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State-of-the-art data center networks are experiencing an increase in dynamic 
traffic. Even minor inefficiencies cause latency, congestion, and high costs. 
Software-defined networking (SDN) provides centralized programmability, but 
classical algorithms such as Dijkstra and Equal-Cost Multi-Path (ECMP) fall short 
because they cannot adapt in real time. To overcome this limitation, Reinforcement 
Learning (RL), particularly Q-learning, adds adaptability; however, scalability remains 
a challenge. DQL addresses this by using neural networks to approximate the 
Q-function, enabling SDN controllers to learn routing strategies directly from 
live network states. This Mini Review brings together recent DQL approaches for 
SDN. We examine architectures, algorithmic variants, and emulation environments 
(such as Mininet with Ryu). In addition, we introduce a structured taxonomy, with 
a practice-oriented synthesis of empirical trade-offs and deployment issues. The 
focus is on trade-offs, throughput, latency, and convergence. Reported studies 
show that DQL typically improves throughput by about 15–22 percent and reduces 
delays by roughly 10–12 percent compared with ECMP. These gains, however, 
come at the cost of longer training, inference delays, and scalability hurdles. 
Unlike prior surveys, this review makes three distinct contributions: a structured 
taxonomy, with a practice-oriented synthesis of empirical trade-offs and deployment 
issues. We also highlight emerging directions: federated learning, graph-based 
neural models, and explainable AI, which may help transition DQL from promising 
simulations to production-ready SDN solutions.
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1 Introduction

Networks in data centers (DCNs) should be able to handle variable and unpredictable 
traffic loads, achieve low latency, high throughput, and efficient resource utilization.

Conventional hardware enclosed systems are frequently incapable of responding as 
dynamically as these demands would suggest. SDN has become a revolutionary concept 
because the control plane and the data plane have become disconnected, allowing control to 
be centralized, dynamically configured, and having a global view (Sezer et al., 2013).

This abstraction may enable the rapid deployment of new protocols, impose 
international policies, and allow networks to be optimally developed without requiring 
hardware changes. Most of the work in high-performance networks, including large-scale 
DCNs, is done by SDN controllers. They organize routing schemes, traffic management, 
and load balancing in order to meet high levels of performance. Continuing on this 
point, a sizable part of the SDN literature to date uses classical algorithms, such as the 
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shortest path algorithm by Dijkstra (Yahya et  al., 2015) or the 
Equal-Cost Multipath (ECMP) routing algorithm (Chiesa 
et al., 2014).

The relevant methodologies are effective in a static or predictable 
environment, but not very effective in a dynamic traffic environment 
(Yassen and Athab, 2025), which leads to congestion and underutilized 
links. ECMP allocates flows on equal-cost routes; however, it is unable 
to adjust to varying conditions dynamically. Goteti and Rasheed (2025) 
optimized their multipath routing algorithm in order to overcome this. 
It can flexibly cope with real-time traffic loads, topology, and 
performance metrics, which is more practice-intensive in the new 
version (Kamboj et al., 2023; Qin et al., 2024). Despite such advances, 
most studies remain limited to heuristic extensions or simulation-
based proofs of concept, with little critical comparison of their real-
world scalability, convergence costs, and impact on quality of service.

Existing surveys also tend to be  descriptive, summarizing 
algorithms without analyzing their empirical trade-offs. This creates a 
gap that calls for a more analytical mini-review. To address these 
limitations, static and heuristic approaches have driven growing 
interest in Artificial Intelligence and Machine Learning (ML) for SDN 
routing (Xie et al., 2019; Nougnanke, 2021).

Reinforcement Learning (RL) is a data-driven approach that 
enables the optimization of policies through interaction with the 
environment (Sutton and Barto, 2018). Q-learning is a value-based RL 
algorithm that has been implemented in SDN routing (Jaafari et al., 
2022; Piardi et al., 2019; Jayawardena et al., 2025), but its application 
is limited due to scaling problems in an ample state-action space. 
Building on these limitations, the next section outlines how Deep 
Q-Learning (DQL) operates within SDN, providing the conceptual 
background for the architectural analysis presented in later sections.

1.1 Contributions

In contrast to earlier surveys (which are largely summative), this 
Mini Review presents a systematic taxonomy of DQL-based SDN 
routing, summarizes empirical trade-offs across various studies, and 
provides a practice-oriented synthesis of deployment issues and 
implementation challenges. These orientations toward methodology 
and applicability make our work distinctive relative to 
previous reviews.

Taxonomy: a systematic taxonomy of DQL methods for 
SDN routing.

Empirical synthesis: Generalizes case-study results and measures 
throughput, delay, and convergence trade-offs.

Deployment issues: Critically assesses key systemic barriers, 
including scalability, real-time inference, security, and interpretability.

Practice-oriented roadmap: Describes emerging directions 
(federated, graph-based, explainable RL) needed to overcome the 
simulation-to-production gap in SDNs.

These contributions are new to DQL–SDN studies, as no previous 
Mini Review has integrated (i) a systematic taxonomy of methods, (ii) 
an empirical synthesis of case studies and benchmarks, and (iii) a 
deployment-focused critique.

The remainder of this paper is structured as follows: Section 2 
provides background on AI, ML, and RL within SDN, including an 
overview of DQL; Section 3 describes the DQL frameworks and 
taxonomy; Section 4 discusses case studies and empirical findings; 

Section 5 outlines challenges, limitations, and future directions; and 
Section 6 presents the conclusion.

2 Artificial intelligence, machine 
learning, and deep Q-learning in 
software-defined networks

In actual SDN environments, traditional routing techniques 
frequently fail due to the complexity and layered structure of modern 
networks. Diverse network topologies, erratic traffic flows, and 
disparate quality-of-service priorities frequently cause fixed routing 
strategies to utilize network resources ineffectively. As a result, there 
has been a need for adaptive routing and policy optimization, which 
has led to the application of AI, particularly ML and RL, in SDN 
frameworks (Qin et al., 2024).

2.1 Foundations of reinforcement learning

Reinforcement Learning (RL), which typically operates as an 
independent branch of artificial intelligence, focuses on agents 
learning optimal actions by interacting with their environment 
(Sutton and Barto, 2018). RL works with an agent, environment, states, 
and rewards. In SDN, routing algorithms are considered intelligent 
agents. That selects the best paths for data to travel through the 
network. They examine the network’s layout and the amount of traffic 
currently flowing to inform their decisions. These agent’s primary goal 
is to work with strategies that maximize their performance, measured 
by factors such as the amount of data they can transmit simultaneously 
(throughput) or the speed at which the data reaches its destination 
(reduced delay) (Song et al., 2024).

Initially, Q-learning was the first method used to apply 
Reinforcement Learning (RL) in SDN. In Software-Defined 
Networking, routing algorithms determine the best paths for data by 
assessing the network’s layout and traffic conditions. The goal is to 
enhance performance by achieving higher throughput and lower delay 
(Sharma et al., 2024).

Recent work has started adapting these methods to real-world 
scenarios. Lin et al. (2025) introduced a deep learning method that 
considers performance factors such as bandwidth, which is in high 
demand in routing. This is achieved by predicting bandwidth needs, 
which helps prevent flow starvation during periods of heavy traffic. 
Likewise, the DQQS framework targets both performance and 
security in SDN–IoT environments. It detects possible attacks and 
assesses the quality of service. The goal of this research is to improve 
network performance by strengthening resistance to malicious traffic 
(Zabeehullah et  al., 2024). These developments demonstrate how 
routing research is evolving from theory to workable, multi-objective 
solutions tailored to specific domains, taking these cases into account.

Recent advances in DRL for SDN Routing: Over the past 2 years, 
the study of DRL-based routing has progressed rapidly, particularly in 
the form of hybrid architectures that enhance the modeling of deep 
neural networks and policy optimization. In the research by He et al. 
(2024), it was proposed that a DRL scheme could be strengthened 
with the help of a graph neural network to help represent the 
topological dependencies in SDN topologies. Wang et  al. (2024) 
proposed a dynamic-loaded DRL algorithm that uses a 
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fuzzy-logic-based approach, ensuring latency and bandwidth 
constraints are met. Alenazi (2024) described a deep-Q-learning 
framework, which significantly improves both the QoS metrics 
(packet-delivery ratio and throughput). On the same note, Sensors 
(2022) and Bohrium (2024) presented ensemble- and transformer-
based versions of DQL for scalable load balancing and routing. The 
subsequent advances indicate how the rule-based/tabular RL models 
gave way to architecture-sensitive, data-driven control in the 
present SDNs.

These recent innovations in DRL-driven routing mark a crucial 
transition point, linking earlier reinforcement-learning approaches 
with the broader integration of machine-learning techniques 
discussed in the following subsection.

2.2 Machine learning in the SDN context

Researchers thoroughly examined and assessed a variety of 
machine learning approaches for SDN applications prior to beginning 
work on Reinforcement Learning (RL). Important subjects covered in 
this investigation include traffic prediction, intrusion prevention, flow 
classification, and anomaly detection. An interesting survey by Xie 
et al. (2019) detailed the application of supervised, unsupervised, and 
reinforcement learning models in the fields of traffic engineering and 
network security.

By enabling autonomous decision-making at the network edge, 
machine learning has been shown in numerous studies to 
significantly improve network performance and lessen the burden on 
controllers. Studies by Nougnanke (2021) and Wang et al. (2022) 
emphasize this capability. One significant benefit is the wealth of 
high-quality datasets made available by SDN telemetry and flow-
level monitoring.

Faezi and Shirmarz (2023) showed that supervised machine 
learning is currently at the forefront of anomaly detection and traffic 
classification. On the other hand, Reinforcement Learning and DQL 
are gaining traction in load balancing and adaptive routing.

Additionally, they noted that many assessments still make use of 
testbeds such as Mininet with Ryu or POX controllers, which indicates 
a promising direction for further research. Furthermore, machine 
learning successfully supports RL/DQL by providing predictive 
features that can enhance decision-making, such as anomaly detection 
and traffic load estimation.

Sha et al. (2023) claimed that a traffic prediction model based on 
machine learning aids in managing congestion in SDN using 
reinforcement learning techniques. Their work reflects the growing 
trend of integrating multiple AI methods in network control and 
demonstrates how combining adaptive decision-making with 
predictive analytics can improve routing efficiency.

2.3 Overview of deep Q-learning (DQL)

Consequently, DQL has emerged as a methodology applied to 
SDN to enable adaptive routing solutions by integrating deep neural 
networks with reinforcement learning. Neural architectures 
approximate the Q-function by training to take the optimal course of 
action based on the feedback received (Zhang et al., 2023; Sharma 
et al., 2024; Song et al., 2024; Liu et al., 2021; Fu et al., 2020).

DQL is an extension of classical Q-learning that incorporates deep 
neural networks to approximate the optimal action-value function 
Q(s, a), enabling agents to make decisions in large and continuous 
states. By selecting routing actions under the guidance of a learned 
policy, the objective is to maximize the long-term cumulative reward 
(Hasselt et  al., 2016). A Q-network obtains a prediction of the 
expected cumulative reward of each possible routing choice, rather 
than storing the Q-values in a table. Two core mechanisms are 
experience replay and target network to stabilize learning and mitigate 
oscillations common in tabular RL. Within SDN, the DQL agent 
continuously observes network telemetry (e.g., link utilization, delay, 
queue length) and updates routing rules in real time through the 
controller to maximize throughput and minimize congestion. 
Empirical studies confirm that DQL improves throughput by 15–25 
percent and reduces end-to-end delay compared with ECMP or 
Dijkstra-based routing (Fu et al., 2020; Liu et al., 2021; Sharma et al., 
2024; Aguirre-Sánchez et al. 2024). These capabilities are improved in 
new hybrid models: He et al. (2024) use graph neural networks to 
make topology-aware decisions, Wang et al. (2024) use fuzzy-logic 
layers to address latency and bandwidth requirements, and Li et al. 
(2025) use graph-transformer architectures to achieve robust and 
scalable routing. These advances illustrate DQL’s maturity as an 
intelligent control framework, forming the conceptual foundation for 
the architectural analysis presented in subsequent sections.

This workflow utilizes the DQL agent, which evaluates routing 
activity based on telemetry information processed by machine-
learning predictors that approximate traffic conditions. These 
observations help the agent refresh the SDN controller, which 
consequently enforces the learned flow rules in the forwarding plane.

This setup allows finer-grained, real-time routing decisions in 
complex network topologies such as Fat-Tree data centers. Figure 1 
illustrates this process: telemetry data are collected, analyzed by ML 
predictors, optimized through RL/DQL agents, and implemented by 
the SDN controller for adaptive routing. The signal originates at the 
Data Plane, flows through Telemetry/ML predictors to the DQL 
Agent, then to the SDN Controller, which enforces actions back in the 
Data Plane.

Practical studies demonstrate a clear trade-off. DQL consistently 
improves throughput and reduces delay; however, it also requires 
longer training and introduces inference latency. Measuring these 
trade-offs is essential—without it, progress from research prototypes 
to production-ready SDN systems remains difficult.

2.4 Transition to deep reinforcement 
learning (DRL)

DRL, which generalizes algorithms such as DQL, extends classical 
Reinforcement Learning to manage large and dynamic SDN 
environments. And it goes beyond the limits of classical Reinforcement 
Learning in managing large SDN environments. Instead of relying on 
static lookup tables, DRL uses deep neural networks to approximate the 
Q-function. Building on early breakthroughs in Deep Q-Networks 
(DQN), it has proven especially effective in handling high-dimensional 
and constantly changing environments (Silver, 2016; Arulkumaran et al., 
2017; Rikhtegar et al., 2021). Within SDN, DRL enables the controller to 
adapt routing decisions in real time, considering factors such as 
bandwidth, latency, and packet loss. This makes the system 
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context-aware and capable of self-optimizing control logic that responds 
quickly to topology changes or sudden traffic anomalies (Song et al., 
2024). Building on these DRL foundations, Figure 2 illustrates how DQL 
integrates neural networks with classical Q-learning to enable adaptive, 
topology-aware routing within SDN environments.

In SDN, DRL allows the controller to modify routing choices. This 
enables the system to be context-aware and capable of self-optimizing 
control logic that can quickly adapt to topology changes or unexpected 
traffic anomalies (Song et al., 2024). The proposed DQL-based SDN 
framework (as shown in Figure  2) builds on this principle by 
integrating neural networks with classical Q-learning to emulate the 
action–value function and enable adaptive and efficient routing within 
large and dynamic network systems. Recent executions go beyond the 
traditional DQL and incorporate auxiliary learning modules. As an 
example, He et  al. (2024) use fuzzy-logic inference to stabilize a 
learning process with variable loads, Wang et al. (2024) integrate graph 
neural networks with topology-aware perception, and Alenazi (2024) 
improves the reward design to enhance end-to-end QoS. In a similar 
manner, Bohrium (2024) uses transformer attention to facilitate the 
long-range flow correlation modeling. All these improvements 
indicate that DQL is becoming a multi-objective framework, which is 
modular and not based on a single algorithm model. The architecture 
consists of three collaborating planes—the Data Plane, Control Plane, 
and AI Decision Plane—which operate in a closed feedback loop to 
achieve continuous learning and optimization.

The process begins in the Data Plane (Forwarding Plane), where 
switches and links generate real-time telemetry and state information, 
including flow statistics, link utilization, and delay. The information is 
relayed to the SDN Controller in the Control Plane, which aggregates 
and preprocesses the data before forwarding it to the DQL Agent in 
the AI Decision Plane. The agent uses a policy network [π(a|s)] and an 
experience replay buffer to learn an optimal policy through the 
interaction tuple (st, at, rt, st+1).

Once an optimal action is determined, the Control Plane translates 
the DQL output into network-level configurations, such as flow-rule 
updates or path adjustments, which are applied in the Data Plane. The 
resulting network performance measures (i.e., throughput, delay, and 

packet loss) are tracked by the QoS and Reward Module in the Control 
Plane and then converted into a reward signal (rt).

This reward signal leads to the updating of the Q-network, 
completing the closed-loop learning process. The interaction within the 
system enables continuous adaptation and self-optimization across 
heterogeneous SDN environments. Machine learning provides 
predictive insights, while reinforcement learning enables adaptive 
control. Their combination in DQL creates a real-time, self-evolving 
optimization framework that enhances routing intelligence, scalability, 
and responsiveness. Section 3 further elaborates on how this framework 
extends to deliver robust and scalable solutions for adaptive SDN routing.

2.5 Applications and research trends

The graph-based neural network with RL has been used in 
dynamic routing in smart grid-enabled SDNs to enhance fault 
tolerance and lower latency (Islam et al., 2023). Similarly, an adaptive 
routing system modeled on Q-learning realized significant 
improvements in the use of links and route discovery time using a 
multipath system (Goteti and Rasheed, 2025).

Tahi et  al. (2024) employed machine learning classifiers with 
reinforcement learning to introduce an intelligent load-balanced method 
for SD-DCNs, which is utilized in path allocation and flow detection. 
Their comparative analysis with ECMP and heuristic schemes showed a 
better throughput and quality of service in Mininet and Ryu. This 
illustrates that the combination of ML and RL positively affects the load 
distribution in fat-tree data center networks (Yao et al., 2018).

Osman et  al. (2023) designed a framework that links SDN 
controllers and traffic engineering deep learning models. One of the 
main characteristics of their work is the support for a multi-vendor 
environment, which is more practical for deployment. This brings 
DL-based SDN solutions closer to industry adoption. The design of 
such models should be very attentive. Mininet, as a tool that simulates 
network environments, as well as POX or Ryu to control network flow, 
are some of the standard tools used in this field. In the case of deep 
learning, many scientists are inclined to work with TensorFlow or 

FIGURE 1

AI-driven SDN routing pipeline.
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PyTorch (Fontes et al., 2015; Wette et al., 2014; Abubakar et al., 2025). 
To stabilize the training of DQL, researchers have begun applying 
replay buffers and target networks; these techniques address 
convergence problems that frequently arise in previous studies of 
reinforcement learning (Hasselt et al., 2016).

Table 1 categorizes these approaches into several categories: temporal 
DQL, multi-agent DQL, graph-based models, quality-of-service- and 
security-aware DQL, federated learning, and hybrid solutions. Each 
option comes with trade-offs in adaptability, scalability, robustness, and 
feasibility. This overview illustrates the evolution of SDN routing research 
from classical Q-learning to advanced DQL methods, highlighting the 
directions that future intelligent networking may take. Taken together, 
these studies show a clear migration from heuristic routing to learning-
based controllers capable of topology- and traffic-aware adaptation.

2.6 Challenges and considerations

Despite strong results, using ML and DRL in SDN faces 
several challenges:

	•	 Training complexity: Mao et al. (2018) claim that deep learning 
models require significant computing power. Some models, such 

as lightweight edge agents and model compression, reduce this 
load (Ma et al., 2022).

	•	 Data quality: Effective training requires fine-grained, real-time 
flow data. Inadequate telemetry lowers accuracy (Faezi and 
Shirmarz, 2023). Hybrid ML–RL methods fill in missing flow 
features, providing RL agents with better input.

	•	 Controller overhead: DRL must respond quickly to avoid slowing 
the control plane (Kokila et  al., 2025). Policy caching and 
distributing DRL across controllers lower latency and prevent 
bottlenecks (Wang et al., 2022).

	•	 Scalability: Large topologies cause exponential state-space 
growth (Al-Fares et  al., 2008). State abstraction, hierarchical 
DQL, and graph-based DRL improve scalability (Li et al., 2025).

	•	 Deployment gap: Many designs remain at the simulation stage. 
Real-world use across multi-vendor SDN systems is still limited 
(Osman et  al., 2023). Interoperable, controller-agnostic AI 
modules are needed.

Cutting-edge, recently developed methods such as distributed 
control systems, edge learning, and federated frameworks can 
solve many of the aforementioned problems. These methods 
promise improved scalability, performance, and privacy, even 
though the shortcomings of current systems underscore the need 

FIGURE 2

Architecture of a deep Q-learning-powered SDN framework.
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for more adaptive and scalable learning-based routing frameworks. 
Building on these recent DRL advances, the next section focuses 
on DQL as the core framework for intelligent, adaptive 
routing in SDN.

3 Deep Q-learning for intelligent 
routing in SDN

As outlined in the previous section, recent DRL-based routing 
frameworks have significantly expanded the scope of DQL, making it 
a practical and scalable solution for intelligent routing in Software-
Defined Networks (SDNs). Conventional Reinforcement Learning 
methods, including Q-learning, are limited when applied to high-
dimensional and dynamic network setups. DQL has been used to 
solve these issues by researchers. DQL combines deep neural networks 
and Reinforcement Learning to support more scalable and instant 
decision-making.

SDN has configurations and traffic patterns that are continuously 
evolving. In such vital activities as intelligent path selection, congestion 
control, and enhancing QoS, DQL is an efficient approach (Pham 
et al., 2021).

Unlike traditional Q-learning, which struggles with large sets of 
possible actions, DQL uses neural networks that learn from data. 
Because DQL can adapt to various network conditions, it is 
particularly beneficial for complex systems such as the Fat-Tree 
topology (Al-Fares et al., 2008).

3.1 DQL for routing optimization

DQL was tested in several SDN routing studies. Early research 
integrated DQL into an SDN controller, allowing it to adapt to 
varying link states. As a result, packet loss dropped, and 
end-to-end delay also decreased compared with static routing (Fu 
et al., 2020).

TABLE 1  Summary of AI techniques applied for routing optimization in SDN, highlighting the addressed problems, benefits, challenges, applications, 
and representative references.

AI techniques Problem 
addressed

Benefits Challenges Applications Key references

Q-Learning (Tabular) Static routing; poor 

adaptability under traffic 

variation

Simple implementation; 

interpretable

Poor scalability; fails in 

high-dimensional state 

spaces

Basic SDN routing; testbeds Piardi et al. (2019), 

Jaafari et al. (2022)

DQL High-dimensional state-

action routing in 

dynamic networks

Learns optimal paths; 

adapts to topology and 

traffic conditions

Slow convergence; 

requires extensive 

training and GPU 

resources

Fat-Tree, large-scale data 

center routing

Fu et al. (2020), Liu et al. 

(2021), Lin et al. (2025)

Temporal DQL Lack of context in 

standard DQL; limited 

historical awareness

Uses traffic history; better 

long-term decision-

making

State-space grows with 

memory; delayed 

convergence

Load balancing in 

hierarchical networks

Sharma et al. (2024)

Multi-Agent DQL Single-agent models 

struggle in large or 

segmented networks

Parallel decision-making; 

scalable across multiple 

domains

Synchronization and 

stability of distributed 

learning

Distributed SDN 

controllers

Wang et al. (2019), Wang 

et al. (2022)

Graph-based DQL Inability to model 

topology explicitly using 

flat features

Better generalization; 

scalable with changing 

topologies

Requires graph neural 

network integration; 

complex reward design

Topology-aware routing; 

Smart city networks

Islam et al. (2023); Li 

et al. (2025); He et al. 

(2024)

QoS-Aware DQL Inability to prioritize 

latency-sensitive flows

Integrates QoS metrics 

into reward; better real-

time traffic handling

Needs classification of 

flows; fairness trade-offs

VoIP, video conferencing 

over SDN

Song et al. (2024); Qin 

et al. (2024); Alenazi 

(2024)

Federated DQL Privacy concerns and 

centralization limits

Decentralized training; 

local data utilization

Communication 

overhead; non-IID data 

between agents

Inter-domain SDN; 

federated learning in 

telecom

Suh et al. (2022)

Secure DQL (Adversarial 

Resilience)

Vulnerability to 

poisoning and reward 

manipulation attacks

Improved robustness; 

safer exploration policies

Detection overhead; 

attack model 

generalization

Industrial IoT, critical 

infrastructure SDNs

Zabeehullah et al. (2024); 

Nguyen et al. (2024)

Graph/Transformer 

Hybrid DQL

Lack of temporal + 

structural learning

Captures spatial and 

temporal patterns

Expensive training Expensive training and 

high computational cost

Li et al. (2025); Bohrium 

(2024)

Edge/Fog-based DQL High latency in 

centralized training

Lightweight inference at 

network edge

Limited resources; sync 

overhead

SDN-DCN; fog/edge IoT Osman et al. (2023), Tahi 

et al. (2024)

Ensemble DQL Instability in single DQL 

models under diverse 

traffic

Improves generalization 

and convergence stability 

through model ensembles

Requires ensemble 

coordination; increased 

compute cost

Optical transport networks; 

load balancing

Sensors (2022)
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DRL-R is a more sophisticated variant to which the concept 
can be  applied to the data centers, resulting in better load 
balancing, reduced flow completion time, and throughput in 
Fat-Tree networks (Liu et  al., 2021; Tang et  al., 2023). DQL 
variants that are dependent on the history of traffic conditions 
enhance the utilisation of the links and also reduce the congestion 
persistence in traffic situations during high loads (Sharma 
et al., 2024).

A large proportion of the implementations have been tested in 
emulation using Mininet, along with controllers such as Ryu or 
POX. DQL agents are written using either Python or TensorFlow and 
submit requests to the controller through APIs to calculate routing 
actions in real-time. The researchers use traffic generators such as 
Iperf and D-ITG to generate VoIP, video, or TCP / UDP traffic to 
mimic the actual workload.

These setups provide concrete validation of DQL’s performance 
improvements under realistic network stress conditions (Bhardwaj 
and Panda, 2022; Wirawan et al., 2024).

In order to resolve the contingent scalability problem, scholars 
have suggested hierarchical DQL agents applying state abstraction 
strategies as well as decentralized learning models that decentralize 
training to various controllers (Li et al., 2025; Suh et al., 2022). For 
real-time deployment, lightweight edge-based agents, model 
compression, and GPU acceleration have also been introduced to 
ensure that routing decisions meet millisecond-level 
latency requirements.

3.2 Adaptive routing in fat-tree topologies

Fat-Tree networks are widely used in large data centers because of 
their path diversity and redundancy (Al-Fares et al., 2008). However, 
conventional algorithms such as ECMP and Dijkstra often fail to 
exploit these advantages under dynamic traffic loads (McKeown et al., 
2008). To address this gap, adaptive DQL models designed for Fat-Tree 
networks make use of traffic-aware features such as queue size, link 
delay, and flow priority to achieve better generalization performance 
(Li et  al., 2022). Congestion-aware DQL agents have also been 
proposed to predict link congestion in advance, thereby reducing path 
switching and improving flow stability in emulated environments 
(Song et al., 2024; Nougnanke, 2021).

3.3 Multipath and QoS-aware extensions

DQL has been extended to multipath choice and QoS-concentrated 
routing goals to tackle the drawbacks of single-path routing. As one 
example, bandwidth- and jitter-conscious multipath DQL models can 
dynamically choose such paths that minimize shared bottlenecks, 
prioritizing latency-sensitive traffic especially (Zhang et al., 2023). 
Similarly, QoS-aware DQL models that incorporate service class 
prioritization into their reward function have achieved higher Quality 
of Experience (QoE) in heterogeneous traffic environments, which 
apply to 5G and multi-tenant data centers (Song et al., 2024; Qin et al., 
2024). Distributed DQL agents have even been deployed in industrial 
SDN environments. In situational demands, where decentralized 
decision-making is demanded, reduce central controller overhead and 
increase fault resiliency (Wang et al., 2022).

3.4 Advanced architectures: graphs, 
transformers, and hybrid models

Recent works have investigated the integration of DQL with 
advanced neural designs to improve spatial and temporal reasoning 
(Wu et  al., 2022). Graph-based DQL models utilize graph neural 
representations of the structural features of a network, while 
transformer-based DQL uses long sequences of state transitions to 
discover temporal dependencies. One such example is the Graph 
Transformer DQL model, which converges quickly and scales better 
when running SDN at scale (Li et al., 2025). Operationalizable tools 
such as Q-Optimizer build upon this advancement with a dual-agent 
coordination framework, modular architecture, and QoS-based 
feedback to uplift routing stability and responsiveness. With these 
advances, there are a number of limitations. The training run times 
remain lengthy, controller overhead grows with the size of the 
network, and model interpretability is poor, which still limits the use 
of DQL in practice in SDN production networks.

These findings emphasize the importance of systematic evaluation, 
which is examined in Section 4 through the testing of DQL 
frameworks in Fat-Tree and other representative network topologies. 
To integrate the diversity of existing methods, we  synthesized a 
conceptual taxonomy capturing the main design directions of DQL 
within SDN, as shown in Figure 3.

Recent literature aligns into six themes: temporal, multi-agent, 
graph-based, QoS-aware, federated, and hybrid architectures, all 
addressing one or more of the primary goals—scalability, adaptability, 
and service quality.

This unified perspective explains why various strategies converge 
to promote network intelligence and operational resilience. The 
following section builds on this synthesis by assessing how these DQL 
variants have been empirically validated across diverse experimental 
settings. These architectural refinements set up the performance 
analysis in Section 4, where we quantify DQL’s benefits and costs in 
representative topologies.

4 Performance evaluation in fat-tree 
topologies

DQL in SDN requires strong empirical validation. Results must 
extend beyond theory and demonstrate practical benefits. Fat-Tree 
topologies are widely used in data centers for this purpose because they 
provide multipath connectivity, redundancy, and scalability (Al-Fares 

FIGURE 3

Taxonomy of deep Q-learning approaches for SDN routing.
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et  al., 2008). This section reviews the testing of DQL, focusing on 
topology selection, simulation tools, and performance metrics.

4.1 Fat-tree: a preferred topology

Fat-Tree networks are inherently redundant and feature multiple 
paths. They are of essential importance in data centers for load 
balancing and congestion-aware routing (McKeown et al., 2008). Also, 
they enable researchers to test routing strategies under erratic traffic 
conditions. The use of fat-tree networks is therefore employed as a 
standard to evaluate the network performance. They are used to assess 
fault recovery, quality of service, and routing among flow distribution. 
Owing to their flexible design, Fat-Tree topologies can be applied to 
compare adaptive methods, including DQL, to a baseline, including 
Dijkstra and ECMP (Wirawan et al., 2024; Li et al., 2022).

Empirical studies further confirm these advantages:

	•	 These benefits are further proved by empirical research: In a k = 4 
Fat-Tree, Fu et al. (2020) tested DQL and discovered roughly 30% 
reduce in delay and packet loss than ECMP.

	•	 Liu et al. (2021) showed that DRL-R improved throughput by 
20% and reduced flow completion time under heavy traffic.

	•	 Zhang et al., (2022) demonstrated that congestion-sensitive DQL 
reduced the amount of packets drop and stabilized the flows 
under peak loads.

	•	 DQL increased throughput by 15–22% percent and decreased 
delay by 10–12% percent over ECMP. These gains were associated 
with cost such as increased training time and increased inference 
overhead. The Fat-Tree has become the testbed of choice since it 
shows these trade-offs yet can be  fairly compared to classical 
routing techniques.

4.2 Simulation tools and environment 
setup

Most evaluations of DQL in SDN utilize network emulation 
platforms combined with machine learning toolchains, which 
enable researchers to test under realistic workloads while 
maintaining control over experimental variables. Mininet is the 
most widely adopted emulator, particularly for deploying Fat-Tree 
topologies (k = 4, 6, 8) with native OpenFlow support. Fu et al. 
(2020) demonstrated that Mininet-based experiments achieved an 
average delay reduction of approximately 18% with DQL compared 
to ECMP in dynamic topologies.

On the control-plane side, the Ryu controller is often preferred 
because of its Python interface, which makes it straightforward to 
integrate with TensorFlow or PyTorch. According to Bhardwaj and 
Panda (2022), Ryu uses machine learning frameworks such as 
PyTorch and TensorFlow. Its usefulness in evaluating important 
metrics such as throughput, delay, and packet loss was validated by 
Wirawan et  al. (2024). Combining Ryu and DQL improved 
throughput by almost 20% and decreased packet loss in mixed 
VoIP and video traffic, according to Zhang et al. (2023).

Traffic generators such as Iperf and D-ITG are widely used to 
emulate workloads, including bulk TCP transfers, VoIP calls, and 
HD video streams. Using these tools, Song et  al. (2024) 

demonstrated that DQL preserved QoS by reducing jitter by up to 
12% compared with static ECMP routing.

Fault tolerance has also been evaluated through failure-
injection scenarios, such as link or switch crashes. Wang et  al. 
(2022) found that distributed DQL reduced recovery time by about 
25% and lowered controller overhead relative to centralized models.

Other controllers, including POX, ONOS, and OpenDaylight, 
have appeared in more limited studies. POX offers a lightweight 
option for proof-of-concept testing, whereas ONOS and 
OpenDaylight demonstrate the feasibility of industry-
grade deployments.

Overall, these studies suggest that the performance of DQL is 
susceptible to the experimental setup, particularly the choice of 
controller, topology size, and traffic type. This suggests that, 
although the results are promising, they may not always generalize 
to all deployment environments.

4.3 Key metrics for evaluation

To judge how well DQLperforms in SDN routing, researchers 
often rely on QoS indicators. These highlight not only efficiency and 
reliability but also how effectively the system learns over time. These 
measures enable researchers to compare DQL with traditional 
approaches, such as ECMP and tabular Q-learning, and assess its 
performance under real operating conditions. In practical settings, 
Quality of Experience (QoE) indicators, such as latency, jitter, and 
packet loss, are often used to evaluate service quality, particularly 
in time-sensitive applications like VoIP and video streaming (Song 
et al., 2024).

Table  2 highlights the key indicators that demonstrate the 
relevance of the recent research. These investigations repeatedly 
demonstrate that DQL solutions are more reliable and flexible 
than standard solutions. Such findings represent a good step 
towards the more versatile and dependable SDN systems. 
Nevertheless, some limitations that remain should be  noted. 
While improvements in throughput and reductions in delay are 
consistent, the training overhead can be 10 to 30 times greater 
than that observed with ECMP or heuristic approaches. 
Performance can vary widely depending on the controller used, 
such as Ryu or ONOS, and the scale of the network topology, 
including whether it is a k = 4 or k = 8 Fat-Tree. These trade-offs 
emphasize the importance of conducting systematic benchmarking 
across different environments.

From proof-of-concept implementations to large-scale, multi-
controller systems, a comparative analysis of previous research 
shows a distinct trajectory in the development of DQL research 
within SDN. The baseline benefits of DQL in increasing 
throughput and decreasing delay under steady traffic conditions 
were validated by early frameworks (Fu et al., 2020; Liu et al., 
2021). Federated and multi-agent models concentrated on 
distributed environments were detailed by Wang et al. (2022) and 
Suh et al. (2022), and examples of them were described by Sharma 
et  al. (2024) and Li et  al. (2025), and have temporal and 
hierarchical characteristics with increased convergence stability 
and faster policy adjustment. The failure to systematically 
implement convergence control weakens the system in terms of 
responsiveness and effectiveness. The developed trade-offs are 
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evident: hierarchical DQL can be trained in an unstable manner, 
which can be  improved with distributed and federated 
frameworks; however, this approach results in lower timeliness 
and responsiveness. Graph- or transformer-enhanced DQL 
delivers outstanding generalization across varying traffic 
conditions, but the processing requirements are enormous.

Single-agent DQL loses control precision and scales poorly, 
while control overhead remains high. Convergence toward 
system-level intelligence in DQL remains the missing element that 
unifies the findings described individually. This synthesis is 
critical for forming a comprehensive understanding of DQL, 
which, although currently advanced, remains iterative and limited. 
The impact of these findings helps shape the challenges addressed 
in the next section.

These persistent trades-offs between performance gains and 
training or inference overhead form the foundation of the 
challenges and open directions discussed in the following section.

5 Challenges, limitations, and future 
directions

Despite proven performance improvements, four systemic 
bottlenecks, scalability, efficiency, real-time inference, and 
trustworthiness (including security and interpretability), restrict the 
use of DQL in SDN. These issues are interrelated: lack of 
interpretability slows deployment in mission-critical networks, 
defenses against adversarial attacks add overhead, and larger models 
exacerbate inference delay. These restrictions and new solutions are 
explained in the ensuing subsections.

This section focuses on assessing DQL limitations in a novel, 
structured, and practice-oriented manner by combining empirical 
evidence from case studies, in contrast to previous surveys that only 
briefly discuss the challenges.

5.1 Scalability of learning models

Scalability is one of the biggest challenges when deploying DQL 
in large-scale SDN environments. As networks grow, the state and 
action spaces can expand dramatically. This requires deeper and wider 
neural networks to approximate value functions accurately. Fat-Tree 
and similar hierarchical topologies amplify this challenge because the 

number of possible routing combinations increases combinatorially 
(Chiesa et al., 2014).

At the moment, graph-based DRL frameworks naturally 
represent topological structure. Hierarchical DQL agents break down 
routing tasks into smaller, distinct subproblems, and state abstraction 
reduces the dimensionality of inputs (Zhang et al., 2023). Earlier 
surveys, particularly Prakoso et  al. (2024), provided valuable 
taxonomies of reinforcement-learning-based routing but offered 
limited empirical comparison among scalability techniques. Recent 
work, including the Survey on Graph Neural Networks (Gkarmpounis 
et  al., 2024), consolidates evidence that graph-based deep 
reinforcement learning provides the most scalable path when 
network topology varies dynamically, underscoring its structural 
adaptability and efficiency compared to flat feature-based models.

In contrast, this Mini Review integrates architectural reasoning 
with performance data to draw a comparative synthesis across 
three major scalability paradigms: hierarchical, graph-based, and 
federated/distributed frameworks.

Hierarchical DQL schemes converge more rapidly by breaking 
down learning into layer-wise subpolicies; researchers have found 
up to 20 to 25 percent faster convergence and reduced oscillation 
in larger networks in hierarchical DQL. DRA models based on 
graphs explicitly represent the network connectivity, which is more 
generalized and resilient to variable traffic conditions (Islam et al., 
2023) but at a more expensive computational cost. By training local 
controllers concurrently (federated and distributed DQL) designs 
(Wang et al., 2022; Suh et al., 2022) can be more scalable and offer 
superior data privacy, but they add synchronization delays to the 
global system and cause uneven global convergence in cases of 
varying capabilities of individual controllers.

Collectively, the results outline a distinct trade-off space: 
hierarchical designs focus on convergence efficiency, graph-based 
designs on structural adaptability, and federated designs on 
horizontal scalability and privacy—though at the cost of 
communication overhead. Framing scalability in this comparative, 
quantitative way transforms it from a descriptive obstacle into a 
design space where efficiency, resource cost, and coordination 
latency can be balanced. This synthesis deepens understanding of 
when each paradigm is most effective and establishes the analytical 
basis for developing truly elastic, production-ready DQL systems 
for future SDN deployments.

Hybrid frameworks that combine hierarchical coordination and 
federated synchronization (e.g., Qin et al., 2024) may help balance this 

TABLE 2  Performance metrics for evaluating DQL in SDN.

Metric Description Significance Example findings/
references

Throughput Total data successfully delivered over time Reflects link utilization and efficiency
DQL improved throughput by 18–22% 

vs. ECMP (Fu et al., 2020)

Packet Loss Rate
% of packets dropped due to congestion or 

link failure
Indicates network reliability

Loss reduced by ~15% under mixed 

workloads (Zhang et al., 2023)

Avg. End-to-End Delay
Time for a packet to travel from source to 

destination
Critical for real-time and QoS-sensitive apps

Temporal DQL cut delay by ~12% 

(Sharma et al., 2024)

Convergence Time
Time required for DQL to learn a stable 

routing policy
Demonstrates learning efficiency

DRL-R converged 30% faster than 

Q-learning (Liu et al., 2021)
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trade-offs by enhancing scalability while preserving rapid convergence. 
These comparative insights also frame the efficiency-focused and real-
time inference discussions presented in the next sections.

5.2 Learning efficiency and convergence 
time

Thousands of episodes are normally required to achieve 
convergence. Methods such as Double DQN and experience replay 
enhance the stability and efficiency of policies (Sutton and Barto, 
2018; Silver, 2016). Conversely, deterministic routing algorithms 
obtain immediate solutions, making DQL unpopular in networks 
where latency is a primary concern. Per Sharma et  al. (2024), 
Priority Experience Replay reduced training episodes by almost 30 
percent under heavy loads. Nevertheless, Piardi et  al. (2019) 
demonstrated that cold-start delays could be minimized through 
transfer learning by reusing knowledge from related topologies. 
Moreover, techniques such as continuous learning and meta-
learning are also evolving, allowing models to adapt to network 
variations over time without the need to restart the training 
process (Goteti and Rasheed, 2023).

DQL typically requires 1,000–5,000 training episodes to converge, 
whereas, according to empirical research, ECMP and Dijkstra converge 
almost immediately. This difference in efficiency continues to hinder 
adoption. Such inefficiency remains a significant obstacle to 
practical deployment.

5.3 Real-time inference constraints

The decisions made during routing in SDNs have to be performed 
in milliseconds, which large neural models, especially attention or 
transformer layers, cannot achieve. Bhardwaj and Panda (2022) 
identified that a combination of DQL and Ryu controller added 25% of 
latency to decision-making compared to the default ECMP. Wirawan 
et al. (2024) demonstrated that the lightweight pruning methods could 
achieve close to real-time performance. In real-world application 
strategies, such as edge-based agents, the use of a graphics card, and 
model compression, achieving accuracy, speed, and efficient resource 
consumption remains challenging. Practically, unoptimized DQL 
inference can add tens of milliseconds to decision latency, which is 
prohibitive for ultra-low-latency services, in contrast to ECMP, which 
has delays of less than 5 ms, which is prohibitive for ultra-low-latency 
services such as VoIP and 5G slices.

5.4 Security and robustness issues

During training and inference, DQL models are susceptible to 
poisoning and hostile manipulation. Attackers can inject malicious 
traffic to skew rewards or undermine regulations. Distributed DQL 
agents were especially susceptible to synchronized adversarial attacks, 
as Wang et al. (2022) pointed out (Islam et al., 2023; Wassie et al., 2024). 
Suggested defenses include anomaly detection, adversarial training, and 
reward defenses. Lightweight, attack-resistant models are therefore 
required, since these defenses increase computational costs and often 
reduce routing efficiency.

There is a way to secure DQL agents in real-world SDN 
deployments, thanks to recent developments such as the framework 
proposed by Nguyen et al. (2024), which demonstrates how adversarial 
attacks and defenses can be integrated into reinforcement learning to 
enhance policy robustness.

5.5 Integration and interoperability

The majority of DQL studies are limited in their applicability to 
heterogeneous, multi-controller deployments because of their reliance 
on Mininet simulations and single-vendor configurations. Phaneendra 
et  al. (2024) highlighted the deficiency of controller-agnostic AI 
modules, while Deneke et  al. (2024) demonstrated interoperability 
issues when scaling across multi-vendor SDN environments. 
Lightweight, standards-compliant models that support P4-based 
architectures, OpenFlow 1.3+, and hybrid cloud–edge deployments will 
be essential for future advancement.

5.6 Interpretability and transparency

Adoption and trust are hindered by the “black-box” nature of deep 
learning. Particularly in mission-critical industries such as healthcare 
and finance, operators must understand the rationale behind selecting 
specific routes. There have been proposals for explainable RL (XRL) 
techniques, such as saliency visualization and attention heatmaps (Xie 
et al., 2019; Li et al., 2025). By linking routing decisions to network 
states, these tools can increase compliance and trust. It is still unclear 
how to incorporate interpretability without compromising 
model accuracy.

To increase the openness of DQL routing rules, for example, causal 
explanation techniques such as the Causal State Distillation discussed 
by Lu et al. (2023) and the causal world models proposed by Yu et al. 
(2023) provide methods to connect agent choices to the underlying 
network states. A recent survey by Milani et  al. (2025) provides a 
comprehensive categorization of explainable reinforcement learning 
methods, emphasizing their applicability to networking and other 
critical domains. Similarly, the XRL Survey (2025) classifies such 
techniques into agent-, reward-, state-, and task-based explanations, 
underscoring their relevance for trust-building in SDN environments.

5.7 Future scope: hybrid and federated 
architectures

In order to optimize scalability, responsiveness, energy efficiency, 
and interpretability, the next generation of DQLframeworks for SDN 
must move from isolated algorithmic experimentation to integrated, 
system-level design. Future research is now shifting from what 
algorithms can achieve to how those algorithms can coexist and 
cooperate within realistic, multi-controller environments. Building on 
recent progress, three prioritized and mutually reinforcing research 
pathways are emerging as the foundation for deployable, production-
grade DQL-enabled networks.

	(i)	 The highest priority is Federated-Hybrid Learning for Scalability 
and Privacy.
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Scalability is unavoidably constrained by centralized training, which 
also presents data-sharing risks. Suh et al. (2022) showed how federated 
DRL achieves horizontal scalability with built-in privacy by enabling 
local controllers to train on private data while synchronizing only model 
parameters. Qin et al. (2024) advanced this principle for 5G network 
slicing, using multi-controller federated agents to balance load and 
enhance fault tolerance.

Future hybrid frameworks that fuse hierarchical coordination (for 
rapid local adaptation) with federated aggregation (for global policy 
consistency) can eliminate single-controller bottlenecks and make SDN 
learning architectures elastic and privacy-aware at scale.

	(ii)	 Lightweight and Energy-Efficient Inference for Real-
Time Operation.

Even with federated training, high-complexity neural networks still 
hinder real-time decision-making. Emerging solutions, model pruning, 
quantization, distillation, adaptive compression, and edge/GPU/TPU 
acceleration, can cut inference latency from tens of milliseconds to near-
instant responses while reducing power consumption. Integrating these 
optimizations with controller scheduling mechanisms will be essential 
for latency-sensitive environments such as industrial IoT, autonomous 
systems, and cloud-edge orchestration.

	(iii)	Explainability, Security, and Trustworthiness in DQL 
Decision Making.

As DQL gains control authority over network routing, human 
interpretability and system reliability become critical. Explainable-RL 
techniques, including causal state visualization, attention-based policy 
mapping, and counterfactual analysis, can expose how routing decisions 
are derived and why specific actions are chosen. In parallel, adversarially 
robust and privacy-preserving training strategies (Nguyen et al., 2024) 
will guard against malicious manipulation of learning policies and 
ensure secure coordination among distributed agents.

5.7.1 Integrated road map and outlook
Collectively, these three research directions outline a unified 

roadmap for the field:

	•	 Federated-hybrid learning enables intelligence that is both scalable 
and privacy-aware.

	•	 Energy efficiency and real-time responsiveness are achieved 
through lightweight inference.

	•	 Transparency and operator trust are strengthened through 
explainable and secure DQL.

Together, they form the technical triad required to transform DQL 
from a promising research paradigm into a standards-compliant, 
deployable, and self-optimizing SDN control layer. To balance 
computational efficiency with learning depth and to create networks 
that are not only intelligent but also accountable and sustainable, these 
priorities should be  integrated into cohesive frameworks in 
subsequent research.

This review therefore presents a strategic, practice-oriented research 
agenda for achieving intelligent, large-scale, and reliable SDN 
infrastructures by defining future work through these interconnected 
and prioritized pathways.

6 Discussion and conclusion

Integrating DQL into SDN enables enhanced network 
management, with real-time, adaptive routing that optimizes 
throughput, latency, and flow stability. Although the benefits are 
obvious, issues such as inference delay, scalability, and security 
have continued to stand as major barriers to deployment. This 
review highlights both the potential and practical limitations of 
DQL, underscoring the necessity for high-quality, reliable, and 
interoperable solutions to facilitate large-scale adoption.

Compared with earlier descriptive surveys, e.g., Prakoso et al. 
(2024), this Mini Review offers a practice-oriented and analytical 
point of view. In particular, it: (i) provides the first systematic 
taxonomy of DQL techniques to SDN; (ii) synthesizes the results 
of the recent research quantitatively to discover empirical trade-
offs; and, (iii) critically analyzes the issues associated with 
deployment in the context of scalability, interoperability, and trust. 
The combination of these elements brings the review beyond 
summary in order to provide an evidence based roadmap to 
further development of DQL research into production ready and 
intelligent SDN systems. The next wave of research needs to be in 
the area of standardized benchmarking, cross-environment 
validation and integration of controllers to expedite the creation of 
self-organizing, resilient, and quality of service oriented network 
control systems. Overall, this work presents a structured taxonomy 
of DQL methods for SDN, providing a practice-oriented synthesis 
of empirical trade-offs and deployment challenges to guide future 
research and implementation.

7 Additional requirements

This Mini Review synthesizes prior research on Q-Learning, 
reinforcement learning, and DQLfor SDN routing and QoS 
optimization, in line with the Frontiers in Artificial Intelligence 
guidelines for Mini Reviews. It provides a focused overview, 
includes only peer-reviewed and publicly available data, and 
maintains a balanced, unbiased tone. The review outlines future 
directions like graph-based models, federated training, hybrid 
agents, and explainable RL. While critically examining 
methodologies, empirical findings, and open challenges (such as 
scalability, convergence, and real-time deployment). Researchers 
studying AI/ML and networking professionals working on 5G/6G 
networks and next-generation data centers will find the 
manuscript useful.
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