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Optimized ensemble machine
learning model for cyberattack
classification in industrial loT
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College of Computer Sciences and Information Technology, Department of Computer Science, King
Faisal University, Al-Ahsa, Saudi Arabia

Introduction: The increasing cyber threats targeting industrial control systems
(ICS) and the Internet of Things (loT) pose significant risks, especially in critical
infrastructures like the oil and gas sector. Existing machine learning (ML)
approaches for cyberattack detection often rely on binary classification and lack
computational efficiency.

Methods: This study proposes two optimized stacked ensemble models to
enhance attack detection accuracy while reducing computational overhead.
The main contribution lies in the strategic selection and integration of diverse
base models, such as Logistic Regression, Extra Tree Classifier, XGBoost, and
LGBM, with RFC as the final estimator. These models are chosen to address
unique characteristics of security datasets, such as class imbalance, noise, and
complex attack patterns. This combination aims to leverage different decision
boundaries and learning mechanisms.

Results: Evaluations show that the Stacked Ensemble_2 model achieves 97%
accuracy with a training and testing computation time of 54 minutes. Stacked
Ensemble_2, which excelled over the traditional Stacked Ensemble_1, was also
evaluated on the CICIDS 2017 dataset, achieving an impressive 100% accuracy
with an AUROC of 99%.

Discussion: The results indicate that the proposed Stacked Ensemble_2 model
provides a scalable, real-time detection mechanism for securing ICS and loT
environments. By proving its effectiveness on unseen data, this model demonstrates
a significant advancement over traditional methods, offering enhanced accuracy and
efficiency in detecting sophisticated cyber threats in critical infrastructure sectors.

KEYWORDS

cyberattack, ensemble learning, industrial control systems, industrial internet of
things, internet of things, machine learning, malicious behavior, oil and gas

1 Introduction

The rapid evolution of IoT and ICS technologies has dramatically reshaped business and
government functions. By facilitating automation, real-time monitoring, and data-driven decision-
making, these technologies significantly enhance critical infrastructure. However, the increased
connectivity they bring also poses substantial cybersecurity challenges, highlighting the necessity
for organizations worldwide to prioritize the protection of industrial operations and sensitive data.
According to the IoT Analytics “State of IoT—Spring 2023” report, the number of IoT devices
surged by 18% in 2022, totaling about 14.4 billion active connections. These devices, including
sensors, actuators, and communication modules, enable seamless data exchange across various
industries, driving crucial applications in fields such as healthcare, manufacturing, and energy
(Sinha, 2024; Global Market Insights, Inc., 2019).
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The advent of the Fourth and Fifth Industrial Revolutions has
resulted in greater connectivity between ICS and IoT systems, enabling
features such as remote monitoring, automation, and cloud-based
control. Despite these advancements, traditional cybersecurity tools—
like antivirus programs, firewalls, and Intrusion Detection Systems—
are often insufficient for detecting advanced and sophisticated cyber
threats targeting these systems. In the oil and gas sector, IoT and ICS
technologies are employed for tasks such as pipeline vandalism
detection, digital twin development, reservoir evaluation, and methane
gas monitoring. However, cybersecurity efforts in this industry have not
received enough emphasis. Considering the sector’s critical importance
to the global economy, cyberattacks on oil and gas infrastructure can
lead to serious repercussions, including operational disruptions, data
manipulation, and significant financial damage (Ghosh et al., 2022;
Lukman, 2018; Ochulor, 2024; Knebel et al., 2023; Ali, 2024).

The economic impact of cyberattacks on critical infrastructure is
substantial. Studies utilizing large language models (LLMs) for
cyberattack cost estimation highlight the significant financial burdens
resulting from security breaches (Razavi and Jamil, 2024), while
research on big data analytics in banking cybersecurity shows how
attacks can lead to long-term financial and reputational damage
(Razavi et al., 2023). These insights underscore the urgent need for
robust cybersecurity frameworks capable of proactively detecting and
mitigating threats within industrial environments.

Currently, most machine learning (ML) methods for ICS and IoT
security are limited to binary classification, which differentiates between
normal and malicious traffic. However, real-world cyber threats are
often varied and complex, necessitating multi-class classification
models that can accurately identify and categorize different types of
attacks. Overcoming this challenge involves employing advanced
techniques such as feature engineering, hyperparameter optimization,
and ensemble learning to enhance detection accuracy and enable real-
time threat response (Alsolami et al., 2024).

Despite the crucial role of the oil and gas industry in the global
economy, cybersecurity in this sector has not received sufficient
attention. While some research investigates protective strategies for ICS
and IoT systems, few studies explore comprehensive, machine learning-
based threat detection specifically tailored for this domain. Given the
potentially devastating financial and operational consequences of
cyberattacks on critical infrastructure, developing advanced, multi-
class classification models and strengthening cybersecurity frameworks
are essential for safeguarding these vital industries.

This research aims to enhance cybersecurity in the oil and gas
industry by developing an optimized stacked ensemble-based machine
learning model capable of detecting and classifying cyber threats into
15 attack categories, including:

o DDoS attacks (UDP, ICMP, HTTP, TCP)

o Web-based attacks (SQL Injection, XSS, Uploading)

o Credential and access exploits (Password Attacks, Backdoor, MITM)

o Network and (Port
Fingerprinting, Vulnerability Scanners)

system  vulnerabilities Scanning,

o Advanced threats (Ransomware)
To improve detection accuracy, this study applies:
o Feature engineering: Encoding and selecting relevant attributes

from the Edge-IIoTset dataset, such as IP addresses, frame
timestamps, and URLs.
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o Feature selection: Using variance thresholding to retain only the
most impactful features.

o Hyperparameter tuning: Optimizing model parameters (e.g.,
kernel, gamma, C, Var smoothing, and weights) through
Grid Search.

o Ensemble learning optimization: Developing a stacked ensemble
model and comparing it with Bagging, Boosting, Extra Trees, and
Random Forest Classifiers to achieve optimal performance.

The main contribution of our approach lies in the strategic
selection and integration of diverse base models, including LightGBM,
Extra Trees, and Logistic Regression, which are chosen to address the
unique characteristics of security datasets, such as class imbalance,
noise, and complex attack patterns. This curated combination aims to
leverage different decision boundaries and learning mechanisms,
thereby enhancing the ensemblé’s ability to detect sophisticated threats
effectively. Furthermore, our work demonstrates significant empirical
improvements in attack detection accuracy, robustness, and
interpretability—particularly important for practical
cybersecurity deployment.

The inclusion of Logistic Regression, for instance, adds an
interpretable component that provides insights into decision-making
processes, aiding cybersecurity analysts in understanding attack
behaviors. In summary, rather than presenting a generic stacking
approach, our main focus is on the domain-informed design and
extensive evaluation of these ensemble architectures in real-world ICS
and IoT security contexts, offering insights and methodologies that
can be adopted for similar cybersecurity challenges.

This study prioritizes detection over prevention, as cyber threats
in ICS and IoT environments are constantly evolving. By enhancing
detection capabilities, our approach minimizes the impact of
cyberattacks, ensuring greater security for industrial operations and
critical infrastructure. The model, optimized for high accuracy and
efficient computation time, was tested on a new, unseen dataset. It
achieved excellent performance, demonstrating the model’s strong
ability to generalize effectively to previously unseen data.

The rest of the article is organized as follows. Sections 2 and 3
provide the background and a literature review relevant to this study.
Section 4 details the implementation methodology, including dataset
information, feature engineering, and feature selection techniques.
Section 5 outlines the proposed approach, detailing the model
architecture and optimized hyperparameter settings for various
machine learning algorithms. Section 6 presents experimental results
and analysis, comparing Stacked Ensemble_1 and Stacked Ensemble_2
with individual models such as Logistic Regression, dt, bagging,
boosting, extra tree classifier, and RFC. Section 7 discusses the
generalization of models on new unseen data, demonstrating the
effectiveness of model performance in terms of the two stacked
ensemble models. Section 8 benchmarks the proposed model against
baseline approaches and existing research. Finally, Section 9 concludes
with key findings and future research directions.

2 Background

The primary methods for exploring and extracting oil and gas
resources in any country are onshore and offshore drilling. Onshore
drilling involves deploying specialized equipment, platforms, and
infrastructure in land-based environments to access subsurface
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resources. In contrast, offshore drilling occurs at considerable  authentication and encryption in the “Modbus TCP protocol, it
distances from the coast, with rigs operating in water depths ranging  remains highly vulnerable to cyberattacks (Mohammed et al., 2023).
from about 10 feet to over 10,000 feet, introducing additional ICS and IoT often have inherent security vulnerabilities that
complexities to the drilling process (Mmrbh, 2022;  malicious actors can exploit. This section covers common attack types
Mohammed, 2024). that could compromise these industrial systems (Mohammed, 2024;

The adoption of Industrial Internet of Things (IIoT) technology ~ Stergiopoulos et al., 2020; Perdomo and Serdyuk, 2021; Bundi and
connects intelligent industrial devices with control and management ~ Mayieka, 2020):
platforms to boost operational efficiency and productivity. However,

this increased connectivity also exposes Industrial Control System 1. Malware: The most common attack against ICS, malware
(ICS) communication protocols to cyber threats, including data theft includes viruses, trojans, and other malicious programs
and malware infiltration. designed to damage or disrupt systems.

Industrial cyber-physical systems (ICPS) typically consist of three 2. Ransomware: A high-profile malware attack that locks and
main control components: (1) programmable logic controllers (PLCs), encrypts critical data, files, or systems, preventing access until
(2) supervisory control and data acquisition (SCADA) systems, and a ransom is paid (Vaughn, 2025; CISA, 2020; Vejlgaard
(3) distributed control systems (DCS). The communication networks Sorensen, 2023).
linking these components play a crucial role by connecting devices 3. Man-in-the-Middle (MITM) attacks: These attacks intercept
and equipment through various protocols, enabling efficient, system- and alter communications, potentially leading to data leakage,
wide communication. Nevertheless, this high level of unauthorized control of PLCs, or the manipulation of actuators
interconnectedness makes ICPS attractive targets for cyberattacks to change operational states (e.g., closing valves or adjusting
aimed at disrupting critical operations. Figure 1 depicts a typical ICPS sensor temperature thresholds; Zhang et al., 2019).
architecture in the oil and gas industry (Mohammed, 2024; Galloway 4. Denial of Service (DoS) attacks: Attackers exploit network
and Hancke, 2012; Stouffer et al., 2015; Kayan et al., 2022). sniffing techniques to analyze traffic and craft malicious

Notably, some offshore platforms are now designed as unmanned packets that flood the network, rendering process control
facilities, requiring 100% remote monitoring and control through requests ineffective.
digital networks. This reliance on digital communication has 5. Injection attacks: Cybercriminals can compromise engineering
introduced new security challenges for these remote and isolated workstations in control centers to manipulate legitimate
offshore operations (Mohammed, 2024; Kristiansen and commands, causing pumps, actuators, or other ICS
Mzeland, 2020). components to behave improperly, potentially leading to

One common method attackers use to infiltrate industrial catastrophic system failures.
networks is by exploiting the “Modicon Communication Bus 6. Phishing attacks: Social engineering tactics deceive users into
(Modbus)” and its variants, which are widely used in the oil and gas revealing sensitive information or credentials, which attackers use
industry, particularly for pipeline operations. Cybercriminals can gain to compromise IoT devices or ICS systems. Studies show that 43%
access to remote offshore operations through Modbus, which operates of cyberattacks result from a lack of end-user awareness, making
on a master-slave or server—client basis. Due to its lack of phishing a significant attack vector (Bundi and Mayieka, 2020).

oil oil oil
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Oil pump 1/0:
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FIGURE 1
Example of typical components of ICPS in the oil and gas sector
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Over the years, ICS and IoT have witnessed significant evolution
in both the sophistication of attacks and their potential
consequences. Table 1 provides an overview of historical threats,
vulnerabilities, and attacks on ICS and IoT, highlighting key
incidents and their impact (Hemsley and Fisher, 2018; Mehdiyev and
Hashimovv, 2024).

The analysis was conducted using various cybersecurity resources,
including research studies and published reports. The focus is not
merely to list cyberattacks but to highlight significant cyber threats
that have impacted ICS, IoT devices, and critical infrastructure over
the years amid ongoing technological advancements. While many
cyber incidents were not explicitly mentioned, their occurrence
worldwide underscores the rapid evolution of threat actors’ technical
capabilities. These breaches can result in production losses, increased
health, safety, and environmental risks, as well as severe reputational
damage. Therefore, cybersecurity must be a priority, and developing
arobust attack detection system for early-stage threat identification is
a crucial step in securing vast and critical sectors such as oil and gas.

3 Literature review (related works)

This review aims to explore and examine the existing research and
literature surrounding the real-time detection of cyberattacks on
industrial control systems (ICS) and the Internet of Things (IoT). The
objective is to identify common themes, evaluate the strengths and
weaknesses of previous studies, and highlight gaps or unresolved
issues. This section is organized into parts that provide an overview of

10.3389/frai.2025.1685376

methodologies, discuss key findings, and analyze gaps and limitations
identified in existing literature.

3.1 Phishing attack detection

Abedin et al. (2020) utilized publicly available datasets from
Kaggle containing 32 attributes and 11,504 instances, including both
phishing and legitimate website data. Three supervised machine
learning (ML) algorithms—K-nearest neighbor (KNN), Logistic
Regression (LR), and Random Forest Classifier—were used for
classification. RFC achieved the highest precision (97%) and recall
(99%), outperforming KNN and LR. However, the study focused
solely on URL-based phishing detection without considering other
types of phishing attacks.

Pithawala et al. (2021) used a dataset of 1,780 entries with 19
features extracted from verified sources of phishing URLs. ML
classifiers, including naive Bayes (NB), LR, and RFC, were applied to
detect phishing in short URLs. NB achieved the highest accuracy
(99.4%). The study was limited in scope due to its small dataset size
and focus on a single attack type.

3.2 ICS and loT cyberattack detection

Ahmed and Tjortjis (2022) used the Ton-IoT dataset, which
contains 461,043 samples with 43 features across six categories. ML
models such as LR, Gaussian naive Bayes (GNB), DT, RFC, KNN, and

foundational theories and concepts, highlight employed Extreme Gradient Boosting (XGBoost) were applied. DT, RFC, KNN,
TABLE 1 ICS and loT cyber incidents.
No Year Type Name Desecration
The “Maroochy” experienced system failures due to a cyberattack that caused the release of more than 265,000 gallons
1 2000 Attack Maroochy Water
of untreated sewage.
Attackers used sophisticated malware to target global oil, energy, and petrochemical companies using remote access
2 2010 Malware Night Dragon
tools to gain control of computer systems and collect information by compromising ICS and IoT.
Gas Pipeline Cyber ICS-CERT identified an active series of sophisticated cyber-intrusions targeting the natural gas pipeline sector
3 2012 Campaign
Intrusion involving spear-phishing attacks.
Attacked the world’s largest oil producer in Saudi Arabia and the second-largest producer of liquid natural gas in
4 2012 Malware Shamoon
Qatar. These were hit by similar malware (Almaiah and Almomani, 2020).
5 2014 Malware Black Energy Malware that targeted human-machine interfaces (HMIs) in ICSs.
Attack on an unspecified German steel mill. The attackers used advanced tactics like “spear-phishing” to gain access to
6 2014 Attack German Steel Mill
the business and production networks, causing multiple control system failures.
Thousands of computers in Saudi Arabia’s civil aviation agency and other Gulf State organizations were wiped. The
7 2016 Malware Return of Shamoon
second Shamoon targeted critical infrastructure.
s S016 Attack Ukraine Power Grid | Ukraine experienced another major cyberattack on its power grid. Cyberattackers tripped breakers in 30 substations,
1 ttac
Attack No. 2 turning off electricity to “225,000” customers by manipulating “SCADA” systems.
0 2016 Attack Kemuri Water Attackers gained access to hundreds of the PLCs used to manipulate control applications and altered water treatment
ttacl
Company chemicals.
This attack was designed to disrupt critical infrastructure by targeting the safety instrumented systems of electric
TRITON/Trisis/
10 2017 Attack HatM products. This malware represented a concern for its capability to target industrial safety systems in a way that could
atMan
potentially cause physical damage or harm.
I 021 Attack DarkSide Attackon | Colonial Pipeline suffered a ransomware attack conducted by the DarkSide hacking group. The attack forced the
ttac
Colonial Pipeline largest oil pipeline operator in the US to halt all operations (Beerman et al., 2023).
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and XGBoost outperformed LR and GNB, achieving over 99%
accuracy. However, multi-class attack classification was not explored.

An “ICS cyber test kit” (Mubarak et al., 2021) was developed to
generate industrial network traffic data for various attack scenarios.
The dataset included Modbus/TCP, Ethernet/IP, and IEC 61850
network traffic. Ensemble ML techniques, including deep learning
(DL) models (RNN with LSTM), were utilized. The ensemble
approach achieved a prediction accuracy of 99.91%. However,
computational complexity and real-time deployment challenges were
not addressed.

The Microsoft Malware Prediction dataset, containing 4,000
entries and 64 features, was used. DT algorithm variants (C4.5 and
C5.0; Yeboah-Ofori, 2020) were applied to predict malware infections.
The DT model effectively detected cyberattacks but was not compared
with other ML models, and the dataset size was relatively small.

3.3 DDoS attack detection

The authors of this work applied the AdaBoost algorithm
(Syafiuddin et al., 2023) to detect SYN flood and UDP lag attacks
using the CICDD0S2019 dataset. AdaBoost outperformed other ML
models but lacked a detailed analysis of feature selection and
hyperparameter tuning.

There has also been an analysis of Modbus (Saharkhizan et al.,
2020) network traffic with five attack types (MITM, Ping DDoS,
Query Flood, TCP SYN, Helvetica Neue Flood). An ensemble model
combining multiple LSTM architectures with a Decision Tree achieved
over 99% accuracy. However, the study was limited to the Modbus
protocol, and computational efficiency for resource-constrained IoT
devices was not evaluated.

Research in Alasmari et al. (2023) used the CI-CDDo0S2019
dataset (400,000 datapoints) and proposed a CNN-LSTM model for
DDoS detection. The CNN-LSTM model outperformed other ML
models, achieving 99.51% accuracy. However, preprocessing steps and
computational complexity were not thoroughly analyzed.

3.4 Multi-attack detection

Works in Canadian Institute of Cybersecurity (2017) utilized the
CICIDS2017 dataset, which contains 183,910 instances across multiple
attack types. Supervised ML models (DT, RFC, AdaBoost, KNN,
SVM) were applied, with DT achieving the highest accuracy (99.84%).
The study focused exclusively on port-scanning attack detection
without extending to other attack types.

Works in Huynh et al. (2023) used real-time data captured from
an ESP32 microcontroller and the CICIoT2023 dataset for DoS and
DDoS attack detection. SVM and LR models achieved 99% accuracy.
However, the dataset was limited to a single attack type, and feature
engineering was minimal. Table 2 provides a summary of the reviewed
literature, highlighting key datasets, models, and findings.

Despite advancements, several challenges remain in applying ML
and DL techniques for ICS and IoT cybersecurity. While these models
effectively detect and classify cyberattacks by learning patterns and
extracting meaningful features, existing studies exhibit key limitations.
Many focus on binary classification, restricting their ability to detect
diverse and evolving threats. Additionally, reliance on limited datasets
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fails to capture the complexity of real-world cyber threats. Gaps in
data preprocessing, feature selection, and optimization further hinder
Although deep
classification accuracy, they introduce significant computational

performance. learning ensembles enhance
overhead, posing challenges for real-time deployment in resource-
constrained environments. Addressing these limitations is crucial for
developing scalable, efficient, and adaptive cybersecurity solutions for

critical infrastructure.

4 Necessity of multi-class cyberattack
detection

Enhancing cyberattack detection in ICS and IIoT environments
requires more effective classification models capable of multi-class
classification. This study addresses existing limitations by introducing
a feature engineering approach that encodes critical attributes such as
URLs and IP addresses, which are essential for accurate classification.
Additionally, key dataset attributes—including http.request.method,
http.referer, http.request.version, dns.qry.name.len, mqtt.conack.flags,
mgqtt.protoname, and mgqtt.topic—are categorized to improve
classification performance.

Beyond feature engineering, feature selection techniques are
employed to identify the most relevant attributes, optimizing model
performance for detecting malicious behavior patterns in ICS and
IIoT datasets. This paper categorizes cyberattacks into five distinct
groups, each with unique characteristics and impacts, emphasizing the
need for tailored detection strategies. A robust multi-class
classification model strengthens industrial security by accurately
identifying and mitigating diverse threats. Table 3 summarizes the
varying impacts of each attack type and their detection priority.

This study presents optimized stacked ensemble models (Stacked
Ensemble_1 and Stacked Ensemble_2) for classifying 15 distinct types
of malicious behavior in ICS and IIoT environments. Designed to
enhance accuracy while minimizing computational costs, these
models are evaluated against other optimized approaches, including
bagging, boosting, and individual classifiers. A comprehensive
analysis further demonstrates the improvements achieved by the
proposed methodology compared to previous studies.

5 Methodology implementation
5.1 Dataset description

The Edge-IIoT dataset is a comprehensive and realistic
cybersecurity resource for IoT and IIoT applications, publicly available
through IEEE. Generated using a purpose-built IoT/IIoT testbed, it
encompasses a large and representative set of devices, sensors,
protocols, and cloud/edge configurations from over 10 types of IoT
devices. The dataset identifies and analyzes 14 attacks targeting IoT
and IIoT connectivity protocols, categorized into five threat types:
DoS/DDoS attacks, Information Gathering, Man-in-the-Middle
attacks, Injection attacks, and Malware attacks (Ferrag et al., 2022). It
is ranked in the top 1% of datasets in the Web of Science.

The dataset consists of 63 columns capturing various data types
relevant to IIoT and IoT systems, as well as potential attack
scenarios. The distribution of 157,800 samples across 15 attack
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TABLE 2 Summary of previous works on detection of ICS and loT cyber attacks.

Objective

Dataset

Algorithm

10.3389/frai.2025.1685376

Limitation of the

study

Abedin et al. (2020)

Phishing attack detection

32 attributes and 11,504
instances. The dataset contains
both phishing and legitimate

website data.

Three supervised ML algorithms:
KNN, LR, and RFC.

- Use of a small dataset
- Binary classification (two

class)

Pithawala et al. (2021)

Short uniform resource

locators

Dataset 1780 entries with 19
features related to phishing and
non-phishing URLs

Three ML algorithms: naive
Bayes (NB), Logistic Regression
(LR), and Random Forest
Classifier (RFC)

- Use of a small dataset
- Binary classification (two

classes)

Ahmed and Tjortjis (2022)

IoT-Botnet attack detection
using real-time heterogenous

data

Dataset: 461,043 samples, with
65.07% normal traffic and
34.93% malicious traffic. The
dataset consists of 43 features
across 6 categories: connection
activity, DNS, SSL, statistical,
HTTP, and violation activity

Data preprocessing, feature
engineering, and performance of
several supervised ML
algorithms: LR, GNB, DT, RE,
KNN, and XGB.

DT, RFC, KNN, and XGB
outperformed LR and GNB, with
an accuracy over 99% and F1-

scores of 0.98-0.99

Binary classification (two

classes)

Mubarak et al. (2021)

ICS cyber attack detection

using cyber-kit datasets

Dataset: Network traffic data
from different ICS protocols,
such as Modbus/TCP, Ethernet/
IP, and IEC 61850, along with a
normal baseline and diverse
industrial hacking scenarios.
Deep packet inspection (DPI)
was used to extract metadata
features from network traffic
data and the final dataset matrix

is (30,608,16).

Ensemble ML including both
traditional (LR, KNN, NB, RFC,
ANN, SVM, DT) and DL (RNN,
LSTM). The ensemble approach
resulted in 99.91% prediction

Complexity and diversity of ICS
not captured

- Binary classification as secure
and insecure

- No details about model

performance

Yeboah-Ofori (2020)

Classification of malware

attacks

Microsoft Malware Prediction
dataset: 4000 entries with 64
columns representing various
metadata about the machines

and malware infections

The C4.5 and C5.0 variants of
the DT algorithm
Accuracy = 83%

- One ML algorithm
- Use of a small dataset
- Binary Classification (two

classes)

Syafiuddin et al. (2023)

Detection Syn flood and UDP
lag attacks based on AdaBoost

CICDD08S2019 dataset, which is
a dataset of network traffic
containing simulated DDoS
attacks on 25 different network

users

AdaBoost algorithm
outperformed with other
machine learning algorithms
(REC, Simple Logistic, and REP
Tree.) with values above 47.2%
for detecting SYN flood and
UDP lag attacks

No details about feature
selection and hyperparameter
tuning

Binary classification only

Saharkhizan et al. (2020)

Ensemble of Deep RNN for
ToT cyber attacks

Dataset: Modbus network
traffic, including 5 types of
attack (man-in-the-middle
attack, Ping, DDoS Flood attack,
Modbus Query Flood attack,
and TCP SYN DDoS Flood
attack) The dataset was captured
in pcap files and pre-processed
to extract 83 features totaling

5,859,085 samples

Integration of LSTM models into
an ensemble model. Then
aggregate output using a DT.
Ensemble of LSTM

accuracy = 99% for a window

size of 40 packets

Evaluated only for Modbus
protocol traffic for cyberattack
detection

- Computational overhead of DL

is a concern for IoT devices
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TABLE 2 (Continued)

Objective

Dataset

Algorithm

10.3389/frai.2025.1685376

Limitation of the

study

Alasmari et al. (2023)

CNN-LSTM based approach
for DDoS detection

CI-CDD0S2019 dataset contains
network traffic data with
400,000 datapoints and 12
different types of DDoS attacks

as well as benign traffic

CNN-LSTM model has been
used and achieved an accuracy
0f 99.51% in detecting DDoS
attacks, outperforming the other

ML algorithms tested

No information or details about
the preprocessing steps that
have been done on the data.

No details about the
computational complexity of the
CNN-LSTM model. Binary
classification as Benign and

DDoS

Canadian Institute of

Cybersecurity (2017)

Port-scanning attack detection

CICIDS2017 dataset: Network
attacks with 62 columns and
183,910 instances.

Includes network traffic in
packet-based and bidirectional

flow-based format

Five ML algorithms: DT, REC,
AdaBoost, KNN, and SVM.

The study focused only on
detecting the Port-Scanning
attack as 0 and 1. Evaluated the
performance of the algorithms
on other types of attacks present
in the CICIDS2017 dataset

Huynh et al. (2023)

DOS attack detection

Two datasets - a real-time
dataset captured using a packet
sniffer on an ESP32
microcontroller, and the
CICI0T2023 dataset which
contains a wider variety of DoS

and DDoS attacks.

Two algorithms: SVM and LR -
for binary classification. Both

SVM and LR accuracy = 99%

Real-time dataset contained
only a single type of DoS attack,
which limits the generalizability
of the models. Feature
engineering was limited to just
two features (frame length and
packet inter-arrival time) for the
real-time data and seven
features for the CICIoT2023
dataset. Binary classification was

only applied for analysis.

TABLE 3 Attack categorization.

Attack category Description Potential impact Priority for detection
DDoS (Distributed Denial of Overloading system resources to Service outages, loss of availability, disruption of ICS Hich
i
Service) cause disruption operations ¢
Unauthorized data collection from Leakage of sensitive information, intelligence gathering by
Information Gathering Medium
systems attackers
Intercepting communication between
MITM (Man-in-the-Middle) Data tampering, unauthorized control of ICS operations High
systems
Inserting malicious code or data into
Injection System malfunction, compromise of system integrity High
systems
Software designed to damage or
Malware Data theft, system corruption, operational failure Critical
disrupt systems

types is shown in Table 4 and Figure 2. Prior to data analysis for
classification, specific preprocessing steps are necessary to prepare
the dataset for model training. These steps involve cleaning,
transforming, and organizing the data to ensure it is suitable for
modeling. The preprocessing approach depends on the data
characteristics and modeling objectives. The goal is to align the
data with the model and ensure precise outcomes. This includes
actions such as rescaling frames to improve small object detection
and managing redundant frames to prevent overfitting and
enhance accuracy. To maintain data quality, essential cleaning
steps are first performed, including handling missing values,
removing duplicates, standardizing formats, and resolving other
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data quality issues. These procedures ensure that the data is
accurate, complete, and consistent, making it reliable for analysis
and decision-making.

5.2 Feature engineering

One of the columns in the Edge-IloTset dataset, frame.time;
indicates the arrival time of data. Initially, the data type of this column
was an object, so it was converted to a datetime data type. This
conversion ensures that the ‘frame.time’ column contains valid and
consistent datetime values, which is essential for subsequent data
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TABLE 4 Category of threats in edge-lloTset.

10.3389/frai.2025.1685376

DoS/DDoS Information gathering MITM Injection Malware
TCP SYN Flood DDoS
Port Scanning = 10,071 XSS =10,052 Backdoor attack = 10,195
attack = 10,247
UDP flood DDoS Password cracking
OS Fingerprinting = 1,001 SQL injection = 10,311
attack = 14,498 ARP Spoofing attack + DNS attack = 9,989
HTTP flood DDoS Spoofing attack = 1,214
attack = 10,561 Vulnerability scanning
Uploading attacks = 10,269 Ransomware attack = 10,925
ICMP flood DDoS attack = 10,076
attack = 14,090
Normal 24,301 Total 157,800
Total Number of Attack baced on Type
B Normal
M DDoS_uDP
MW DDoS_ICMP
Attack_type=Fingerprinting B Ransomware
ip.dst_host=1001 I DDoS_HTTP
B SQL_injection
B Uploading
DDoS_TCP
Backdoor
Vulnerability_scanner
Port_Scanning
I Xss
I Password
MITM
Fingerprinting
FIGURE 2
Example edge-lloTset features.

TABLE 5 Fields before and after feature engineering.

Feature name

Feature engineering

Before feature After feature

process engineering engineering

Change data type “Frame.time” Object Datetime 64

Datetime conversions “Frame.time” 2021 23:24:32.698981000 2021-01-01 23:24:32.698981

Integer conversion “IP address” 192.168.0.128 3,232,235,648
‘http.request.method;, ‘http.referer, ‘http.request.version, ‘dns.qry.

Categorical conversions name.len, ‘mqtt.conack.flags, ‘mgqtt.protoname, False or True Oorl

and ‘mqtt.topic’

Missing values in the records | All Features

(157,800, 63) (142,095, 63)

analysis and processing. Table 5 illustrates the ‘frame.time’ column
before and after feature engineering.

The dataset contains four columns representing IP addresses: ‘ip.
dst_host; ‘ip.src_host, ‘arp.dst.proto_ipv4, and ‘arp.src.proto_ipv4;, all
initially having an object data type. These need to be converted into
integers for the model to process them effectively. To achieve this, we
created a function called ip_to_int(ip) that takes an IPv4 address as a
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string and converts it to its corresponding integer representation. This
conversion facilitates tasks such as sorting or performing numerical
comparisons on IP addresses.

The function uses the built-in ipaddress. IPv4Address(ip) from
Python’s ipaddress module to create an IPv4Address object, which is
then converted to an integer using the int.() function. If the input is
not a valid IPv4 address (e.g., addresses like “0.0” or “0”), the
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ValueError exception is caught in the except block, and the function
returns 0. This approach ensures a consistent and predictable output
for invalid IP addresses. Table 5 illustrates the IP addresses before and
after feature engineering.

Next, is the encoding of the URLs in our dataset. The ‘http.file_data’
column consists of different values extracted from the web. To preprocess
this data, we define a function called extract_text (html) that takes an
HTML string as input and extracts the text content from it. The function
creates a BeautifulSoup object from the input HTML using the html.
parser, and then extracts the text content using the soup.get_text()
method. Once we have extracted the text, it is stored in a variable called
text_content. From this text_content variable, we then extract two new
numerical features: text_length (the length of the text content) and word_
count (the number of words in the text content). We convert these two
new features to the float data type. Finally, we scale the numerical features
(‘text_length’ and ‘word_count’) using the MinMaxScaler from the
sklearn.preprocessing module. This scales the features to the range of [0,
1], which can be useful for machine learning algorithms.

There are some columns in this dataset that can be categorized, such

>

as (‘http.request.method, ‘http.referer, ‘http.request.version, ‘dns.qry.
name.len, ‘mqtt.conack.flags, ‘mqtt.protoname, and ‘mgqtt.topic’). We
define a function called encode_text_dummy (df, name) that performs
one-hot encoding on a text column in each DataFrame. This is a
preprocessing step for ML models that cannot directly handle categorical
text data. The one-hot encoding creates a binary column for each unique
value in the specified column, where a value of True indicates the presence
of that value and False indicates its absence. This transformation allows
the model to work with the text data in a numerical format. Table 5 shows
the categorical conversion before and after preprocessing.

For the target column that we are going to predict, we used the
LabelEncoder from the sklearn.preprocessing module to encode the
‘Attack_type’ column in the DataFrame. The LabelEncoder is a useful tool
for converting categorical variables into a numerical format, which is
often required for many ML algorithms. Most ML algorithms require
numerical inputs, and the LabelEncoder provides a straightforward way

TABLE 6 Target column before and after label encoding.

10.3389/frai.2025.1685376

to convert categorical variables into a format that the model can
understand. After applying the encoding, the ‘Attack_type’ column in the
DataFrame contains numerical values instead of the original categorical
values. The model can now treat these values as numerical data and use
them in the training and prediction processes. Table 6 shows the target
column before and after label encoding.

5.3 Feature selection

After performing all the preprocessing steps, the initial number of
features increased to 94 columns. We know that the more features you
have, the volume of the feature space grows exponentially. This makes
it increasingly difficult for the model to find patterns and relationships
in the data. With high-dimensional data, the model may struggle to
generalize well, which can lead to overfitting and poor performance on
new, unseen data. Additionally, training machine learning models on
datasets with many features can be computationally expensive and
time-consuming.

To address these issues, we dropped unnecessary columns and
shuffled the data in random order. Shuffling the data can be useful for
training models to ensure that the training and test sets are representative
of the overall data distribution. These steps reduced the number of
features to 75. Next, we performed feature selection using the Variance
Threshold method to remove constant or near-constant features from
the dataset, which helps ensure the reliability of the data. The reason for
choosing the variance threshold is that it is computationally the simplest
and fastest method. It evaluates each feature based solely on its variance
and eliminates those with low variance, making it a quick preprocessing
step. This variance threshold does not require training or model fitting
and works directly with the dataset, making it much faster in terms of
execution compared to other methods like Recursive Feature
Elimination. Additionally, the Variance Threshold is very fast and
requires minimal tuning, making it suitable for large datasets, which fits
our Edge-IIoT dataset well.

“Attack type” before label encoding “Attack type” after label encoding

Backdoor 10,195 0 10,195
DDoS_HTTP 10,561 1 10,561
DDoS_ICMP 14,090 2 14,090
DDoS_TCP 10,247 3 10,247
DDoS_UDP 14,498 4 14,498
Fingerprinting 1,001 5 1,001

MITM 1,214 6 1,214

Normal 24,301 7 24,301
Password 9,989 8 9,989

Port_Scanning 10,071 9 10,071
Ransomware 10,925 10 10,925
SQL_injection 10,311 11 10,311
Uploading 10,269 12 10,269
Vulnerability_scanner 10,076 13 10,076
XSS 10,052 14 10,052
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TABLE 7 Number of features.

10.3389/frai.2025.1685376

Number of features

After URL-encoded
data

Original

After categorical
conversions

After dropping Feature selection

We started by separating the dataset into features (X) and the target
variable (Y). The X variable contains all the columns except the “Attack
type” column, which is assigned to Y. The threshold parameter was set to
0.00001, meaning that any feature with a variance less than or equal to this
value would be considered constant and removed. A list of column names
identified as constant or near-constant by the variance threshold object
was then dropped from the dataset, as shown in Table 7.

On the other hand, the number of features increased during the
preprocessing steps, based on some previous studies that suggest
increasing the number of features by simplifying the value of columns
to Boolean-like categorical sections can positively impact models. This
approach can reduce the sparsity of the data, which is particularly
helpful when dealing with high-dimensional, sparse data, as it can
make it easier for the model to find patterns and relationships.
Additionally, Boolean features are generally more straightforward to
interpret than complex numerical features, leading to improved
interpretability. ~ Furthermore, Boolean features are less
computationally intensive to work with compared to high-cardinality
features, resulting in faster training and inference times (Singh, 2021).

5.4 Data training

In this study, the dataset was split into training and test sets using
an 80/20 split (80% for training, 20% for testing). This ensures that the
model is trained on a sufficiently large portion of the data while still
having a held-out test set to assess its generalization capabilities. The
random_state parameter is set to 111 to ensure that the split is
reproducible, which is important for model evaluation,
hyperparameter tuning, and model selection.

Additionally, we applied the “Synthetic Minority Over-sampling
Technique (SMOTE)” to address the issue of class imbalance in the
training data after splitting the dataset. This means that the training
portion was oversampled using SMOTE to handle class imbalance, while
the validation and test sets remained untouched. Applying SMOTE in this
way prevents data leakage and ensures that the model is evaluated on
unseen data, providing a fair and reliable estimate of its performance.
Class imbalance is a common problem where one class (the majority
class) is significantly more prevalent than the other classes. This can cause
models to be biased toward the majority class and perform poorly in the
minority class. The SMOTE algorithm is a powerful technique for
addressing class imbalance. It works by generating synthetic samples of
the minority class, effectively increasing the number of instances of the
minority class in the training data. This helps to balance the class
distribution and improves the models ability to learn from the minority

class (Satpathy, 2024; Widodo et al., 2024; Alex, 2025).

6 Proposed methodology

The primary objective of this research is to develop an optimized
and efficient machine learning model to detect the malicious behavior
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of ICS and IoT. To achieve this, a stacked ensemble approach has been
chosen for developing a high-quality machine learning model that
effectively produces predictive results.

The motivation behind developing stacked ensembles is that they
can enhance the accuracy of various machine learning models. In
addition, the stacked ensemble approach offers numerous advantages
in improving predictive performance, model diversity, flexibility, and
interpretability such diversity in stacking can also mitigate the
problem of overfitting, making stacked ensemble models more robust
for different types of data. The primary reason for opting for stacking-
based ensembling is that it does not rely on existing methods like
bagging or boosting but allows meta models to learn the bias patterns
of the base models and make adjustments to enable the meta model
to make final predictions using additional data.

The primary focus of this work is not on proposing a novel
algorithmic architecture but rather on designing and validating an
effective, domain-informed ensemble framework tailored for
cybersecurity intrusion detection. Our approach strategically integrates
well-established machine learning models—XGBoost, LightGBM,
Extra Trees Classifier, and Logistic Regression—within a stacking
ensemble to leverage their complementary strengths. For instance, the
inclusion of Logistic Regression adds an interpretable component that
provides insights into decision-making processes, aiding cybersecurity
analysts in understanding attack behaviors. Furthermore, our work
demonstrates significant empirical improvements in attack detection
accuracy, robustness, and interpretability, which are particularly
important for practical cybersecurity deployment. The intention is to
show how a carefully engineered combination of existing models can
significantly enhance performance, robustness, and interpretability
when applied to complex, imbalanced security datasets.

Based on the motivation for the stacked ensemble approach, two
stacked ensemble models were developed. The Stacked Ensemble_1
model is a standard approach that was constructed using the Boosting
algorithm as the base learner, which improves misclassification,
making it a strong learner. The output from these boosting algorithms
is handled by a Random Forest Classifier, which serves as a meta-
learner based on a subset of data and features derived from the
prediction output of the Boosting algorithms (AdaBoost and
XGBoost). This ultimately enables the model to learn the bias patterns
of the boosting algorithms and produce the final prediction through
the Random Forest Classifier, making it a highly effective and
predictive model (Alsolami et al., 2024).

An improvisation over Stacked Ensemble 1 is Stacked
Ensemble_2, which has been developed with multiple base models
and an RFC as the final estimator to improve generalization.
Combining the predictions of these models helps to reduce error, as
each base model makes errors in different areas, captures different
patterns, and structures the dataset in various ways. Stacked
Ensemble_2 includes a variety of base models, each with different
learning mechanisms:

« Logistic Regression (linear model)
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» XGBoost (boosting model)
« LightGBM (gradient boosting model)
« Extra Tree (ensemble of decision trees)

The primary goal of this research is to build a Stacked Ensemble_2
with different decision boundaries (linear and non-linear) to increase
the overall diversity of the model, which is key to improving
performance. If all base models in the ensemble were non-linear or
tree-based models, they might make similar errors, and the ensemble
would not be as effective at correcting each other’s weaknesses. Using
a complex model like XGBoost, LGBM, or Extra Tree Classifier, along
with a simpler model like LR, will make the final decision process more
interpretable for the ensemble model. This approach will enable
Stacked Ensemble_2 to access a wider range of decision-making
strategies. LR is included as a basic interpretable classifier to establish
a benchmark or baseline. The final estimator, RFC, will combine
predictions from both simple and complex models to improve
robustness and reduce the likelihood of overfitting, demonstrating how
well this approach using a simple linear model performs before
adding complexity.

LightGBM contributes efficient gradient boosting and fast
convergence, Extra Trees provides strong variance reduction through
randomized tree averaging, and Logistic Regression adds
interpretability by offering linear decision boundaries that are more
transparent to analysts. This methodological design allows the
ensemble to maintain high predictive performance while ensuring
explainability and operational feasibility. Thus, the contribution of this
study lies in the systematic integration, optimization, and evaluation
of these models for real-world ICS and IoT security applications,
bridging the gap between theoretical model design and deployable
cybersecurity solutions.

The rationale for selecting Stacked Ensemble_2 over Stacked
Ensemble_1 is based on its broader capacity to address the
complexities inherent in ICS and IoT security datasets. While Stacked
Ensemble_1 combines boosting models (XGBoost and AdaBoost)
with an RFC to leverage bias reduction and variance stabilization,
Stacked Ensemble_2 incorporates a more diverse set of base models
—XGBoost, LightGBM, Extra Trees, and Logistic Regression, with
RFC as the meta-model.

Stacked Ensemble_2 offers several advantages, including
LightGBM, which is highly effective at capturing complex attack
patterns, making it well-suited for identifying sophisticated threats.
The bagging model (Extra Trees) provides robustness against noisy
and imbalanced data, common in security datasets with few attack
instances. Logistic Regression adds interpretability, enabling a better
understanding of the decision-making process.

The inclusion of LightGBM and Extra Trees offers fast inference
times, facilitating real-time threat detection. Overall, Ensemble_2’s
heterogeneity and tailored components make it more effective in
handling the challenges of ICS and IoT security environments
compared to Stacked Ensemble_1.

For both stacking configurations, a k-fold cross-validation
strategy (with k =5) was applied to generate out-of-fold (OOF)
predictions from each base model. These OOF predictions were then
used as input features for the meta-learner, ensuring that the meta-
learner was trained exclusively on data unseen by the base models
during training. The stack_method = ‘predict_proba’ parameter was
used so that class probability estimates and discrete class labels were
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passed to the meta-learner, allowing it to learn finer decision
boundaries and improve overall calibration.

The stacking procedure was repeated under a 5 x 3 repeated
stratified cross-validation framework. This provided reliable mean and
standard deviation estimates for all performance metrics and ensured
consistent evaluation across different data partitions. All experiments
were conducted on a MacBook Pro (Apple M1, 8 GB RAM) using an
Anaconda-managed environment.

Through this design, both stacked ensemble models maintained
strict separation between training and meta-training data, thereby
preventing data leakage. The resulting performance metrics thus
reflect true generalization ability rather than overfitting effects caused
by shared training data between stages.

The stacked ensemble models developed are optimized and
compared against different ensemble machine learning models,
such as Bagging, Boosting, Extra Trees, and individual classifiers
like Logistic Regression and decision tree, to validate the best
model for detecting malicious behavior in ICS and IoT. The study
aims to identify the approach for accurately classifying malicious
instances within the dataset. Figure 3 shows the high-level
architecture of cyberattack classification in IIOT using the
optimized machine learning model. The scripts and datasets
related to this experiment are uploaded to the GitHub repository
(BATL, 2025).

6.1 Machine learning algorithms

6.1.1 Logistic regression

Several advantages make Logistic Regression (LR) a good
choice for this paper. The simplicity and interpretability of this
model make it a great starting point for classification problems,
where the coeflicients from the trained model can be interpreted to
understand the relationships between features and the target class.
Additionally, in our paper, we are dealing with large, high-
dimensional datasets, where LR is computationally efficient for
handling a large number of features. The flexibility of this model
enables us to adapt it for multi-class classification using strategies
like the one-vs-rest (OVR) technique. In this model, multiple binary
classifiers are trained, each for a separate class, allowing the model
to handle more than two classes effectively, with the class having the
highest probability chosen as the prediction. To find the best
parameters for our LR, we started by defining a dictionary that
specifies the hyperparameters to be tuned using GridSearch CV
(Nashaat, 2023). The hyperparameters tuned to optimize the LR and
their roles are shown in Table 8.

6.1.2 Decision tree classifier

Several advantages make decision trees a good choice for this
paper. They are robust to noise and can tolerate missing information,
making them suitable for handling various types of attributes,
including irrelevant and redundant ones. In addition, decision tree
algorithms have a low computational cost, which makes them a
practical choice. Like other ML models, we can also improve their
performance through hyperparameter tuning due to the high number
of possible configurations and their significant impact on predictive
performance (Mantovani et al., 2024). To find the best parameters for
our DT, we started by defining a dictionary that specifies the
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hyperparameters to be tuned. The hyperparameters tuned to optimize
the decision tree are shown in Table 9.

6.2 Ensemble learning classifier

Combining multiple models or algorithms to improve the overall
predictive performance of a system is a powerful machine learning
technique called Ensemble Learning. The key goal of this ensemble
approach is to leverage the complementary strengths of multiple base
models, capture diverse patterns in ICS and IoT data, and produce
more robust and accurate predictions of cyberattacks. The ensemble
model aims to outperform individual base classifiers and provide a
more reliable ICS and IoT attack detection system.

Subsequently, the prediction values would be used by ICS and IoT
security for monitoring systems and detecting the presence of cyber
threats. After a comprehensive study of existing models for ICS and
IoT attack detection, considering their weaknesses identified in the
reviewed literature, such as poor feature engineering, model
overfitting, and inability to generalize to new attack types, the
ensemble learning models in this study were designed to improve
upon the existing systems with better accuracy. This section of the
paper presents ensemble learning models for classifying harmful ICS
and IoT attacks. Different types of ensemble learning techniques are
discussed: (1) Random Forest Classifier, (2) Bagging, (3) Boosting, (4)
Extra Trees, and (5) Stacked Ensemble.

6.2.1 Random Forest classifier

The Random Forest model is a flexible learning model that can
address a wide range of problems by creating multiple “decision trees”
during the training period and producing an average forecast from all
the decision trees involved. This model employs various “Exploratory
Data Analysis (EDA)” methods and achieves a high accuracy score.
One of its benefits is its ability to process large datasets with high
complexity. It can analyze numerous input variables and identify the
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most significant ones, making it a useful dimensionality reduction
model. In addition, the model highlights the importance of variables,
which is a valuable feature when working with random datasets
(Banerjee, 2023; Dash, 2023; Borah et al., 2020). To find the best
parameters for our RF model, we started by defining a dictionary that
specifies the hyperparameters to be tuned. The hyperparameters tuned
to optimize the Random Forest are shown in Table 10.

The best hyperparameters found for the RFC model are: (1) the
criterion ‘entropy’, which was better suited for the specific classification
problem at hand, as it achieved higher predictive performance, and
(2) Max_depth ‘None’ This non-parametric approach can be beneficial
for datasets with complex patterns, like Edge-IloTset, that require
deeper trees for accurate modeling. Allowing trees to grow without a
depth limit provides the model with more flexibility to capture these
intricate relationships. However, we need to be cautious about the
risks associated with this approach, such as overfitting. Thus,
parameters such as min_samples_split and min_samples_leaf play a
crucial role in controlling the model’s complexity.

6.2.2 Bagging (bootstrap aggregation)

Bootstrapping is a method that helps decrease the variance of the
classifier and reduce overfitting by resampling data from the training
set with the same cardinality as the original set (Akpan et al., 2023).
In this paper, Bagging is composed of multiple DT Classifiers as the
base estimators. Each Decision Tree classifier is trained on a different
bootstrap sample, with the number of base estimators set to 500, the
maximum depth of each DT Classifier set to 12, and the maximum
number of training samples for each base estimator set to 300. The
ensemble captures different patterns and perspectives in the data, and
the aggregation of their predictions results in a more accurate and
robust classification model. The max_depth parameter controls the
complexity of the individual Decision Tree classifiers, while the max_
samples parameter determines the size of the bootstrap samples used
for training each base estimator. These hyperparameters were tuned
to achieve the best performance for the ICS and IoT attacks.
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6.2.3 Boosting

Boosting is an iterative procedure in which each new model seeks
to improve upon the errors of the previous models. The advantage of
these algorithms is their adaptability to the strengths and weaknesses
of the weak learners, focusing more on the samples that are difficult
to classify correctly. There are several types of boosting algorithms; in
this paper, we used some of the most well-known and commonly
used types:

- AdaBoost (Adaptive Boosting): AdaBoost is one of the earliest and
most influential boosting algorithms, utilized for both regression
and classification tasks. It operates through a process of iteratively
training weak learners and adjusting the weights of the training
samples based on the performance of preceding learners. This
approach concentrates greater attention on the samples that were
difficult to classify accurately in previous iterations. The objective
of the boosting technique is to train subsequent learners using
adjusted versions of the training data that have been updated based
on the training effects of the preceding learner. In this way;, it is
possible to significantly reduce the deviation of the model’s
forecasts from the actual values. Ultimately, the model’s final
prediction is simply the weighted consensus of all the learners
(Shabaan and Nemer, 2024).

- XGBoost (Extreme Gradient Boosting): “XGBoost” utilizes decision
trees that are constructed by starting at the root and recursively
partitioning the data based on specific criteria. This process
continues until the desired level of accuracy is achieved. The
decision tree is trained to minimize the gradient of the loss
function, which is calculated in each iteration. To prevent
overfitting and speed up the learning process, the objective
function is normalized. XGBoost is recognized for its ability to
model non-linear relationships between variables and its
exceptional classification capabilities. Consequently, numerous
researchers have highlighted the potential of machine learning in
forecasting time series data (Bikmukhametov and Jaschk, 2021;
Tissaoui et al., 2022). Table 11 shows the hyperparameter settings
for the three boosting algorithms.

- Light Gradient Boosting (LGB): LightGBM is highly efficient in
both time and space. It employs histogram-based algorithms that
accelerate training by reducing the amount of computation
required. These optimizations make LGB faster and more memory-
efficient compared to other gradient boosting algorithms like
XGBoost, particularly when handling large datasets. To find the
best parameters for our LGBM, we started by defining a dictionary
that specifies the hyperparameters to be tuned using GridSearchCV

2024). the tuned

hyperparameters and their roles are shown in Table 12.

(Verma and Yadav, For this model,

6.2.4 Extra tree classifier

The Extra Tree Classifier constructs an ensemble of unpruned
decision or regression trees using the classical top-down procedure.
Two main distinctions between this method and other tree-based
ensemble techniques are that it randomly chooses cut points when
splitting nodes and utilizes the entire learning sample to grow the
trees, rather than a bootstrap replica (Baldini, 2024; Geurts et al., 2006;
Dhingra et al., 2023). The main concept and assumption behind the
Extra Tree Classifier is a variant of the Random Forest algorithm,
which aims to improve the performance and robustness of the
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ensemble by introducing additional randomness into the tree
construction process. Unlike Random Forest, which selects the best
split among a random subset of features, Extra Trees selects the split
randomly from all available features. The Extra Tree Classifier
algorithm is based on three fundamental hyperparameters:

- The number of decision trees in the ensemble, set to
n_estimators = 1,000

- The number of features to be selected randomly, set to
random_state = 42

- The maximum number of instances (features) to consider when
looking for the best split, set to max_features = 7.

6.2.5 Stacked ensemble

The stacking ensemble technique begins with training
fundamental classifiers using the provided dataset, followed by
training an integrated classifier to incorporate the predictions of the
other participants. The stacking approach works by training a meta-
model (also known as the final estimator) on the predictions made by
the base models. This meta-model learns to optimally combine the
outputs of the base models or ensemble of classifiers, effectively
exploiting their complementary strengths and weaknesses to produce
a more accurate final prediction.

The Stacking Ensemble_ 1 approach can help overcome the
limitations of individual classifiers. When a specific classifier fails to
correctly classify instances from a particular region due to incomplete
or inaccurate learning of the feature space, the second-level meta-
classifier can learn from the behavior of the other base classifiers and
use this information to correct the shortcomings of the individual
models. This allows the stacking ensemble to leverage the strengths of
the different classifiers and mitigate their individual weaknesses,
leading to improved overall classification performance. The
effectiveness of stacking is demonstrated by its capacity to generate
superior outcomes compared to any individual classifier used. As a
result, stacking has been employed to enhance the predictions of
supervised learning tasks for both classification and regression.

In this study, we have designed two Stacked Ensemble models.
The first, Stacked Ensemble_1, is created by ensembling the AdaBoost
Classifier and XGBoost Classifier, with the final estimator being the
RFC. These base models are expected to have different strengths and
weaknesses, which are desirable for Stacked Ensemble_1. The Random
Forest Classifier acts as the final estimator, allowing it to learn how to
optimally leverage the predictions of the base models. The AdaBoost
and XGBoost models may excel at different types of patterns, while
the Random Forest serves as the final arbiter, learning to weigh the
outputs of the base models effectively.

The second model, Stacked Ensemble 2, is constructed by
combining a variety of base learners: Logistic Regression, XGBoost,
Light Gradient Boosting, and Extra Trees Classifier. The idea and
novelty behind Stacked Ensemble_2 are to build models with different
decision boundaries (linear and non-linear) to increase overall
diversity and improve performance.

The advantage of Stacked Ensemble_2 is that it uses a complex
model like XGBoost, LGBM, or Extra Tree while adding a simpler
model like LR, making the final decision process more interpretable
for the ensemble model. In this case, Logistic Regression is added as
a basic interpretable classifier, serving as the baseline. RFC is used as
a final estimator to combine the predictions of both simple and
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TABLE 8 Hyperparameter of logistic regression.

10.3389/frai.2025.1685376

Hyperparameter Description Value tuned
range

c Controls the regularization strength, helping prevent overfitting, while a larger value of C allows the model to fit (0,01, 0.1, 1, 10]
the training data more closely. R

Max Iter Controls the maximum number of iterations the algorithm should run. It helps ensure the model converges. [30, 40, 50]
Regularization penalties such as 11° (Lasso regularization) or ‘12’ (Ridge regularization). L1 penalty can produce

Penalty [“L1} “12]
sparse models, while L2 penalty generally produces models with smoother decision boundaries.

TABLE 9 Hyperparameter of decision tree.

Hyperparameter Description Value tuned
g=1gle[S

Function to measure the quality of a split and find the best split when building a decision tree, either ‘gini’

Criterion . , Gini or entropy
or ‘entropy’.
Controls model complexity. A higher max depth allows for more complex trees but can also lead to

Max depth None, 15, 20, 25 (25)
overfitting.
Minimum number of samples required to split an internal node, which can help control model

Min samples split 4.10.20 (10)
complexity.

Min samples leaf Minimum number of samples required to be at a leaf node, which helps control overfitting. 2,4,8(2)

TABLE 10 Hyperparameter of random forest.

Hyperparameter Description Value tuned
range

Criterion Function to measure the quality of a split and find the best split when building a decision tree, either ‘gini’ or | Gini or Entropy
‘entropy’ (Entropy)

Max depth Controls model complexity. A higher max depth allows for more complex trees but can also lead to None, 15, 20, 25
overfitting. (None)

Min samples split Minimum number of samples required to split an internal node; can help to control model complexity. 4.10.20 (4)

Min samples leaf Minimum number of samples required to be at a leaf node, which will help to control overfitting. 2,4,8(2)

TABLE 11 Hyperparameters of boosting algorithms.

Hyperparameters

AdaBoost classifier

Extreme gradient boosting (XGBoost)

Parameters

Random state = 1

Random state = 1

Learning rate = 0.01

complex models, improving robustness and reducing the likelihood
of overfitting. The stacking ensemble approach often outperforms
individual base models, as it effectively harnesses the complementary
strengths of the different algorithms to achieve superior predictive
performance (Table 13).

7 Results and analysis
7.1 Model performance

In this paper, we employed different models and algorithms for
IoT cyberattack detection and classification systems to understand

and predict misuse behavior. There are two common approaches used:
machine learning and ensemble learning models. Both focus on
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applying classification techniques, with the former aiming to classify
network traffic into different categories and the latter predicting the
type of incident that occurred.

On the other hand, ensemble learning models utilize a
combination of multiple machine learning models to learn complex
patterns and relationships within Oil and Gas ICS and IoT data. In this
comparison, we examined the performance of ensemble learning
models in the context of Oil and Gas ICS and IoT cyberattack
detection and classification systems by evaluating their respective
accuracies and predictive capabilities. This analysis aimed to gain
insights into the strengths and limitations of each approach and
identify the models that provide the most promising results. The
models examined include Bagging, AdaBoost, Gradient Boosting,
XGBoost, Extra Tree, Random Forest, and Stacked Ensemble. The
Edge-IIOT dataset for this work is split into 80% for training and 20%
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TABLE 12 Hyperparameters of light gradient boosting algorithm.
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Hyperparameter Description Value tuned
range

Num leaves The number of leaves in each tree. [31, 50, 70]

Learning rate Controls the size of the step the model takes during each boosting iteration. [0.01,0.1,0.2]

N estimators The number of boosting rounds or trees to build. [30, 40, 50]

Max depth The maximum depth of each tree. Setting it to —1 means no depth limit. [-1,5,10]
The fraction of data used to train each individual tree. It can ensure that trees are not too similar to each

Subsample [0.6, 0.8, 1.0]
other.

Colsample bytree The fraction of features to consider when building each tree. [0.6,0.8, 1.0]

for testing. The hardware used for training and testing the different
machine learning models on the dataset includes Google Cloud GPU.

In this work, the hyperparameters of models were tuned using
Grid Search. Grid Search is used to perform an exhaustive search over
a specified parameter grid to find the best combination of
hyperparameters for the models. It works by systematically evaluating
every possible combination of the hyperparameters defined in the
param_grid dictionary, using cross-validation to ensure the robustness
of the tuning process. This allows us to optimize the models
performance by identifying the best combination of hyperparameters
for our problem. The number of cross-validation folds used during the
search was set to cv. = 5. The cross-validation approach employed by
GridSearchCV splits the data into multiple folds, trains the model on
each fold, and evaluates its performance using a specified scoring
metric. This enables the algorithm to identify the set of
hyperparameters that yields the best average score across the cross-
validation folds, which are considered the “best” hyperparameters for
the given model (Verma and Yadav, 2024).

Once the grid search is complete, the code retrieves the best
hyperparameters and the corresponding best score from the
GridSearchCV object. The main advantages of using GridSearchCV
are its comprehensiveness and systematic approach to hyperparameter
tuning, the robustness provided by cross-validation, and the
abstraction of the manual process of trying different hyperparameter
combinations, making the code more modular and easier to maintain
(Nashaat, 2023). Based on the model trained and tested with
hyperparameters tuned using Grid Search, we will now explain the
results of all models in detail.

7.1.1 Stacked ensemble models

7.1.1.1 Stacked ensemble 1

A standard Stacked_Ensemble_1 model has been developed,
where Adaboost and Xgboost are used as base models, with Random
Forest as the final estimator. The Stacked_Ensemble_1 approach often
outperforms individual base models, with overall training and testing
accuracy at 96%. There have been fewer misclassifications, indicated
by high Precision, Recall, and F1-Score. The model achieves a high
true positive rate (TPR) of 94%, demonstrating strong sensitivity, and
a low false positive rate (FPR) of 27%, with very few false alarms. The
AUROC is 100%, demonstrating excellent discrimination capability
between classes.

This has been compared with boosting models: AdaBoost,
XGBoost, and RFC. The AdaBoost classifier shows moderate
performance with an overall accuracy of approximately 54%,
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indicating limited effectiveness in correct classifications. High rates of
False Positives and False Negatives, as reflected in the classification
report’s Precision, Recall, and F1-Score, suggest issues with model
reliability. The true positive rate (TPR) is 40%, meaning the model
correctly identifies 40% of actual positives. The false positive rate
(FPR) is 3%, which is relatively low but still contributes to some
misclassification. The AUROC is 93%, indicating good discrimination
ability, though overall accuracy remains modest.

The XGBoost model demonstrates strong performance with the
following metrics: a training accuracy of 95% and a testing accuracy
of 96%. The model performed with low false positives and false
negatives, as shown by high Precision, Recall, and F1-Score. The true
positive rate (TPR) is 94%, indicating effective identification of
positive cases. The false positive rate (FPR) is 0.31%, reflecting very
few false positives. The AUROC is 100%, showing excellent
discriminative ability. Overall, XGBoost exhibits robust and reliable
performance, balancing high accuracy with minimal misclassification.

The Random Forest Classifier (RFC) demonstrates excellent
predictive performance, primarily driven by optimal hyperparameter
tuning identified through Grid Search. The model achieved an
accuracy of 96.00%, indicating high overall correctness. It minimized
misclassifications, as reflected in elevated Precision, Recall, and
F1-Score. The model achieved a true positive rate (TPR) of 96%,
showing strong sensitivity in identifying positive cases. In addition,
the false positive rate (FPR) is 21%, indicating very few false positives.
Finally, an AUROC of 100% demonstrates outstanding discrimination
capability. These results suggest that the optimized hyperparameters
effectively control model complexity, leading to a robust and reliable
classifier with minimal errors. The hyperparameters of the two models
have been tuned using Grid Search to obtain the best parameters for
model training and analysis toward an ensemble approach. The results
have been tabulated as shown in Table 14.

The analysis of aggregated performance over repeated cross-
validation reveals distinct profiles for each model. AdaBoost, while
exceptionally fast with an average time of 24.06 (+0.78) seconds,
consistently delivered very poor accuracy at 20.00% (+0.00),
rendering its speed irrelevant. In contrast, XGBoost achieved high
and stable accuracy at 95.28% (+0.10%) with a quick average
execution time of 33.67 (+0.53) seconds. The Random Forest
Classifier (RFC) emerged as the top performer in terms of accuracy,
boasting the highest mean of 97.19% (+0.06%) with remarkable
consistency; however, its average time of 52.36 (+38.78) seconds
showed significant variability due to outlier runs. Lastly, the Stacked_
Ensemble_1 yielded a high accuracy of 95.69% (+0.28%), but at a
substantial computational cost, averaging 1034.71 (+527.70) seconds,
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TABLE 13 Proposed models architecture.

Modeling building steps Stacked Ensemble_1

- Data cleaning
- IPv4 address conversion
Data preprocessing - Encoding URL

- One-hot encoding

- Label encoding

10.3389/frai.2025.1685376

Stacked Ensemble_2

- Data cleaning

- IPv4 address conversion
- Encoding URL

- One-hot encoding

- Label encoding

- Shuffling data

Feature engineering - Variance threshold

- SMOTE (Balances class distributions)

- Shuffling data
- Variance threshold

- SMOTE (Balances class distributions)

- AdaBoost classifier
Base models
- XGBoost classifier

- XGBoost
- LGBM
- Extra trees classifier

- Logistic regression

Final estimator - Random forest

- Random forest

making it an order of magnitude slower than the other models with
considerable demand variability (Table 15).

Paired statistical T-tests further elucidated these differences: the
Stacked_Ensemble_1 was overwhelmingly and significantly superior
to AdaBoost (P_value = 0.000000) and demonstrated a statistically
albeit
value = 0.000029) in accuracy. However, a critical finding was that the

significant, small, improvement over XGBoost (P_
Random Forest Classifier statistically significantly outperformed the
Stacked_Ensemble_1 (P_value = 0.000000), indicating that despite its
complexity and high computational cost, the ensemble could not

achieve the accuracy level of the best single model (Tables 16, 17).

7.1.1.2 Stacked Ensemble_2

In terms of Stacked_Ensemble_2, Logistic Regression (a linear
model), XGBoost (a boosting model), LightGBM (a gradient
boosting model), and Extra Trees (an ensemble of decision trees)
were used as base models, with the Random Forest Classifier as the
final estimator. The stacking ensemble approach often outperforms
individual base models, as it can effectively harness the
complementary strengths of the different algorithms to achieve
superior predictive performance. The overall training and testing
accuracy were 99 and 97%, respectively. This indicates a good level
of performance in correctly identifying and classifying the different
classes. There have been fewer misclassifications, as demonstrated
by high Precision, Recall, and F1-Score. The model exhibits
excellent performance with a high TPR of 97%, showing strong
sensitivity, and a low FPR of 24%, indicating high specificity. The
AUROC 100%,
discriminating ability.

reported s showcasing  outstanding

This has been compared with individual classifiers: Logistic
Regression (linear model), Boosting (XGBoost, LGB), Extra Trees
Classifier, and RFC. The Logistic Regression model achieved an
overall classification accuracy of 83%, correctly classifying 83% of
instances. The model performs well across all classes but tends to
classify the more frequent classes more accurately. Fewer
misclassifications are reflected in high precision, recall, and F1
scores. A TPR of 81% indicates the model is highly effective at
correctly identifying positive instances. Area under the receiver
operating characteristic curve (AUROC) is 100%, signifying

excellent discrimination ability between classes. The false positive
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rate is 1%, demonstrating the model’s high specificity with minimal
false alarms.

The LightGBM (LGBM) classifier achieved a high overall
prediction accuracy of 97%, demonstrating strong performance
across most classes. The training accuracy was 98%, while the
testing accuracy was 96%, indicating reliable generalization with
minimal overfitting. The model shows a true positive rate (TPR) of
96%, reflecting excellent sensitivity, and a false positive rate (FPR)
of 21%, which is very low, demonstrating high specificity. The
AUROC 100%,
between classes.

is indicating exceptional discrimination

The Extra Trees classifier, after hyperparameter tuning via Grid
Search, achieved impressive results with evaluations on both training
and testing datasets. The training accuracy was exceptionally high at
100%, indicating an excellent fit to the training data, while the testing
accuracy was 96%, demonstrating strong generalization to unseen
data. The model showed a true positive rate (TPR) of 95%, indicating
high sensitivity in detecting attacks, and a false positive rate (FPR) of
27%, reflecting good specificity. Finally, the AUROC is 99%, showing
outstanding model discriminative ability. The results of stacked
ensemble_2, along with other algorithms used, are tabulated, which
include Logistic Regression (linear model), XGBoost (boosting
model), LightGBM (gradient boosting model), Extra Trees (ensemble
of decision trees), and Random Forest Classifier (Tables 18, 19).

The aggregated performance data reveals that while Logistic
Regression delivered poor accuracy at 34.91% (+£0.49%) despite a
relatively slow average time of 111.27 (+£0.92) seconds, XGBoost,
LGBM, Extra Tree Classifier, and RFC all achieved high and
consistent accuracies ranging from 95.28 to 97.26% within
efficient timeframes, with RFC being the most time-efficient at
31.49 (+0.48) seconds. Crucially, the Stacked_Ensemble_2
recorded the highest mean accuracy of 97.37% (+0.07%) with
excellent consistency; however, this superior performance came
at a significant computational cost, averaging an extremely slow
1234.29 (+9.48) seconds. Paired statistical T-tests confirmed that
the Stacked_Ensemble 2
outperformed every baseline model in accuracy, including the
highly performing RFC and LGBM, thereby establishing its
predictive superiority despite its substantial time investment
(Tables 20, 21).

statistically and significantly
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7.1.1.3 Bagging

The described bagging ensemble, comprising 500 decision
trees with a maximum depth of 12 and trained on bootstrap
samples of 300 instances, exhibits excellent performance in attack
classification. The high training accuracy (93%) and test accuracy
(94%) indicate robust generalization. The high precision, recall,
and Fl-score suggest that the model effectively balances false
positives and false negatives, minimizing misclassification. The
model exhibits a true positive rate (TPR) of 93% and a false positive

TABLE 14 Classification model results—Stacked_Ensemble 1.

10.3389/frai.2025.1685376

rate (FPR) of 0.42%. The AUROC is 100%, indicating near-perfect
discrimination capability between classes. Overall, this setup
demonstrates a well-tuned ensemble model capable of reliable
detection in the given classification task, with strong potential for
deployment in real-world scenarios where high accuracy and low
false positive rates are critical. The bagging model has been
compared with the decision tree model.

In terms of the decision tree, where grid search is employed for
hyperparameter tuning, the search results do not directly mention

Models Accuracy Precision Recall F1 Score TPR FPR ROC
Stacked Ensemble_1 96% 95% 94% 94% 94% 27% 100%
AdaBoost 54% 54% 54% 43% 40% 3% 93%
XGBoost 96% 96% 96% 95% 94% 0.31% 100%
Random forest

97% 95% 96% 95% 96% 21% 100%
classifier

TABLE 15 Mean + SD over repeated runs and paired t-test for Stacked_Ensemble_1 models.

Models performance of repeated cross-validation
Parameters: n_repeats = 3, n_splits = 5, scoring = ‘accuracy’

Model name Accuracy Time (Sec)
Run 1/3

AdaBoost 20.00% 25.03
XGBoost 95.30% 33.26
RFC 97.20% 24.94
Stacked_Ensemble_1 95.95% 300.16
Run 2/3

AdaBoost 20.00% 24.05
XGBoost 95.27% 33.34
RFC 97.19% 107.20
Stacked_Ensemble_1 95.61% 1516.13
Run 3/3

AdaBoost 20.00% 23.11
XGBoost 95.26% 34.42
RFC 97.18% 24.94
Stacked_Ensemble_1 95.53% 1287.85
Summary over repeated CV

AdaBoost 20.00% = 0.00 24.06 £0.78
XGBoost 95.28% + 0.10% 33.67 +£0.53
RFC 97.19% + 0.06% 52.36 + 38.78
Stacked_Ensemble_1 95.69% + 0.28% 1034.71 + 527.70

Paired statistical t-tests
Stacked_Ensemble_1 vs. Baselines

Model name t_Stat p_value p_value < 0.05
AdaBoost 1005.1017 0.000000 Significant
XGBoost 6.0744 0.000029 Significant
RFC —21.0935 0.000000 Significant
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how ‘gini’ and ‘entropy’ are used. However, the general principle is
that the decision tree algorithm selects the split attribute that
maximizes information gain (for entropy) or minimizes the Gini
index at each node of the tree. This process is carried out in a
greedy, top-down manner, with the best split chosen at each step
without considering the long-term impact on the entire tree
(Banerjee, 2023; Dash, 2023). The decision tree model demonstrates
strong performance in classifying attacks, achieving an overall
training accuracy of 98% and a testing accuracy of 96%. The high
accuracy, along with metrics such as precision, recall, and F1-score,
indicates a low rate of misclassification. Specifically, the True
Positive Rate (recall) is 93%, and the False Positive Rate is very low
at 0.26%. The AUROC of 98% suggests the model has excellent
discriminative ability between attack and non-attack instances,
making it a reliable choice for attack classification tasks. The results
of both the bagging ensemble model and the decision tree are
tabulated in Tables 22, 23.

7.2 Computation of evaluation metrics
(FPR, TPR, and AUROC)

To evaluate the classification performance across all attack
categories, the true positive rate (TPR), false positive rate (FPR), and
area under the receiver operating characteristic curve (AUROC) were

TABLE 16 Classification report for all the Stacked_Ensemble_1 models.

Stacked Ensemble_1
(Test data)

of8l o o o o 1 o o o o u 0 o o o

tH
[

True tabel
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s 1 & n 1 1
Predicted label

XGboost
(Test data)

10.3389/frai.2025.1685376

computed for each class individually and summarized using macro-
averaging to provide a balanced view of performance across both
majority and minority classes.

The TPR, equivalent to recall, was computed for each class as the
ratio of correctly identified positive instances (true positives) to the
total actual positives (true positives plus false negatives). Similarly, the
FPR was derived using per-class precision, recall, and support values,
representing the proportion of negative instances incorrectly classified
as positive. For each class, true positives, false positives, false negatives,
and true negatives were estimated using precision and recall
relationships. The macro-averaged FPR and TPR were then obtained
by taking the mean values across all 15 classes. The models’
performance was calculated as follows:

FpP Fp

FPR= ,TPR =
(FP+TN) (TP+FN)

For the AUROG, class-wise probabilities were obtained using
the model’s predict_proba() function, and the One-vs-Rest (OVR)
strategy was applied to compute the area under the ROC curve
for each class. The final AUROC score was calculated using the
roc_auc_score() function from scikit-learn with multi_
class = ‘ovr, which aggregates the individual class AUROC values

into a single representative performance measure. This
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TABLE 17 Precision@k per-class performance results for Stacked_Ensemble_.

10.3389/frai.2025.1685376

1.

Precision@k per-class performance

Stacked Ensemble_1 (%) Adaboost (%) XGboost (%) Random Forest
classifier (%)

K=3 K=5 K=3 K=5 K3 K=5 K=3 K=5  K=10
Backdoor 99.95% 99.95% 100% 0.15% 100% 100% 99.84% 100% 100% 99.84% 99.89% 100%
DDoS_HTTP 99.52% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
DDoS_ICMP 99.96% 100% 100% 99.56% 99.96% 99.96% 99.96% 99.96% 99.9% 99.96% 100% 100%
DDoS_TCP 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
DDoS_UDP 100% 100% 100% 100% 100% 100% 99.96% 99.96% 100% 100% 100% 100%
Fingerprinting 100% 100% 100% 99.39% 100% 100% 100% 100% 100% 99.39% 100% 100%
MITM 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Normal 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Password 100% 100% 100% 99.95% 100% 100% 100% 100% 100% 100% 100% 100%
Port_Scanning 99.59% 99.76% 99.88% 0.11% 100% 100% 99.94% 100% 100% 99.94% 99.94% 100%
Ransomware 99.78% 99.84% 99.94% 100% 100% 100% 99.95% 100% 100% 99.90% 99.90% 100%
SQL_injection 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Uploading 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Vulnerability_

98.12% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
scanner
XSS 99.94% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

TABLE 18 Classification model results for Stacked_Ensemble_2.

Models Accuracy Precision Recall F1 Score TPR FPR ROC
Stacked Ensemble_2 97% 97% 97% 97% 97% 24% 100%
Logistic regression 83% 84% 83% 83% 81% 1% 100%
XGboost 96% 96% 96% 95% 94% 0.31% 100%
LGBM 96% 95% 96% 95% 96% 21% 100%
Extra tree classifier 96% 93% 95% 94% 95% 27% 99%
Random forest
dlassifier 96% 95% 96% 95% 96% 21% 100%

combination of metrics provides a comprehensive assessment of
the model’s discriminative capability across all attack categories,
accounting for both correctly and incorrectly classified instances
in the multi-class setting.

Having analyzed the performance of all the machine learning
models, which included individual classifiers like Logistic Regression
and decision tree, as well as ensemble machine learning models such
as Bagging, Boosting, Random Forest, Extra Trees, and two Stacked
Ensemble models, we examined the performance of the ensemble
classification models in the context of Oil and Gas ICS and IoT
cyberattack detection and classification systems by evaluating their
respective accuracies and predictive capabilities to gain insights into
the strengths and limitations of each approach in identifying the
models that provide the most promising results.

The comparative results presented in Table 24 clearly demonstrate
the superior performance of the stacked ensemble_2 model over
stacked ensemble_1, ensemble and the individual machine learning
algorithms for the ICS & IoT attack in oil and gas with an overall
accuracy of 97%. The next best performing models have been stacked
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ensemble_1, Extra Tree, LGBM, Logistic Regression and Random
Forest with an accuracy of 96, 96, 96, 97 and 96, respectively. Even
though the performance of stacked Ensemble_2 was the best, there is
a need to analyze the computational cost for deployment in real time
in Edge-IIoT. All the runtime experiments were conducted on a
MacBook Pro (Apple M1, 8 GB RAM) using an Anaconda-managed
environment; it was measured using wall-clock time through Python’s
built-in time module. Specifically, the total training duration was
calculated by recording the start and end times of the execution
process using the command (start_time = time.time() and training_
time = time.time() - start_time) before model training and computing
the elapsed time after completion. The reported runtime reflects the
total training time rather than per-fold or per-run averages then the
result was converted to minutes (Table 25).

The unusually long runtime observed for the Logistic Regression
model (approximately 867 min) is primarily due to the computational
intensity of exhaustive hyperparameter optimization combined with
the large, multi-class dataset used in this study Figure 4. The model
was trained using a GridSearchCV procedure, which systematically
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TABLE 19 Mean + SD over repeated run and paired t-test for Stacked_Ensembled_2 models.

Models performance of repeated cross-validation
Parameters: n_repeats = 3, n_splits = 5, scoring = ‘accuracy’

Model name Accuracy Time (Sec)
Run 1/3

Logistic regression 35.19% 109.98
XGBoost 95.30% 36.99
LGBM 97.26% 45.21
Extra tree classifier 97.00% 42.41
RFC 97.20% 32.13
Stacked_Ensemble_2 97.38% 1247.70
Run 2/3

Logistic regression 34.95% 111.78
XGBoost 95.27% 37.14
LGBM 97.26% 40.51
Extra tree classifier 96.99% 40.17
REC 97.19% 30.97
Stacked_Ensemble_2 97.36% 1227.50
Run 3/3

Logistic regression 34.61% 112.04
XGBoost 95.26% 37.60
LGBM 97.25% 43.15
Extra tree classifier 96.97% 39.54
RFC 97.18% 31.37
Stacked_Ensemble_2 97.37% 1227.67
Summary over repeated CV

Logistic regression 34.91% + 0.49% 111.27 £ 0.92
XGBoost 95.28% + 0.10% 37.24+£0.26
LGBM 97.26% + 0.07% 42,96 £1.92
Extra tree classifier 96.99% + 0.07% 40.70 £ 1.23
RFC 97.19% + 0.06% 31.49 +£0.48
Stacked_Ensemble_2 97.37% + 0.07% 1234.29 +9.48

Paired statistical t-tests
Stacked_Ensemble_1 vs. baselines

Model name t_Stat p_value p_value < 0.05
Logistic regression 469.2706 0.000000 Significant
XGBoost 85.0308 0.000000 Significant
LGBM 10.7371 0.000000 Significant
Extra tree classifier 223671 0.000000 Significant
RFC 13.6724 0.000000 Significant

evaluates multiple combinations of hyperparameters—such as
regularization strength (C), penalty type, and solver choice—across
several cross-validation folds. This process requires fitting the model
repeatedly, greatly increasing the total computation time. Additionally,
the dataset was resampled using SMOTE to address class imbalance,
further enlarging the training data and intensifying the
optimization workload.
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Classifying 15 attack categories required the use of the one-vs-
rest (OVR) multi-class strategy, where a separate binary logistic
model is trained for each class. This effectively multiplies the
number of optimization problems being solved, as each sub-model
iteratively computes gradient updates over all data points. Given
that Logistic Regression relies on iterative numerical optimization,
the presence of a high-dimensional feature space and a large sample
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TABLE 20 Classification report for all the Stacked_Ensemble_2 models.

Stacked Ensemble_2 Logistic regression

(Test data) (Test data)

3000

True tabel
Tue label

2000 2000

1000

3

6 7 8
precicted label

XGboost LGBM

(Test data) (Test data)

True abel

s 2000

1000

6 7 8
Predicted label

Extra tree classifier Random forest classifier
(Test data) (Test data)

2000

1000 1000

s

6 7 8 6 71 8
predicted label predicted label

size substantially increases convergence time. The trade-off on  accuracy where training time is less critical, ensemble methods are better.
accuracy, train and testing time has been tabulated toward trade-off ~ Additionally, these stacked ensembles are preferred when training occurs
as shown in Table 26. on powerful, off-site servers, and inference speed and resource usage on
Models like stacked Ensemble 2 achieved top accuracy with  the deployment device are less critical. Furthermore, the environment
increased training time and computational cost. For applications where  allows for longer training periods with acceptable inference latency.
training resources or time are limited, simpler models like Decision Trees ~ Otherwise, in severely resource-constrained IoT or edge environments,
or Bagging provide a good balance of accuracy (~94-95%) and much  lighter models like stacked Ensemble_1 are more appropriate. In short,
faster training. If rapid inference is critical (e.g., live attack detection), ~ choosing ensemble models increases accuracy but at the cost of
models like decision trees, LightGBM, or Random Forest are preferred. ~ computational resources.
However, high inference speed often coincides with slightly lower The stacked Ensemble_1 model, which includes Extra Tree
accuracy compared to ensemble models like Ensemble 2. For quick  Classifier, Random Forest, and Decision Tree, achieves an
deployment and iteration, simple models are advantageous; for maximum  impressive 96% accuracy with marginal differences. The stacked
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Training and testing time for each model.
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ensemble method leverages the complementary strengths of
multiple base learners, effectively combining their predictive power
to produce superior results compared to any single model. The
Stacking Ensemble showcases its ability to intelligently weigh the
outputs of the base models (AdaBoost, XGBoost, and RF) to arrive
at the final predictions, outperforming the individual component
models, as shown in Figure 5.

The stacked Ensemble 2 model achieved an impressive 97%
accuracy over other models, including Extra Trees, Random Forest,
XGBoost, LGBM, and AdaBoost. The stacked ensemble method
effectively combines the complementary strengths of multiple base
learners to produce superior results compared to any single model.
The Stacking Ensemble demonstrates its ability to intelligently weigh
the outputs of both linear and non-linear base models to arrive at the
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final predictions, outperforming the individual component models, as
shown Figure 6.

This suggests that the detection of oil and gas ICS and IoT systems
involves complex underlying patterns and relationships that are better
captured by ensemble methods, which can extract more meaningful
information from the data by aggregating the diverse perspectives of
multiple models to detect abnormal behavior before an incident occurs.

The clear superiority of the ensemble models, particularly Stacked
Ensemble_2, makes them the more appropriate and reliable choices
for oil and gas ICS and IoT cyberattacks. The ability of ensemble
methods to harness the collective strengths of multiple algorithms sets
them apart from individual machine learning models, making them
the preferred solution for achieving high-performing and robust
predictions in this context.

22 frontiersin.org


https://doi.org/10.3389/frai.2025.1685376
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Alabdullah and Sankaranarayanan

TABLE 21 Precision@k per-class performance results for Stacked_Ensemble_2.

Precision@k per-class performance

10.3389/frai.2025.1685376

Stacked Ensemble_2 (%)  Logistic regression (%) LGBM (%) Extra tree classifier (%)

K=3 K=5 K=10 K=3 K=5 K=10 K3 K=5 K=3 K=5  K=10
Backdoor 100% 100% 100% 93.97% 100% 100% 99.84% 100% 100% 98.76%  98.81% 98.81%
DDoS_HTTP 100% 100% 100% 100% 100% 100% 100% 100% 100% 96.66% | 96.66% 96.66%
DDoS_ICMP 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
DDoS_TCP 100% 100% 100% 96.43% 100% 100% 100% 100% 100% 100% 100% 100%
DDoS_UDP 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Fingerprinting = 98.85% = 98.85% 100% 100% 100% 100% 100% 100% 100% 96.10%  96.10% 98.70%
MITM 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Normal 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Password 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Port_Scanning = 99.71% 100% 100% 99.94%  99.94% 100% 99.94% 100% 100% 99.94% | 99.94% 100%
Ransomware 99.89% 100% 100% 94.93% 100% 100% 99.94% 100% 100% 98.72% | 98.72% 100%
SQL_injection 100% 100% 100% 100% 100% 100% 100% 100% 100% 98.80% 100% 100%
Uploading 100% 100% 100% 100% 100% 100% 100% 100% 100% 97.22% 100% 100%
Vulnerability_

100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
scanner
XSS 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
TABLE 22 Classification model results — bagging.

Models Accuracy Precision Recall F1 Score TPR FPR AUROC
Bagging 94% 91% 93% 91% 93% 0.42% 100%
Decision tree 96% 95% 96% 95% 96% 0.26% 98%

TABLE 23 Precision@k per-class performance results for bagging.

Precision@k per-class performance

Class name Bagging (%) Decision tree (%)
K=5 K=3 K=5
Backdoor 99.22% 100% 100% 99.17% 99.17% 99.17%
DDoS_HTTP 100% 100% 100% 98.57% 98.57% 98.57%
DDoS_ICMP 99.89% 99.96% 100% 99.89% 99.89% 99.89%
DDoS_TCP 100% 100% 100% 100% 100% 100%
DDoS_UDP 100% 100% 100% 100% 100% 100%
Fingerprinting 100% 100% 100% 90.90% 91.51% 99.39%
MITM 100% 100% 100% 100% 100% 100%
Normal 100% 100% 100% 100% 100% 100%
Password 100% 100% 100% 100% 100% 100%
Port_Scanning 99.88% 99.88% 100% 98.45% 98.45% 100%
Ransomware 99.95% 100% 100% 99.100% 99.10% 100%
SQL_injection 100% 100% 100% 99.8% 100% 100%
Uploading 100% 100% 100% 99.50% 100% 100%
Vulnerability_scanner 100% 100% 100% 100% 100% 100%
XSS 100% 100% 100% 100% 100% 100%
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TABLE 24 Performance of the models in detecting ICS and loT attacks.

Ensemble models

Individual ML models

Algorithm Accuracy Algorithm Accuracy
Bagging 94%
DT 96%
AdaBoost 54%
XGBoost 96%
Logistic regression 83%
LGBM 96%

RFC 96% Stacked Ensemble_1 96%

97%

Extra tree classifier 96% Stacked Ensemble_2

TABLE 25 Classification report for Stacked Ensemble_1 and Stacked Ensemble_1.

Classes no Classification report—Stacked Ensemble_1 Classification report—Stacked Ensemble_2
Precision Recall Fl-score Support Precision Recall F1-Score Support

Backdoor 98% 94% 96% 1956 95% 96% 96% 1932
DDoS_HTTP 84% 94% 89% 2,169 90% 93% 92% 2025
DDoS_ICMP 100% 100% 100% 2,835 100% 100% 100% 2,832
DDoS_TCP 100% 100% 100% 2069 100% 100% 100% 2042
DDoS_UDP 100% 100% 100% 2,916 100% 100% 100% 3,005
Fingerprinting 91% 81% 86% 162 62% 86% 72% 160
MITM 100% 100% 100% 71 100% 100% 100% 76
Normal 100% 100% 100% 4,818 100% 100% 100% 4,840
Password 100% 100% 100% 1971 100% 100% 100% 1996
Port Scanning 98% 100% 99% 1781 99% 95% 97% 1755
Ransomware 94% 98% 96% 1920 96% 95% 95% 1916
SQL injection 89% 91% 90% 2066 87% 97% 91% 2079
Uploading 91% 89% 90% 2053 96% 85% 90% 2042
Vulnerability

98% 94% 96% 1944 100% 96% 98% 2031
scanner
XSS 93% 84% 89% 1922 90% 91% 91% 1922
Model performance result after training
Accuracy 96% 30,653 97% 30,653
Macro avg 96% 95% 95% 30,653 949% 96% 95% 30,653
Weighted Avg 96% 96% 96% 30,653 97% 97% 97% 30,653

7.3 Com ponent cont ribution ana lyS is and quantify the performance impact of each model on the ensemble’s

models ablation study

To assess the contribution of each preprocessing and modeling
component, an ablation study was conducted comparing baseline
models to versions incorporating feature selection, data preprocessing,
SMOTE balancing, and hyperparameter tuning. Results demonstrate
that each step incrementally improved classification performance
(Table 27).

To assess the contribution of each base classifier within Stacked
Ensemble_1 and Stacked Ensemble_2, we conducted an ablation
study. Specifically, we re-trained the stacking model while
systematically removing one base learner at a time. This allowed us to
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overall accuracy and robustness (Table 28).

From the ablation study, it is clear that for Stacked
Ensemble_1, Adaboost+Xgboost without the metalearner RFC
and Xgboost with the metalearner RFC were responsible for
driving the gain in Stacked Ensemble_1. The configuration
without Xgboost followed by the metalearner resulted in a low
gain. Thus, the Xgboost classifier has been the dominant classifier
driving the gain. In terms of Stacked Ensemble_2, all classifiers
contributed to the gain, regardless of the presence of the
metalearner, which is RFC. Additionally, by removing certain
classifiers while retaining the metalearner, the Stacked
Ensemble_2 achieved a higher gain.
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TABLE 26 Trade-off on the models between accuracy, training, and testing time in detecting ICS and loT attacks.

Accuracy Training time Testing Suitable for
(~%) time
Stacked
97% ~54 min ~1 min Highest accuracy: use if resources and time allow.
Ensemble_2
Stacked
95% ~1 min ~6.5 min Good balance of performance and efficiency.
Ensemble_1
Extra trees ~94.75% ~10 min ~0.16 min Fast and robust; suitable for near real-time detection.
LightGBM ~94.9% ~3.46 min ~0.34 min Very fast, efficient; suitable for real-time use.
Very fast inference with good balance of accuracy; suitable for applications requiring instant
XGboost 96% 34.68 min 0.00 min
decision making.
Relatively poor performance in the current task. Suggests that inference can be performed quickly
AdaBoost 54% 23.55 min 0.13 min
once the model is trained. Not reliable for critical applications like attack detection.
Random forest ~94-95% ~25 min ~0.01 min Extremely fast inference; good for rapid deployment.
Logistic
~83% ~867 min (longest) ~0.03 min Highly accurate but costly to train; best for offline.
regression
Decision tree ~94-95% ~0.03 min 0.00 min Very quick; suitable when speed is prioritized.
Bagging ~94-95% ~0.01 min ~0.87min | Fast training/testing; suitable for quick deployment.
Stacked Ensemble_1 Combined, The Following : Stacked Ensemble_1
100
B XGBoost
W AdaBoost
W RrF 80
XGBoost F e
g
e
=2
g 40
<
20
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FIGURE 5
Comparison of Stacked Ensemble_1 results.

Additionally, model interpretability was enhanced by analyzing
SHAP values, which revealed that flow-based and packet-related features
had the highest contribution to distinguishing between types of attacks.
This analysis provides insight into the models decision process and
reinforces the validity of the selected features (Table 29).

This comprehensive SHAP analysis offers a transparent and
detailed understanding of how different models arrive at their
predictions, highlighting both common underlying data patterns and
algorithm-specific learning strategies. These insights are invaluable for
model debugging, feature engineering, and enhancing overall trust
and interpretability in complex machine learning systems.

8 Generalization of the model
performance

CICIDS2017 dataset contains benign samples and the most
up-to-date common attacks, resembling true real-world data
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(Canadian Institute of Cybersecurity, 2017). Network attacks
feature 62 columns and 183,910 instances. The dataset includes
network traffic in both packet-based and bidirectional flow-based
formats. For this dataset, the abstract behavior of 25 users was
modeled based on HTTP, HTTPS, FTP, SSH, and email protocols.
To validate Stacked Ensemble_1 and 2 for model generalization, we
chose a dataset similar to the one used in our work. The two stacked
ensemble models were generalized on a new, unseen dataset for
attack classification, which included eight attacks: Brute Force FTP,
Brute Force SSH, DoS, Heartbleed, Web Attack, Infiltration, Botnet,
and DDoS.

8.1 Data preprocessing

In this stage, several data cleaning and transformation steps were
applied to the CICIDS2017 dataset to ensure data quality and
consistency. First, duplicate records were identified and removed to
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Stacked Emsemble_2 Combined, The Following -

eliminate redundant entries that could bias the model. Then, the
missing values in the numerical features ‘Flow_Bytes/s’ and ‘Flow_
Packets/s’ were filled using their respective median values, as the
median is less affected by outliers and provides a robust estimate of
central tendency. Infinite values, both positive and negative, were
then replaced with NaN (Not a Number) to handle computational
anomalies, as these “infinite” values can cause problems in analysis
and model training, where most algorithms cannot handle them
(Table 30).

After cleaning, the dataset’s categorical target variable (label) was
analyzed to identify different types of network traffic, including both
benign and various attack categories. To simplify the analysis, attack
labels were grouped into broader categories (e.g., DoS, DDoS, Brute
Force, Web Attack, etc.) using a mapping dictionary, and a new
column named Attack Type was created to store these grouped labels.
Finally, the Attack Type column was numerically encoded using a
label encoder, producing a new feature (Attack Number) suitable for
algorithms (Table 31).

8.2 Feature mapping

During the feature engineering stage, a correlation analysis was
performed to identify features that exhibited a positive relationship with
the target variable, Attack Number. A correlation matrix was computed,
and attributes with correlation coeflicients greater than zero and less
than one were selected as positively correlated features, indicating their
potential relevance in predicting attack behavior. Additionally, columns
containing only a single unique value were identified and removed from
the dataset, as such features do not contribute any variability or
discriminative power to the model. Eliminating these constant-value
columns helps reduce data redundancy and improves computational
efficiency during training (Table 32).

To further reduce dimensionality and improve computational
efficiency,  Incremental  Principal

Component  Analysis

(IncrementalPCA) was applied to the scaled feature set.
IncrementalPCA was chosen over standard PCA due to its ability to

process large datasets in smaller batches, thereby reducing memory
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usage while preserving essential variance information. The number of
principal components was set to half the number of original features to
maintain a balance between information retention and dimensionality
reduction. The model was trained iteratively using mini-batches of 500
samples, and the transformed feature space was generated to represent
the principal components (PCs). A new dataset was created from these
components, with each principal component labeled sequentially (e.g.,
PC1 and PC2), and the corresponding Attack Type values were
appended to preserve the target variable for subsequent modeling.

8.3 Result and analysis

The (Stacked Ensemble_1 and Stacked Ensemble_2) models were
successfully generalized on the new dataset. The results indicate their
robustness in accurately classifying diverse attack patterns not seen
during training. The high-performance metrics on CICIDS2017
suggest that these stacked ensemble models are capable of effectively
detecting multiple attack types in real-world network environments,
confirming their potential utility for ongoing cybersecurity defense,
as shown in Table 33. Stacked Ensemble_2 demonstrated better
model generalization over Stacked Ensemble_l1, performing
exceptionally well across all metrics and making it suitable for
cyberattack detection.

Additionally, we conducted an experiment to evaluate the impact
of synthetic oversampling on model behavior by comparing
two pipelines:

- Training on the original imbalanced dataset (No SMOTE)
- Training after applying SMOTE to the training set only (SMOTE).

Because the full dataset is extremely large and contains classes
with very low sample counts, we first constructed a balanced and
computationally manageable subset by capping large classes at 100,000
samples while retaining all minority classes with fewer than 200
samples. This approach ensured that each class had enough instances
for both stratified splitting and SMOTE to operate without errors. We
included k_neighbors = 3 to avoid synthetic sample generation errors
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TABLE 27 A details analysis about component contribution in detecting ICS and loT attacks.

Model setup Number of Accuracy Precision Recall Fl-score

features

Base model:

- No SMOTE
- No Feature Engineering (152,196, 34) 0.89% 0.87% 0.87% 0.87%
- No hyperparameter Tuning

- No Grid Search

DT
+ Data pre-processing

+ Feature Engineering (153,264, 68) 0.96% 0.93% 0.95% 0.93%
+SMOTE

All + Hyperparameter Tuning
(153,264, 68) 96% 95% 96% 95%
(Our Experiment)

Base model:

- No SMOTE
- No Feature Engineering (152,196, 34) 0.90% 0.88% 0.88% 0.88%
- No hyperparameter Tuning

- No Grid Search

+Data pre-processing
+ Feature Engineering (153,264, 68) 0.96% 0.94% 0.95% 0.94%
+ SMOTE

All + Hyperparameter Tuning
(153,264, 75) 96% 95% 96% 95%
(Our Experiment)

Base model:

- No SMOTE
- No Feature Engineering (152,196, 34) 0.34% 0.23% 0.30% 0.25%
- No hyperparameter Tuning

Logistic - No Grid Search

Regression +Data pre-processing
+ Feature Engineering (153,264, 68) 0.32% 0.35% 0.33% 0.31%
+SMOTE

All + Hyperparameter Tuning
(153,264, 75) 83% 84% 83% 83%
(Our Experiment)

Base model:

- No SMOTE
- No Feature Engineering (152,196, 34) 0.90% 0.88% 0.88% 0.88%
- No hyperparameter Tuning

- No Grid Search

Baggin,
gsing +Data pre-processing

+ Feature Engineering (153,264, 68) 0.96% 0.93% 0.95% 0.94%
+ SMOTE

All + Hyperparameter Tuning
(153,264, 68) 94% 91% 93% 91%
(Our Experiment)

Base model:

- No SMOTE
- No Feature Engineering (152,196, 34) 0.89% 0.87% 0.87% 0.87%
- No hyperparameter Tuning

- No Grid Search

AdaBoost .
+Data pre-processing

+ Feature Engineering (153,264, 68) 0.96% 0.93% 0.95% 0.94%
+ SMOTE

All + Hyperparameter Tuning
(153,264, 68) 54% 54% 54% 43%

(Our Experiment)

(Continued)
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TABLE 27 (Continued)

Model setup Number of Accuracy Precision Recall Fl-score

features

Base model:

- No SMOTE
- No Feature Engineering (152,196, 34) 0.91% 0.91% 0.89% 0.89%
- No hyperparameter Tuning

- No Grid Search

XGboost
+Data pre-processing

+ Feature Engineering (153,264, 68) 0.97% 0.95% 0.96% 0.95%
+SMOTE

All + Hyperparameter Tuning
(153,264, 68) 96% 96% 96% 95%
(Our Experiment)

Base model:

- No SMOTE
- No Feature Engineering (152,196, 34) 0.06% 0.27% 0.06% 0.06%
- No hyperparameter Tuning

- No Grid Search

LGBM
+Data pre-processing

+ Feature Engineering (153,264, 68) 0.97% 0.95% 0.96% 0.95%
+ SMOTE

All + Hyperparameter Tuning
(153,264, 68) 96% 95% 96% 95%
(Our Experiment)

Base model:

- No SMOTE
- No Feature Engineering (152,196, 34) 0.88% 0.87% 0.87% 0.87%
- No hyperparameter Tuning

Extra tree - No Grid Search

classifier + Data pre-processing
+ Feature Engineering (153,264, 68) 0.96% 0.94% 0.95% 0.94%
+ SMOTE

All + Hyperparameter Tuning
(153,264, 68) 96% 93% 95% 94%
(Our Experiment)

Base model:

- No SMOTE
- No Feature Engineering (152,196, 34) 0.91% 0.92% 0.88% 0.89%
- No hyperparameter Tuning

Stacked - No Grid Search

Ensemble_1 + Data pre-processing
+ Feature Engineering (153,264, 68) 0.97% 0.94% 0.96% 0.95%
+ SMOTE

All + Hyperparameter Tuning
(153,264, 68) 96% 95% 94% 94%
(Our Experiment)

Base model:

- No SMOTE
- No Feature Engineering (152,196, 34) 0.91% 0.92% 0.88% 0.89%
- No hyperparameter Tuning

Stacked - No Grid Search

Ensemble_2 + Data pre-processing
+ Feature Engineering (153,264, 68) 0.97% 0.94% 0.96% 0.95%
+ SMOTE

All + Hyperparameter Tuning
(153,264, 68) 97% 97% 97% 97%

(Our experiment)
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TABLE 28 Models ablation study on the detecting of ICS and loT attacks.

Model name Ablation scenarios Recall F1 score
Stacked_Ensemble_1 96% 96% 96% 96%
No MetaLearner, Avg
96% 96% 96% 95%
Stacked Ensemble_1 (AdaBoost + XGboost)
Without AdaBoost 96% 96% 96% 96%
Without_XGBoost 47% 38% 47% 40%
Stacked_Ensemble_2 97% 97% 97% 97%
No MetaLearner, Avg (LR,
96% 97% 96% 96%
XGB, LGBM, ExtraTrees)
Stacked Ensemble_2 Without LogisticRegression 96% 97% 96% 97%
Without XGBoost 97% 97% 97% 97%
Without LGBM 96% 96% 96% 96%
Without ExtraTrees 97% 97% 97% 97%

TABLE 29 Shape analysis for all the individual models and proposed models to show important features for each model.

Model name  SHAP analysis for Top 20 feature (Test Model name  SHAP analysis for top 20 feature (Test

data) data)
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TABLE 29 (Continued)

Model name

SHAP analysis for Top 20 feature (Test

data)

Model name
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in minority classes. The comparison included accuracy, precision,
recall, F1-score, AUROC, and particularly the false-positive rate for
the benign class (Table 34).

Many tree-based ensemble methods inherently handle class
imbalance through mechanisms such as weighted impurity
reduction, adaptive boosting of minority errors, and probabilistic
leaf estimation, which enable them to learn minority-class
patterns without requiring explicit oversampling. Because these
models naturally focus on the minority classes, adding synthetic
samples through SMOTE does not introduce additional useful
information; instead, it may introduce noise or overly smoothed
synthetic points. This disrupts decision boundaries and can
increase false positives, especially for the benign class.
Consequently, for strong ensemble learners that already manage
imbalance effectively, SMOTE provides no practical gain and
often reduces overall performance, as demonstrated in
our experiments.

9 Benchmarking of results

Table 35 shows benchmarking of the proposed work against
other related work in the classification of attacks, which is
outlined below.

From benchmarking analysis, most of the work has focused
either on binary classification for one type of attack, such as
Phishing, Malware, Ransomware, DoS, or Port scanning. In

TABLE 30 Data preprocessing for CICIDS2017 generalization task.

Before data preprocessing

After data preprocessing

2,695,162 2,661,918

TABLE 31 Feature mapping for target variable.

10.3389/frai.2025.1685376

addition, one study concentrated on Modbus Network traffic,
specifically for various attacks like man-in-the-middle, Ping DDoS
Flood, Modbus Query Flood, and TCP SYN DDoS Flood, targeting
cyberattack detection. The works reported have utilized limited
datasets and larger datasets, achieving an accuracy of 98-99% with
individual classifiers such as LSTM, 1D CNN-LSTM, and an
Ensemble of LSTM with Decision Tree Classifier. Some studies
have employed ensemble models like Random Forest and Adaboost
algorithms. A baseline model based on the Edge-IIOT dataset
provided 94.61% accuracy with a Deep Neural model, compared
to other models like Decision Tree, KNN, SVM, and Random
Forest. None of the studies have utilized advanced ensemble
models like stacked ensemble models with linear and non-linear
classifiers, combined with model optimization, to achieve higher
accuracy and reduced computational operations for multi-class
classification rather than binary.

This has been addressed in our proposed model, which employs
a stacked ensemble that includes linear and non-linear decision
boundaries (Logistic Regression, XGBoost, LGBM, Extra Trees as
base models, and RFC as the final estimator) with good performance
and reduced computation time. We have optimized models to
reduce computation time, making our work stand out from other
models. Furthermore, our use of a stacked ensemble is novel
compared to existing ensembles like Bagging, Boosting, and
Random Forest, demonstrating improved performance against the
baseline model and reduced computation time. Lastly, our proposed
stacked ensemble performed well in classifying multi-class attacks
compared to other works that focused on binary classification or a
single attack category, such as DDoS or Modbus network traffic.
Our models were also generalized on the CICDOS 2017 dataset for
classifying eight attacks, which is similar to our IIoT dataset,
resulting in excellent performance by Stacked Ensemble_2, as
tabulated in Table 24.

Actual name of the Number of records Mapping Number of records Label encoder
attack
Benign 2,063,255 Benign 2,063,255 0
DdoS 128,016 DDoS 128,016 3
DoS Hulk 172,849
DoS GoldenEye 10,280
DoS 193,733 4

DoS slowloris 5,376
DoS Slowhttptest 5,228
PortScan 90,819 Port Scan 90,819 7
FTP-Patator 5,933

Brute Force 9,152 2
SSH-Patator 3,219
Bot 1953 1953 1
‘Web attack brute force 1,470
Web attack XSS 652 Web Attack 2,143 8
Web attack Sql Injection 21
Infiltration 36 Infiltration 36 6
Heartbleed 11 Heartbleed 11 5
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TABLE 32 Correlation matrix.

All the features

i

Dropped features

1 Bwd_PSH_Flags

2 Bwd_URG_Flags

3 Fwd_Avg_Bytes/Bulk

4 Fwd_Avg_Packets/Bulk
5 Fwd_Avg_Bulk_Rate

6 Bwd_Avg_Bytes/Bulk

7 Bwd_Avg_Packets/Bulk
8 Bwd_Avg_Bulk_Rate

Features with positive correlation with attack number

Features Correlation value
1 1. Flow_Duration 0.21
2 Bwd_Packet_Length_Max 0.43
3 Bwd_Packet_Length_Mean 0.43
4 Bwd_Packet_Length_Std 0.45
5 Flow_IAT_Mean 0.18
6 Flow_IAT_Std 0.33
7 Flow_IAT_Max 0.38
8 Flow_IAT_Min 0.01
9 Fwd_IAT_Total 0.21
10 Fwd_IAT_Mean 0.15
11 Fwd_IAT_Std 0.41
12 Fwd_IAT_Max 0.38
13 Bwd_IAT_Mean 0.01
14 Bwd_IAT_Std 0.16
15 Bwd_IAT_Max 0.12

(Continued)
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TABLE 32 (Continued)

10.3389/frai.2025.1685376

Features with positive correlation with attack number

Features Correlation value
16 Bwd_Packets/s 0.07
17 Max_Packet_Length 0.4
18 Packet_Length_Mean 0.36
19 Packet_Length_Std 0.41
20 Packet_Length_Variance 0.38
21 FIN_Flag_Count 0.23
22 PSH_Flag_Count 0.21
23 ACK_Flag_Count 0.03
24 Average_Packet_Size 0.36
25 Avg_Bwd_Segment_Size 0.43
26 Init_Win_bytes_forward 0.03
27 Active_Mean 0.01
28 Active_Min 0.02
29 Idle_Mean 0.38
30 Idle_Std 0.08
31 Idle_Max 0.38
32 Idle_Min 0.37

TABLE 33 Model generalization.

Models Accura Precision Recall F1 Score FPR ROC
Stacked_Ensemble_1 99.96% 99.96% 99.96% 99.96% 85% 0.01% 99.00% ‘
Stacked Ensemble_2 100% 100% 100% 100% 98% 0% 100% ‘

Classification report—Stacked Ensemble_1

Classification report—Stacked Ensemble_2

Slasses Precision Recall Fl-score Support Precision Recall Fl-score Support
BENIGN 100% 100% 100% 412,651 100% 100% 100% 412,651
Bot 99% 90% 94% 391 100% 99% 100% 391
Brute force 100% 99% 100% 1830 100% 100% 100% 1830
DDo$S 100% 100% 100% 25,603 100% 100% 100% 25,603
Dos 100% 100% 100% 38,747 100% 100% 100% 38,747
Heartbleed 100% 50% 67% 2 100% 100% 100% 2
Infiltration 67% 29% 40% 7 75% 86% 80% 7
Port scan 100% 100% 100% 18,164 100% 100% 100% 18,164
Web attack 100% 100% 100% 429 100% 100% 100% 429
Model performance result after training

Accuracy 100% 497,834 100% 497,834
Macro avg 96% 85% 89% 497,834 97% 98% 98% 497,834
Weighted Avg 100% 100% 100% 497,834 100% 100% 100% 497,834

10 Conclusion and future work

In this study, the dataset contains a total of 157,800 data points
representing 15 types of complex cyberattacks targeting the Oil and
Gas ICS and IoT domain. We performed a comprehensive data
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preprocessing step to extract the most important features, as the data
points were collected from network traffic containing diverse data
types, requiring careful feature engineering to obtain the most useful
information. We then analyzed and compared the performance of
individual machine learning algorithms and ensemble learning
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TABLE 34 Evaluation of the synthetic impact.

Stacked Ensemble_1: without SMOTE

Precision Recall F1 Score

Accuracy

Benign FPR

Data subset size: (404,114, 35)

99.87% ‘ 99.87% ‘ 99.87% ‘ 99.87% ‘ 99.93% ‘ 0.240%
Data Size: (720,000, 35)
99.82% ‘ 99.81% ‘ 99.82% ‘ 99.81% ‘ 95.55% ‘ 0.195%

Stacked Ensemble_2: without SMOTE

Precision

Recall F1 Score

Accuracy

Data Subset Size: (404,114, 35)

Benign FPR

99.99% ‘ 99.99% ‘ 99.99% ‘ 99.99% ‘ 100% ‘ 0.010%

Data Size: (720,000, 35)

99.98% ‘ 99.98% ‘ 99.98% ‘ 99.97% ‘ 97.62% ‘ 0.035%

TABLE 35 Benchmarking of results.

Work Objective Dataset Algorithm
Three supervised ML algorithms: KNN, LR, and RFC for
binary classification (phishing and legitimate).

Abedin et al. Phishing attack 32 attributes and 11,504 instances. The dataset contains both
RFC: P 97%, R 99%, F1 97%

(2020) detection phishing and legitimate website data

LR: P 83%, R 96%, F1 89%
KNN: P 91%, R 94%, F1 95%

Pithawala et al. Short uniform

Dataset 1780 entries with 19 features related to phishing and

Three ML algorithms: naive Bayes (NB), Logistic
Regression (LR), and Random Forest Classifier (RFC)
NB accuracy = 99.4%

cyber-kit datasets

network traffic data, and the final dataset matrix is (30,608,16)

with two classes- Secure and insecure

(2021) resource locators non-phishing URLs.
RF accuracy = 98%
LR accuracy = 96%.
ToT-botnet attack Dataset: 461,043 samples, with 65.07% normal traffic and 34.93%
DT, RE KNN, XGB outperformed LR and GNB, with an
Ahmed and detection using malicious traffic. The dataset consists of 43 features across 6
accuracy over 99% and F1-scores of 0.98-0.99 for binary
Tjortjis (2022) real-time categories: connection activity, DNS, SSL, statistical, HTTP, and
classification - malicious and normal
heterogenous data violation activity
Dataset: Network traffic data from different ICS protocols, such as
Ensemble ML including both traditional (LR, KNN, NB,
Modbus/TCP, Ethernet/IP, and IEC 61850, along with a normal
ICS cyber attack RE ANN, SVM, DT) and DL (RNN, LSTM) for binary
Mubarak et al. baseline and diverse industrial hacking scenarios. Deep packet
detection using classification only (secure and insecure traffic). The
(2021) inspection (DPI) was used to extract metadata features from

ensemble approach resulted in 99.91% prediction

accuracy.

Yeboah-Ofori Classification of

Microsoft Malware Prediction dataset: 4000 entries with 64

columns representing various metadata about the machines and

The C4.5 and C5.0 variants of the DT algorithm

extract 83 features totaling 5,859,085 sample.

(2020) malware attacks Accuracy = 83%
malware infection as a binary class.
AdaBoost algorithm outperformed other machine
Detection Syn flood
Syafiuddin et al. CICDDo0S2019 dataset, which is a dataset of network traffic learning algorithms (RFC, Simple Logistic, and REP Tree)
and UDP Lag attacks
(2023) containing simulated DDoS attacks on 25 different network users | with values above 47.2% for detecting SYN flood and UDP
based on AdaBoost
lag attacks which is binary classification
Integration of LSTM models into an ensemble model.
Dataset: Modbus network traffic, including 5 types of traffic
Then aggregate output using a DT for detection of
Ensemble of deep (clean, man-in-the-middle attack, Ping DDoS Flood attack,
Saharkhizan et al. cyberattack as binary classifier. Ensemble of LSTM
RNN for IoT cyber Modbus Query Flood attack, and TCP SYN DDoS Flood attack).
(2020) accuracy = 99% for a window size of 40 packets for
attacks The dataset was captured in pcap files and pre-processed to

Modbus traffic toward cyberattack detection as a binary

classifier.
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TABLE 35 (Continued)

Work

Alasmari et al.

(2023)

Objective

CNN-LSTM based
Approach for DDoS

Detection

Dataset

CI-CDDo0S2019 dataset contains network traffic data with
400,000 datapoints and 12 different types of DDoS$ attacks labeled
as benign and DDoS.

10.3389/frai.2025.1685376

Algorithm

1D CNN-LSTM model has been used and achieved an
accuracy of 99.51% in detecting DDoS attacks,
outperforming the other ML algorithms tested, which are
naive Bayes (96%), SVM (97.40%), Bayes Net (97%),
Logistic Regression (97%), and Random Forest (99.01%).

Canadian

Institute of

Port-scanning attack

CICIDS2017 dataset: Network attacks with 62 columns and
183,910 instances.

Five ML algorithms: DT, RF, AdaBoost, KNN, and SVM
for port scanning attack as binary classification.

DT accuracy = 99.84%, RF accuracy = 99.75%

classification as Benign and DDoS

Cybersecurity detection Includes network traffic in packet-based and bidirectional flow-
AdaBoost accuracy = 99.64%, KNN accuracy = 99.84%
(2017) based format.
SVM accuracy = 89.61
Two datasets - a real-time dataset captured using a packet sniffer
Huynh et al. DOS Attack on an ESP32 microcontroller, and the CICIoT2023 dataset which | Two algorithms: SVM and LR - for binary classification.
(2023) Detection contains a wider variety of DoS and DDoS attacks for Both SVM and LR accuracy = 99%

Ferrag et al.

(2022)

Baseline model

(Edge-IIoT dataset)

The dataset consists of 157,800 samples across 15 types of attacks
which are categorized into five threat types, including DoS/DDoS
attacks, information Gathering, Man-in-the-Middle attacks,

Injection attacks, and Malware attacks.

Three algorithms: Decision Tree, KNN, Random Forest,
and DNN employed for classification of 15 attacks. Results
in maximum accuracy of 94.61% with Deep Neural,
followed by 79.18% for KNN, 77.61% for SVM, 80.83% for
RFC, and 67.11% for DT.

Proposed work
(Edge IToT
dataset)

Proposed work

The dataset consists of 157,800 samples across 15 types of attacks
which are categorized into five threat types, including DoS/DDoS
attacks, Information Gathering, Man-in-the-Middle attacks,

Injection attacks, and Malware attacks.

Stacked Ensemble_2:

- Accuracy = 97%

- Train time = 54.24 min
- Test Time = 0.97 min
Stacked Ensemble _1:

- Accuracy = 96%

- Train Time = 0.99 min
- Test time = 6.47 min
Model Generalization on CICDDOS 2017
Stacked Ensemble 1:

- Accuracy = 99%

- Precision = 99%

- Recall =99%

- Flscore=99%

- TPR=85%

- FPR=0.001%,

- AUROC =99%
Stacked Ensemble_2:

- Accuracy = 100%

- Precision = 100%

- Recall = 100%

- F1Score = 100%

- TPR=98%

- FPR=0.00

- AUROC = 100%

classifiers, which included Decision Tree, Random Forest, Bagging,
Boosting, Extra Tree, and two proposed stacked ensemble models. The
results showed that the proposed stacked ensemble learning approach,
referred to as stacked ensemble_2, performed better than the stacked
ensemble, other ensemble models, and individual machine learning
models, achieving an average accuracy of 97% in detecting and
classifying the Oil and Gas ICS and IoT attacks. The precision, recall,
and F1 score also performed quite well among stacked ensembles
compared to other ensemble models and individual classifiers.

Frontiers in Artificial Intelligence

Furthermore, the stacked ensemble models that excelled on the IIOT
dataset were generalized on the CICDOS 2017 dataset, demonstrating
excellent performance with stacked ensemble_2 compared to stacked
ensemble_1, achieving 100% accuracy and 100% AUROC.

To further enhance the model’s performance, we utilized the Grid
Search method to optimize the hyperparameters of the ensemble learning
models and ML models. This optimization step improved the models’
ability to accurately detect and classify the various types of cyberattacks
targeting the Oil and Gas ICS and IoT systems. Overall, this study
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demonstrates the effectiveness of the ensemble learning approach in
enhancing the detection and classification of complex cyber threats in the
Oil and Gas ICS and IoT domain, with the optimized models achieving
highly promising results.

Future work for this study will focus on enhancing security measures
for ICS and IoT devices by improving anomaly detection and vulnerability
assessment, with special attention given to refining intrusion detection
algorithms in the oil and gas sector. We aim to expand feature engineering
to include more contextual data from IoT devices to provide deeper
insights and improve model accuracy. Additionally, we will leverage deep
learning techniques, such as LSTM, to enable the identification of
complex patterns within large datasets.

Generative Al can also simulate attack scenarios for testing and
enriching training data to enhance model robustness, thereby increasing
the diversity of base classifiers and further improving detection
effectiveness. The main motivation behind this study is to assist oil and
gas engineers and experts in identifying attacks on ICS and IoT computing
systems, encouraging them to take appropriate countermeasures early on
with the help of high-accuracy models. These models can help detect
malicious attacks that may evade software cybersecurity tools, posing a
significant security risk to all interconnected systems and devices in the
oil and gas sector. As reliance on these technologies grows, advanced
methods for safeguarding ICS and IoT environments become essential,
ensuring the safety and reliability of operations in our increasingly
digital world.
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