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Introduction: The increasing cyber threats targeting industrial control systems 
(ICS) and the Internet of Things (IoT) pose significant risks, especially in critical 
infrastructures like the oil and gas sector. Existing machine learning (ML) 
approaches for cyberattack detection often rely on binary classification and lack 
computational efficiency.
Methods: This study proposes two optimized stacked ensemble models to 
enhance attack detection accuracy while reducing computational overhead. 
The main contribution lies in the strategic selection and integration of diverse 
base models, such as Logistic Regression, Extra Tree Classifier, XGBoost, and 
LGBM, with RFC as the final estimator. These models are chosen to address 
unique characteristics of security datasets, such as class imbalance, noise, and 
complex attack patterns. This combination aims to leverage different decision 
boundaries and learning mechanisms.
Results: Evaluations show that the Stacked Ensemble_2 model achieves 97% 
accuracy with a training and testing computation time of 54 minutes. Stacked 
Ensemble_2, which excelled over the traditional Stacked Ensemble_1, was also 
evaluated on the CICIDS 2017 dataset, achieving an impressive 100% accuracy 
with an AUROC of 99%.
Discussion: The results indicate that the proposed Stacked Ensemble_2 model 
provides a scalable, real-time detection mechanism for securing ICS and IoT 
environments. By proving its effectiveness on unseen data, this model demonstrates 
a significant advancement over traditional methods, offering enhanced accuracy and 
efficiency in detecting sophisticated cyber threats in critical infrastructure sectors.
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1 Introduction

The rapid evolution of IoT and ICS technologies has dramatically reshaped business and 
government functions. By facilitating automation, real-time monitoring, and data-driven decision-
making, these technologies significantly enhance critical infrastructure. However, the increased 
connectivity they bring also poses substantial cybersecurity challenges, highlighting the necessity 
for organizations worldwide to prioritize the protection of industrial operations and sensitive data. 
According to the IoT Analytics “State of IoT—Spring 2023” report, the number of IoT devices 
surged by 18% in 2022, totaling about 14.4 billion active connections. These devices, including 
sensors, actuators, and communication modules, enable seamless data exchange across various 
industries, driving crucial applications in fields such as healthcare, manufacturing, and energy 
(Sinha, 2024; Global Market Insights, Inc., 2019).
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The advent of the Fourth and Fifth Industrial Revolutions has 
resulted in greater connectivity between ICS and IoT systems, enabling 
features such as remote monitoring, automation, and cloud-based 
control. Despite these advancements, traditional cybersecurity tools—
like antivirus programs, firewalls, and Intrusion Detection Systems—
are often insufficient for detecting advanced and sophisticated cyber 
threats targeting these systems. In the oil and gas sector, IoT and ICS 
technologies are employed for tasks such as pipeline vandalism 
detection, digital twin development, reservoir evaluation, and methane 
gas monitoring. However, cybersecurity efforts in this industry have not 
received enough emphasis. Considering the sector’s critical importance 
to the global economy, cyberattacks on oil and gas infrastructure can 
lead to serious repercussions, including operational disruptions, data 
manipulation, and significant financial damage (Ghosh et al., 2022; 
Lukman, 2018; Ochulor, 2024; Knebel et al., 2023; Ali, 2024).

The economic impact of cyberattacks on critical infrastructure is 
substantial. Studies utilizing large language models (LLMs) for 
cyberattack cost estimation highlight the significant financial burdens 
resulting from security breaches (Razavi and Jamil, 2024), while 
research on big data analytics in banking cybersecurity shows how 
attacks can lead to long-term financial and reputational damage 
(Razavi et al., 2023). These insights underscore the urgent need for 
robust cybersecurity frameworks capable of proactively detecting and 
mitigating threats within industrial environments.

Currently, most machine learning (ML) methods for ICS and IoT 
security are limited to binary classification, which differentiates between 
normal and malicious traffic. However, real-world cyber threats are 
often varied and complex, necessitating multi-class classification 
models that can accurately identify and categorize different types of 
attacks. Overcoming this challenge involves employing advanced 
techniques such as feature engineering, hyperparameter optimization, 
and ensemble learning to enhance detection accuracy and enable real-
time threat response (Alsolami et al., 2024).

Despite the crucial role of the oil and gas industry in the global 
economy, cybersecurity in this sector has not received sufficient 
attention. While some research investigates protective strategies for ICS 
and IoT systems, few studies explore comprehensive, machine learning-
based threat detection specifically tailored for this domain. Given the 
potentially devastating financial and operational consequences of 
cyberattacks on critical infrastructure, developing advanced, multi-
class classification models and strengthening cybersecurity frameworks 
are essential for safeguarding these vital industries.

This research aims to enhance cybersecurity in the oil and gas 
industry by developing an optimized stacked ensemble-based machine 
learning model capable of detecting and classifying cyber threats into 
15 attack categories, including:

	•	 DDoS attacks (UDP, ICMP, HTTP, TCP)
	•	 Web-based attacks (SQL Injection, XSS, Uploading)
	•	 Credential and access exploits (Password Attacks, Backdoor, MITM)
	•	 Network and system vulnerabilities (Port Scanning, 

Fingerprinting, Vulnerability Scanners)
	•	 Advanced threats (Ransomware)

To improve detection accuracy, this study applies:

	•	 Feature engineering: Encoding and selecting relevant attributes 
from the Edge-IIoTset dataset, such as IP addresses, frame 
timestamps, and URLs.

	•	 Feature selection: Using variance thresholding to retain only the 
most impactful features.

	•	 Hyperparameter tuning: Optimizing model parameters (e.g., 
kernel, gamma, C, Var smoothing, and weights) through 
Grid Search.

	•	 Ensemble learning optimization: Developing a stacked ensemble 
model and comparing it with Bagging, Boosting, Extra Trees, and 
Random Forest Classifiers to achieve optimal performance.

The main contribution of our approach lies in the strategic 
selection and integration of diverse base models, including LightGBM, 
Extra Trees, and Logistic Regression, which are chosen to address the 
unique characteristics of security datasets, such as class imbalance, 
noise, and complex attack patterns. This curated combination aims to 
leverage different decision boundaries and learning mechanisms, 
thereby enhancing the ensemble’s ability to detect sophisticated threats 
effectively. Furthermore, our work demonstrates significant empirical 
improvements in attack detection accuracy, robustness, and 
interpretability—particularly important for practical 
cybersecurity deployment.

The inclusion of Logistic Regression, for instance, adds an 
interpretable component that provides insights into decision-making 
processes, aiding cybersecurity analysts in understanding attack 
behaviors. In summary, rather than presenting a generic stacking 
approach, our main focus is on the domain-informed design and 
extensive evaluation of these ensemble architectures in real-world ICS 
and IoT security contexts, offering insights and methodologies that 
can be adopted for similar cybersecurity challenges.

This study prioritizes detection over prevention, as cyber threats 
in ICS and IoT environments are constantly evolving. By enhancing 
detection capabilities, our approach minimizes the impact of 
cyberattacks, ensuring greater security for industrial operations and 
critical infrastructure. The model, optimized for high accuracy and 
efficient computation time, was tested on a new, unseen dataset. It 
achieved excellent performance, demonstrating the model’s strong 
ability to generalize effectively to previously unseen data.

The rest of the article is organized as follows. Sections 2 and 3 
provide the background and a literature review relevant to this study. 
Section 4 details the implementation methodology, including dataset 
information, feature engineering, and feature selection techniques. 
Section 5 outlines the proposed approach, detailing the model 
architecture and optimized hyperparameter settings for various 
machine learning algorithms. Section 6 presents experimental results 
and analysis, comparing Stacked Ensemble_1 and Stacked Ensemble_2 
with individual models such as Logistic Regression, dt, bagging, 
boosting, extra tree classifier, and RFC. Section 7 discusses the 
generalization of models on new unseen data, demonstrating the 
effectiveness of model performance in terms of the two stacked 
ensemble models. Section 8 benchmarks the proposed model against 
baseline approaches and existing research. Finally, Section 9 concludes 
with key findings and future research directions.

2 Background

The primary methods for exploring and extracting oil and gas 
resources in any country are onshore and offshore drilling. Onshore 
drilling involves deploying specialized equipment, platforms, and 
infrastructure in land-based environments to access subsurface 
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resources. In contrast, offshore drilling occurs at considerable 
distances from the coast, with rigs operating in water depths ranging 
from about 10 feet to over 10,000 feet, introducing additional 
complexities to the drilling process (Mmrbh, 2022; 
Mohammed, 2024).

The adoption of Industrial Internet of Things (IIoT) technology 
connects intelligent industrial devices with control and management 
platforms to boost operational efficiency and productivity. However, 
this increased connectivity also exposes Industrial Control System 
(ICS) communication protocols to cyber threats, including data theft 
and malware infiltration.

Industrial cyber-physical systems (ICPS) typically consist of three 
main control components: (1) programmable logic controllers (PLCs), 
(2) supervisory control and data acquisition (SCADA) systems, and 
(3) distributed control systems (DCS). The communication networks 
linking these components play a crucial role by connecting devices 
and equipment through various protocols, enabling efficient, system-
wide communication. Nevertheless, this high level of 
interconnectedness makes ICPS attractive targets for cyberattacks 
aimed at disrupting critical operations. Figure 1 depicts a typical ICPS 
architecture in the oil and gas industry (Mohammed, 2024; Galloway 
and Hancke, 2012; Stouffer et al., 2015; Kayan et al., 2022).

Notably, some offshore platforms are now designed as unmanned 
facilities, requiring 100% remote monitoring and control through 
digital networks. This reliance on digital communication has 
introduced new security challenges for these remote and isolated 
offshore operations (Mohammed, 2024; Kristiansen and 
Mæland, 2020).

One common method attackers use to infiltrate industrial 
networks is by exploiting the “Modicon Communication Bus 
(Modbus)” and its variants, which are widely used in the oil and gas 
industry, particularly for pipeline operations. Cybercriminals can gain 
access to remote offshore operations through Modbus, which operates 
on a master–slave or server–client basis. Due to its lack of 

authentication and encryption in the “Modbus TCP protocol,” it 
remains highly vulnerable to cyberattacks (Mohammed et al., 2023).

ICS and IoT often have inherent security vulnerabilities that 
malicious actors can exploit. This section covers common attack types 
that could compromise these industrial systems (Mohammed, 2024; 
Stergiopoulos et al., 2020; Perdomo and Serdyuk, 2021; Bundi and 
Mayieka, 2020):

	 1.	 Malware: The most common attack against ICS, malware 
includes viruses, trojans, and other malicious programs 
designed to damage or disrupt systems.

	 2.	 Ransomware: A high-profile malware attack that locks and 
encrypts critical data, files, or systems, preventing access until 
a ransom is paid (Vaughn, 2025; CISA, 2020; Vejlgaard 
Sørensen, 2023).

	 3.	 Man-in-the-Middle (MITM) attacks: These attacks intercept 
and alter communications, potentially leading to data leakage, 
unauthorized control of PLCs, or the manipulation of actuators 
to change operational states (e.g., closing valves or adjusting 
sensor temperature thresholds; Zhang et al., 2019).

	 4.	 Denial of Service (DoS) attacks: Attackers exploit network 
sniffing techniques to analyze traffic and craft malicious 
packets that flood the network, rendering process control 
requests ineffective.

	 5.	 Injection attacks: Cybercriminals can compromise engineering 
workstations in control centers to manipulate legitimate 
commands, causing pumps, actuators, or other ICS 
components to behave improperly, potentially leading to 
catastrophic system failures.

	 6.	 Phishing attacks: Social engineering tactics deceive users into 
revealing sensitive information or credentials, which attackers use 
to compromise IoT devices or ICS systems. Studies show that 43% 
of cyberattacks result from a lack of end-user awareness, making 
phishing a significant attack vector (Bundi and Mayieka, 2020).

FIGURE 1

Example of typical components of ICPS in the oil and gas sector.
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Over the years, ICS and IoT have witnessed significant evolution 
in both the sophistication of attacks and their potential 
consequences. Table 1 provides an overview of historical threats, 
vulnerabilities, and attacks on ICS and IoT, highlighting key 
incidents and their impact (Hemsley and Fisher, 2018; Mehdiyev and 
Hashimovv, 2024).

The analysis was conducted using various cybersecurity resources, 
including research studies and published reports. The focus is not 
merely to list cyberattacks but to highlight significant cyber threats 
that have impacted ICS, IoT devices, and critical infrastructure over 
the years amid ongoing technological advancements. While many 
cyber incidents were not explicitly mentioned, their occurrence 
worldwide underscores the rapid evolution of threat actors’ technical 
capabilities. These breaches can result in production losses, increased 
health, safety, and environmental risks, as well as severe reputational 
damage. Therefore, cybersecurity must be a priority, and developing 
a robust attack detection system for early-stage threat identification is 
a crucial step in securing vast and critical sectors such as oil and gas.

3 Literature review (related works)

This review aims to explore and examine the existing research and 
literature surrounding the real-time detection of cyberattacks on 
industrial control systems (ICS) and the Internet of Things (IoT). The 
objective is to identify common themes, evaluate the strengths and 
weaknesses of previous studies, and highlight gaps or unresolved 
issues. This section is organized into parts that provide an overview of 
foundational theories and concepts, highlight employed 

methodologies, discuss key findings, and analyze gaps and limitations 
identified in existing literature.

3.1 Phishing attack detection

Abedin et al. (2020) utilized publicly available datasets from 
Kaggle containing 32 attributes and 11,504 instances, including both 
phishing and legitimate website data. Three supervised machine 
learning (ML) algorithms—K-nearest neighbor (KNN), Logistic 
Regression (LR), and Random Forest Classifier—were used for 
classification. RFC achieved the highest precision (97%) and recall 
(99%), outperforming KNN and LR. However, the study focused 
solely on URL-based phishing detection without considering other 
types of phishing attacks.

Pithawala et al. (2021) used a dataset of 1,780 entries with 19 
features extracted from verified sources of phishing URLs. ML 
classifiers, including naïve Bayes (NB), LR, and RFC, were applied to 
detect phishing in short URLs. NB achieved the highest accuracy 
(99.4%). The study was limited in scope due to its small dataset size 
and focus on a single attack type.

3.2 ICS and IoT cyberattack detection

Ahmed and Tjortjis (2022) used the Ton-IoT dataset, which 
contains 461,043 samples with 43 features across six categories. ML 
models such as LR, Gaussian naive Bayes (GNB), DT, RFC, KNN, and 
Extreme Gradient Boosting (XGBoost) were applied. DT, RFC, KNN, 

TABLE 1  ICS and IoT cyber incidents.

No Year Type Name Desecration

1 2000 Attack Maroochy Water
The “Maroochy” experienced system failures due to a cyberattack that caused the release of more than 265,000 gallons 

of untreated sewage.

2 2010 Malware Night Dragon
Attackers used sophisticated malware to target global oil, energy, and petrochemical companies using remote access 

tools to gain control of computer systems and collect information by compromising ICS and IoT.

3 2012 Campaign
Gas Pipeline Cyber 

Intrusion

ICS-CERT identified an active series of sophisticated cyber-intrusions targeting the natural gas pipeline sector 

involving spear-phishing attacks.

4 2012 Malware Shamoon
Attacked the world’s largest oil producer in Saudi Arabia and the second-largest producer of liquid natural gas in 

Qatar. These were hit by similar malware (Almaiah and Almomani, 2020).

5 2014 Malware Black Energy Malware that targeted human–machine interfaces (HMIs) in ICSs.

6 2014 Attack German Steel Mill
Attack on an unspecified German steel mill. The attackers used advanced tactics like “spear-phishing” to gain access to 

the business and production networks, causing multiple control system failures.

7 2016 Malware Return of Shamoon
Thousands of computers in Saudi Arabia’s civil aviation agency and other Gulf State organizations were wiped. The 

second Shamoon targeted critical infrastructure.

8 2016 Attack
Ukraine Power Grid 

Attack No. 2

Ukraine experienced another major cyberattack on its power grid. Cyberattackers tripped breakers in 30 substations, 

turning off electricity to “225,000” customers by manipulating “SCADA” systems.

9 2016 Attack
Kemuri Water 

Company

Attackers gained access to hundreds of the PLCs used to manipulate control applications and altered water treatment 

chemicals.

10 2017 Attack
TRITON/Trisis/

HatMan

This attack was designed to disrupt critical infrastructure by targeting the safety instrumented systems of electric 

products. This malware represented a concern for its capability to target industrial safety systems in a way that could 

potentially cause physical damage or harm.

11 2021 Attack
DarkSide Attack on 

Colonial Pipeline

Colonial Pipeline suffered a ransomware attack conducted by the DarkSide hacking group. The attack forced the 

largest oil pipeline operator in the US to halt all operations (Beerman et al., 2023).
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and XGBoost outperformed LR and GNB, achieving over 99% 
accuracy. However, multi-class attack classification was not explored.

An “ICS cyber test kit” (Mubarak et al., 2021) was developed to 
generate industrial network traffic data for various attack scenarios. 
The dataset included Modbus/TCP, Ethernet/IP, and IEC 61850 
network traffic. Ensemble ML techniques, including deep learning 
(DL) models (RNN with LSTM), were utilized. The ensemble 
approach achieved a prediction accuracy of 99.91%. However, 
computational complexity and real-time deployment challenges were 
not addressed.

The Microsoft Malware Prediction dataset, containing 4,000 
entries and 64 features, was used. DT algorithm variants (C4.5 and 
C5.0; Yeboah-Ofori, 2020) were applied to predict malware infections. 
The DT model effectively detected cyberattacks but was not compared 
with other ML models, and the dataset size was relatively small.

3.3 DDoS attack detection

The authors of this work applied the AdaBoost algorithm 
(Syafiuddin et al., 2023) to detect SYN flood and UDP lag attacks 
using the CICDDoS2019 dataset. AdaBoost outperformed other ML 
models but lacked a detailed analysis of feature selection and 
hyperparameter tuning.

There has also been an analysis of Modbus (Saharkhizan et al., 
2020) network traffic with five attack types (MITM, Ping DDoS, 
Query Flood, TCP SYN, Helvetica Neue Flood). An ensemble model 
combining multiple LSTM architectures with a Decision Tree achieved 
over 99% accuracy. However, the study was limited to the Modbus 
protocol, and computational efficiency for resource-constrained IoT 
devices was not evaluated.

Research in Alasmari et al. (2023) used the CI-CDDoS2019 
dataset (400,000 datapoints) and proposed a CNN-LSTM model for 
DDoS detection. The CNN-LSTM model outperformed other ML 
models, achieving 99.51% accuracy. However, preprocessing steps and 
computational complexity were not thoroughly analyzed.

3.4 Multi-attack detection

Works in Canadian Institute of Cybersecurity (2017) utilized the 
CICIDS2017 dataset, which contains 183,910 instances across multiple 
attack types. Supervised ML models (DT, RFC, AdaBoost, KNN, 
SVM) were applied, with DT achieving the highest accuracy (99.84%). 
The study focused exclusively on port-scanning attack detection 
without extending to other attack types.

Works in Huynh et al. (2023) used real-time data captured from 
an ESP32 microcontroller and the CICIoT2023 dataset for DoS and 
DDoS attack detection. SVM and LR models achieved 99% accuracy. 
However, the dataset was limited to a single attack type, and feature 
engineering was minimal. Table 2 provides a summary of the reviewed 
literature, highlighting key datasets, models, and findings.

Despite advancements, several challenges remain in applying ML 
and DL techniques for ICS and IoT cybersecurity. While these models 
effectively detect and classify cyberattacks by learning patterns and 
extracting meaningful features, existing studies exhibit key limitations. 
Many focus on binary classification, restricting their ability to detect 
diverse and evolving threats. Additionally, reliance on limited datasets 

fails to capture the complexity of real-world cyber threats. Gaps in 
data preprocessing, feature selection, and optimization further hinder 
performance. Although deep learning ensembles enhance 
classification accuracy, they introduce significant computational 
overhead, posing challenges for real-time deployment in resource-
constrained environments. Addressing these limitations is crucial for 
developing scalable, efficient, and adaptive cybersecurity solutions for 
critical infrastructure.

4 Necessity of multi-class cyberattack 
detection

Enhancing cyberattack detection in ICS and IIoT environments 
requires more effective classification models capable of multi-class 
classification. This study addresses existing limitations by introducing 
a feature engineering approach that encodes critical attributes such as 
URLs and IP addresses, which are essential for accurate classification. 
Additionally, key dataset attributes—including http.request.method, 
http.referer, http.request.version, dns.qry.name.len, mqtt.conack.flags, 
mqtt.protoname, and mqtt.topic—are categorized to improve 
classification performance.

Beyond feature engineering, feature selection techniques are 
employed to identify the most relevant attributes, optimizing model 
performance for detecting malicious behavior patterns in ICS and 
IIoT datasets. This paper categorizes cyberattacks into five distinct 
groups, each with unique characteristics and impacts, emphasizing the 
need for tailored detection strategies. A robust multi-class 
classification model strengthens industrial security by accurately 
identifying and mitigating diverse threats. Table 3 summarizes the 
varying impacts of each attack type and their detection priority.

This study presents optimized stacked ensemble models (Stacked 
Ensemble_1 and Stacked Ensemble_2) for classifying 15 distinct types 
of malicious behavior in ICS and IIoT environments. Designed to 
enhance accuracy while minimizing computational costs, these 
models are evaluated against other optimized approaches, including 
bagging, boosting, and individual classifiers. A comprehensive 
analysis further demonstrates the improvements achieved by the 
proposed methodology compared to previous studies.

5 Methodology implementation

5.1 Dataset description

The Edge-IIoT dataset is a comprehensive and realistic 
cybersecurity resource for IoT and IIoT applications, publicly available 
through IEEE. Generated using a purpose-built IoT/IIoT testbed, it 
encompasses a large and representative set of devices, sensors, 
protocols, and cloud/edge configurations from over 10 types of IoT 
devices. The dataset identifies and analyzes 14 attacks targeting IoT 
and IIoT connectivity protocols, categorized into five threat types: 
DoS/DDoS attacks, Information Gathering, Man-in-the-Middle 
attacks, Injection attacks, and Malware attacks (Ferrag et al., 2022). It 
is ranked in the top 1% of datasets in the Web of Science.

The dataset consists of 63 columns capturing various data types 
relevant to IIoT and IoT systems, as well as potential attack 
scenarios. The distribution of 157,800 samples across 15 attack 
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TABLE 2  Summary of previous works on detection of ICS and IoT cyber attacks.

Work Objective Dataset Algorithm Limitation of the 
study

Abedin et al. (2020)

Phishing attack detection 32 attributes and 11,504 

instances. The dataset contains 

both phishing and legitimate 

website data.

Three supervised ML algorithms: 

KNN, LR, and RFC.

- Use of a small dataset

- Binary classification (two 

class)

Pithawala et al. (2021)

Short uniform resource 

locators

Dataset 1780 entries with 19 

features related to phishing and 

non-phishing URLs

Three ML algorithms: naive 

Bayes (NB), Logistic Regression 

(LR), and Random Forest 

Classifier (RFC)

- Use of a small dataset

- Binary classification (two 

classes)

Ahmed and Tjortjis (2022)

IoT-Botnet attack detection 

using real-time heterogenous 

data

Dataset: 461,043 samples, with 

65.07% normal traffic and 

34.93% malicious traffic. The 

dataset consists of 43 features 

across 6 categories: connection 

activity, DNS, SSL, statistical, 

HTTP, and violation activity

Data preprocessing, feature 

engineering, and performance of 

several supervised ML 

algorithms: LR, GNB, DT, RF, 

KNN, and XGB.

DT, RFC, KNN, and XGB 

outperformed LR and GNB, with 

an accuracy over 99% and F1-

scores of 0.98–0.99

Binary classification (two 

classes)

Mubarak et al. (2021)

ICS cyber attack detection 

using cyber-kit datasets

Dataset: Network traffic data 

from different ICS protocols, 

such as Modbus/TCP, Ethernet/

IP, and IEC 61850, along with a 

normal baseline and diverse 

industrial hacking scenarios. 

Deep packet inspection (DPI) 

was used to extract metadata 

features from network traffic 

data and the final dataset matrix 

is (30,608,16).

Ensemble ML including both 

traditional (LR, KNN, NB, RFC, 

ANN, SVM, DT) and DL (RNN, 

LSTM). The ensemble approach 

resulted in 99.91% prediction

Complexity and diversity of ICS 

not captured

- Binary classification as secure 

and insecure

- No details about model 

performance

Yeboah-Ofori (2020)

Classification of malware 

attacks

Microsoft Malware Prediction 

dataset: 4000 entries with 64 

columns representing various 

metadata about the machines 

and malware infections

The C4.5 and C5.0 variants of 

the DT algorithm

Accuracy = 83%

- One ML algorithm

- Use of a small dataset

- Binary Classification (two 

classes)

Syafiuddin et al. (2023)

Detection Syn flood and UDP 

lag attacks based on AdaBoost

CICDDoS2019 dataset, which is 

a dataset of network traffic 

containing simulated DDoS 

attacks on 25 different network 

users

AdaBoost algorithm 

outperformed with other 

machine learning algorithms 

(RFC, Simple Logistic, and REP 

Tree.) with values above 47.2% 

for detecting SYN flood and 

UDP lag attacks

No details about feature 

selection and hyperparameter 

tuning

Binary classification only

Saharkhizan et al. (2020)

Ensemble of Deep RNN for 

IoT cyber attacks

Dataset: Modbus network 

traffic, including 5 types of 

attack (man-in-the-middle 

attack, Ping, DDoS Flood attack, 

Modbus Query Flood attack, 

and TCP SYN DDoS Flood 

attack) The dataset was captured 

in pcap files and pre-processed 

to extract 83 features totaling 

5,859,085 samples

Integration of LSTM models into 

an ensemble model. Then 

aggregate output using a DT. 

Ensemble of LSTM 

accuracy = 99% for a window 

size of 40 packets

Evaluated only for Modbus 

protocol traffic for cyberattack 

detection

- Computational overhead of DL 

is a concern for IoT devices

(Continued)
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types is shown in Table 4 and Figure 2. Prior to data analysis for 
classification, specific preprocessing steps are necessary to prepare 
the dataset for model training. These steps involve cleaning, 
transforming, and organizing the data to ensure it is suitable for 
modeling. The preprocessing approach depends on the data 
characteristics and modeling objectives. The goal is to align the 
data with the model and ensure precise outcomes. This includes 
actions such as rescaling frames to improve small object detection 
and managing redundant frames to prevent overfitting and 
enhance accuracy. To maintain data quality, essential cleaning 
steps are first performed, including handling missing values, 
removing duplicates, standardizing formats, and resolving other 

data quality issues. These procedures ensure that the data is 
accurate, complete, and consistent, making it reliable for analysis 
and decision-making.

5.2 Feature engineering

One of the columns in the Edge-IIoTset dataset, ‘frame.time,’ 
indicates the arrival time of data. Initially, the data type of this column 
was an object, so it was converted to a datetime data type. This 
conversion ensures that the ‘frame.time’ column contains valid and 
consistent datetime values, which is essential for subsequent data 

TABLE 2  (Continued)

Work Objective Dataset Algorithm Limitation of the 
study

Alasmari et al. (2023)

CNN-LSTM based approach 

for DDoS detection

CI-CDDoS2019 dataset contains 

network traffic data with 

400,000 datapoints and 12 

different types of DDoS attacks 

as well as benign traffic

CNN-LSTM model has been 

used and achieved an accuracy 

of 99.51% in detecting DDoS 

attacks, outperforming the other 

ML algorithms tested

No information or details about 

the preprocessing steps that 

have been done on the data.

No details about the 

computational complexity of the 

CNN-LSTM model. Binary 

classification as Benign and 

DDoS

Canadian Institute of 

Cybersecurity (2017)

Port-scanning attack detection CICIDS2017 dataset: Network 

attacks with 62 columns and 

183,910 instances.

Includes network traffic in 

packet-based and bidirectional 

flow-based format

Five ML algorithms: DT, RFC, 

AdaBoost, KNN, and SVM.

The study focused only on 

detecting the Port-Scanning 

attack as 0 and 1. Evaluated the 

performance of the algorithms 

on other types of attacks present 

in the CICIDS2017 dataset

Huynh et al. (2023)

DOS attack detection Two datasets - a real-time 

dataset captured using a packet 

sniffer on an ESP32 

microcontroller, and the 

CICIoT2023 dataset which 

contains a wider variety of DoS 

and DDoS attacks.

Two algorithms: SVM and LR - 

for binary classification. Both 

SVM and LR accuracy = 99%

Real-time dataset contained 

only a single type of DoS attack, 

which limits the generalizability 

of the models. Feature 

engineering was limited to just 

two features (frame length and 

packet inter-arrival time) for the 

real-time data and seven 

features for the CICIoT2023 

dataset. Binary classification was 

only applied for analysis.

TABLE 3  Attack categorization.

Attack category Description Potential impact Priority for detection

DDoS (Distributed Denial of 

Service)

Overloading system resources to 

cause disruption

Service outages, loss of availability, disruption of ICS 

operations
High

Information Gathering
Unauthorized data collection from 

systems

Leakage of sensitive information, intelligence gathering by 

attackers
Medium

MITM (Man-in-the-Middle)
Intercepting communication between 

systems
Data tampering, unauthorized control of ICS operations High

Injection
Inserting malicious code or data into 

systems
System malfunction, compromise of system integrity High

Malware
Software designed to damage or 

disrupt systems
Data theft, system corruption, operational failure Critical
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analysis and processing. Table 5 illustrates the ‘frame.time’ column 
before and after feature engineering.

The dataset contains four columns representing IP addresses: ‘ip.
dst_host,’ ‘ip.src_host,’ ‘arp.dst.proto_ipv4,’ and ‘arp.src.proto_ipv4,’ all 
initially having an object data type. These need to be converted into 
integers for the model to process them effectively. To achieve this, we 
created a function called ip_to_int(ip) that takes an IPv4 address as a 

string and converts it to its corresponding integer representation. This 
conversion facilitates tasks such as sorting or performing numerical 
comparisons on IP addresses.

The function uses the built-in ipaddress. IPv4Address(ip) from 
Python’s ipaddress module to create an IPv4Address object, which is 
then converted to an integer using the int.() function. If the input is 
not a valid IPv4 address (e.g., addresses like “0.0” or “0”), the 

TABLE 4  Category of threats in edge-IIoTset.

DoS/DDoS Information gathering MITM Injection Malware

TCP SYN Flood DDoS 

attack = 10,247
Port Scanning = 10,071

ARP Spoofing attack + DNS 

Spoofing attack = 1,214

XSS = 10,052 Backdoor attack = 10,195

UDP flood DDoS 

attack = 14,498
OS Fingerprinting = 1,001 SQL injection = 10,311

Password cracking 

attack = 9,989

HTTP flood DDoS 

attack = 10,561 Vulnerability scanning 

attack = 10,076
Uploading attacks = 10,269 Ransomware attack = 10,925

ICMP flood DDoS 

attack = 14,090

Normal 24,301 Total 157,800

FIGURE 2

Example edge-IIoTset features.

TABLE 5  Fields before and after feature engineering.

Feature engineering 
process

Feature name Before feature 
engineering

After feature 
engineering

Change data type “Frame.time” Object Datetime 64

Datetime conversions “Frame.time” 2021 23:24:32.698981000 2021-01-01 23:24:32.698981

Integer conversion “IP address” 192.168.0.128 3,232,235,648

Categorical conversions

‘http.request.method’, ‘http.referer’, ‘http.request.version’, ‘dns.qry.

name.len’, ‘mqtt.conack.flags’, ‘mqtt.protoname’,

and ‘mqtt.topic’

False or True 0 or 1

Missing values in the records All Features (157,800, 63) (142,095, 63)
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ValueError exception is caught in the except block, and the function 
returns 0. This approach ensures a consistent and predictable output 
for invalid IP addresses. Table 5 illustrates the IP addresses before and 
after feature engineering.

Next, is the encoding of the URLs in our dataset. The ‘http.file_data’ 
column consists of different values extracted from the web. To preprocess 
this data, we define a function called extract_text (html) that takes an 
HTML string as input and extracts the text content from it. The function 
creates a BeautifulSoup object from the input HTML using the html.
parser, and then extracts the text content using the soup.get_text() 
method. Once we have extracted the text, it is stored in a variable called 
text_content. From this text_content variable, we then extract two new 
numerical features: text_length (the length of the text content) and word_
count (the number of words in the text content). We convert these two 
new features to the float data type. Finally, we scale the numerical features 
(‘text_length’ and ‘word_count’) using the MinMaxScaler from the 
sklearn.preprocessing module. This scales the features to the range of [0, 
1], which can be useful for machine learning algorithms.

There are some columns in this dataset that can be categorized, such 
as (‘http.request.method’, ‘http.referer’, ‘http.request.version’, ‘dns.qry.
name.len’, ‘mqtt.conack.flags’, ‘mqtt.protoname’, and ‘mqtt.topic’). We 
define a function called encode_text_dummy (df, name) that performs 
one-hot encoding on a text column in each DataFrame. This is a 
preprocessing step for ML models that cannot directly handle categorical 
text data. The one-hot encoding creates a binary column for each unique 
value in the specified column, where a value of True indicates the presence 
of that value and False indicates its absence. This transformation allows 
the model to work with the text data in a numerical format. Table 5 shows 
the categorical conversion before and after preprocessing.

For the target column that we are going to predict, we used the 
LabelEncoder from the sklearn.preprocessing module to encode the 
‘Attack_type’ column in the DataFrame. The LabelEncoder is a useful tool 
for converting categorical variables into a numerical format, which is 
often required for many ML algorithms. Most ML algorithms require 
numerical inputs, and the LabelEncoder provides a straightforward way 

to convert categorical variables into a format that the model can 
understand. After applying the encoding, the ‘Attack_type’ column in the 
DataFrame contains numerical values instead of the original categorical 
values. The model can now treat these values as numerical data and use 
them in the training and prediction processes. Table 6 shows the target 
column before and after label encoding.

5.3 Feature selection

After performing all the preprocessing steps, the initial number of 
features increased to 94 columns. We know that the more features you 
have, the volume of the feature space grows exponentially. This makes 
it increasingly difficult for the model to find patterns and relationships 
in the data. With high-dimensional data, the model may struggle to 
generalize well, which can lead to overfitting and poor performance on 
new, unseen data. Additionally, training machine learning models on 
datasets with many features can be computationally expensive and 
time-consuming.

To address these issues, we dropped unnecessary columns and 
shuffled the data in random order. Shuffling the data can be useful for 
training models to ensure that the training and test sets are representative 
of the overall data distribution. These steps reduced the number of 
features to 75. Next, we performed feature selection using the Variance 
Threshold method to remove constant or near-constant features from 
the dataset, which helps ensure the reliability of the data. The reason for 
choosing the variance threshold is that it is computationally the simplest 
and fastest method. It evaluates each feature based solely on its variance 
and eliminates those with low variance, making it a quick preprocessing 
step. This variance threshold does not require training or model fitting 
and works directly with the dataset, making it much faster in terms of 
execution compared to other methods like Recursive Feature 
Elimination. Additionally, the Variance Threshold is very fast and 
requires minimal tuning, making it suitable for large datasets, which fits 
our Edge-IIoT dataset well.

TABLE 6  Target column before and after label encoding.

“Attack type” before label encoding “Attack type” after label encoding

Backdoor 10,195 0 10,195

DDoS_HTTP 10,561 1 10,561

DDoS_ICMP 14,090 2 14,090

DDoS_TCP 10,247 3 10,247

DDoS_UDP 14,498 4 14,498

Fingerprinting 1,001 5 1,001

MITM 1,214 6 1,214

Normal 24,301 7 24,301

Password 9,989 8 9,989

Port_Scanning 10,071 9 10,071

Ransomware 10,925 10 10,925

SQL_injection 10,311 11 10,311

Uploading 10,269 12 10,269

Vulnerability_scanner 10,076 13 10,076

XSS 10,052 14 10,052
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We started by separating the dataset into features (X) and the target 
variable (Y). The X variable contains all the columns except the “Attack_
type” column, which is assigned to Y. The threshold parameter was set to 
0.00001, meaning that any feature with a variance less than or equal to this 
value would be considered constant and removed. A list of column names 
identified as constant or near-constant by the variance threshold object 
was then dropped from the dataset, as shown in Table 7.

On the other hand, the number of features increased during the 
preprocessing steps, based on some previous studies that suggest 
increasing the number of features by simplifying the value of columns 
to Boolean-like categorical sections can positively impact models. This 
approach can reduce the sparsity of the data, which is particularly 
helpful when dealing with high-dimensional, sparse data, as it can 
make it easier for the model to find patterns and relationships. 
Additionally, Boolean features are generally more straightforward to 
interpret than complex numerical features, leading to improved 
interpretability. Furthermore, Boolean features are less 
computationally intensive to work with compared to high-cardinality 
features, resulting in faster training and inference times (Singh, 2021).

5.4 Data training

In this study, the dataset was split into training and test sets using 
an 80/20 split (80% for training, 20% for testing). This ensures that the 
model is trained on a sufficiently large portion of the data while still 
having a held-out test set to assess its generalization capabilities. The 
random_state parameter is set to 111 to ensure that the split is 
reproducible, which is important for model evaluation, 
hyperparameter tuning, and model selection.

Additionally, we applied the “Synthetic Minority Over-sampling 
Technique (SMOTE)” to address the issue of class imbalance in the 
training data after splitting the dataset. This means that the training 
portion was oversampled using SMOTE to handle class imbalance, while 
the validation and test sets remained untouched. Applying SMOTE in this 
way prevents data leakage and ensures that the model is evaluated on 
unseen data, providing a fair and reliable estimate of its performance. 
Class imbalance is a common problem where one class (the majority 
class) is significantly more prevalent than the other classes. This can cause 
models to be biased toward the majority class and perform poorly in the 
minority class. The SMOTE algorithm is a powerful technique for 
addressing class imbalance. It works by generating synthetic samples of 
the minority class, effectively increasing the number of instances of the 
minority class in the training data. This helps to balance the class 
distribution and improves the model’s ability to learn from the minority 
class (Satpathy, 2024; Widodo et al., 2024; Alex, 2025).

6 Proposed methodology

The primary objective of this research is to develop an optimized 
and efficient machine learning model to detect the malicious behavior 

of ICS and IoT. To achieve this, a stacked ensemble approach has been 
chosen for developing a high-quality machine learning model that 
effectively produces predictive results.

The motivation behind developing stacked ensembles is that they 
can enhance the accuracy of various machine learning models. In 
addition, the stacked ensemble approach offers numerous advantages 
in improving predictive performance, model diversity, flexibility, and 
interpretability such diversity in stacking can also mitigate the 
problem of overfitting, making stacked ensemble models more robust 
for different types of data. The primary reason for opting for stacking-
based ensembling is that it does not rely on existing methods like 
bagging or boosting but allows meta models to learn the bias patterns 
of the base models and make adjustments to enable the meta model 
to make final predictions using additional data.

The primary focus of this work is not on proposing a novel 
algorithmic architecture but rather on designing and validating an 
effective, domain-informed ensemble framework tailored for 
cybersecurity intrusion detection. Our approach strategically integrates 
well-established machine learning models—XGBoost, LightGBM, 
Extra Trees Classifier, and Logistic Regression—within a stacking 
ensemble to leverage their complementary strengths. For instance, the 
inclusion of Logistic Regression adds an interpretable component that 
provides insights into decision-making processes, aiding cybersecurity 
analysts in understanding attack behaviors. Furthermore, our work 
demonstrates significant empirical improvements in attack detection 
accuracy, robustness, and interpretability, which are particularly 
important for practical cybersecurity deployment. The intention is to 
show how a carefully engineered combination of existing models can 
significantly enhance performance, robustness, and interpretability 
when applied to complex, imbalanced security datasets.

Based on the motivation for the stacked ensemble approach, two 
stacked ensemble models were developed. The Stacked Ensemble_1 
model is a standard approach that was constructed using the Boosting 
algorithm as the base learner, which improves misclassification, 
making it a strong learner. The output from these boosting algorithms 
is handled by a Random Forest Classifier, which serves as a meta-
learner based on a subset of data and features derived from the 
prediction output of the Boosting algorithms (AdaBoost and 
XGBoost). This ultimately enables the model to learn the bias patterns 
of the boosting algorithms and produce the final prediction through 
the Random Forest Classifier, making it a highly effective and 
predictive model (Alsolami et al., 2024).

An improvisation over Stacked Ensemble_1 is Stacked 
Ensemble_2, which has been developed with multiple base models 
and an RFC as the final estimator to improve generalization. 
Combining the predictions of these models helps to reduce error, as 
each base model makes errors in different areas, captures different 
patterns, and structures the dataset in various ways. Stacked 
Ensemble_2 includes a variety of base models, each with different 
learning mechanisms:

	•	 Logistic Regression (linear model)

TABLE 7  Number of features.

Number of features

Original After URL-encoded 
data

After categorical 
conversions

After dropping Feature selection

63 66 94 75 67
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	•	 XGBoost (boosting model)
	•	 LightGBM (gradient boosting model)
	•	 Extra Tree (ensemble of decision trees)

The primary goal of this research is to build a Stacked Ensemble_2 
with different decision boundaries (linear and non-linear) to increase 
the overall diversity of the model, which is key to improving 
performance. If all base models in the ensemble were non-linear or 
tree-based models, they might make similar errors, and the ensemble 
would not be as effective at correcting each other’s weaknesses. Using 
a complex model like XGBoost, LGBM, or Extra Tree Classifier, along 
with a simpler model like LR, will make the final decision process more 
interpretable for the ensemble model. This approach will enable 
Stacked Ensemble_2 to access a wider range of decision-making 
strategies. LR is included as a basic interpretable classifier to establish 
a benchmark or baseline. The final estimator, RFC, will combine 
predictions from both simple and complex models to improve 
robustness and reduce the likelihood of overfitting, demonstrating how 
well this approach using a simple linear model performs before 
adding complexity.

LightGBM contributes efficient gradient boosting and fast 
convergence, Extra Trees provides strong variance reduction through 
randomized tree averaging, and Logistic Regression adds 
interpretability by offering linear decision boundaries that are more 
transparent to analysts. This methodological design allows the 
ensemble to maintain high predictive performance while ensuring 
explainability and operational feasibility. Thus, the contribution of this 
study lies in the systematic integration, optimization, and evaluation 
of these models for real-world ICS and IoT security applications, 
bridging the gap between theoretical model design and deployable 
cybersecurity solutions.

The rationale for selecting Stacked Ensemble_2 over Stacked 
Ensemble_1 is based on its broader capacity to address the 
complexities inherent in ICS and IoT security datasets. While Stacked 
Ensemble_1 combines boosting models (XGBoost and AdaBoost) 
with an RFC to leverage bias reduction and variance stabilization, 
Stacked Ensemble_2 incorporates a more diverse set of base models 
—XGBoost, LightGBM, Extra Trees, and Logistic Regression, with 
RFC as the meta-model.

Stacked Ensemble_2 offers several advantages, including 
LightGBM, which is highly effective at capturing complex attack 
patterns, making it well-suited for identifying sophisticated threats. 
The bagging model (Extra Trees) provides robustness against noisy 
and imbalanced data, common in security datasets with few attack 
instances. Logistic Regression adds interpretability, enabling a better 
understanding of the decision-making process.

The inclusion of LightGBM and Extra Trees offers fast inference 
times, facilitating real-time threat detection. Overall, Ensemble_2’s 
heterogeneity and tailored components make it more effective in 
handling the challenges of ICS and IoT security environments 
compared to Stacked Ensemble_1.

For both stacking configurations, a k-fold cross-validation 
strategy (with k = 5) was applied to generate out-of-fold (OOF) 
predictions from each base model. These OOF predictions were then 
used as input features for the meta-learner, ensuring that the meta-
learner was trained exclusively on data unseen by the base models 
during training. The stack_method = ‘predict_proba’ parameter was 
used so that class probability estimates and discrete class labels were 

passed to the meta-learner, allowing it to learn finer decision 
boundaries and improve overall calibration.

The stacking procedure was repeated under a 5 × 3 repeated 
stratified cross-validation framework. This provided reliable mean and 
standard deviation estimates for all performance metrics and ensured 
consistent evaluation across different data partitions. All experiments 
were conducted on a MacBook Pro (Apple M1, 8 GB RAM) using an 
Anaconda-managed environment.

Through this design, both stacked ensemble models maintained 
strict separation between training and meta-training data, thereby 
preventing data leakage. The resulting performance metrics thus 
reflect true generalization ability rather than overfitting effects caused 
by shared training data between stages.

The stacked ensemble models developed are optimized and 
compared against different ensemble machine learning models, 
such as Bagging, Boosting, Extra Trees, and individual classifiers 
like Logistic Regression and decision tree, to validate the best 
model for detecting malicious behavior in ICS and IoT. The study 
aims to identify the approach for accurately classifying malicious 
instances within the dataset. Figure 3 shows the high-level 
architecture of cyberattack classification in IIOT using the 
optimized machine learning model. The scripts and datasets 
related to this experiment are uploaded to the GitHub repository 
(BATL, 2025).

6.1 Machine learning algorithms

6.1.1 Logistic regression
Several advantages make Logistic Regression (LR) a good 

choice for this paper. The simplicity and interpretability of this 
model make it a great starting point for classification problems, 
where the coefficients from the trained model can be interpreted to 
understand the relationships between features and the target class. 
Additionally, in our paper, we are dealing with large, high-
dimensional datasets, where LR is computationally efficient for 
handling a large number of features. The flexibility of this model 
enables us to adapt it for multi-class classification using strategies 
like the one-vs-rest (OvR) technique. In this model, multiple binary 
classifiers are trained, each for a separate class, allowing the model 
to handle more than two classes effectively, with the class having the 
highest probability chosen as the prediction. To find the best 
parameters for our LR, we started by defining a dictionary that 
specifies the hyperparameters to be tuned using GridSearch CV 
(Nashaat, 2023). The hyperparameters tuned to optimize the LR and 
their roles are shown in Table 8.

6.1.2 Decision tree classifier
Several advantages make decision trees a good choice for this 

paper. They are robust to noise and can tolerate missing information, 
making them suitable for handling various types of attributes, 
including irrelevant and redundant ones. In addition, decision tree 
algorithms have a low computational cost, which makes them a 
practical choice. Like other ML models, we can also improve their 
performance through hyperparameter tuning due to the high number 
of possible configurations and their significant impact on predictive 
performance (Mantovani et al., 2024). To find the best parameters for 
our DT, we started by defining a dictionary that specifies the 
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hyperparameters to be tuned. The hyperparameters tuned to optimize 
the decision tree are shown in Table 9.

6.2 Ensemble learning classifier

Combining multiple models or algorithms to improve the overall 
predictive performance of a system is a powerful machine learning 
technique called Ensemble Learning. The key goal of this ensemble 
approach is to leverage the complementary strengths of multiple base 
models, capture diverse patterns in ICS and IoT data, and produce 
more robust and accurate predictions of cyberattacks. The ensemble 
model aims to outperform individual base classifiers and provide a 
more reliable ICS and IoT attack detection system.

Subsequently, the prediction values would be used by ICS and IoT 
security for monitoring systems and detecting the presence of cyber 
threats. After a comprehensive study of existing models for ICS and 
IoT attack detection, considering their weaknesses identified in the 
reviewed literature, such as poor feature engineering, model 
overfitting, and inability to generalize to new attack types, the 
ensemble learning models in this study were designed to improve 
upon the existing systems with better accuracy. This section of the 
paper presents ensemble learning models for classifying harmful ICS 
and IoT attacks. Different types of ensemble learning techniques are 
discussed: (1) Random Forest Classifier, (2) Bagging, (3) Boosting, (4) 
Extra Trees, and (5) Stacked Ensemble.

6.2.1 Random Forest classifier
The Random Forest model is a flexible learning model that can 

address a wide range of problems by creating multiple “decision trees” 
during the training period and producing an average forecast from all 
the decision trees involved. This model employs various “Exploratory 
Data Analysis (EDA)” methods and achieves a high accuracy score. 
One of its benefits is its ability to process large datasets with high 
complexity. It can analyze numerous input variables and identify the 

most significant ones, making it a useful dimensionality reduction 
model. In addition, the model highlights the importance of variables, 
which is a valuable feature when working with random datasets 
(Banerjee, 2023; Dash, 2023; Borah et al., 2020). To find the best 
parameters for our RF model, we started by defining a dictionary that 
specifies the hyperparameters to be tuned. The hyperparameters tuned 
to optimize the Random Forest are shown in Table 10.

The best hyperparameters found for the RFC model are: (1) the 
criterion ‘entropy’, which was better suited for the specific classification 
problem at hand, as it achieved higher predictive performance, and 
(2) Max_depth ‘None.’ This non-parametric approach can be beneficial 
for datasets with complex patterns, like Edge-IIoTset, that require 
deeper trees for accurate modeling. Allowing trees to grow without a 
depth limit provides the model with more flexibility to capture these 
intricate relationships. However, we need to be cautious about the 
risks associated with this approach, such as overfitting. Thus, 
parameters such as min_samples_split and min_samples_leaf play a 
crucial role in controlling the model’s complexity.

6.2.2 Bagging (bootstrap aggregation)
Bootstrapping is a method that helps decrease the variance of the 

classifier and reduce overfitting by resampling data from the training 
set with the same cardinality as the original set (Akpan et al., 2023). 
In this paper, Bagging is composed of multiple DT Classifiers as the 
base estimators. Each Decision Tree classifier is trained on a different 
bootstrap sample, with the number of base estimators set to 500, the 
maximum depth of each DT Classifier set to 12, and the maximum 
number of training samples for each base estimator set to 300. The 
ensemble captures different patterns and perspectives in the data, and 
the aggregation of their predictions results in a more accurate and 
robust classification model. The max_depth parameter controls the 
complexity of the individual Decision Tree classifiers, while the max_
samples parameter determines the size of the bootstrap samples used 
for training each base estimator. These hyperparameters were tuned 
to achieve the best performance for the ICS and IoT attacks.

FIGURE 3

Proposed high-level architecture for cyberattack classification.
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6.2.3 Boosting
Boosting is an iterative procedure in which each new model seeks 

to improve upon the errors of the previous models. The advantage of 
these algorithms is their adaptability to the strengths and weaknesses 
of the weak learners, focusing more on the samples that are difficult 
to classify correctly. There are several types of boosting algorithms; in 
this paper, we used some of the most well-known and commonly 
used types:

	-	 AdaBoost (Adaptive Boosting): AdaBoost is one of the earliest and 
most influential boosting algorithms, utilized for both regression 
and classification tasks. It operates through a process of iteratively 
training weak learners and adjusting the weights of the training 
samples based on the performance of preceding learners. This 
approach concentrates greater attention on the samples that were 
difficult to classify accurately in previous iterations. The objective 
of the boosting technique is to train subsequent learners using 
adjusted versions of the training data that have been updated based 
on the training effects of the preceding learner. In this way, it is 
possible to significantly reduce the deviation of the model’s 
forecasts from the actual values. Ultimately, the model’s final 
prediction is simply the weighted consensus of all the learners 
(Shabaan and Nemer, 2024).

	-	 XGBoost (Extreme Gradient Boosting): “XGBoost” utilizes decision 
trees that are constructed by starting at the root and recursively 
partitioning the data based on specific criteria. This process 
continues until the desired level of accuracy is achieved. The 
decision tree is trained to minimize the gradient of the loss 
function, which is calculated in each iteration. To prevent 
overfitting and speed up the learning process, the objective 
function is normalized. XGBoost is recognized for its ability to 
model non-linear relationships between variables and its 
exceptional classification capabilities. Consequently, numerous 
researchers have highlighted the potential of machine learning in 
forecasting time series data (Bikmukhametov and Jäschk, 2021; 
Tissaoui et al., 2022). Table 11 shows the hyperparameter settings 
for the three boosting algorithms.

	-	 Light Gradient Boosting (LGB): LightGBM is highly efficient in 
both time and space. It employs histogram-based algorithms that 
accelerate training by reducing the amount of computation 
required. These optimizations make LGB faster and more memory-
efficient compared to other gradient boosting algorithms like 
XGBoost, particularly when handling large datasets. To find the 
best parameters for our LGBM, we started by defining a dictionary 
that specifies the hyperparameters to be tuned using GridSearchCV 
(Verma and Yadav, 2024). For this model, the tuned 
hyperparameters and their roles are shown in Table 12.

6.2.4 Extra tree classifier
The Extra Tree Classifier constructs an ensemble of unpruned 

decision or regression trees using the classical top-down procedure. 
Two main distinctions between this method and other tree-based 
ensemble techniques are that it randomly chooses cut points when 
splitting nodes and utilizes the entire learning sample to grow the 
trees, rather than a bootstrap replica (Baldini, 2024; Geurts et al., 2006; 
Dhingra et al., 2023). The main concept and assumption behind the 
Extra Tree Classifier is a variant of the Random Forest algorithm, 
which aims to improve the performance and robustness of the 

ensemble by introducing additional randomness into the tree 
construction process. Unlike Random Forest, which selects the best 
split among a random subset of features, Extra Trees selects the split 
randomly from all available features. The Extra Tree Classifier 
algorithm is based on three fundamental hyperparameters:

	-	 The number of decision trees in the ensemble, set to 
n_estimators = 1,000

	-	 The number of features to be selected randomly, set to 
random_state = 42

	-	 The maximum number of instances (features) to consider when 
looking for the best split, set to max_features = 7.

6.2.5 Stacked ensemble
The stacking ensemble technique begins with training 

fundamental classifiers using the provided dataset, followed by 
training an integrated classifier to incorporate the predictions of the 
other participants. The stacking approach works by training a meta-
model (also known as the final estimator) on the predictions made by 
the base models. This meta-model learns to optimally combine the 
outputs of the base models or ensemble of classifiers, effectively 
exploiting their complementary strengths and weaknesses to produce 
a more accurate final prediction.

The Stacking Ensemble_1 approach can help overcome the 
limitations of individual classifiers. When a specific classifier fails to 
correctly classify instances from a particular region due to incomplete 
or inaccurate learning of the feature space, the second-level meta-
classifier can learn from the behavior of the other base classifiers and 
use this information to correct the shortcomings of the individual 
models. This allows the stacking ensemble to leverage the strengths of 
the different classifiers and mitigate their individual weaknesses, 
leading to improved overall classification performance. The 
effectiveness of stacking is demonstrated by its capacity to generate 
superior outcomes compared to any individual classifier used. As a 
result, stacking has been employed to enhance the predictions of 
supervised learning tasks for both classification and regression.

In this study, we have designed two Stacked Ensemble models. 
The first, Stacked Ensemble_1, is created by ensembling the AdaBoost 
Classifier and XGBoost Classifier, with the final estimator being the 
RFC. These base models are expected to have different strengths and 
weaknesses, which are desirable for Stacked Ensemble_1. The Random 
Forest Classifier acts as the final estimator, allowing it to learn how to 
optimally leverage the predictions of the base models. The AdaBoost 
and XGBoost models may excel at different types of patterns, while 
the Random Forest serves as the final arbiter, learning to weigh the 
outputs of the base models effectively.

The second model, Stacked Ensemble_2, is constructed by 
combining a variety of base learners: Logistic Regression, XGBoost, 
Light Gradient Boosting, and Extra Trees Classifier. The idea and 
novelty behind Stacked Ensemble_2 are to build models with different 
decision boundaries (linear and non-linear) to increase overall 
diversity and improve performance.

The advantage of Stacked Ensemble_2 is that it uses a complex 
model like XGBoost, LGBM, or Extra Tree while adding a simpler 
model like LR, making the final decision process more interpretable 
for the ensemble model. In this case, Logistic Regression is added as 
a basic interpretable classifier, serving as the baseline. RFC is used as 
a final estimator to combine the predictions of both simple and 
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complex models, improving robustness and reducing the likelihood 
of overfitting. The stacking ensemble approach often outperforms 
individual base models, as it effectively harnesses the complementary 
strengths of the different algorithms to achieve superior predictive 
performance (Table 13).

7 Results and analysis

7.1 Model performance

In this paper, we employed different models and algorithms for 
IoT cyberattack detection and classification systems to understand 
and predict misuse behavior. There are two common approaches used: 
machine learning and ensemble learning models. Both focus on 

applying classification techniques, with the former aiming to classify 
network traffic into different categories and the latter predicting the 
type of incident that occurred.

On the other hand, ensemble learning models utilize a 
combination of multiple machine learning models to learn complex 
patterns and relationships within Oil and Gas ICS and IoT data. In this 
comparison, we examined the performance of ensemble learning 
models in the context of Oil and Gas ICS and IoT cyberattack 
detection and classification systems by evaluating their respective 
accuracies and predictive capabilities. This analysis aimed to gain 
insights into the strengths and limitations of each approach and 
identify the models that provide the most promising results. The 
models examined include Bagging, AdaBoost, Gradient Boosting, 
XGBoost, Extra Tree, Random Forest, and Stacked Ensemble. The 
Edge-IIOT dataset for this work is split into 80% for training and 20% 

TABLE 8  Hyperparameter of logistic regression.

Hyperparameter Description Value tuned 
range

C
Controls the regularization strength, helping prevent overfitting, while a larger value of C allows the model to fit 

the training data more closely.
[0.01, 0.1, 1, 10]

Max Iter Controls the maximum number of iterations the algorithm should run. It helps ensure the model converges. [30, 40, 50]

Penalty
Regularization penalties such as ‘l1’ (Lasso regularization) or ‘l2’ (Ridge regularization). L1 penalty can produce 

sparse models, while L2 penalty generally produces models with smoother decision boundaries.
[“L1,” “L2”]

TABLE 9  Hyperparameter of decision tree.

Hyperparameter Description Value tuned 
range

Criterion
Function to measure the quality of a split and find the best split when building a decision tree, either ‘gini’ 

or ‘entropy’.
Gini or entropy

Max depth
Controls model complexity. A higher max depth allows for more complex trees but can also lead to 

overfitting.
None, 15, 20, 25 (25)

Min samples split
Minimum number of samples required to split an internal node, which can help control model 

complexity.
4. 10. 20 (10)

Min samples leaf Minimum number of samples required to be at a leaf node, which helps control overfitting. 2, 4, 8 (2)

TABLE 11  Hyperparameters of boosting algorithms.

Hyperparameters AdaBoost classifier Extreme gradient boosting (XGBoost)

Parameters Random state = 1
Random state = 1

Learning rate = 0.01

TABLE 10  Hyperparameter of random forest.

Hyperparameter Description Value tuned 
range

Criterion
Function to measure the quality of a split and find the best split when building a decision tree, either ‘gini’ or 

‘entropy’

Gini or Entropy 

(Entropy)

Max depth
Controls model complexity. A higher max depth allows for more complex trees but can also lead to 

overfitting.

None, 15, 20, 25 

(None)

Min samples split Minimum number of samples required to split an internal node; can help to control model complexity. 4. 10. 20 (4)

Min samples leaf Minimum number of samples required to be at a leaf node, which will help to control overfitting. 2, 4, 8 (2)
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for testing. The hardware used for training and testing the different 
machine learning models on the dataset includes Google Cloud GPU.

In this work, the hyperparameters of models were tuned using 
Grid Search. Grid Search is used to perform an exhaustive search over 
a specified parameter grid to find the best combination of 
hyperparameters for the models. It works by systematically evaluating 
every possible combination of the hyperparameters defined in the 
param_grid dictionary, using cross-validation to ensure the robustness 
of the tuning process. This allows us to optimize the model’s 
performance by identifying the best combination of hyperparameters 
for our problem. The number of cross-validation folds used during the 
search was set to cv. = 5. The cross-validation approach employed by 
GridSearchCV splits the data into multiple folds, trains the model on 
each fold, and evaluates its performance using a specified scoring 
metric. This enables the algorithm to identify the set of 
hyperparameters that yields the best average score across the cross-
validation folds, which are considered the “best” hyperparameters for 
the given model (Verma and Yadav, 2024).

Once the grid search is complete, the code retrieves the best 
hyperparameters and the corresponding best score from the 
GridSearchCV object. The main advantages of using GridSearchCV 
are its comprehensiveness and systematic approach to hyperparameter 
tuning, the robustness provided by cross-validation, and the 
abstraction of the manual process of trying different hyperparameter 
combinations, making the code more modular and easier to maintain 
(Nashaat, 2023). Based on the model trained and tested with 
hyperparameters tuned using Grid Search, we will now explain the 
results of all models in detail.

7.1.1 Stacked ensemble models

7.1.1.1 Stacked ensemble 1
A standard Stacked_Ensemble_1 model has been developed, 

where Adaboost and Xgboost are used as base models, with Random 
Forest as the final estimator. The Stacked_Ensemble_1 approach often 
outperforms individual base models, with overall training and testing 
accuracy at 96%. There have been fewer misclassifications, indicated 
by high Precision, Recall, and F1-Score. The model achieves a high 
true positive rate (TPR) of 94%, demonstrating strong sensitivity, and 
a low false positive rate (FPR) of 27%, with very few false alarms. The 
AUROC is 100%, demonstrating excellent discrimination capability 
between classes.

This has been compared with boosting models: AdaBoost, 
XGBoost, and RFC. The AdaBoost classifier shows moderate 
performance with an overall accuracy of approximately 54%, 

indicating limited effectiveness in correct classifications. High rates of 
False Positives and False Negatives, as reflected in the classification 
report’s Precision, Recall, and F1-Score, suggest issues with model 
reliability. The true positive rate (TPR) is 40%, meaning the model 
correctly identifies 40% of actual positives. The false positive rate 
(FPR) is 3%, which is relatively low but still contributes to some 
misclassification. The AUROC is 93%, indicating good discrimination 
ability, though overall accuracy remains modest.

The XGBoost model demonstrates strong performance with the 
following metrics: a training accuracy of 95% and a testing accuracy 
of 96%. The model performed with low false positives and false 
negatives, as shown by high Precision, Recall, and F1-Score. The true 
positive rate (TPR) is 94%, indicating effective identification of 
positive cases. The false positive rate (FPR) is 0.31%, reflecting very 
few false positives. The AUROC is 100%, showing excellent 
discriminative ability. Overall, XGBoost exhibits robust and reliable 
performance, balancing high accuracy with minimal misclassification.

The Random Forest Classifier (RFC) demonstrates excellent 
predictive performance, primarily driven by optimal hyperparameter 
tuning identified through Grid Search. The model achieved an 
accuracy of 96.00%, indicating high overall correctness. It minimized 
misclassifications, as reflected in elevated Precision, Recall, and 
F1-Score. The model achieved a true positive rate (TPR) of 96%, 
showing strong sensitivity in identifying positive cases. In addition, 
the false positive rate (FPR) is 21%, indicating very few false positives. 
Finally, an AUROC of 100% demonstrates outstanding discrimination 
capability. These results suggest that the optimized hyperparameters 
effectively control model complexity, leading to a robust and reliable 
classifier with minimal errors. The hyperparameters of the two models 
have been tuned using Grid Search to obtain the best parameters for 
model training and analysis toward an ensemble approach. The results 
have been tabulated as shown in Table 14.

The analysis of aggregated performance over repeated cross-
validation reveals distinct profiles for each model. AdaBoost, while 
exceptionally fast with an average time of 24.06 (±0.78) seconds, 
consistently delivered very poor accuracy at 20.00% (±0.00), 
rendering its speed irrelevant. In contrast, XGBoost achieved high 
and stable accuracy at 95.28% (±0.10%) with a quick average 
execution time of 33.67 (±0.53) seconds. The Random Forest 
Classifier (RFC) emerged as the top performer in terms of accuracy, 
boasting the highest mean of 97.19% (±0.06%) with remarkable 
consistency; however, its average time of 52.36 (±38.78) seconds 
showed significant variability due to outlier runs. Lastly, the Stacked_
Ensemble_1 yielded a high accuracy of 95.69% (±0.28%), but at a 
substantial computational cost, averaging 1034.71 (±527.70) seconds, 

TABLE 12  Hyperparameters of light gradient boosting algorithm.

Hyperparameter Description Value tuned 
range

Num leaves The number of leaves in each tree. [31, 50, 70]

Learning rate Controls the size of the step the model takes during each boosting iteration. [0.01, 0.1, 0.2]

N estimators The number of boosting rounds or trees to build. [30, 40, 50]

Max depth The maximum depth of each tree. Setting it to −1 means no depth limit. [−1, 5, 10]

Subsample
The fraction of data used to train each individual tree. It can ensure that trees are not too similar to each 

other.
[0.6, 0.8, 1.0]

Colsample bytree The fraction of features to consider when building each tree. [0.6, 0.8, 1.0]
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making it an order of magnitude slower than the other models with 
considerable demand variability (Table 15).

Paired statistical T-tests further elucidated these differences: the 
Stacked_Ensemble_1 was overwhelmingly and significantly superior 
to AdaBoost (P_value = 0.000000) and demonstrated a statistically 
significant, albeit small, improvement over XGBoost (P_
value = 0.000029) in accuracy. However, a critical finding was that the 
Random Forest Classifier statistically significantly outperformed the 
Stacked_Ensemble_1 (P_value = 0.000000), indicating that despite its 
complexity and high computational cost, the ensemble could not 
achieve the accuracy level of the best single model (Tables 16, 17).

7.1.1.2 Stacked Ensemble_2
In terms of Stacked_Ensemble_2, Logistic Regression (a linear 

model), XGBoost (a boosting model), LightGBM (a gradient 
boosting model), and Extra Trees (an ensemble of decision trees) 
were used as base models, with the Random Forest Classifier as the 
final estimator. The stacking ensemble approach often outperforms 
individual base models, as it can effectively harness the 
complementary strengths of the different algorithms to achieve 
superior predictive performance. The overall training and testing 
accuracy were 99 and 97%, respectively. This indicates a good level 
of performance in correctly identifying and classifying the different 
classes. There have been fewer misclassifications, as demonstrated 
by high Precision, Recall, and F1-Score. The model exhibits 
excellent performance with a high TPR of 97%, showing strong 
sensitivity, and a low FPR of 24%, indicating high specificity. The 
AUROC reported is 100%, showcasing outstanding 
discriminating ability.

This has been compared with individual classifiers: Logistic 
Regression (linear model), Boosting (XGBoost, LGB), Extra Trees 
Classifier, and RFC. The Logistic Regression model achieved an 
overall classification accuracy of 83%, correctly classifying 83% of 
instances. The model performs well across all classes but tends to 
classify the more frequent classes more accurately. Fewer 
misclassifications are reflected in high precision, recall, and F1 
scores. A TPR of 81% indicates the model is highly effective at 
correctly identifying positive instances. Area under the receiver 
operating characteristic curve (AUROC) is 100%, signifying 
excellent discrimination ability between classes. The false positive 

rate is 1%, demonstrating the model’s high specificity with minimal 
false alarms.

The LightGBM (LGBM) classifier achieved a high overall 
prediction accuracy of 97%, demonstrating strong performance 
across most classes. The training accuracy was 98%, while the 
testing accuracy was 96%, indicating reliable generalization with 
minimal overfitting. The model shows a true positive rate (TPR) of 
96%, reflecting excellent sensitivity, and a false positive rate (FPR) 
of 21%, which is very low, demonstrating high specificity. The 
AUROC is 100%, indicating exceptional discrimination 
between classes.

The Extra Trees classifier, after hyperparameter tuning via Grid 
Search, achieved impressive results with evaluations on both training 
and testing datasets. The training accuracy was exceptionally high at 
100%, indicating an excellent fit to the training data, while the testing 
accuracy was 96%, demonstrating strong generalization to unseen 
data. The model showed a true positive rate (TPR) of 95%, indicating 
high sensitivity in detecting attacks, and a false positive rate (FPR) of 
27%, reflecting good specificity. Finally, the AUROC is 99%, showing 
outstanding model discriminative ability. The results of stacked 
ensemble_2, along with other algorithms used, are tabulated, which 
include Logistic Regression (linear model), XGBoost (boosting 
model), LightGBM (gradient boosting model), Extra Trees (ensemble 
of decision trees), and Random Forest Classifier (Tables 18, 19).

The aggregated performance data reveals that while Logistic 
Regression delivered poor accuracy at 34.91% (±0.49%) despite a 
relatively slow average time of 111.27 (±0.92) seconds, XGBoost, 
LGBM, Extra Tree Classifier, and RFC all achieved high and 
consistent accuracies ranging from 95.28 to 97.26% within 
efficient timeframes, with RFC being the most time-efficient at 
31.49 (±0.48) seconds. Crucially, the Stacked_Ensemble_2 
recorded the highest mean accuracy of 97.37% (±0.07%) with 
excellent consistency; however, this superior performance came 
at a significant computational cost, averaging an extremely slow 
1234.29 (±9.48) seconds. Paired statistical T-tests confirmed that 
the Stacked_Ensemble_2 statistically and significantly 
outperformed every baseline model in accuracy, including the 
highly performing RFC and LGBM, thereby establishing its 
predictive superiority despite its substantial time investment 
(Tables 20, 21).

TABLE 13  Proposed models architecture.

Modeling building steps Stacked Ensemble_1 Stacked Ensemble_2

Data preprocessing

	-	 Data cleaning

	-	 IPv4 address conversion

	-	 Encoding URL

	-	 One-hot encoding

	-	 Label encoding

	-	 Data cleaning

	-	 IPv4 address conversion

	-	 Encoding URL

	-	 One-hot encoding

	-	 Label encoding

Feature engineering

	-	 Shuffling data

	-	 Variance threshold

	-	 SMOTE (Balances class distributions)

	-	 Shuffling data

	-	 Variance threshold

	-	 SMOTE (Balances class distributions)

Base models
	-	 AdaBoost classifier

	-	 XGBoost classifier

	-	 XGBoost

	-	 LGBM

	-	 Extra trees classifier

	-	 Logistic regression

Final estimator 	-	 Random forest 	-	 Random forest
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7.1.1.3 Bagging
The described bagging ensemble, comprising 500 decision 

trees with a maximum depth of 12 and trained on bootstrap 
samples of 300 instances, exhibits excellent performance in attack 
classification. The high training accuracy (93%) and test accuracy 
(94%) indicate robust generalization. The high precision, recall, 
and F1-score suggest that the model effectively balances false 
positives and false negatives, minimizing misclassification. The 
model exhibits a true positive rate (TPR) of 93% and a false positive 

rate (FPR) of 0.42%. The AUROC is 100%, indicating near-perfect 
discrimination capability between classes. Overall, this setup 
demonstrates a well-tuned ensemble model capable of reliable 
detection in the given classification task, with strong potential for 
deployment in real-world scenarios where high accuracy and low 
false positive rates are critical. The bagging model has been 
compared with the decision tree model.

In terms of the decision tree, where grid search is employed for 
hyperparameter tuning, the search results do not directly mention 

TABLE 14  Classification model results–Stacked_Ensemble 1.

Models Accuracy Precision Recall F1 Score TPR FPR AUROC

Stacked Ensemble_1 96% 95% 94% 94% 94% 27% 100%

AdaBoost 54% 54% 54% 43% 40% 3% 93%

XGBoost 96% 96% 96% 95% 94% 0.31% 100%

Random forest 

classifier
97% 95% 96% 95% 96% 21% 100%

TABLE 15  Mean ± SD over repeated runs and paired t-test for Stacked_Ensemble_1 models.

Models performance of repeated cross-validation
Parameters: n_repeats = 3, n_splits = 5, scoring = ‘accuracy’

Model name Accuracy Time (Sec)

Run 1/3

AdaBoost 20.00% 25.03

XGBoost 95.30% 33.26

RFC 97.20% 24.94

Stacked_Ensemble_1 95.95% 300.16

Run 2/3

AdaBoost 20.00% 24.05

XGBoost 95.27% 33.34

RFC 97.19% 107.20

Stacked_Ensemble_1 95.61% 1516.13

Run 3/3

AdaBoost 20.00% 23.11

XGBoost 95.26% 34.42

RFC 97.18% 24.94

Stacked_Ensemble_1 95.53% 1287.85

Summary over repeated CV

AdaBoost 20.00% ± 0.00 24.06 ± 0.78

XGBoost 95.28% ± 0.10% 33.67 ± 0.53

RFC 97.19% ± 0.06% 52.36 ± 38.78

Stacked_Ensemble_1 95.69% ± 0.28% 1034.71 ± 527.70

Paired statistical t-tests
Stacked_Ensemble_1 vs. Baselines

Model name t_Stat p_value p_value < 0.05

AdaBoost 1005.1017 0.000000 Significant

XGBoost 6.0744 0.000029 Significant

RFC −21.0935 0.000000 Significant
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how ‘gini’ and ‘entropy’ are used. However, the general principle is 
that the decision tree algorithm selects the split attribute that 
maximizes information gain (for entropy) or minimizes the Gini 
index at each node of the tree. This process is carried out in a 
greedy, top-down manner, with the best split chosen at each step 
without considering the long-term impact on the entire tree 
(Banerjee, 2023; Dash, 2023). The decision tree model demonstrates 
strong performance in classifying attacks, achieving an overall 
training accuracy of 98% and a testing accuracy of 96%. The high 
accuracy, along with metrics such as precision, recall, and F1-score, 
indicates a low rate of misclassification. Specifically, the True 
Positive Rate (recall) is 93%, and the False Positive Rate is very low 
at 0.26%. The AUROC of 98% suggests the model has excellent 
discriminative ability between attack and non-attack instances, 
making it a reliable choice for attack classification tasks. The results 
of both the bagging ensemble model and the decision tree are 
tabulated in Tables 22, 23.

7.2 Computation of evaluation metrics 
(FPR, TPR, and AUROC)

To evaluate the classification performance across all attack 
categories, the true positive rate (TPR), false positive rate (FPR), and 
area under the receiver operating characteristic curve (AUROC) were 

computed for each class individually and summarized using macro-
averaging to provide a balanced view of performance across both 
majority and minority classes.

The TPR, equivalent to recall, was computed for each class as the 
ratio of correctly identified positive instances (true positives) to the 
total actual positives (true positives plus false negatives). Similarly, the 
FPR was derived using per-class precision, recall, and support values, 
representing the proportion of negative instances incorrectly classified 
as positive. For each class, true positives, false positives, false negatives, 
and true negatives were estimated using precision and recall 
relationships. The macro-averaged FPR and TPR were then obtained 
by taking the mean values across all 15 classes. The models’ 
performance was calculated as follows:

	 ( ) ( )
= =

+ +
,FP FPFPR TPR

FP TN TP FN

For the AUROC, class-wise probabilities were obtained using 
the model’s predict_proba() function, and the One-vs-Rest (OvR) 
strategy was applied to compute the area under the ROC curve 
for each class. The final AUROC score was calculated using the 
roc_auc_score() function from scikit-learn with multi_
class = ‘ovr’, which aggregates the individual class AUROC values 
into a single representative performance measure. This 

TABLE 16  Classification report for all the Stacked_Ensemble_1 models.

Stacked Ensemble_1
(Test data)

Adaboost
(Test data)

XGboost
(Test data)

Random forest classifier
(Test data)
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combination of metrics provides a comprehensive assessment of 
the model’s discriminative capability across all attack categories, 
accounting for both correctly and incorrectly classified instances 
in the multi-class setting.

Having analyzed the performance of all the machine learning 
models, which included individual classifiers like Logistic Regression 
and decision tree, as well as ensemble machine learning models such 
as Bagging, Boosting, Random Forest, Extra Trees, and two Stacked 
Ensemble models, we examined the performance of the ensemble 
classification models in the context of Oil and Gas ICS and IoT 
cyberattack detection and classification systems by evaluating their 
respective accuracies and predictive capabilities to gain insights into 
the strengths and limitations of each approach in identifying the 
models that provide the most promising results.

The comparative results presented in Table 24 clearly demonstrate 
the superior performance of the stacked ensemble_2 model over 
stacked ensemble_1, ensemble and the individual machine learning 
algorithms for the ICS & IoT attack in oil and gas with an overall 
accuracy of 97%. The next best performing models have been stacked 

ensemble_1, Extra Tree, LGBM, Logistic Regression and Random 
Forest with an accuracy of 96, 96, 96, 97 and 96, respectively. Even 
though the performance of stacked Ensemble_2 was the best, there is 
a need to analyze the computational cost for deployment in real time 
in Edge-IIoT. All the runtime experiments were conducted on a 
MacBook Pro (Apple M1, 8 GB RAM) using an Anaconda-managed 
environment; it was measured using wall-clock time through Python’s 
built-in time module. Specifically, the total training duration was 
calculated by recording the start and end times of the execution 
process using the command (start_time = time.time() and training_
time = time.time() - start_time) before model training and computing 
the elapsed time after completion. The reported runtime reflects the 
total training time rather than per-fold or per-run averages then the 
result was converted to minutes (Table 25).

The unusually long runtime observed for the Logistic Regression 
model (approximately 867 min) is primarily due to the computational 
intensity of exhaustive hyperparameter optimization combined with 
the large, multi-class dataset used in this study Figure 4. The model 
was trained using a GridSearchCV procedure, which systematically 

TABLE 18  Classification model results for Stacked_Ensemble_2.

Models Accuracy Precision Recall F1 Score TPR FPR AUROC

Stacked Ensemble_2 97% 97% 97% 97% 97% 24% 100%

Logistic regression 83% 84% 83% 83% 81% 1% 100%

XGboost 96% 96% 96% 95% 94% 0.31% 100%

LGBM 96% 95% 96% 95% 96% 21% 100%

Extra tree classifier 96% 93% 95% 94% 95% 27% 99%

Random forest 

classifier
96% 95% 96% 95% 96% 21% 100%

TABLE 17  Precision@k per-class performance results for Stacked_Ensemble_1.

Precision@k per-class performance

Class 
name

Stacked Ensemble_1 (%) Adaboost (%) XGboost (%) Random Forest 
classifier (%)

K = 3 K = 5 K = 10 K = 3 K = 5 K = 10 K3 K = 5 K = 10 K = 3 K = 5 K = 10

Backdoor 99.95% 99.95% 100% 0.15% 100% 100% 99.84% 100% 100% 99.84% 99.89% 100%

DDoS_HTTP 99.52% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

DDoS_ICMP 99.96% 100% 100% 99.56% 99.96% 99.96% 99.96% 99.96% 99.9% 99.96% 100% 100%

DDoS_TCP 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

DDoS_UDP 100% 100% 100% 100% 100% 100% 99.96% 99.96% 100% 100% 100% 100%

Fingerprinting 100% 100% 100% 99.39% 100% 100% 100% 100% 100% 99.39% 100% 100%

MITM 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Normal 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Password 100% 100% 100% 99.95% 100% 100% 100% 100% 100% 100% 100% 100%

Port_Scanning 99.59% 99.76% 99.88% 0.11% 100% 100% 99.94% 100% 100% 99.94% 99.94% 100%

Ransomware 99.78% 99.84% 99.94% 100% 100% 100% 99.95% 100% 100% 99.90% 99.90% 100%

SQL_injection 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Uploading 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Vulnerability_

scanner
98.12% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

XSS 99.94% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
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evaluates multiple combinations of hyperparameters—such as 
regularization strength (C), penalty type, and solver choice—across 
several cross-validation folds. This process requires fitting the model 
repeatedly, greatly increasing the total computation time. Additionally, 
the dataset was resampled using SMOTE to address class imbalance, 
further enlarging the training data and intensifying the 
optimization workload.

Classifying 15 attack categories required the use of the one-vs-
rest (OvR) multi-class strategy, where a separate binary logistic 
model is trained for each class. This effectively multiplies the 
number of optimization problems being solved, as each sub-model 
iteratively computes gradient updates over all data points. Given 
that Logistic Regression relies on iterative numerical optimization, 
the presence of a high-dimensional feature space and a large sample 

TABLE 19  Mean ± SD over repeated run and paired t-test for Stacked_Ensembled_2 models.

Models performance of repeated cross-validation
Parameters: n_repeats = 3, n_splits = 5, scoring = ‘accuracy’

Model name Accuracy Time (Sec)

Run 1/3

Logistic regression 35.19% 109.98

XGBoost 95.30% 36.99

LGBM 97.26% 45.21

Extra tree classifier 97.00% 42.41

RFC 97.20% 32.13

Stacked_Ensemble_2 97.38% 1247.70

Run 2/3

Logistic regression 34.95% 111.78

XGBoost 95.27% 37.14

LGBM 97.26% 40.51

Extra tree classifier 96.99% 40.17

RFC 97.19% 30.97

Stacked_Ensemble_2 97.36% 1227.50

Run 3/3

Logistic regression 34.61% 112.04

XGBoost 95.26% 37.60

LGBM 97.25% 43.15

Extra tree classifier 96.97% 39.54

RFC 97.18% 31.37

Stacked_Ensemble_2 97.37% 1227.67

Summary over repeated CV

Logistic regression 34.91% ± 0.49% 111.27 ± 0.92

XGBoost 95.28% ± 0.10% 37.24 ± 0.26

LGBM 97.26% ± 0.07% 42.96 ± 1.92

Extra tree classifier 96.99% ± 0.07% 40.70 ± 1.23

RFC 97.19% ± 0.06% 31.49 ± 0.48

Stacked_Ensemble_2 97.37% ± 0.07% 1234.29 ± 9.48

Paired statistical t-tests
Stacked_Ensemble_1 vs. baselines

Model name t_Stat p_value p_value < 0.05

Logistic regression 469.2706 0.000000 Significant

XGBoost 85.0308 0.000000 Significant

LGBM 10.7371 0.000000 Significant

Extra tree classifier 22.3671 0.000000 Significant

RFC 13.6724 0.000000 Significant
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size substantially increases convergence time. The trade-off on 
accuracy, train and testing time has been tabulated toward trade-off 
as shown in Table 26.

Models like stacked Ensemble_2 achieved top accuracy with 
increased training time and computational cost. For applications where 
training resources or time are limited, simpler models like Decision Trees 
or Bagging provide a good balance of accuracy (~94–95%) and much 
faster training. If rapid inference is critical (e.g., live attack detection), 
models like decision trees, LightGBM, or Random Forest are preferred. 
However, high inference speed often coincides with slightly lower 
accuracy compared to ensemble models like Ensemble_2. For quick 
deployment and iteration, simple models are advantageous; for maximum 

accuracy where training time is less critical, ensemble methods are better. 
Additionally, these stacked ensembles are preferred when training occurs 
on powerful, off-site servers, and inference speed and resource usage on 
the deployment device are less critical. Furthermore, the environment 
allows for longer training periods with acceptable inference latency. 
Otherwise, in severely resource-constrained IoT or edge environments, 
lighter models like stacked Ensemble_1 are more appropriate. In short, 
choosing ensemble models increases accuracy but at the cost of 
computational resources.

The stacked Ensemble_1 model, which includes Extra Tree 
Classifier, Random Forest, and Decision Tree, achieves an 
impressive 96% accuracy with marginal differences. The stacked 

TABLE 20  Classification report for all the Stacked_Ensemble_2 models.

Stacked Ensemble_2
(Test data)

Logistic regression
(Test data)

XGboost
(Test data)

LGBM
(Test data)

Extra tree classifier
(Test data)

Random forest classifier
(Test data)
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ensemble method leverages the complementary strengths of 
multiple base learners, effectively combining their predictive power 
to produce superior results compared to any single model. The 
Stacking Ensemble showcases its ability to intelligently weigh the 
outputs of the base models (AdaBoost, XGBoost, and RF) to arrive 
at the final predictions, outperforming the individual component 
models, as shown in Figure 5.

The stacked Ensemble_2 model achieved an impressive 97% 
accuracy over other models, including Extra Trees, Random Forest, 
XGBoost, LGBM, and AdaBoost. The stacked ensemble method 
effectively combines the complementary strengths of multiple base 
learners to produce superior results compared to any single model. 
The Stacking Ensemble demonstrates its ability to intelligently weigh 
the outputs of both linear and non-linear base models to arrive at the 

final predictions, outperforming the individual component models, as 
shown Figure 6.

This suggests that the detection of oil and gas ICS and IoT systems 
involves complex underlying patterns and relationships that are better 
captured by ensemble methods, which can extract more meaningful 
information from the data by aggregating the diverse perspectives of 
multiple models to detect abnormal behavior before an incident occurs.

The clear superiority of the ensemble models, particularly Stacked 
Ensemble_2, makes them the more appropriate and reliable choices 
for oil and gas ICS and IoT cyberattacks. The ability of ensemble 
methods to harness the collective strengths of multiple algorithms sets 
them apart from individual machine learning models, making them 
the preferred solution for achieving high-performing and robust 
predictions in this context.

FIGURE 4

Training and testing time for each model.
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TABLE 21  Precision@k per-class performance results for Stacked_Ensemble_2.

Precision@k per-class performance

Class 
name

Stacked Ensemble_2 (%) Logistic regression (%) LGBM (%) Extra tree classifier (%)

K = 3 K = 5 K = 10 K = 3 K = 5 K = 10 K3 K = 5 K = 10 K = 3 K = 5 K = 10

Backdoor 100% 100% 100% 93.97% 100% 100% 99.84% 100% 100% 98.76% 98.81% 98.81%

DDoS_HTTP 100% 100% 100% 100% 100% 100% 100% 100% 100% 96.66% 96.66% 96.66%

DDoS_ICMP 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

DDoS_TCP 100% 100% 100% 96.43% 100% 100% 100% 100% 100% 100% 100% 100%

DDoS_UDP 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Fingerprinting 98.85% 98.85% 100% 100% 100% 100% 100% 100% 100% 96.10% 96.10% 98.70%

MITM 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Normal 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Password 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Port_Scanning 99.71% 100% 100% 99.94% 99.94% 100% 99.94% 100% 100% 99.94% 99.94% 100%

Ransomware 99.89% 100% 100% 94.93% 100% 100% 99.94% 100% 100% 98.72% 98.72% 100%

SQL_injection 100% 100% 100% 100% 100% 100% 100% 100% 100% 98.80% 100% 100%

Uploading 100% 100% 100% 100% 100% 100% 100% 100% 100% 97.22% 100% 100%

Vulnerability_

scanner
100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

XSS 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

TABLE 22  Classification model results – bagging.

Models Accuracy Precision Recall F1 Score TPR FPR AUROC

Bagging 94% 91% 93% 91% 93% 0.42% 100%

Decision tree 96% 95% 96% 95% 96% 0.26% 98%

TABLE 23  Precision@k per-class performance results for bagging.

Precision@k per-class performance

Class name Bagging (%) Decision tree (%)

K = 3 K = 5 K = 10 K = 3 K = 5 K = 10

Backdoor 99.22% 100% 100% 99.17% 99.17% 99.17%

DDoS_HTTP 100% 100% 100% 98.57% 98.57% 98.57%

DDoS_ICMP 99.89% 99.96% 100% 99.89% 99.89% 99.89%

DDoS_TCP 100% 100% 100% 100% 100% 100%

DDoS_UDP 100% 100% 100% 100% 100% 100%

Fingerprinting 100% 100% 100% 90.90% 91.51% 99.39%

MITM 100% 100% 100% 100% 100% 100%

Normal 100% 100% 100% 100% 100% 100%

Password 100% 100% 100% 100% 100% 100%

Port_Scanning 99.88% 99.88% 100% 98.45% 98.45% 100%

Ransomware 99.95% 100% 100% 99.100% 99.10% 100%

SQL_injection 100% 100% 100% 99.8% 100% 100%

Uploading 100% 100% 100% 99.50% 100% 100%

Vulnerability_scanner 100% 100% 100% 100% 100% 100%

XSS 100% 100% 100% 100% 100% 100%
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7.3 Component contribution analysis and 
models ablation study

To assess the contribution of each preprocessing and modeling 
component, an ablation study was conducted comparing baseline 
models to versions incorporating feature selection, data preprocessing, 
SMOTE balancing, and hyperparameter tuning. Results demonstrate 
that each step incrementally improved classification performance 
(Table 27).

To assess the contribution of each base classifier within Stacked 
Ensemble_1 and Stacked Ensemble_2, we conducted an ablation 
study. Specifically, we re-trained the stacking model while 
systematically removing one base learner at a time. This allowed us to 

quantify the performance impact of each model on the ensemble’s 
overall accuracy and robustness (Table 28).

From the ablation study, it is clear that for Stacked 
Ensemble_1, Adaboost+Xgboost without the metalearner RFC 
and Xgboost with the metalearner RFC were responsible for 
driving the gain in Stacked Ensemble_1. The configuration 
without Xgboost followed by the metalearner resulted in a low 
gain. Thus, the Xgboost classifier has been the dominant classifier 
driving the gain. In terms of Stacked Ensemble_2, all classifiers 
contributed to the gain, regardless of the presence of the 
metalearner, which is RFC. Additionally, by removing certain 
classifiers while retaining the metalearner, the Stacked 
Ensemble_2 achieved a higher gain.

TABLE 24  Performance of the models in detecting ICS and IoT attacks.

Individual ML models Ensemble models

Algorithm Accuracy Algorithm Accuracy

DT 96%
Bagging 94%

AdaBoost 54%

Logistic regression 83%
XGBoost 96%

LGBM 96%

RFC 96% Stacked Ensemble_1 96%

Extra tree classifier 96% Stacked Ensemble_2 97%

TABLE 25  Classification report for Stacked Ensemble_1 and Stacked Ensemble_1.

Classes no Classification report–Stacked Ensemble_1 Classification report–Stacked Ensemble_2

Precision Recall F1-score Support Precision Recall F1-Score Support

Backdoor 98% 94% 96% 1956 95% 96% 96% 1932

DDoS_HTTP 84% 94% 89% 2,169 90% 93% 92% 2025

DDoS_ICMP 100% 100% 100% 2,835 100% 100% 100% 2,832

DDoS_TCP 100% 100% 100% 2069 100% 100% 100% 2042

DDoS_UDP 100% 100% 100% 2,916 100% 100% 100% 3,005

Fingerprinting 91% 81% 86% 162 62% 86% 72% 160

MITM 100% 100% 100% 71 100% 100% 100% 76

Normal 100% 100% 100% 4,818 100% 100% 100% 4,840

Password 100% 100% 100% 1971 100% 100% 100% 1996

Port Scanning 98% 100% 99% 1781 99% 95% 97% 1755

Ransomware 94% 98% 96% 1920 96% 95% 95% 1916

SQL injection 89% 91% 90% 2066 87% 97% 91% 2079

Uploading 91% 89% 90% 2053 96% 85% 90% 2042

Vulnerability 

scanner
98% 94% 96% 1944 100% 96% 98% 2031

XSS 93% 84% 89% 1922 90% 91% 91% 1922

Model performance result after training

Accuracy 96% 30,653 97% 30,653

Macro avg 96% 95% 95% 30,653 94% 96% 95% 30,653

Weighted Avg 96% 96% 96% 30,653 97% 97% 97% 30,653
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Additionally, model interpretability was enhanced by analyzing 
SHAP values, which revealed that flow-based and packet-related features 
had the highest contribution to distinguishing between types of attacks. 
This analysis provides insight into the model’s decision process and 
reinforces the validity of the selected features (Table 29).

This comprehensive SHAP analysis offers a transparent and 
detailed understanding of how different models arrive at their 
predictions, highlighting both common underlying data patterns and 
algorithm-specific learning strategies. These insights are invaluable for 
model debugging, feature engineering, and enhancing overall trust 
and interpretability in complex machine learning systems.

8 Generalization of the model 
performance

CICIDS2017 dataset contains benign samples and the most 
up-to-date common attacks, resembling true real-world data 

(Canadian Institute of Cybersecurity, 2017). Network attacks 
feature 62 columns and 183,910 instances. The dataset includes 
network traffic in both packet-based and bidirectional flow-based 
formats. For this dataset, the abstract behavior of 25 users was 
modeled based on HTTP, HTTPS, FTP, SSH, and email protocols. 
To validate Stacked Ensemble_1 and 2 for model generalization, we 
chose a dataset similar to the one used in our work. The two stacked 
ensemble models were generalized on a new, unseen dataset for 
attack classification, which included eight attacks: Brute Force FTP, 
Brute Force SSH, DoS, Heartbleed, Web Attack, Infiltration, Botnet, 
and DDoS.

8.1 Data preprocessing

In this stage, several data cleaning and transformation steps were 
applied to the CICIDS2017 dataset to ensure data quality and 
consistency. First, duplicate records were identified and removed to 

TABLE 26  Trade-off on the models between accuracy, training, and testing time in detecting ICS and IoT attacks.

Model Accuracy 
(~%)

Training time Testing 
time

Suitable for

Stacked 

Ensemble_2
97% ~54 min ~1 min Highest accuracy: use if resources and time allow.

Stacked 

Ensemble_1
95% ~1 min ~6.5 min Good balance of performance and efficiency.

Extra trees ~94.75% ~10 min ~0.16 min Fast and robust; suitable for near real-time detection.

LightGBM ~94.9% ~3.46 min ~0.34 min Very fast, efficient; suitable for real-time use.

XGboost 96% 34.68 min 0.00 min
Very fast inference with good balance of accuracy; suitable for applications requiring instant 

decision making.

AdaBoost 54% 23.55 min 0.13 min
Relatively poor performance in the current task. Suggests that inference can be performed quickly 

once the model is trained. Not reliable for critical applications like attack detection.

Random forest ~94–95% ~25 min ~0.01 min Extremely fast inference; good for rapid deployment.

Logistic 

regression
~83% ~867 min (longest) ~0.03 min Highly accurate but costly to train; best for offline.

Decision tree ~94–95% ~0.03 min 0.00 min Very quick; suitable when speed is prioritized.

Bagging ~94–95% ~0.01 min ~0.87 min Fast training/testing; suitable for quick deployment.

FIGURE 5

Comparison of Stacked Ensemble_1 results.
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eliminate redundant entries that could bias the model. Then, the 
missing values in the numerical features ‘Flow_Bytes/s’ and ‘Flow_
Packets/s’ were filled using their respective median values, as the 
median is less affected by outliers and provides a robust estimate of 
central tendency. Infinite values, both positive and negative, were 
then replaced with NaN (Not a Number) to handle computational 
anomalies, as these “infinite” values can cause problems in analysis 
and model training, where most algorithms cannot handle them 
(Table 30).

After cleaning, the dataset’s categorical target variable (label) was 
analyzed to identify different types of network traffic, including both 
benign and various attack categories. To simplify the analysis, attack 
labels were grouped into broader categories (e.g., DoS, DDoS, Brute 
Force, Web Attack, etc.) using a mapping dictionary, and a new 
column named Attack Type was created to store these grouped labels. 
Finally, the Attack Type column was numerically encoded using a 
label encoder, producing a new feature (Attack Number) suitable for 
algorithms (Table 31).

8.2 Feature mapping

During the feature engineering stage, a correlation analysis was 
performed to identify features that exhibited a positive relationship with 
the target variable, Attack Number. A correlation matrix was computed, 
and attributes with correlation coefficients greater than zero and less 
than one were selected as positively correlated features, indicating their 
potential relevance in predicting attack behavior. Additionally, columns 
containing only a single unique value were identified and removed from 
the dataset, as such features do not contribute any variability or 
discriminative power to the model. Eliminating these constant-value 
columns helps reduce data redundancy and improves computational 
efficiency during training (Table 32).

To further reduce dimensionality and improve computational 
efficiency, Incremental Principal Component Analysis 
(IncrementalPCA) was applied to the scaled feature set. 
IncrementalPCA was chosen over standard PCA due to its ability to 
process large datasets in smaller batches, thereby reducing memory 

usage while preserving essential variance information. The number of 
principal components was set to half the number of original features to 
maintain a balance between information retention and dimensionality 
reduction. The model was trained iteratively using mini-batches of 500 
samples, and the transformed feature space was generated to represent 
the principal components (PCs). A new dataset was created from these 
components, with each principal component labeled sequentially (e.g., 
PC1 and PC2), and the corresponding Attack Type values were 
appended to preserve the target variable for subsequent modeling.

8.3 Result and analysis

The (Stacked Ensemble_1 and Stacked Ensemble_2) models were 
successfully generalized on the new dataset. The results indicate their 
robustness in accurately classifying diverse attack patterns not seen 
during training. The high-performance metrics on CICIDS2017 
suggest that these stacked ensemble models are capable of effectively 
detecting multiple attack types in real-world network environments, 
confirming their potential utility for ongoing cybersecurity defense, 
as shown in Table 33. Stacked Ensemble_2 demonstrated better 
model generalization over Stacked Ensemble_1, performing 
exceptionally well across all metrics and making it suitable for 
cyberattack detection.

Additionally, we conducted an experiment to evaluate the impact 
of synthetic oversampling on model behavior by comparing 
two pipelines:

	-	 Training on the original imbalanced dataset (No SMOTE)
	-	 Training after applying SMOTE to the training set only (SMOTE).

Because the full dataset is extremely large and contains classes 
with very low sample counts, we first constructed a balanced and 
computationally manageable subset by capping large classes at 100,000 
samples while retaining all minority classes with fewer than 200 
samples. This approach ensured that each class had enough instances 
for both stratified splitting and SMOTE to operate without errors. We 
included k_neighbors = 3 to avoid synthetic sample generation errors 

FIGURE 6

Comparison of Stacked_Ensemble_2 results.
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TABLE 27  A details analysis about component contribution in detecting ICS and IoT attacks.

Model 
name

Model setup Number of 
features

Accuracy Precision Recall F1-score

DT

Base model:

- No SMOTE

- No Feature Engineering

- No hyperparameter Tuning

- No Grid Search

(152,196, 34) 0.89% 0.87% 0.87% 0.87%

+ Data pre-processing

+ Feature Engineering

+ SMOTE

(153,264, 68) 0.96% 0.93% 0.95% 0.93%

All + Hyperparameter Tuning

(Our Experiment)
(153,264, 68) 96% 95% 96% 95%

RFC

Base model:

- No SMOTE

- No Feature Engineering

- No hyperparameter Tuning

- No Grid Search

(152,196, 34) 0.90% 0.88% 0.88% 0.88%

+Data pre-processing

+ Feature Engineering

+ SMOTE

(153,264, 68) 0.96% 0.94% 0.95% 0.94%

All + Hyperparameter Tuning

(Our Experiment)
(153,264, 75) 96% 95% 96% 95%

Logistic 

Regression

Base model:

- No SMOTE

- No Feature Engineering

- No hyperparameter Tuning

- No Grid Search

(152,196, 34) 0.34% 0.23% 0.30% 0.25%

+Data pre-processing

+ Feature Engineering

+ SMOTE

(153,264, 68) 0.32% 0.35% 0.33% 0.31%

All + Hyperparameter Tuning

(Our Experiment)
(153,264, 75) 83% 84% 83% 83%

Bagging

Base model:

- No SMOTE

- No Feature Engineering

- No hyperparameter Tuning

- No Grid Search

(152,196, 34) 0.90% 0.88% 0.88% 0.88%

+Data pre-processing

+ Feature Engineering

+ SMOTE

(153,264, 68) 0.96% 0.93% 0.95% 0.94%

All + Hyperparameter Tuning

(Our Experiment)
(153,264, 68) 94% 91% 93% 91%

AdaBoost

Base model:

- No SMOTE

- No Feature Engineering

- No hyperparameter Tuning

- No Grid Search

(152,196, 34) 0.89% 0.87% 0.87% 0.87%

+Data pre-processing

+ Feature Engineering

+ SMOTE

(153,264, 68) 0.96% 0.93% 0.95% 0.94%

All + Hyperparameter Tuning

(Our Experiment)
(153,264, 68) 54% 54% 54% 43%

(Continued)
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TABLE 27  (Continued)

Model 
name

Model setup Number of 
features

Accuracy Precision Recall F1-score

XGboost

Base model:

- No SMOTE

- No Feature Engineering

- No hyperparameter Tuning

- No Grid Search

(152,196, 34) 0.91% 0.91% 0.89% 0.89%

+Data pre-processing

+ Feature Engineering

+ SMOTE

(153,264, 68) 0.97% 0.95% 0.96% 0.95%

All + Hyperparameter Tuning

(Our Experiment)
(153,264, 68) 96% 96% 96% 95%

LGBM

Base model:

- No SMOTE

- No Feature Engineering

- No hyperparameter Tuning

- No Grid Search

(152,196, 34) 0.06% 0.27% 0.06% 0.06%

+Data pre-processing

+ Feature Engineering

+ SMOTE

(153,264, 68) 0.97% 0.95% 0.96% 0.95%

All + Hyperparameter Tuning

(Our Experiment)
(153,264, 68) 96% 95% 96% 95%

Extra tree 

classifier

Base model:

- No SMOTE

- No Feature Engineering

- No hyperparameter Tuning

- No Grid Search

(152,196, 34) 0.88% 0.87% 0.87% 0.87%

+ Data pre-processing

+ Feature Engineering

+ SMOTE

(153,264, 68) 0.96% 0.94% 0.95% 0.94%

All + Hyperparameter Tuning

(Our Experiment)
(153,264, 68) 96% 93% 95% 94%

Stacked 

Ensemble_1

Base model:

- No SMOTE

- No Feature Engineering

- No hyperparameter Tuning

- No Grid Search

(152,196, 34) 0.91% 0.92% 0.88% 0.89%

+ Data pre-processing

+ Feature Engineering

+ SMOTE

(153,264, 68) 0.97% 0.94% 0.96% 0.95%

All + Hyperparameter Tuning

(Our Experiment)
(153,264, 68) 96% 95% 94% 94%

Stacked 

Ensemble_2

Base model:

- No SMOTE

- No Feature Engineering

- No hyperparameter Tuning

- No Grid Search

(152,196, 34) 0.91% 0.92% 0.88% 0.89%

+ Data pre-processing

+ Feature Engineering

+ SMOTE

(153,264, 68) 0.97% 0.94% 0.96% 0.95%

All + Hyperparameter Tuning

(Our experiment)
(153,264, 68) 97% 97% 97% 97%
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TABLE 28  Models ablation study on the detecting of ICS and IoT attacks.

Model name Ablation scenarios Accuracy Precision Recall F1 score

Stacked Ensemble_1

Stacked_Ensemble_1 96% 96% 96% 96%

No MetaLearner, Avg 

(AdaBoost + XGboost)
96% 96% 96% 95%

Without AdaBoost 96% 96% 96% 96%

Without_XGBoost 47% 38% 47% 40%

Stacked Ensemble_2

Stacked_Ensemble_2 97% 97% 97% 97%

No MetaLearner, Avg (LR, 

XGB, LGBM, ExtraTrees)
96% 97% 96% 96%

Without LogisticRegression 96% 97% 96% 97%

Without XGBoost 97% 97% 97% 97%

Without LGBM 96% 96% 96% 96%

Without ExtraTrees 97% 97% 97% 97%

TABLE 29  Shape analysis for all the individual models and proposed models to show important features for each model.

Model name SHAP analysis for Top 20 feature (Test 
data)

Model name SHAP analysis for top 20 feature (Test 
data)

DT RFC

LR Bagging

(Continued)
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TABLE 29  (Continued)

Model name SHAP analysis for Top 20 feature (Test 
data)

Model name SHAP analysis for top 20 feature (Test 
data)

AdaBoost XGboost

LGBM Extra tree

Stacked 

Ensemble_1

Stacked 

Ensemble_2
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in minority classes. The comparison included accuracy, precision, 
recall, F1-score, AUROC, and particularly the false-positive rate for 
the benign class (Table 34).

Many tree-based ensemble methods inherently handle class 
imbalance through mechanisms such as weighted impurity 
reduction, adaptive boosting of minority errors, and probabilistic 
leaf estimation, which enable them to learn minority-class 
patterns without requiring explicit oversampling. Because these 
models naturally focus on the minority classes, adding synthetic 
samples through SMOTE does not introduce additional useful 
information; instead, it may introduce noise or overly smoothed 
synthetic points. This disrupts decision boundaries and can 
increase false positives, especially for the benign class. 
Consequently, for strong ensemble learners that already manage 
imbalance effectively, SMOTE provides no practical gain and 
often reduces overall performance, as demonstrated in 
our experiments.

9 Benchmarking of results

Table 35 shows benchmarking of the proposed work against 
other related work in the classification of attacks, which is 
outlined below.

From benchmarking analysis, most of the work has focused 
either on binary classification for one type of attack, such as 
Phishing, Malware, Ransomware, DoS, or Port scanning. In 

addition, one study concentrated on Modbus Network traffic, 
specifically for various attacks like man-in-the-middle, Ping DDoS 
Flood, Modbus Query Flood, and TCP SYN DDoS Flood, targeting 
cyberattack detection. The works reported have utilized limited 
datasets and larger datasets, achieving an accuracy of 98–99% with 
individual classifiers such as LSTM, 1D CNN-LSTM, and an 
Ensemble of LSTM with Decision Tree Classifier. Some studies 
have employed ensemble models like Random Forest and Adaboost 
algorithms. A baseline model based on the Edge-IIOT dataset 
provided 94.61% accuracy with a Deep Neural model, compared 
to other models like Decision Tree, KNN, SVM, and Random 
Forest. None of the studies have utilized advanced ensemble 
models like stacked ensemble models with linear and non-linear 
classifiers, combined with model optimization, to achieve higher 
accuracy and reduced computational operations for multi-class 
classification rather than binary.

This has been addressed in our proposed model, which employs 
a stacked ensemble that includes linear and non-linear decision 
boundaries (Logistic Regression, XGBoost, LGBM, Extra Trees as 
base models, and RFC as the final estimator) with good performance 
and reduced computation time. We have optimized models to 
reduce computation time, making our work stand out from other 
models. Furthermore, our use of a stacked ensemble is novel 
compared to existing ensembles like Bagging, Boosting, and 
Random Forest, demonstrating improved performance against the 
baseline model and reduced computation time. Lastly, our proposed 
stacked ensemble performed well in classifying multi-class attacks 
compared to other works that focused on binary classification or a 
single attack category, such as DDoS or Modbus network traffic. 
Our models were also generalized on the CICDOS 2017 dataset for 
classifying eight attacks, which is similar to our IIoT dataset, 
resulting in excellent performance by Stacked Ensemble_2, as 
tabulated in Table 24.

TABLE 30  Data preprocessing for CICIDS2017 generalization task.

Before data preprocessing After data preprocessing

2,695,162 2,661,918

TABLE 31  Feature mapping for target variable.

Actual name of the 
attack

Number of records Mapping Number of records Label encoder

Benign 2,063,255 Benign 2,063,255 0

DdoS 128,016 DDoS 128,016 3

DoS Hulk 172,849

DoS 193,733 4
DoS GoldenEye 10,280

DoS slowloris 5,376

DoS Slowhttptest 5,228

PortScan 90,819 Port Scan 90,819 7

FTP-Patator 5,933
Brute Force 9,152 2

SSH-Patator 3,219

Bot 1953 Bot 1953 1

Web attack brute force 1,470

Web Attack 2,143 8Web attack XSS 652

Web attack Sql Injection 21

Infiltration 36 Infiltration 36 6

Heartbleed 11 Heartbleed 11 5
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TABLE 32  Correlation matrix.

All the features

Dropped features

1 Bwd_PSH_Flags

2 Bwd_URG_Flags

3 Fwd_Avg_Bytes/Bulk

4 Fwd_Avg_Packets/Bulk

5 Fwd_Avg_Bulk_Rate

6 Bwd_Avg_Bytes/Bulk

7 Bwd_Avg_Packets/Bulk

8 Bwd_Avg_Bulk_Rate

Features with positive correlation with attack number

No Features Correlation value

1 1. Flow_Duration 0.21

2 Bwd_Packet_Length_Max 0.43

3 Bwd_Packet_Length_Mean 0.43

4 Bwd_Packet_Length_Std 0.45

5 Flow_IAT_Mean 0.18

6 Flow_IAT_Std 0.33

7 Flow_IAT_Max 0.38

8 Flow_IAT_Min 0.01

9 Fwd_IAT_Total 0.21

10 Fwd_IAT_Mean 0.15

11 Fwd_IAT_Std 0.41

12 Fwd_IAT_Max 0.38

13 Bwd_IAT_Mean 0.01

14 Bwd_IAT_Std 0.16

15 Bwd_IAT_Max 0.12

(Continued)
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10 Conclusion and future work

In this study, the dataset contains a total of 157,800 data points 
representing 15 types of complex cyberattacks targeting the Oil and 
Gas ICS and IoT domain. We performed a comprehensive data 

preprocessing step to extract the most important features, as the data 
points were collected from network traffic containing diverse data 
types, requiring careful feature engineering to obtain the most useful 
information. We then analyzed and compared the performance of 
individual machine learning algorithms and ensemble learning 

TABLE 32  (Continued)

Features with positive correlation with attack number

No Features Correlation value

16 Bwd_Packets/s 0.07

17 Max_Packet_Length 0.4

18 Packet_Length_Mean 0.36

19 Packet_Length_Std 0.41

20 Packet_Length_Variance 0.38

21 FIN_Flag_Count 0.23

22 PSH_Flag_Count 0.21

23 ACK_Flag_Count 0.03

24 Average_Packet_Size 0.36

25 Avg_Bwd_Segment_Size 0.43

26 Init_Win_bytes_forward 0.03

27 Active_Mean 0.01

28 Active_Min 0.02

29 Idle_Mean 0.38

30 Idle_Std 0.08

31 Idle_Max 0.38

32 Idle_Min 0.37

TABLE 33  Model generalization.

Models Accuracy Precision Recall F1 Score TPR FPR AUROC

Stacked_Ensemble_1 99.96% 99.96% 99.96% 99.96% 85% 0.01% 99.00%

Stacked Ensemble_2 100% 100% 100% 100% 98% 0% 100%

Classes
Classification report–Stacked Ensemble_1 Classification report–Stacked Ensemble_2

Precision Recall F1-score Support Precision Recall F1-score Support

BENIGN 100% 100% 100% 412,651 100% 100% 100% 412,651

Bot 99% 90% 94% 391 100% 99% 100% 391

Brute force 100% 99% 100% 1830 100% 100% 100% 1830

DDoS 100% 100% 100% 25,603 100% 100% 100% 25,603

Dos 100% 100% 100% 38,747 100% 100% 100% 38,747

Heartbleed 100% 50% 67% 2 100% 100% 100% 2

Infiltration 67% 29% 40% 7 75% 86% 80% 7

Port scan 100% 100% 100% 18,164 100% 100% 100% 18,164

Web attack 100% 100% 100% 429 100% 100% 100% 429

Model performance result after training

Accuracy 100% 497,834 100% 497,834

Macro avg 96% 85% 89% 497,834 97% 98% 98% 497,834

Weighted Avg 100% 100% 100% 497,834 100% 100% 100% 497,834
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TABLE 34  Evaluation of the synthetic impact.

Stacked Ensemble_1: without SMOTE

Accuracy Precision Recall F1 Score AUROC Benign FPR

Data subset size: (404,114, 35)

99.87% 99.87% 99.87% 99.87% 99.93% 0.240%

Data Size: (720,000, 35)

99.82% 99.81% 99.82% 99.81% 95.55% 0.195%

Stacked Ensemble_2: without SMOTE

Accuracy Precision Recall F1 Score AUROC Benign FPR

Data Subset Size: (404,114, 35)

99.99% 99.99% 99.99% 99.99% 100% 0.010%

Data Size: (720,000, 35)

99.98% 99.98% 99.98% 99.97% 97.62% 0.035%

TABLE 35  Benchmarking of results.

Work Objective Dataset Algorithm

Abedin et al. 

(2020)

Phishing attack 

detection

32 attributes and 11,504 instances. The dataset contains both 

phishing and legitimate website data

Three supervised ML algorithms: KNN, LR, and RFC for 

binary classification (phishing and legitimate).

RFC: P 97%, R 99%, F1 97%

LR: P 83%, R 96%, F1 89%

KNN: P 91%, R 94%, F1 95%

Pithawala et al. 

(2021)

Short uniform 

resource locators

Dataset 1780 entries with 19 features related to phishing and 

non-phishing URLs.

Three ML algorithms: naive Bayes (NB), Logistic 

Regression (LR), and Random Forest Classifier (RFC)

NB accuracy = 99.4%

RF accuracy = 98%

LR accuracy = 96%.

Ahmed and 

Tjortjis (2022)

IoT-botnet attack 

detection using 

real-time 

heterogenous data

Dataset: 461,043 samples, with 65.07% normal traffic and 34.93% 

malicious traffic. The dataset consists of 43 features across 6 

categories: connection activity, DNS, SSL, statistical, HTTP, and 

violation activity

DT, RF, KNN, XGB outperformed LR and GNB, with an 

accuracy over 99% and F1-scores of 0.98–0.99 for binary 

classification – malicious and normal

Mubarak et al. 

(2021)

ICS cyber attack 

detection using 

cyber-kit datasets

Dataset: Network traffic data from different ICS protocols, such as 

Modbus/TCP, Ethernet/IP, and IEC 61850, along with a normal 

baseline and diverse industrial hacking scenarios. Deep packet 

inspection (DPI) was used to extract metadata features from 

network traffic data, and the final dataset matrix is (30,608,16) 

with two classes- Secure and insecure

Ensemble ML including both traditional (LR, KNN, NB, 

RF, ANN, SVM, DT) and DL (RNN, LSTM) for binary 

classification only (secure and insecure traffic). The 

ensemble approach resulted in 99.91% prediction 

accuracy.

Yeboah-Ofori 

(2020)

Classification of 

malware attacks

Microsoft Malware Prediction dataset: 4000 entries with 64 

columns representing various metadata about the machines and 

malware infection as a binary class.

The C4.5 and C5.0 variants of the DT algorithm

Accuracy = 83%

Syafiuddin et al. 

(2023)

Detection Syn flood 

and UDP Lag attacks 

based on AdaBoost

CICDDoS2019 dataset, which is a dataset of network traffic 

containing simulated DDoS attacks on 25 different network users

AdaBoost algorithm outperformed other machine 

learning algorithms (RFC, Simple Logistic, and REP Tree) 

with values above 47.2% for detecting SYN flood and UDP 

lag attacks which is binary classification

Saharkhizan et al. 

(2020)

Ensemble of deep 

RNN for IoT cyber 

attacks

Dataset: Modbus network traffic, including 5 types of traffic 

(clean, man-in-the-middle attack, Ping DDoS Flood attack, 

Modbus Query Flood attack, and TCP SYN DDoS Flood attack). 

The dataset was captured in pcap files and pre-processed to 

extract 83 features totaling 5,859,085 sample.

Integration of LSTM models into an ensemble model. 

Then aggregate output using a DT for detection of 

cyberattack as binary classifier. Ensemble of LSTM 

accuracy = 99% for a window size of 40 packets for 

Modbus traffic toward cyberattack detection as a binary 

classifier.

(Continued)
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classifiers, which included Decision Tree, Random Forest, Bagging, 
Boosting, Extra Tree, and two proposed stacked ensemble models. The 
results showed that the proposed stacked ensemble learning approach, 
referred to as stacked ensemble_2, performed better than the stacked 
ensemble, other ensemble models, and individual machine learning 
models, achieving an average accuracy of 97% in detecting and 
classifying the Oil and Gas ICS and IoT attacks. The precision, recall, 
and F1 score also performed quite well among stacked ensembles 
compared to other ensemble models and individual classifiers. 

Furthermore, the stacked ensemble models that excelled on the IIOT 
dataset were generalized on the CICDOS 2017 dataset, demonstrating 
excellent performance with stacked ensemble_2 compared to stacked 
ensemble_1, achieving 100% accuracy and 100% AUROC.

To further enhance the model’s performance, we utilized the Grid 
Search method to optimize the hyperparameters of the ensemble learning 
models and ML models. This optimization step improved the models’ 
ability to accurately detect and classify the various types of cyberattacks 
targeting the Oil and Gas ICS and IoT systems. Overall, this study 

TABLE 35  (Continued)

Work Objective Dataset Algorithm

Alasmari et al. 

(2023)

CNN-LSTM based 

Approach for DDoS 

Detection

CI-CDDoS2019 dataset contains network traffic data with 

400,000 datapoints and 12 different types of DDoS attacks labeled 

as benign and DDoS.

1D CNN-LSTM model has been used and achieved an 

accuracy of 99.51% in detecting DDoS attacks, 

outperforming the other ML algorithms tested, which are 

naive Bayes (96%), SVM (97.40%), Bayes Net (97%), 

Logistic Regression (97%), and Random Forest (99.01%).

Canadian 

Institute of 

Cybersecurity 

(2017)

Port-scanning attack 

detection

CICIDS2017 dataset: Network attacks with 62 columns and 

183,910 instances.

Includes network traffic in packet-based and bidirectional flow-

based format.

Five ML algorithms: DT, RF, AdaBoost, KNN, and SVM 

for port scanning attack as binary classification.

DT accuracy = 99.84%, RF accuracy = 99.75%

AdaBoost accuracy = 99.64%, KNN accuracy = 99.84%

SVM accuracy = 89.61

Huynh et al. 

(2023)

DOS Attack 

Detection

Two datasets - a real-time dataset captured using a packet sniffer 

on an ESP32 microcontroller, and the CICIoT2023 dataset which 

contains a wider variety of DoS and DDoS attacks for 

classification as Benign and DDoS

Two algorithms: SVM and LR - for binary classification. 

Both SVM and LR accuracy = 99%

Ferrag et al. 

(2022)

Baseline model 

(Edge-IIoT dataset)

The dataset consists of 157,800 samples across 15 types of attacks 

which are categorized into five threat types, including DoS/DDoS 

attacks, information Gathering, Man-in-the-Middle attacks, 

Injection attacks, and Malware attacks.

Three algorithms: Decision Tree, KNN, Random Forest, 

and DNN employed for classification of 15 attacks. Results 

in maximum accuracy of 94.61% with Deep Neural, 

followed by 79.18% for KNN, 77.61% for SVM, 80.83% for 

RFC, and 67.11% for DT.

Proposed work 

(Edge IIoT 

dataset)

Proposed work

The dataset consists of 157,800 samples across 15 types of attacks 

which are categorized into five threat types, including DoS/DDoS 

attacks, Information Gathering, Man-in-the-Middle attacks, 

Injection attacks, and Malware attacks.

Stacked Ensemble_2:

	-	 Accuracy = 97%

	-	 Train time = 54.24 min

	-	 Test Time = 0.97 min

Stacked Ensemble _1:

	-	 Accuracy = 96%

	-	 Train Time = 0.99 min

	-	 Test time = 6.47 min

Model Generalization on CICDDOS 2017

Stacked Ensemble 1:

	-	 Accuracy = 99%

	-	 Precision = 99%

	-	 Recall = 99%

	-	 F1 score = 99%

	-	 TPR = 85%

	-	 FPR = 0.001%,

	-	 AUROC = 99%

Stacked Ensemble_2:

	-	 Accuracy = 100%

	-	 Precision = 100%

	-	 Recall = 100%

	-	 F1 Score = 100%

	-	 TPR = 98%

	-	 FPR = 0.00

	-	 AUROC = 100%
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demonstrates the effectiveness of the ensemble learning approach in 
enhancing the detection and classification of complex cyber threats in the 
Oil and Gas ICS and IoT domain, with the optimized models achieving 
highly promising results.

Future work for this study will focus on enhancing security measures 
for ICS and IoT devices by improving anomaly detection and vulnerability 
assessment, with special attention given to refining intrusion detection 
algorithms in the oil and gas sector. We aim to expand feature engineering 
to include more contextual data from IoT devices to provide deeper 
insights and improve model accuracy. Additionally, we will leverage deep 
learning techniques, such as LSTM, to enable the identification of 
complex patterns within large datasets.

Generative AI can also simulate attack scenarios for testing and 
enriching training data to enhance model robustness, thereby increasing 
the diversity of base classifiers and further improving detection 
effectiveness. The main motivation behind this study is to assist oil and 
gas engineers and experts in identifying attacks on ICS and IoT computing 
systems, encouraging them to take appropriate countermeasures early on 
with the help of high-accuracy models. These models can help detect 
malicious attacks that may evade software cybersecurity tools, posing a 
significant security risk to all interconnected systems and devices in the 
oil and gas sector. As reliance on these technologies grows, advanced 
methods for safeguarding ICS and IoT environments become essential, 
ensuring the safety and reliability of operations in our increasingly 
digital world.
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