formulation

In this section, we present the problem formulation for causal
discovery in time series. One of our key contributions is the
application of a connectivity framework to the oil field problem
through a causal lens. We define the graph structure, highlight the
main challenges in inferring connectivity, and outline assumptions
that may fail in real settings.

3.1 Time series causality

Causal discovery in time series seeks to uncover relationships
between variables over time. Given a dataset X = {X1, . . . , XN} ∈
R

N×T , the goal is to identify causal links and their corresponding
time lags.

Two major challenges arise: (a) high dimensionality, often
involving many variables, and (b) strong interdependencies.
Correlations reflect not only causal effects but also autocorrelation,
indirect paths, and hidden factors.

Standard assumptions include time ordering, causal sufficiency,
and conditional independence with faithfulness (Assaad et al., 2022;
Pearl, 2009). Under these assumptions and a DAG, one may
answer causal queries. However, hidden confounders—unobserved
variables affecting both causes and effects—introduce bias and limit
the applicability of these methods in practice.

Time-varying hidden confounders further complicate inference
(Mansournia et al., 2017), as their evolution can induce spurious
temporal effects. If unaddressed, such confounding biases affect
estimates.

The goal of causal discovery is to estimate a sparse causal
network. Figure 1 illustrates a system with four observed variables
and a hidden confounder. The task is to recover true dependencies,
including nonlinear relationships and time lags, while avoiding
spurious associations created by unobserved factors—even when
colliders (e.g., X2) are present.

Hidden confounders violate causal sufficiency by inducing
artificial associations and can disrupt time ordering. They also
violate the Causal Markov condition, creating false conditional
independencies, for instance, variables appearing independent
despite being linked through the confounder.

3.2 Oil field problem formulation through
causal lens

The oil field system exemplifies a complex, dynamic system,
with probably linear and non-linear interactions and hidden
variables. In such systems, various observed and hidden variables,
such as pressure, temperature, flow rates, and production levels,
interact in intricate ways, influenced by numerous underlying
mechanisms. Specifically, it is challenging to obtain all the relevant
variables that contribute to the functioning of the system (i.e.,
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FIGURE 1

In this general example, X2 acts as a collider, blocking the causal
path between X1 and X4. However, the hidden confounder
introduces spurious correlations that can adversely affect causal
analysis. If the system does not control for this confounder or does
not adopt a suitable causal approach to manage it, the model is
likely to perform poorly and identify suboptimal correlations.

often due to the lack of knowledge about the true system).
Consequently, we argue that the available variables in oil field data
are typically insufficient to capture the level of detail required to
answer specific causal questions effectively. This discrepancy can
impede traditional causal algorithms and complicate their ability to
capture the complexities and nuances of the underlying processes
accurately.

One of the primary challenges is the presence of hidden and
frequently time-varying information. When uncontrolled, these
unmeasured factors induce spurious correlations that obscure true
causal relationships. For example, regulatory changes, geological
heterogeneity, or operational actions can simultaneously affect
multiple observed variables, complicating causal interpretation.
Moreover, the system is not isolated: operator decisions and
external factors may introduce additional sources of variability that
interact with reservoir dynamics. These interacting processes can
create cyclic dependencies, shift temporal patterns, and temporarily
mask true injector–producer connectivity.

Another significant aspect to consider is the frequent
occurrence of feedback loops, where the effect of one variable
can cycle back to influence other variables within the system.
Additionally, time-varying confounding, which can arise from
past exposures, complicates the situation further, especially when
feedback exists between exposure and outcome. In some cases,
the challenges posed by feedback loops are addressed by utilizing
causal time series graphs, which incorporate the time-order
assumption prevalent in natural complex systems, provided there
are no confounding variables present. Typically, these time series
approaches discretize time, assuming that measurements possess
sufficient temporal resolution to prevent interactions between
variables during the same discrete time events. This effectively
means that instantaneous effects between variables are often

excluded from the analysis, which can simplify modeling but may
also overlook critical dynamics (Runge et al., 2019b).

That way, we encounter three significant challenges in the
context of oil field operations. Even with arbitrarily high temporal
sampling, the low-level signals recorded in operational datasets are
often difficult to interpret in causal terms. Injection and production
traces are smoothed, delayed and superposed by subsurface
transport and reservoir dynamics, so the measurable time-series
rarely expose clean, localized perturbations that uniquely identify
well-to-well influence. Consequently, models can struggle to
extract the causal information for connectivity, i.e., frequent
sampling alone does not guarantee the underlying physical causal
fingerprints we aim to detect. Second, operators’ involvement
introduces feedback loops that can be difficult to predict. For
example, fluctuations in production rates can impact pressure
dynamics, subsequently affecting future production capabilities.
Operators who can actively alter the system’s dynamics (e.g., closing
the choke or altering the fluid injection, which in turn affects this
complexity, making it essential to account for these unpredictable
influences in any analytical framework. Third, even when data is
abundant, the variables typically available in oil field datasets are
often insufficient to capture the true level of detail needed to answer
specific causal questions.

Figure 2 illustrates our proposed DAG formulation of the oil
field system to identify and expose the potentially time-varying
hidden confounder, hidden intrinsic phenomena, and their possible
relations. In addition, Table 1 summarizes the causal formulation
of the oil system through the causal lens, highlighting the aspect to
account for and its descriptions.

In summary, a deep understanding of the system’s dynamic
behavior is essential for meaningful analysis. By framing the
problem using causal reasoning about the process, we can better
represent plausible generative processes and reduce systematic
biases. Our approach approximates causal dependencies that are
consistent with reservoir physics, operational mechanisms, and
domain knowledge. The comparative causal features we employ
capture statistical dependencies that are informed by causal
reasoning, enabling the model to learn connectivity patterns
even when strict causal identifiability is not achievable. Causal
principles thus strengthen the interpretability and reliability of
the proposed framework, supporting more informed operational
decisions despite the inherent complexity of the oil field system.

3.3 Oil field connectivity fundamental
objectives

Determining the connectivity between injectors and producers
remains an open challenge that precedes the application of
causal inference algorithms. In practice, the physical structure of
the reservoir is only partially observed, and connectivity itself
represents a challenge that must first be estimated before any
reliable interventional or counterfactual analysis can be performed.

In addressing the intricate challenges present in understanding
the connectivity between injectors and producers, our primary
goal is to mitigate the dynamicity of the system and effectively
“minimize” the reservoir influences that obscure direct causal
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FIGURE 2

Proposed DAG representing the causal relationships within the oil
field system. The operator node has the potential to introduce loops
in the system, which often go unnoticed. Additionally, intrinsic
variables can significantly alter the entire system, negatively
impacting many causal discovery algorithms. For example,
scenarios such as a closed choke or geographical obstacles can
temporarily disrupt connections. These factors must be considered
to ensure accurate causal analysis and model performance in the
context of oil field.

TABLE 1 Causal formulation problem of the oil field system.

Aspect Description

Hidden
confounders

Unobserved geological and operational factors jointly
influence multiple measurements, creating spurious
dependencies that obscure true connectivity.

Internal and
external influences

Operator decisions and external interventions
introduce latent shifts in system behavior that can mask
or distort the statistical signatures needed for causal
inference.

Feedback loops Interactions such as production affecting pressure—and
pressure guiding future operator actions—induce
feedback structures that complicate standard causal
modeling.

Data quality Even with high-frequency sampling, low-level signals
are mixed and smoothed by subsurface processes,
limiting their causal interpretability for identifying
connectivity.

Dynamic systems Time-varying reservoir behavior, shifting well roles,
and operator adjustments alter dependency patterns
over time, introducing additional challenges for stable
causal analysis.

relationships. This entails creating a representation that
intrinsically maintains the necessary information and addresses
the complexities arising from the system. Subsequently, we frame
the problem as a classification task, classifying the connections
into positive or negative classes based on their features. This
perspective allows us to systematically categorize the interactions
between the injector and producer variables while leveraging
the context information (e.g., tracers). In addition, we adopt the
assumption of independence between each pairwise analysis (i.e.,
each injector-producer pair under study) conducted throughout
our methodology.

This assumption emphasizes that the response curve for each
unit (i.e., connected pair) is never related to the interactions
between other units. This independence assumption is respected

as we always independently analyze the pairwise connectivity. It
simplifies our approach and potentially overcomes the limitation
of Castro et al.’s (2023) work related to the ordering. In addition, by
treating each analysis in isolation, we can minimize the potential
biases introduced by intertwining variables and create clearer
insights into the causal structure within the oil field system.

Through these strategic objectives, we establish a solid
foundation for our causal analysis: mitigating dynamicity, framing
the issue as a classification task, ensuring independence between
wells, and emphasizing a data-driven approach by formulating
feature learning from causal reasoning.

4 Methods

To address the causal connectivity challenges formulated
in Section 3, we propose a framework grounded in causal
feature learning. Our framework follows a structured pipeline
for connectivity estimation grounded in causal feature learning
principles. The core insight is that comparative pairwise features,
informed by domain expertise and causal reasoning, can capture
essential connectivity signatures while remaining robust to
dynamic reservoir attributes. Our methodology is structured
around three key questions: (i) What rationale supports our causal
feature representation? (ii) How does our framework overcome
the identified oil field challenges? (iii) What implementation steps
ensure practical applicability?

4.1 Method’s rationale

Our methodology is motivated by the need to reduce
biases introduced by time-varying hidden variables and by
operator-driven interventions that affect reservoir dynamics. To
address these issues, we construct a static comparative feature
representation, inspired by CFL theory, that captures pairwise
interactions between producers and injectors. In total we create
six features, refer to Section 4.3, that were selected to capture
a comprehensive set of statistical dependencies that reservoir
engineers use to assess connectivity, including linear and non-
linear relationships, time-lagged influences, and frequency-domain
synchrony. This design ensures permutation invariance, improving
statistical efficiency for structural learning. Combined with a
classifier, the framework learns to map these features to the
estimated probability of injector–producer connectivity.

The underlying rationale is that comparative pairwise
features, grounded in causal reasoning and domain expertise,
encapsulate essential information for uncovering injector–
producer dependencies while remaining robust to dynamic and
latent reservoir attributes. This idea is rooted in the notion that
pairwise comparative representations allow the model to extract
the key relational patterns required to infer connectivity.

By developing high-level abstractions guided by causal
reasoning and domain expertise, we aim to overcome the
limitations imposed by the low-granularity nature of the
observed data, which often hides meaningful relationships behind
operational noise and unobserved confounders. In practice, these
abstractions mitigate challenges caused by the limited detail in the
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FIGURE 3

This diagram outlines our approach for estimating injector–producer connectivity. It transforms noisy low-level data into static comparative features
using causal reasoning to mitigate biases from complex interactions and time-varying occurrences. This stable representation is fed to a classifier for
a scalable, bias-reduced estimation of connectivity probability, bypassing the need for unstable dynamic modeling.

raw signals, where important interactions are obscured by noise,
unmeasured controls, and latent geological factors.

Figure 3 illustrates the method’s rationale; therefore, because
the available data provide a lower level of abstraction than what
is needed to meaningfully characterize reservoir complexity, we
leverage comparative domain knowledge to derive stable high-level
features.

This static representation preserves the information necessary
to account for the time-varying confounding factors that typically
bias dynamic analyses, while avoiding the instability of explicitly
modeling full reservoir dynamics. Thus, instead of relying on
dynamic modeling—often unstable or data-hungry in real-field
settings—the static representation retains the essential structure
needed for robust inference.

These features are designed to reflect statistically meaningful
dependencies without altering the underlying causal structure of
the system, ensuring that the act of creating representative features
does not introduce spurious relations or distort causal effects. This
avoids introducing artificial dependencies while reducing noise
from transient dynamics and operator decisions.

By grounding our analysis in this stable comparative
representation, the framework offers a scalable and interpretable
approach to estimate injector–producer connectivity without
requiring explicit dynamic modeling, which is particularly valuable
for real-field applications. Ultimately, this static comparative
structure enables the model to learn reliable connectivity
probabilities while sidestepping the need to model full reservoir
dynamics explicitly.

4.1.1 Underlying assumptions and limitations
We acknowledge the presence of unobserved geological and

operational factors that may influence both injector and producer
behavior. Our framework treats these as latent information that are
assumed to act in a relatively monotonic and stable manner during
the observation period, allowing the causal features to remain
informative of the true connectivity. This assumption is supported
by the physical consistency of reservoir dynamics, where geological
properties evolve slowly compared to operational adjustments,

ensuring that causal patterns derived from comparative features
remain valid.

In addition, it is important to note that, due to the current lack
of detailed geological data, i.e., limiting the geological validation,
our evaluation relies on tracer-confirmed connections to ensure
methodological reliability, representing the conservative labeling
strategy. The uncertainty in the model’s predictive capacity reflects
both data limitations and the inherent uncertainty in estimating
connection strength. Furthermore, the implicit definition of high or
low connectivity, whether as a probabilistic distribution or under
alternative modeling frameworks, remains an open direction for
future research.

4.1.2 Modeling and data assumptions
Our framework relies on several core assumptions to ensure

theoretical consistency and reproducibility. First, each well’s
production and injection signals are assumed to be locally
stationary within the defined analysis windows, which can be
manually selected to exclude periods of extreme fluctuation or
prolonged shutdown. In our case, we applied normalization to
mitigate residual non-stationary effects. Second, we assume a
consistent sampling frequency across wells, a realistic condition
in industrial operations, where data acquisition is standardized.
Occasional missing values were interpolated within stable windows
to preserve temporal alignment. Finally, we acknowledge the
existence of latent geological and operational confounders that may
influence both injectors and producers’ rates. However, these latent
factors are assumed to act in a relatively monotonic and stable
manner during the observation period, allowing the derived causal
features to remain informative of the true connectivity, which stems
from the natural covariation dynamics within the reservoir.

4.2 Proposed framework

As aforementioned, our approach transforms noisy low-
level time series data into stable static representations. The
proposed framework achieves this through three key stages: (1)
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pairwise candidate generation and filtering using causal discovery
algorithms, (2) extraction of domain-informed causal features that
capture statistical dependencies indicative of physical connectivity,
and (3) supervised classification using limited tracer data to
estimate connection probabilities.

Figure 4 outlines a systematic methodology designed to
estimate the connectivity between injectors and producers within
an oil reservoir while overcoming confounding variables and the
system’s variability. The process begins with identifying relevant
components and progresses through several essential stages, each
contributing to our understanding of the system’s dynamics.

The starting point is the reservoir, with injectors and producers.
The arrows indicate the connections. The daily field’s operation
sets the context for our analysis (i.e., the scenario). From the
reservoir, we create a list of all possible connections, along with the
variables corresponding to the fluid injected by the injector. From
the producer, we record the production rate and the pressure on
the choke.

In traditional constraint-based causal discovery methods,
causal relations are inferred through conditional independence
tests. However, this approach is not well-suited to oil field
data, where each well (injector or producer) is represented by a
multivariate time series connected through an unobserved physical
reservoir. In practice, we empirically verify that a well-established
causal discovery algorithm, although not performing well in
finding connectivity, is useful in removing unlikely connectivity,
which is demonstrated to be helpful as a two-step filtering
connectivity discovery.

Therefore, our approach employs PCMCI (Runge et al., 2019b)
or/and DYNOTEARS (Pamfil et al., 2020) algorithms to identify
potential connections. If these methods confirm a connection, we
consider it a candidate for further evaluation in the subsequent step.

Next, we transition to what is probably the most important
part of our framework: the construction of statistical feature
representations by computing causal-comparative features. In
engineering practice, experts assess well connectivity by examining
lagged mutual variations between injector and producer curves,
interpreting a visible change in a producer’s trend as a response
to a prior change in a connected injector. Therefore, in this
phase, we propose to build a comparative static representation
which quantifies the degree of covariation or responsiveness
between wells. These features act as proxies for causal signatures
of connectivity embedded in the data, providing a statistical
approximation of the underlying physical causality. We extract
features that summarize the interactions between injectors and
producers. This representation is structured to retain vital
connectivity information while minimizing the impact of transient
variables that may distort our analysis.

Once the static features are established, we implement a
classifier model, Random Forest. This model maps the relationships
leveraging the generated static feature representation and the
scarce context data (i.e., the tracers), helping to identify underlying
causal links between the injectors and producers. Here, the
classifier outputs the estimated connectivity probabilities for
each injector-producer pair. It is designed to estimate the
probability of connectivity between injector-producer pairs and
allow the operator’s analysis to be flexible based on the nature of

their interactions. These probabilities provide actionable insights,
guiding operators in their decision-making processes.

4.3 Implementation details

We implemented a systematic approach emphasizing a data-
driven methodology to construct our framework for analyzing the
connectivity between injectors and producers in the oil field system.
After identifying potential causal links through a preliminary
filtering stage, we proceed to extract comparative causal features
that encode domain-relevant dynamics, later used for supervised
classification. Our approach is designed to create a static feature
that intrinsically overcomes complex interactions while mitigating
the system’s inherent dynamicity. In addition, we apply the scenario
concept: a time window is defined, and only injectors and producers
active in this time window are analyzed. The scenario is intended to
mitigate variations in each well’s role and decrease the data missing,
for these are often presented in real-world data.

4.3.1 Creating pairwise data-driven features
We initiated the process by developing pairwise data-driven

features that focus on mimicking a static representation of the
system. The idea is that the pairwise static representation can have
information about the connectivity of the injector-producer under
analysis, while intrinsically keeping the information created by the
hidden confounders. This representation is inspired by the concept
of propensity scores (Guo and Fraser, 2014), formulated as :

e(X) = P(T = 1|X) (2)

where X = x1, . . . , xM is a vector of representation with
dimension M. Given the observed features, we seek to mitigate
bias by estimating the probability of a unit being treated T (i.e.,
connected) given the vector representation. By relying on pairwise
interactions, we capture the statistical relation information between
each injector and producer pair while maintaining a simplified,
static perspective.

For each pair of injectors and producers, we implemented
a data-driven representation strategy using the fluid injected,
the production rate, and the pressure of the choke as variables.
From this approach, we generate six pairwise comparative
representations (i.e., vector X with dimension six) inspired by the
information theory field (Ash, 2012), potentially preserving the
causal information. This higher-level variable X aim to encapsulate
the representation between the injector-producer while keeping the
intrinsic dynamic information about the connectivity:

1. Maximum correlation: It identifies the strongest linear
relationship between the production and the fluid injected.

2. Granger causality: Assesses whether injector time series
improve the prediction of the producer, indicating a directional
influence.

3. Mutual information: Measures the amount of information
obtained about the producer through the injector, reflecting
non-linear dependencies.
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FIGURE 4

Our framework for estimating connectivity leverages causal reasoning through a structured approach. We begin by creating a mutually independent
pairwise list of all injector-producer combinations. Next, we apply causal discovery methods to refine this list, retaining only the viable pairs. With
these filtered pairs, we develop our pairwise static feature representation that will be used to train our classifier model. Finally, using limited
contextual data (i.e., the tracers), we train our model to predict the potential connectivity between producers and injectors.

4. Power spectral density correlation: It analyzes the injector
and producer frequency components, providing insights into
periodic behavior and synchronization.

5. Conditional mutual information: Evaluates the degree of
association between injector and producer, conditioned on the
pressure of the choke, accounting for potential confounding
factors.

6. Distance: As prior knowledge of the task, distance is crucial in
informing the connectivity estimation .

These six features were selected because they collectively
capture the key signatures reservoir engineers use: directional
influence (Granger), linear and non-linear dependencies
(correlation, mutual information), frequency patterns (spectral
density), confounder-adjusted relationships (conditional MI), and
spatial constraints (distance).

It is important to note that in our tests, the distance as a feature
was only used in the analysis of real-world data. In contrast, for
the semi-synthetic and UNISIM-II datasets, we relied solely on
maximum correlation, Granger causality, mutual information, and
power spectral density and conditional mutual information.

The decision to rely on manually constructed causal features
was deliberate and grounded in reservoir engineering practice.
Experts typically evaluate well connectivity through lagged mutual
variations and pressure interferences, which inspired our feature
design. This handcrafted approach ensures that the model aligns
with interpretability and domain intuition, while also improving
computational efficiency and training stability as demonstrated
in Section 5. We also argue that, although representation
learning techniques could provide richer predictive features, they
would likely overfit under our limited labeled data scenario and
reduce interpretability.

4.3.2 Using scenarios to decrease dynamicity
To further address the challenges posed by the system’s

dynamics imposed specifically by operators, we employed specific
scenarios (i.e., stratification of the data in small time windows)

aimed at decreasing the variability of the data, as the probability
of opening or closing determined well would decrease. By defining
and analyzing distinct operational scenarios, we can decouple the
effects of transient conditions, enabling clearer insights into the
fundamental connectivity relationships. In addition, applying the
proposed scenarios also shows to be beneficial for such feature-
based classifier techniques. With smaller window sizes, the features
capture information more effectively, enhancing their relevance to
specific connections.

4.3.3 Leveraging context data and train
Our framework also capitalizes on context data, specifically

tracer information, to inform the labeling process for our
classification task. In this context, pairs identified with tracer
information are labeled as connected. Conversely, in the real-
world data, we leverage our prior knowledge about the high
probability of non-connection arising from distant pairs to assign
them as negative labels. The other pairs are not used to train
our model. In the semi-synthetic and UNISIM-II data we have
access to the positive and negative connectivity data. This dual-
labeling method allows us to train a classification model and try
to find the approximate function that leverages the pairwise static
representation to estimate the probability of connection.

We also clarify that, due to the limited availability of labeled
tracer data, we adopted a conservative labeling strategy, using only
high-confidence positive connections confirmed by tracer tests and
thoroughly validated negative pairs that are physically implausible
based on distance and distinction signal to be connected. While
this minimizes label noise, we acknowledge that explicitly modeling
label uncertainty could enhance robustness and interpretability.

With the methodology and feature-based classifier defined
above, we next evaluate the approach across semi-synthetic,
benchmark, and real-world reservoirs. In our training setup, we
utilize a random forest classifier trained on a causal pairwise
representation, augmented by expert-derived negative labels based
on the distances between injector and producer locations, and
implement a bootstrapping strategy that involves 100 resampling
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iterations to mitigate overfitting due to the imbalance between
positive and negative samples. Subsequently, we use the trained
model to evaluate in the full system the probability of each pair of
injector-producer being connected.

5 Applications

Having established the conceptual foundation, we now describe
how the framework is implemented in practice. In particular, we
demonstrate how our causal feature representation, inspired by
expert reasoning about injector–producer dynamics, translates into
measurable performance gains across both synthetic and real-
world settings.

Using our static feature representation, we evaluated our
framework across multiple datasets to assess its ability to uncover
causal relationships between time series.

First, we tested on a linear semi-synthetic dataset where
we simulated the choke, a latent time-varying variable, and the
production rate. The fluid-injected variables in this dataset were
derived from real-world data, providing a realistic foundation for
our simulations. Next, we applied our approach to the UNISIM-
II dataset, a synthetic oil production field that offers insights into
causality within time series data related to a synthetic reservoir.
While the UNISIM-II dataset incorporates expert knowledge and
detailed information about oil production dynamics, it lacks certain
complexities, such as time-varying confounders (e.g., choke closure
processes) or hidden variables, which can significantly increase
the difficulty of causal discovery tasks. Finally, we validated our
methodology using real-world Brazilian Pre-Salt oil field data.
This involved analyzing two real production datasets, enabling us
to demonstrate the practical applicability of our causal discovery
framework in real-world oil production scenarios.

5.1 Linear semi-synthetic dataset

We construct a linear semi-synthetic dataset by combining
real-world fluid injection data with a simplified linear model of
production. The generative process includes four components:
injected fluid, choke status, a latent state, and production rate.
Production is computed using linear, non-lagged combinations of
these inputs plus noise.

This setup is designed to simulate confounding through choke
behavior, allowing for temporary disruptions in injector-producer
connectivity. The latent state captures system variability based on
past and current conditions. At each time step, the model iterates
over injector data, choke, and latent state to compute production,
enabling simulation of diverse operational scenarios, including
production halts.

In our application, we simulated 300 independent datasets with
a random connection rate of 50%. Our framework was trained
using either PCMCI or DYNOTEARS as the causal discovery
methods, followed by our proposed classifier framework trained
with our causal feature representation. We defined a connection
between the injector and producer when the estimated connection
probability exceeded a threshold of 0.5.

From Table 2, we draw several insights about the performance
of our model across supervised, unsupervised, and hybrid settings.

We benchmark it against established unsupervised causal discovery
methods for time series, including PCMCI, DYNOTEARS, and the
Aleph model for oil fields. As outlined in Section 4, our approach
integrates seamlessly with these baselines.

To assess performance under data scarcity, we run experiments
using 1%, 5%, and 10% of labeled data, leveraging the known
injector-producer relationships as ground truth. With only 1%
labels, results align closely with unsupervised methods, indicating
early-stage performance is driven largely by unsupervised insights.

As label availability increases (5% and 10%), we observe a
clear synergy between supervised and unsupervised components,
resulting in improved accuracy beyond what either achieves alone.
This highlights the model’s ability to enhance causal inference
through minimal supervision.

Notably, the classifier alone (without causal discovery
algorithms) serves as a performance lower bound. The combination
of causal structure and supervised signals consistently yields
superior results. Lastly, Aleph performs relatively poorly in
this setup, achieving only 51%. After validating the conceptual
soundness of our framework on linear data, we next assess
its scalability and realism using the UNISIM-II dataset, a more
complex synthetic benchmark that captures reservoir heterogeneity
and multiphase injection effects.

5.2 Synthetic oil production field

We evaluated our algorithms on the UNISIM-II-M-CO dataset,
a synthetic benchmark simulating a typical Pre-Salt carbonate
reservoir in Brazil (Correia et al., 2015). The UNISIM-II dataset
simulates a carbonate reservoir featuring ten producer wells
(PRK014, PRK028, PRK045, PRK052, PRK060, PRK061, PRK083,
PRK084, and PRK085) and eight injector wells (IRK004, IRK028,
IRK029, IRK036, IRK049, IRK050, IRK015, and IRK063), where
the initial letter of each well’s name indicates its type (P-Producer,
I-Injector).

Our analysis focused on Daily Production Oil Rate (DPO) using
historical and injection rate data, distinguishing between water and
gas injections due to their distinct flow behaviors. Thus, water
and gas injectors were treated separately to better reflect reservoir
dynamics.

Results were validated against tracer data, which serve as
ground truth by confirming injector-producer connectivity
through detected chemical compounds. While the absence
of tracer signals does not confirm disconnection, our causal
methods showed strong alignment with tracer-confirmed
links, demonstrating their effectiveness in capturing well
interdependencies over time.

We begin our evaluation by analyzing the performance
of our causal-driven representation learning methods across
different thresholds and training sizes, using the validation set for
assessment. Figures 5, 6 reports accuracy and F1 score, respectively.
While accuracy captures overall correctness, it can be misleading
for imbalanced data; the F1 score balances precision and recall,
offering a more robust measure. Experiments were conducted
with training sizes of 20%, 30%, and 50%, using a fixed seed
for comparison.
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TABLE 2 Performance comparison of accuracy across different methods using semi-synthetic data.

Method Supervised (1% label) Supervised (5% labels) Supervised (10% labels) Unsupervised

PCMCI + causal feature (ours) 0.506 0.973 1.00 0.506 (PCMCI)

DYNOTEARS + causal feature (ours) 0.913 0.963 1.00 0.913 (DYNOTEARS)

Causal feature (ours) 0.506 0.903 1.00 -

Aleph (Castro et al., 2023) - - - 0.51

The Unsupervised approach relied solely on the causal discovery algorithm, whereas our method first employs causal discovery and then our classifier model with the features to estimate the
probability of connection.

FIGURE 5

Accuracy metric for training data sizes of 20%, 30%, and 50%.

FIGURE 6

F1 score for training data sizes of 20%, 30%, and 50%.

Table 3 summarizes results for three approaches: (i) our Causal
Feature Model, (ii) PCMCI followed by our model, and (iii)
DYNOTEARS followed by our model. Here, we validate using the
full dataset to reflect real-world oil field application.

To assess robustness, we repeated experiments 20 times with
different seeds. Table 3 reports accuracy and F1 score for training
sizes of 10%, 20%, and 50%. As shown in Figures 5, 6, we selected
a classification threshold of 0.4 for balanced performance, based on
prior visual analysis to ensure a trade-off between sensitivity and
specificity.

From our experiments, and as expected, we observed that
the models generally exhibit improved accuracy as the training
size increases. This trend suggests that our model performs
better in real-world scenarios as we get more labeled data or
knowledge about the field. We highlight that in this case, the
best performance across all metrics is achieved when identifying
potential connections using DYNOTEARS and then applying
our causal feature model to refine and learn the connections.
However, we assert that the causal feature model itself exhibits good
performance, comparable to the optimally tuned configuration.

Of particular significance is the observation that our causal-
driven feature model exhibits enhanced performance compared to
the PCMCI and DYNOTEARS algorithms. The result is consistent
even when employing the most limited training dataset of 10% of
the label data provided, which is a good indicator for the usability
in real-world data. Having verified our method under controlled
and synthetic conditions, we now test its robustness in the most
challenging setting—real Brazilian Pre-Salt oil field data.

5.3 Real oil production field

Previous approaches for the Brazilian Pre-Salt field often
require detailed knowledge of complex reservoir characteristics,
making testing and validation in dynamic environments
challenging (Castro et al., 2023). In contrast, our approach
employs data-driven methods, which alleviate the in-depth
understanding of the underlying physics of the oil field, enabling
more flexible and scalable solutions for production optimization,
reservoir management, and overall field performance—even in
heterogeneous settings like the Pre-Salt.

We tested our methods on two real/private datasets from
the Brazilian Pre-Salt, a major offshore reserve located around
3,000 meters deep. Known for its thick, high-quality oil-bearing
formations beneath a massive salt layer, the Pre-Salt poses several
challenges: complex geology, offshore distance, variable CO2
content, water and reservoir depth, salt formation intricacies, and
flow assurance issues.

We emphasize that while our validation focused on tracer-
confirmed connections, the predicted connectivity patterns show
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TABLE 3 Model performance results in UNISIM-II dataset.

Model Train size Accuracy (μ ± σ ) Precision (μ ± σ ) Recall (μ ± σ ) F1 score (μ ± σ )

Causal feature model (our) 0.1 0.60 ± 0.08 0.47 ± 0.07 0.48 ± 0.22 0.44 ± 0.12

0.2 0.64 ± 0.05 0.52 ± 0.06 0.55 ± 0.16 0.52 ± 0.08

0.5 0.77 ± 0.02 0.67 ± 0.06 0.71 ± 0.09 0.68 ± 0.03

PCMCI + causal feature model (our) 0.1 0.61 ± 0.03 0.44 ± 0.24 0.17 ± 0.14 0.20 ± 0.15

0.2 0.62 ± 0.04 0.55 ± 0.21 0.20 ± 0.12 0.25 ± 0.13

0.5 0.69 ± 0.02 0.71 ± 0.09 0.27 ± 0.05 0.38 ± 0.06

DYNOTEARS + causal feature model
(our)

0.1 0.61 ± 0.05 0.52 ± 0.13 0.51 ± 0.27 0.44 ± 0.16

0.2 0.67 ± 0.04 0.56 ± 0.06 0.58 ± 0.15 0.55 ± 0.06

0.5 0.80 ± 0.03 0.72 ± 0.06 0.74 ± 0.09 0.72 ± 0.03

Bold values represent the best performance of our framework.

qualitative alignment with the geological understanding of the
reservoir.

5.3.1 Pre-Salt field 1
The Pre-Salt field comprises 16 producers and 16 injectors,

divided into high and low regions based on well locations. We
applied our framework to one year of time series data, segmented
into scenario windows to ensure wells remained active and roles
consistent within each window. Producer variables included oil
production, choke pressure, and injector water/gas rates.

A connectivity map (Figure 7) of the field illustrates the
relationships among various Oil Production (OP), Water
Alternating Gas (WAG), and Water Injection (WI) wells,
highlighting the interwell connections confirmed by water or gas
tracers alongside those detected through our causal methods.
In this experiment, we showcase the results when using only
five tracers for training instead of the 10 available. With this
approach of limiting the known information, we aimed to evaluate
whether our model is able to detect the true connectivity, using
the remaining tracers as test labels. The detected and confirmed
connections identified by our analysis agree strongly; only the
connection between injector 24D and producer 681 is missed. This
demonstrates the model’s ability to generalize under data scarcity.

Notably, training and evaluating 256 pairwise connections took
just 38 seconds, emphasizing the scalability and efficiency of our
approach for real-world oil field applications.

5.3.2 Pre-Salt field 2
The second Pre-Salt field includes 9 producers and 8 injectors,

divided into “low” and “high” regions based on geography. Due
to its recency, only contextual data for the low region is available,
limiting full-field analysis and posing challenges for connectivity
inference. In this field only 3 tracers is available, all presented in
the low-region.

Compared to Field 1, this field shows greater variability in
well operation (open/closed), making modeling more difficult.
To address this, we defined two stable scenario windows (2017–
2018 and 2020–2021), each with fixed well states, and applied our

FIGURE 7

Connectivity map based on causality analysis applied to the Pre-Salt
field 1 oil production. The location of each well is shown, and so are
established connections based on our method and tracer data.

framework to one year of data. Producer features included oil
production, choke pressure, and injection rates.

Figure 8 presents results for the low region; Figure 9 shows the
inferred connectivity in the full field, despite lacking contextual
data in the high region. Training used tracer data only from the low
region. The model successfully generalized the learned patterns,
accurately predicting connectivity under limited supervision.

6 Conclusion and future works

This paper addresses the challenge of inferring connectivity
in oil fields using a causal representation learning approach. By
formulating the problem through a structured lens, we propose a
method that mitigates biases via balanced pairwise representations,
enabling robust estimation of injector–producer connections,
even with limited data. We validated our approach through
experiments on synthetic and semi-synthetic datasets, confirming
the generalizability of our model across both controlled conditions
and partially real-world scenarios. Furthermore, we extended our
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FIGURE 8

Connectivity map based on causality analysis applied to the low
region of the Pre-Salt field. The location of each well is shown, and
so are established connections based on our method and tracer
data.

analysis to the Brazilian Pre-Salt fields, a geologically complex
environment. Results show our method can overcome common
challenges in oil fields for connectivity, such as missing pressure
data, human intervention uncertainty, and noisy production
rates, and they were consistent across various scenarios. This is
advantageous in the oil field, where such contextual information is
often expensive and time-consuming, and experiments are nearly
prohibited. These factors seem a promising finding over other
causal approaches mentioned earlier (see Section 2) that often
face challenges when applied to real-world oil field scenarios, and
in turn offering a scalable and performative solution that might
enhance decision-making within complex dynamic fields.

In the real-field validation, we adopted a conservative
evaluation strategy restricted to well pairs with confirmed tracer-
based connectivity, rather than attempting to infer geological
consistency directly, i.e., level of connectivity low or high
diffusion. This choice ensures reliability in positive detections
but limits the current framework’s ability to assess the alignment
between predicted connectivity and detailed geological structures,
a direction future research can explore further.

Despite these promising results, some limitations remain. In
particular, the method’s performance may depend on the choice of
the time-window length used to construct the pairwise scenarios.
A window that is too short may fail to capture meaningful
interactions, while one that is too long may dilute transient
connectivity patterns. A systematic sensitivity analysis regarding
this temporal parameter is an important direction for future work.

FIGURE 9

Connectivity map based on causality analysis applied to the
complete Pre-Salt field two oil production in Scenario 2. We
highlight that all contextual information comes from the low region.

Another limitation concerns the method’s robustness under highly
dynamic operational conditions, such as frequent well shut-ins
or abrupt changes in injection strategies, that can alter system
dynamics faster than the comparative features can adapt. Extending
the approach to handle these non-stationary regimes represents an
interesting challenge.

We argue that, beyond oil field applications, our formulation
of connectivity estimation through causal feature learning opens
avenues for similar analyses in other domains where entities
interact through covariant measurable signals. Examples
include detecting causal links between climate variables,
identifying influence networks in energy systems, or uncovering
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interdependencies in social processes. Even in the presence of
partial confounding, our empirical results suggest that comparative
causal features provide a simple yet powerful framework for
identifying meaningful dependencies between two functional
entities.

Future work will explore end-to-end deep learning for causal
representation learning, leveraging the causal feature approaches
to create more expressive high-level models and unsupervised
clustering to improve structure discovery further. Ultimately,
identifying the connectivity map sets the stage for downstream
causal inference, estimating the impact of injectors on production,
supporting more accurate, cost-effective reservoir management,
and decision-making.
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