:' frontiers ‘ Frontiers in Artificial Intelligence

@ Check for updates

OPEN ACCESS

EDITED BY
Hangi Zhuang,
Florida Atlantic University, United States

REVIEWED BY

Rui Xiong,

Beijing Institute of Astronautical Systems
Engineering, China

*CORRESPONDENCE

Deepthi Goteti
2102031088@kluniversity.in

Vuyyuru Krishna Reddy
vkrishnareddy@kluniversity.in

RECEIVED 13 August 2025
ACCEPTED 22 October 2025
PUBLISHED 13 November 2025

CITATION

Goteti D and Reddy VK (2025) Al-driven
routing pipeline in software-defined networks
using DQL: a mini review.

Front. Artif. Intell. 8:1685155.

doi: 10.3389/frai.2025.1685155

COPYRIGHT

© 2025 Goteti and Reddy. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Artificial Intelligence

TYPE Mini Review
PUBLISHED 13 November 2025
pol 10.3389/frai.2025.1685155

Al-driven routing pipeline in
software-defined networks using
DQL: a mini review

Deepthi Goteti* and Vuyyuru Krishna Reddy*

Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation,
Vijayawada, India

State-of-the-art data center networks are experiencing an increase in dynamic
traffic. Even minor inefficiencies cause latency, congestion, and high costs.
Software-defined networking (SDN) provides centralized programmability, but
classical algorithms such as Dijkstra and Equal-Cost Multi-Path (ECMP) fall short
because they cannot adapt in real time. To overcome this limitation, Reinforcement
Learning (RL), particularly Q-learning, adds adaptability; however, scalability remains
a challenge. DQL addresses this by using neural networks to approximate the
Q-function, enabling SDN controllers to learn routing strategies directly from
live network states. This Mini Review brings together recent DQL approaches for
SDN. We examine architectures, algorithmic variants, and emulation environments
(such as Mininet with Ryu). In addition, we introduce a structured taxonomy, with
a practice-oriented synthesis of empirical trade-offs and deployment issues. The
focus is on trade-offs, throughput, latency, and convergence. Reported studies
show that DQL typically improves throughput by about 15-22 percent and reduces
delays by roughly 10-12 percent compared with ECMP. These gains, however,
come at the cost of longer training, inference delays, and scalability hurdles.
Unlike prior surveys, this review makes three distinct contributions: a structured
taxonomy, with a practice-oriented synthesis of empirical trade-offs and deployment
issues. We also highlight emerging directions: federated learning, graph-based
neural models, and explainable Al, which may help transition DQL from promising
simulations to production-ready SDN solutions.

KEYWORDS

software-defined networking, deep Q-learning, reinforcement learning, intelligent
routing, fat-tree topology, quality of service

1 Introduction

Networks in data centers (DCNs) should be able to handle variable and unpredictable
traffic loads, achieve low latency, high throughput, and efficient resource utilization.

Conventional hardware enclosed systems are frequently incapable of responding as
dynamically as these demands would suggest. SDN has become a revolutionary concept
because the control plane and the data plane have become disconnected, allowing control to
be centralized, dynamically configured, and having a global view (Sezer et al., 2013).

This abstraction may enable the rapid deployment of new protocols, impose
international policies, and allow networks to be optimally developed without requiring
hardware changes. Most of the work in high-performance networks, including large-scale
DCNes, is done by SDN controllers. They organize routing schemes, traffic management,
and load balancing in order to meet high levels of performance. Continuing on this
point, a sizable part of the SDN literature to date uses classical algorithms, such as the

01 frontiersin.org


https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1685155&domain=pdf&date_stamp=2025-11-13
https://www.frontiersin.org/articles/10.3389/frai.2025.1685155/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1685155/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1685155/full
mailto:2102031088@kluniversity.in
mailto:vkrishnareddy@kluniversity.in
https://doi.org/10.3389/frai.2025.1685155
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1685155

Goteti and Reddy

shortest path algorithm by Dijkstra (Yahya et al., 2015) or the
Equal-Cost Multipath (ECMP) routing algorithm (Chiesa
etal., 2014).

The relevant methodologies are effective in a static or predictable
environment, but not very effective in a dynamic traffic environment
(Yassen and Athab, 2025), which leads to congestion and underutilized
links. ECMP allocates flows on equal-cost routes; however, it is unable
to adjust to varying conditions dynamically. Goteti and Rasheed (2025)
optimized their multipath routing algorithm in order to overcome this.
It can flexibly cope with real-time traffic loads, topology, and
performance metrics, which is more practice-intensive in the new
version (Kamboj et al., 2023; Qin et al., 2024). Despite such advances,
most studies remain limited to heuristic extensions or simulation-
based proofs of concept, with little critical comparison of their real-
world scalability, convergence costs, and impact on quality of service.

Existing surveys also tend to be descriptive, summarizing
algorithms without analyzing their empirical trade-offs. This creates a
gap that calls for a more analytical mini-review. To address these
limitations, static and heuristic approaches have driven growing
interest in Artificial Intelligence and Machine Learning (ML) for SDN
routing (Xie et al., 2019; Nougnanke, 2021).

Reinforcement Learning (RL) is a data-driven approach that
enables the optimization of policies through interaction with the
environment (Sutton and Barto, 2018). Q-learning is a value-based RL
algorithm that has been implemented in SDN routing (Jaafari et al.,
2022; Piardi et al., 2019; Jayawardena et al., 2025), but its application
is limited due to scaling problems in an ample state-action space.
Building on these limitations, the next section outlines how Deep
Q-Learning (DQL) operates within SDN, providing the conceptual
background for the architectural analysis presented in later sections.

1.1 Contributions

In contrast to earlier surveys (which are largely summative), this
Mini Review presents a systematic taxonomy of DQL-based SDN
routing, summarizes empirical trade-offs across various studies, and
provides a practice-oriented synthesis of deployment issues and
implementation challenges. These orientations toward methodology
and applicability make our work distinctive relative to
previous reviews.

Taxonomy: a systematic taxonomy of DQL methods for
SDN routing.

Empirical synthesis: Generalizes case-study results and measures
throughput, delay, and convergence trade-offs.

Deployment issues: Critically assesses key systemic barriers,
including scalability, real-time inference, security, and interpretability.

Practice-oriented roadmap: Describes emerging directions
(federated, graph-based, explainable RL) needed to overcome the
simulation-to-production gap in SDNs.

These contributions are new to DQL-SDN studies, as no previous
Mini Review has integrated (i) a systematic taxonomy of methods, (ii)
an empirical synthesis of case studies and benchmarks, and (iii) a
deployment-focused critique.

The remainder of this paper is structured as follows: Section 2
provides background on AI, ML, and RL within SDN, including an
overview of DQL; Section 3 describes the DQL frameworks and
taxonomy; Section 4 discusses case studies and empirical findings;

Frontiers in Artificial Intelligence

10.3389/frai.2025.1685155

Section 5 outlines challenges, limitations, and future directions; and
Section 6 presents the conclusion.

2 Artificial intelligence, machine
learning, and deep Q-learning in
software-defined networks

In actual SDN environments, traditional routing techniques
frequently fail due to the complexity and layered structure of modern
networks. Diverse network topologies, erratic traffic flows, and
disparate quality-of-service priorities frequently cause fixed routing
strategies to utilize network resources ineffectively. As a result, there
has been a need for adaptive routing and policy optimization, which
has led to the application of Al, particularly ML and RL, in SDN
frameworks (Qin et al., 2024).

2.1 Foundations of reinforcement learning

Reinforcement Learning (RL), which typically operates as an
independent branch of artificial intelligence, focuses on agents
learning optimal actions by interacting with their environment
(Sutton and Barto, 2018). RL works with an agent, environment, states,
and rewards. In SDN, routing algorithms are considered intelligent
agents. That selects the best paths for data to travel through the
network. They examine the networKk’s layout and the amount of traffic
currently flowing to inform their decisions. These agent’s primary goal
is to work with strategies that maximize their performance, measured
by factors such as the amount of data they can transmit simultaneously
(throughput) or the speed at which the data reaches its destination
(reduced delay) (Song et al., 2024).

Initially, Q-learning was the first method used to apply
Reinforcement Learning (RL) in SDN. In Software-Defined
Networking, routing algorithms determine the best paths for data by
assessing the network’s layout and traffic conditions. The goal is to
enhance performance by achieving higher throughput and lower delay
(Sharma et al., 2024).

Recent work has started adapting these methods to real-world
scenarios. Lin et al. (2025) introduced a deep learning method that
considers performance factors such as bandwidth, which is in high
demand in routing. This is achieved by predicting bandwidth needs,
which helps prevent flow starvation during periods of heavy traffic.
Likewise, the DQQS framework targets both performance and
security in SDN-IoT environments. It detects possible attacks and
assesses the quality of service. The goal of this research is to improve
network performance by strengthening resistance to malicious traffic
(Zabeehullah et al., 2024). These developments demonstrate how
routing research is evolving from theory to workable, multi-objective
solutions tailored to specific domains, taking these cases into account.

Recent advances in DRL for SDN Routing: Over the past 2 years,
the study of DRL-based routing has progressed rapidly, particularly in
the form of hybrid architectures that enhance the modeling of deep
neural networks and policy optimization. In the research by He et al.
(2024), it was proposed that a DRL scheme could be strengthened
with the help of a graph neural network to help represent the
topological dependencies in SDN topologies. Wang et al. (2024)

proposed a dynamic-loaded DRL algorithm that uses a

frontiersin.org


https://doi.org/10.3389/frai.2025.1685155
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Goteti and Reddy

fuzzy-logic-based approach, ensuring latency and bandwidth
constraints are met. Alenazi (2024) described a deep-Q-learning
framework, which significantly improves both the QoS metrics
(packet-delivery ratio and throughput). On the same note, Sensors
(2022) and Bohrium (2024) presented ensemble- and transformer-
based versions of DQL for scalable load balancing and routing. The
subsequent advances indicate how the rule-based/tabular RL models
gave way to architecture-sensitive, data-driven control in the
present SDNs.

These recent innovations in DRL-driven routing mark a crucial
transition point, linking earlier reinforcement-learning approaches
with the broader integration of machine-learning techniques
discussed in the following subsection.

2.2 Machine learning in the SDN context

Researchers thoroughly examined and assessed a variety of
machine learning approaches for SDN applications prior to beginning
work on Reinforcement Learning (RL). Important subjects covered in
this investigation include traffic prediction, intrusion prevention, flow
classification, and anomaly detection. An interesting survey by Xie
etal. (2019) detailed the application of supervised, unsupervised, and
reinforcement learning models in the fields of traffic engineering and
network security.

By enabling autonomous decision-making at the network edge,
machine learning has been shown in numerous studies to
significantly improve network performance and lessen the burden on
controllers. Studies by Nougnanke (2021) and Wang et al. (2022)
emphasize this capability. One significant benefit is the wealth of
high-quality datasets made available by SDN telemetry and flow-
level monitoring.

Faezi and Shirmarz (2023) showed that supervised machine
learning is currently at the forefront of anomaly detection and traffic
classification. On the other hand, Reinforcement Learning and DQL
are gaining traction in load balancing and adaptive routing.

Additionally, they noted that many assessments still make use of
testbeds such as Mininet with Ryu or POX controllers, which indicates
a promising direction for further research. Furthermore, machine
learning successfully supports RL/DQL by providing predictive
features that can enhance decision-making, such as anomaly detection
and traffic load estimation.

Sha et al. (2023) claimed that a traffic prediction model based on
machine learning aids in managing congestion in SDN using
reinforcement learning techniques. Their work reflects the growing
trend of integrating multiple AI methods in network control and
demonstrates how combining adaptive decision-making with
predictive analytics can improve routing efficiency.

2.3 Overview of deep Q-learning (DQL)

Consequently, DQL has emerged as a methodology applied to
SDN to enable adaptive routing solutions by integrating deep neural
networks with reinforcement learning. Neural architectures
approximate the Q-function by training to take the optimal course of
action based on the feedback received (Zhang et al., 2023; Sharma
etal., 2024; Song et al., 2024; Liu et al., 2021; Fu et al., 2020).

Frontiers in Artificial Intelligence

10.3389/frai.2025.1685155

DQL is an extension of classical Q-learning that incorporates deep
neural networks to approximate the optimal action-value function
Q(s, ), enabling agents to make decisions in large and continuous
states. By selecting routing actions under the guidance of a learned
policy, the objective is to maximize the long-term cumulative reward
(Hasselt et al., 2016). A Q-network obtains a prediction of the
expected cumulative reward of each possible routing choice, rather
than storing the Q-values in a table. Two core mechanisms are
experience replay and target network to stabilize learning and mitigate
oscillations common in tabular RL. Within SDN, the DQL agent
continuously observes network telemetry (e.g., link utilization, delay,
queue length) and updates routing rules in real time through the
controller to maximize throughput and minimize congestion.
Empirical studies confirm that DQL improves throughput by 15-25
percent and reduces end-to-end delay compared with ECMP or
Dijkstra-based routing (Fu et al., 2020; Liu et al., 2021; Sharma et al.,
2024; Aguirre-Sanchez et al. 2024). These capabilities are improved in
new hybrid models: He et al. (2024) use graph neural networks to
make topology-aware decisions, Wang et al. (2024) use fuzzy-logic
layers to address latency and bandwidth requirements, and Li et al.
(2025) use graph-transformer architectures to achieve robust and
scalable routing. These advances illustrate DQLs maturity as an
intelligent control framework, forming the conceptual foundation for
the architectural analysis presented in subsequent sections.

This workflow utilizes the DQL agent, which evaluates routing
activity based on telemetry information processed by machine-
learning predictors that approximate traffic conditions. These
observations help the agent refresh the SDN controller, which
consequently enforces the learned flow rules in the forwarding plane.

This setup allows finer-grained, real-time routing decisions in
complex network topologies such as Fat-Tree data centers. Figure 1
illustrates this process: telemetry data are collected, analyzed by ML
predictors, optimized through RL/DQL agents, and implemented by
the SDN controller for adaptive routing. The signal originates at the
Data Plane, flows through Telemetry/ML predictors to the DQL
Agent, then to the SDN Controller, which enforces actions back in the
Data Plane.

Practical studies demonstrate a clear trade-off. DQL consistently
improves throughput and reduces delay; however, it also requires
longer training and introduces inference latency. Measuring these
trade-offs is essential —without it, progress from research prototypes
to production-ready SDN systems remains difficult.

2.4 Transition to deep reinforcement
learning (DRL)

DRL, which generalizes algorithms such as DQL, extends classical
Reinforcement Learning to manage large and dynamic SDN
environments. And it goes beyond the limits of classical Reinforcement
Learning in managing large SDN environments. Instead of relying on
static lookup tables, DRL uses deep neural networks to approximate the
Q-function. Building on early breakthroughs in Deep Q-Networks
(DQN), it has proven especially effective in handling high-dimensional
and constantly changing environments (Silver, 2016; Arulkumaran et al.,
2017; Rikhtegar et al., 2021). Within SDN, DRL enables the controller to
adapt routing decisions in real time, considering factors such as
bandwidth, latency, and packet loss. This makes the system

frontiersin.org


https://doi.org/10.3389/frai.2025.1685155
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Goteti and Reddy

10.3389/frai.2025.1685155

v

Telemetry ML Predictors

RL/DQL Agent SDN Controller

A

Data Plane (Switches/Links)

FIGURE 1
Al-driven SDN routing pipeline.

context-aware and capable of self-optimizing control logic that responds
quickly to topology changes or sudden traffic anomalies (Song et al.,
2024). Building on these DRL foundations, Figure 2 illustrates how DQL
integrates neural networks with classical Q-learning to enable adaptive,
topology-aware routing within SDN environments.

In SDN, DRL allows the controller to modify routing choices. This
enables the system to be context-aware and capable of self-optimizing
control logic that can quickly adapt to topology changes or unexpected
traffic anomalies (Song et al., 2024). The proposed DQL-based SDN
framework (as shown in Figure 2) builds on this principle by
integrating neural networks with classical Q-learning to emulate the
action-value function and enable adaptive and efficient routing within
large and dynamic network systems. Recent executions go beyond the
traditional DQL and incorporate auxiliary learning modules. As an
example, He et al. (2024) use fuzzy-logic inference to stabilize a
learning process with variable loads, Wang et al. (2024) integrate graph
neural networks with topology-aware perception, and Alenazi (2024)
improves the reward design to enhance end-to-end QoS. In a similar
manner, Bohrium (2024) uses transformer attention to facilitate the
long-range flow correlation modeling. All these improvements
indicate that DQL is becoming a multi-objective framework, which is
modular and not based on a single algorithm model. The architecture
consists of three collaborating planes—the Data Plane, Control Plane,
and AI Decision Plane—which operate in a closed feedback loop to
achieve continuous learning and optimization.

The process begins in the Data Plane (Forwarding Plane), where
switches and links generate real-time telemetry and state information,
including flow statistics, link utilization, and delay. The information is
relayed to the SDN Controller in the Control Plane, which aggregates
and preprocesses the data before forwarding it to the DQL Agent in
the AI Decision Plane. The agent uses a policy network [r(as)] and an
experience replay buffer to learn an optimal policy through the
interaction tuple (s, a;, Iy, Sii1)-

Once an optimal action is determined, the Control Plane translates
the DQL output into network-level configurations, such as flow-rule
updates or path adjustments, which are applied in the Data Plane. The
resulting network performance measures (i.e., throughput, delay, and

Frontiers in Artificial Intelligence

packet loss) are tracked by the QoS and Reward Module in the Control
Plane and then converted into a reward signal (r,).

This reward signal leads to the updating of the Q-network,
completing the closed-loop learning process. The interaction within the
system enables continuous adaptation and self-optimization across
heterogeneous SDN environments. Machine learning provides
predictive insights, while reinforcement learning enables adaptive
control. Their combination in DQL creates a real-time, self-evolving
optimization framework that enhances routing intelligence, scalability,
and responsiveness. Section 3 further elaborates on how this framework
extends to deliver robust and scalable solutions for adaptive SDN routing.

2.5 Applications and research trends

The graph-based neural network with RL has been used in
dynamic routing in smart grid-enabled SDNs to enhance fault
tolerance and lower latency (Islam et al., 2023). Similarly, an adaptive
routing system modeled on Q-learning realized significant
improvements in the use of links and route discovery time using a
multipath system (Goteti and Rasheed, 2025).

Tahi et al. (2024) employed machine learning classifiers with
reinforcement learning to introduce an intelligent load-balanced method
for SD-DCNs, which is utilized in path allocation and flow detection.
Their comparative analysis with ECMP and heuristic schemes showed a
better throughput and quality of service in Mininet and Ryu. This
illustrates that the combination of ML and RL positively affects the load
distribution in fat-tree data center networks (Yao et al., 2018).

Osman et al. (2023) designed a framework that links SDN
controllers and traffic engineering deep learning models. One of the
main characteristics of their work is the support for a multi-vendor
environment, which is more practical for deployment. This brings
DL-based SDN solutions closer to industry adoption. The design of
such models should be very attentive. Mininet, as a tool that simulates
network environments, as well as POX or Ryu to control network flow,
are some of the standard tools used in this field. In the case of deep
learning, many scientists are inclined to work with TensorFlow or

frontiersin.org


https://doi.org/10.3389/frai.2025.1685155
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Goteti and Reddy

10.3389/frai.2025.1685155

Optimized Policy

6.Reward (r)

l nlals)
cemmrre | [ (DOLAgene | [izzesmeter,
gt s B ccro 10w 2.Processed state s,
Training ol Q-network weights <
3.Action (a,) drawn periodically &~ S
State (s)

State (s) Reward (r)

Al-driven learning logic:
stores experiences * updetes Q-netwok
outputs optimized policy

| Updates Q-network weights using (s., a., &, s=:) |

A4

FIGURE 2
Architecture of a deep Q-learning-powered SDN framework.

Control Plane
Data Plane
SOC oD 1-State 5 Data Plane (SDN Environment)
Telemetry/Stats
Collector Switches >Z Links
(OpenFlow nodes; 51 [network connetions)
QoS/Reward Reward "
| Monitor computation I4.E):ecumetActlonI
{ (QoS-based) mpiemen
[ Topology Manager ] Policy/Apply
- - - S Flow Rules
Policy / Action Flows
| Dispatcher < — »  idatatraffic
5.Reward (r.) paths)
[ Flow-Rule Manager] (QoS Feed back) S5
Real netwark environment: switches « links « traffic flows

PyTorch (Fontes et al., 2015; Wette et al., 2014; Abubakar et al., 2025).
To stabilize the training of DQL, researchers have begun applying
replay buffers and target networks; these techniques address
convergence problems that frequently arise in previous studies of
reinforcement learning (Hasselt et al., 2016).

Table 1 categorizes these approaches into several categories: temporal
DQL, multi-agent DQL, graph-based models, quality-of-service- and
security-aware DQL, federated learning, and hybrid solutions. Each
option comes with trade-offs in adaptability, scalability, robustness, and
feasibility. This overview illustrates the evolution of SDN routing research
from classical Q-learning to advanced DQL methods, highlighting the
directions that future intelligent networking may take. Taken together,
these studies show a clear migration from heuristic routing to learning-
based controllers capable of topology- and traffic-aware adaptation.

2.6 Challenges and considerations

Despite strong results, using ML and DRL in SDN faces
several challenges:

o Training complexity: Mao et al. (2018) claim that deep learning
models require significant computing power. Some models, such

Frontiers in Artificial Intelligence

as lightweight edge agents and model compression, reduce this
load (Ma et al., 2022).
Data quality: Effective training requires fine-grained, real-time

flow data. Inadequate telemetry lowers accuracy (Faezi and
Shirmarz, 2023). Hybrid ML-RL methods fill in missing flow
features, providing RL agents with better input.

Controller overhead: DRL must respond quickly to avoid slowing

the control plane (Kokila et al, 2025). Policy caching and
distributing DRL across controllers lower latency and prevent
bottlenecks (Wang et al., 2022).

Scalability: Large topologies cause exponential state-space
growth (Al-Fares et al., 2008). State abstraction, hierarchical
DQL, and graph-based DRL improve scalability (Li et al., 2025).
« Deployment gap: Many designs remain at the simulation stage.

Real-world use across multi-vendor SDN systems is still limited
(Osman et al, 2023). Interoperable, controller-agnostic Al
modules are needed.

Cutting-edge, recently developed methods such as distributed
control systems, edge learning, and federated frameworks can
solve many of the aforementioned problems. These methods
promise improved scalability, performance, and privacy, even
though the shortcomings of current systems underscore the need

frontiersin.org


https://doi.org/10.3389/frai.2025.1685155
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Goteti and Reddy

10.3389/frai.2025.1685155

TABLE 1 Summary of Al techniques applied for routing optimization in SDN, highlighting the addressed problems, benefits, challenges, applications,
and representative references.

Al techniques

Problem
addressed

Challenges

Applications

Key references

Q-Learning (Tabular)

Static routing; poor

Simple implementation;

Poor scalability; fails in

Basic SDN routing; testbeds

Piardi et al. (2019),

standard DQL; limited

historical awareness

long-term decision-

making

memory; delayed

convergence

hierarchical networks

adaptability under traffic | interpretable high-dimensional state Jaafari et al. (2022)
variation spaces
DQL High-dimensional state- | Learns optimal paths; Slow convergence; Fat-Tree, large-scale data Fu et al. (2020), Liu et al.
action routing in adapts to topology and requires extensive center routing (2021), Lin et al. (2025)
dynamic networks traffic conditions training and GPU
resources
Temporal DQL Lack of context in Uses traffic history; better | State-space grows with Load balancing in Sharma et al. (2024)

topology explicitly using

flat features

scalable with changing

topologies

network integration;

complex reward design

Smart city networks

Multi-Agent DQL Single-agent models Parallel decision-making; | Synchronization and Distributed SDN Wang et al. (2019), Wang
struggle in large or scalable across multiple stability of distributed controllers etal. (2022)
segmented networks domains learning

Graph-based DQL Inability to model Better generalization; Requires graph neural Topology-aware routing; Islam et al. (2023); Li

et al. (2025); He et al.
(2024)

QoS-Aware DQL

Inability to prioritize

latency-sensitive flows

Integrates QoS metrics
into reward; better real-

time traffic handling

Needs classification of

flows; fairness trade-offs

VoIP, video conferencing

over SDN

Song et al. (2024); Qin
et al. (2024); Alenazi
(2024)

Federated DQL

Privacy concerns and

centralization limits

Decentralized training;

local data utilization

Communication
overhead; non-IID data

between agents

Inter-domain SDN;
federated learning in

telecom

Suh et al. (2022)

Secure DQL (Adversarial

Resilience)

Vulnerability to
poisoning and reward

manipulation attacks

Improved robustness;

safer exploration policies

Detection overhead;
attack model

generalization

Industrial IoT, critical

infrastructure SDNs

Zabeehullah et al. (2024);
Nguyen et al. (2024)

Graph/Transformer

Hybrid DQL

Lack of temporal +

structural learning

Captures spatial and

temporal patterns

Expensive training

Expensive training and

high computational cost

Li et al. (2025); Bohrium
(2024)

Edge/Fog-based DQL

High latency in

centralized training

Lightweight inference at

network edge

Limited resources; sync

overhead

SDN-DCN; fog/edge IoT

Osman et al. (2023), Tahi
et al. (2024)

Ensemble DQL

Instability in single DQL
models under diverse

traffic

Improves generalization
and convergence stability

through model ensembles

Requires ensemble
coordination; increased

compute cost

Optical transport networks;

load balancing

Sensors (2022)

for more adaptive and scalable learning-based routing frameworks.
Building on these recent DRL advances, the next section focuses
on DQL as the core framework for intelligent, adaptive
routing in SDN.

3 Deep Q-learning for intelligent
routing in SDN

As outlined in the previous section, recent DRL-based routing
frameworks have significantly expanded the scope of DQL, making it
a practical and scalable solution for intelligent routing in Software-
Defined Networks (SDNs). Conventional Reinforcement Learning
methods, including Q-learning, are limited when applied to high-
dimensional and dynamic network setups. DQL has been used to
solve these issues by researchers. DQL combines deep neural networks
and Reinforcement Learning to support more scalable and instant
decision-making.

Frontiers in Artificial Intelligence

SDN has configurations and traffic patterns that are continuously
evolving. In such vital activities as intelligent path selection, congestion
control, and enhancing QoS, DQL is an efficient approach (Pham
etal., 2021).

Unlike traditional Q-learning, which struggles with large sets of
possible actions, DQL uses neural networks that learn from data.
Because DQL can adapt to various network conditions, it is
particularly beneficial for complex systems such as the Fat-Tree
topology (Al-Fares et al., 2008).

3.1 DQL for routing optimization

DQL was tested in several SDN routing studies. Early research
integrated DQL into an SDN controller, allowing it to adapt to
varying link states. As a result, packet loss dropped, and
end-to-end delay also decreased compared with static routing (Fu
et al., 2020).

06 frontiersin.org


https://doi.org/10.3389/frai.2025.1685155
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Goteti and Reddy

DRL-R is a more sophisticated variant to which the concept
can be applied to the data centers, resulting in better load
balancing, reduced flow completion time, and throughput in
Fat-Tree networks (Liu et al., 2021; Tang et al., 2023). DQL
variants that are dependent on the history of traffic conditions
enhance the utilisation of the links and also reduce the congestion
persistence in traffic situations during high loads (Sharma
et al., 2024).

A large proportion of the implementations have been tested in
emulation using Mininet, along with controllers such as Ryu or
POX. DQL agents are written using either Python or TensorFlow and
submit requests to the controller through APIs to calculate routing
actions in real-time. The researchers use traffic generators such as
Iperf and D-ITG to generate VoIP, video, or TCP / UDP traffic to
mimic the actual workload.

These setups provide concrete validation of DQLs performance
improvements under realistic network stress conditions (Bhardwaj
and Panda, 2022; Wirawan et al., 2024).

In order to resolve the contingent scalability problem, scholars
have suggested hierarchical DQL agents applying state abstraction
strategies as well as decentralized learning models that decentralize
training to various controllers (Li et al., 2025; Suh et al., 2022). For
real-time deployment, lightweight edge-based agents, model
compression, and GPU acceleration have also been introduced to
that
latency requirements.

ensure routing  decisions meet millisecond-level

3.2 Adaptive routing in fat-tree topologies

Fat-Tree networks are widely used in large data centers because of
their path diversity and redundancy (Al-Fares et al., 2008). However,
conventional algorithms such as ECMP and Dijkstra often fail to
exploit these advantages under dynamic traffic loads (McKeown et al.,
2008). To address this gap, adaptive DQL models designed for Fat-Tree
networks make use of traffic-aware features such as queue size, link
delay, and flow priority to achieve better generalization performance
(Li et al, 2022). Congestion-aware DQL agents have also been
proposed to predict link congestion in advance, thereby reducing path
switching and improving flow stability in emulated environments
(Song et al., 2024; Nougnanke, 2021).

3.3 Multipath and QoS-aware extensions

DQL has been extended to multipath choice and QoS-concentrated
routing goals to tackle the drawbacks of single-path routing. As one
example, bandwidth- and jitter-conscious multipath DQL models can
dynamically choose such paths that minimize shared bottlenecks,
prioritizing latency-sensitive traffic especially (Zhang et al., 2023).
Similarly, QoS-aware DQL models that incorporate service class
prioritization into their reward function have achieved higher Quality
of Experience (QoE) in heterogeneous traffic environments, which
apply to 5G and multi-tenant data centers (Song et al., 2024; Qin et al.,
2024). Distributed DQL agents have even been deployed in industrial
SDN environments. In situational demands, where decentralized
decision-making is demanded, reduce central controller overhead and
increase fault resiliency (Wang et al., 2022).

Frontiers in Artificial Intelligence

10.3389/frai.2025.1685155

3.4 Advanced architectures: graphs,
transformers, and hybrid models

Recent works have investigated the integration of DQL with
advanced neural designs to improve spatial and temporal reasoning
(Wu et al., 2022). Graph-based DQL models utilize graph neural
representations of the structural features of a network, while
transformer-based DQL uses long sequences of state transitions to
discover temporal dependencies. One such example is the Graph
Transformer DQL model, which converges quickly and scales better
when running SDN at scale (Li et al., 2025). Operationalizable tools
such as Q-Optimizer build upon this advancement with a dual-agent
coordination framework, modular architecture, and QoS-based
feedback to uplift routing stability and responsiveness. With these
advances, there are a number of limitations. The training run times
remain lengthy, controller overhead grows with the size of the
network, and model interpretability is poor, which still limits the use
of DQL in practice in SDN production networks.

These findings emphasize the importance of systematic evaluation,
which is examined in Section 4 through the testing of DQL
frameworks in Fat-Tree and other representative network topologies.
To integrate the diversity of existing methods, we synthesized a
conceptual taxonomy capturing the main design directions of DQL
within SDN, as shown in Figure 3.

Recent literature aligns into six themes: temporal, multi-agent,
graph-based, QoS-aware, federated, and hybrid architectures, all
addressing one or more of the primary goals—scalability, adaptability,
and service quality.

This unified perspective explains why various strategies converge
to promote network intelligence and operational resilience. The
following section builds on this synthesis by assessing how these DQL
variants have been empirically validated across diverse experimental
settings. These architectural refinements set up the performance
analysis in Section 4, where we quantify DQLs benefits and costs in
representative topologies.

4 Performance evaluation in fat-tree
topologies

DQL in SDN requires strong empirical validation. Results must
extend beyond theory and demonstrate practical benefits. Fat-Tree
topologies are widely used in data centers for this purpose because they
provide multipath connectivity, redundancy, and scalability (Al-Fares

DQL

—_ el ()

s || & 2 s || || B
[} o)) © = © Qo
g S IER: s || 3| &
£ B £ 1o © T
= 3 & & L

= &

FIGURE 3
Taxonomy of deep Q-learning approaches for SDN routing

frontiersin.org


https://doi.org/10.3389/frai.2025.1685155
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Goteti and Reddy

et al., 2008). This section reviews the testing of DQL, focusing on
topology selection, simulation tools, and performance metrics.

4.1 Fat-tree: a preferred topology

Fat-Tree networks are inherently redundant and feature multiple
paths. They are of essential importance in data centers for load
balancing and congestion-aware routing (McKeown et al., 2008). Also,
they enable researchers to test routing strategies under erratic traffic
conditions. The use of fat-tree networks is therefore employed as a
standard to evaluate the network performance. They are used to assess
fault recovery, quality of service, and routing among flow distribution.
Owing to their flexible design, Fat-Tree topologies can be applied to
compare adaptive methods, including DQL, to a baseline, including
Dijkstra and ECMP (Wirawan et al., 2024; Li et al., 2022).

Empirical studies further confirm these advantages:

o These benefits are further proved by empirical research: Inak = 4
Fat-Tree, Fu et al. (2020) tested DQL and discovered roughly 30%
reduce in delay and packet loss than ECMP.

Liu et al. (2021) showed that DRL-R improved throughput by
20% and reduced flow completion time under heavy traffic.

Zhang et al., (2022) demonstrated that congestion-sensitive DQL
reduced the amount of packets drop and stabilized the flows
under peak loads.

« DQL increased throughput by 15-22% percent and decreased
delay by 10-12% percent over ECMP. These gains were associated
with cost such as increased training time and increased inference
overhead. The Fat-Tree has become the testbed of choice since it
shows these trade-offs yet can be fairly compared to classical
routing techniques.

4.2 Simulation tools and environment
setup

Most evaluations of DQL in SDN utilize network emulation
platforms combined with machine learning toolchains, which
enable researchers to test under realistic workloads while
maintaining control over experimental variables. Mininet is the
most widely adopted emulator, particularly for deploying Fat-Tree
topologies (k = 4, 6, 8) with native OpenFlow support. Fu et al.
(2020) demonstrated that Mininet-based experiments achieved an
average delay reduction of approximately 18% with DQL compared
to ECMP in dynamic topologies.

On the control-plane side, the Ryu controller is often preferred
because of its Python interface, which makes it straightforward to
integrate with TensorFlow or PyTorch. According to Bhardwaj and
Panda (2022), Ryu uses machine learning frameworks such as
PyTorch and TensorFlow. Its usefulness in evaluating important
metrics such as throughput, delay, and packet loss was validated by
Wirawan et al. (2024). Combining Ryu and DQL improved
throughput by almost 20% and decreased packet loss in mixed
VoIP and video traffic, according to Zhang et al. (2023).

Traffic generators such as Iperf and D-ITG are widely used to
emulate workloads, including bulk TCP transfers, VoIP calls, and
HD video streams. Using these tools, Song et al. (2024)

Frontiers in Artificial Intelligence

10.3389/frai.2025.1685155

demonstrated that DQL preserved QoS by reducing jitter by up to
12% compared with static ECMP routing.

Fault tolerance has also been evaluated through failure-
injection scenarios, such as link or switch crashes. Wang et al.
(2022) found that distributed DQL reduced recovery time by about
25% and lowered controller overhead relative to centralized models.

Other controllers, including POX, ONOS, and OpenDaylight,
have appeared in more limited studies. POX offers a lightweight
option for proof-of-concept testing, whereas ONOS and
OpenDaylight demonstrate the feasibility of industry-
grade deployments.

Overall, these studies suggest that the performance of DQL is
susceptible to the experimental setup, particularly the choice of
controller, topology size, and traffic type. This suggests that,
although the results are promising, they may not always generalize

to all deployment environments.

4.3 Key metrics for evaluation

To judge how well DQLperforms in SDN routing, researchers
often rely on QoS indicators. These highlight not only efficiency and
reliability but also how effectively the system learns over time. These
measures enable researchers to compare DQL with traditional
approaches, such as ECMP and tabular Q-learning, and assess its
performance under real operating conditions. In practical settings,
Quality of Experience (QoE) indicators, such as latency, jitter, and
packet loss, are often used to evaluate service quality, particularly
in time-sensitive applications like VoIP and video streaming (Song
et al., 2024).

Table 2 highlights the key indicators that demonstrate the
relevance of the recent research. These investigations repeatedly
demonstrate that DQL solutions are more reliable and flexible
than standard solutions. Such findings represent a good step
towards the more versatile and dependable SDN systems.
Nevertheless, some limitations that remain should be noted.
While improvements in throughput and reductions in delay are
consistent, the training overhead can be 10 to 30 times greater
than that observed with ECMP or heuristic approaches.
Performance can vary widely depending on the controller used,
such as Ryu or ONOS, and the scale of the network topology,
including whether it is a k = 4 or k = 8 Fat-Tree. These trade-offs
emphasize the importance of conducting systematic benchmarking
across different environments.

From proof-of-concept implementations to large-scale, multi-
controller systems, a comparative analysis of previous research
shows a distinct trajectory in the development of DQL research
within SDN. The baseline benefits of DQL in increasing
throughput and decreasing delay under steady traffic conditions
were validated by early frameworks (Fu et al., 2020; Liu et al,,
2021). Federated and multi-agent models concentrated on
distributed environments were detailed by Wang et al. (2022) and
Suh et al. (2022), and examples of them were described by Sharma
et al. (2024) and Li et al. (2025), and have temporal and
hierarchical characteristics with increased convergence stability
and faster policy adjustment. The failure to systematically
implement convergence control weakens the system in terms of
responsiveness and effectiveness. The developed trade-offs are

frontiersin.org


https://doi.org/10.3389/frai.2025.1685155
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Goteti and Reddy

TABLE 2 Performance metrics for evaluating DQL in SDN.

Metric Description

Significance

10.3389/frai.2025.1685155

Example findings/
references

Throughput Total data successfully delivered over time

Reflects link utilization and efficiency

DQL improved throughput by 18-22%
vs. ECMP (Fu et al., 2020)

% of packets dropped due to congestion or
Packet Loss Rate
link failure

Indicates network reliability

Loss reduced by ~15% under mixed

workloads (Zhang et al., 2023)

Time for a packet to travel from source to
Avg. End-to-End Delay d
estination

Critical for real-time and QoS-sensitive apps

Temporal DQL cut delay by ~12%
(Sharma et al., 2024)

Time required for DQL to learn a stable
Convergence Time
routing policy

Demonstrates learning efficiency

DRL-R converged 30% faster than
Q-learning (Liu et al., 2021)

evident: hierarchical DQL can be trained in an unstable manner,
which can be improved with distributed and federated
frameworks; however, this approach results in lower timeliness
and responsiveness. Graph- or transformer-enhanced DQL
delivers outstanding generalization across varying traffic
conditions, but the processing requirements are enormous.

Single-agent DQL loses control precision and scales poorly,
while control overhead remains high. Convergence toward
system-level intelligence in DQL remains the missing element that
unifies the findings described individually. This synthesis is
critical for forming a comprehensive understanding of DQL,
which, although currently advanced, remains iterative and limited.
The impact of these findings helps shape the challenges addressed
in the next section.

These persistent trades-offs between performance gains and
training or inference overhead form the foundation of the
challenges and open directions discussed in the following section.

5 Challenges, limitations, and future
directions

Despite proven performance improvements, four systemic
bottlenecks,
trustworthiness (including security and interpretability), restrict the
use of DQL in SDN. These issues are interrelated: lack of
interpretability slows deployment in mission-critical networks,

scalability, efficiency, real-time inference, and

defenses against adversarial attacks add overhead, and larger models
exacerbate inference delay. These restrictions and new solutions are
explained in the ensuing subsections.

This section focuses on assessing DQL limitations in a novel,
structured, and practice-oriented manner by combining empirical
evidence from case studies, in contrast to previous surveys that only
briefly discuss the challenges.

5.1 Scalability of learning models

Scalability is one of the biggest challenges when deploying DQL
in large-scale SDN environments. As networks grow, the state and
action spaces can expand dramatically. This requires deeper and wider
neural networks to approximate value functions accurately. Fat-Tree
and similar hierarchical topologies amplify this challenge because the

Frontiers in Artificial Intelligence

number of possible routing combinations increases combinatorially
(Chiesa et al., 2014).

At the moment, graph-based DRL frameworks naturally
represent topological structure. Hierarchical DQL agents break down
routing tasks into smaller, distinct subproblems, and state abstraction
reduces the dimensionality of inputs (Zhang et al., 2023). Earlier
surveys, particularly Prakoso et al. (2024), provided valuable
taxonomies of reinforcement-learning-based routing but offered
limited empirical comparison among scalability techniques. Recent
work, including the Survey on Graph Neural Networks (Gkarmpounis
et al, 2024), consolidates evidence that graph-based deep
reinforcement learning provides the most scalable path when
network topology varies dynamically, underscoring its structural
adaptability and efficiency compared to flat feature-based models.

In contrast, this Mini Review integrates architectural reasoning
with performance data to draw a comparative synthesis across
three major scalability paradigms: hierarchical, graph-based, and
federated/distributed frameworks.

Hierarchical DQL schemes converge more rapidly by breaking
down learning into layer-wise subpolicies; researchers have found
up to 20 to 25 percent faster convergence and reduced oscillation
in larger networks in hierarchical DQL. DRA models based on
graphs explicitly represent the network connectivity, which is more
generalized and resilient to variable traffic conditions (Islam et al.,
2023) but at a more expensive computational cost. By training local
controllers concurrently (federated and distributed DQL) designs
(Wang et al., 2022; Suh et al., 2022) can be more scalable and offer
superior data privacy, but they add synchronization delays to the
global system and cause uneven global convergence in cases of
varying capabilities of individual controllers.

Collectively, the results outline a distinct trade-oft space:
hierarchical designs focus on convergence efficiency, graph-based
designs on structural adaptability, and federated designs on
horizontal scalability and privacy—though at the cost of
communication overhead. Framing scalability in this comparative,
quantitative way transforms it from a descriptive obstacle into a
design space where efficiency, resource cost, and coordination
latency can be balanced. This synthesis deepens understanding of
when each paradigm is most effective and establishes the analytical
basis for developing truly elastic, production-ready DQL systems
for future SDN deployments.

Hybrid frameworks that combine hierarchical coordination and
federated synchronization (e.g., Qin et al.,, 2024) may help balance this

frontiersin.org


https://doi.org/10.3389/frai.2025.1685155
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Goteti and Reddy

trade-offs by enhancing scalability while preserving rapid convergence.
These comparative insights also frame the efficiency-focused and real-
time inference discussions presented in the next sections.

5.2 Learning efficiency and convergence
time

Thousands of episodes are normally required to achieve
convergence. Methods such as Double DQN and experience replay
enhance the stability and efficiency of policies (Sutton and Barto,
2018; Silver, 2016). Conversely, deterministic routing algorithms
obtain immediate solutions, making DQL unpopular in networks
where latency is a primary concern. Per Sharma et al. (2024),
Priority Experience Replay reduced training episodes by almost 30
percent under heavy loads. Nevertheless, Piardi et al. (2019)
demonstrated that cold-start delays could be minimized through
transfer learning by reusing knowledge from related topologies.
Moreover, techniques such as continuous learning and meta-
learning are also evolving, allowing models to adapt to network
variations over time without the need to restart the training
process (Goteti and Rasheed, 2023).

DQL typically requires 1,000-5,000 training episodes to converge,
whereas, according to empirical research, ECMP and Dijkstra converge
almost immediately. This difference in efficiency continues to hinder
adoption. Such inefficiency remains a significant obstacle to
practical deployment.

5.3 Real-time inference constraints

The decisions made during routing in SDNs have to be performed
in milliseconds, which large neural models, especially attention or
transformer layers, cannot achieve. Bhardwaj and Panda (2022)
identified that a combination of DQL and Ryu controller added 25% of
latency to decision-making compared to the default ECMP. Wirawan
etal. (2024) demonstrated that the lightweight pruning methods could
achieve close to real-time performance. In real-world application
strategies, such as edge-based agents, the use of a graphics card, and
model compression, achieving accuracy, speed, and efficient resource
consumption remains challenging. Practically, unoptimized DQL
inference can add tens of milliseconds to decision latency, which is
prohibitive for ultra-low-latency services, in contrast to ECMP, which
has delays of less than 5 ms, which is prohibitive for ultra-low-latency
services such as VoIP and 5G slices.

5.4 Security and robustness issues

During training and inference, DQL models are susceptible to
poisoning and hostile manipulation. Attackers can inject malicious
traffic to skew rewards or undermine regulations. Distributed DQL
agents were especially susceptible to synchronized adversarial attacks,
as Wang et al. (2022) pointed out (Islam et al., 2023; Wassie et al., 2024).
Suggested defenses include anomaly detection, adversarial training, and
reward defenses. Lightweight, attack-resistant models are therefore
required, since these defenses increase computational costs and often
reduce routing efficiency.

Frontiers in Artificial Intelligence

10.3389/frai.2025.1685155

There is a way to secure DQL agents in real-world SDN
deployments, thanks to recent developments such as the framework
proposed by Nguyen et al. (2024), which demonstrates how adversarial
attacks and defenses can be integrated into reinforcement learning to
enhance policy robustness.

5.5 Integration and interoperability

The majority of DQL studies are limited in their applicability to
heterogeneous, multi-controller deployments because of their reliance
on Mininet simulations and single-vendor configurations. Phaneendra
et al. (2024) highlighted the deficiency of controller-agnostic Al
modules, while Deneke et al. (2024) demonstrated interoperability
issues when scaling across multi-vendor SDN  environments.
Lightweight, standards-compliant models that support P4-based
architectures, OpenFlow 1.3+, and hybrid cloud-edge deployments will
be essential for future advancement.

5.6 Interpretability and transparency

Adoption and trust are hindered by the “black-box” nature of deep
learning. Particularly in mission-critical industries such as healthcare
and finance, operators must understand the rationale behind selecting
specific routes. There have been proposals for explainable RL (XRL)
techniques, such as saliency visualization and attention heatmaps (Xie
et al,, 2019; Li et al,, 2025). By linking routing decisions to network
states, these tools can increase compliance and trust. It is still unclear
how to incorporate interpretability without compromising
model accuracy.

To increase the openness of DQL routing rules, for example, causal
explanation techniques such as the Causal State Distillation discussed
by Lu et al. (2023) and the causal world models proposed by Yu et al.
(2023) provide methods to connect agent choices to the underlying
network states. A recent survey by Milani et al. (2025) provides a
comprehensive categorization of explainable reinforcement learning
methods, emphasizing their applicability to networking and other
critical domains. Similarly, the XRL Survey (2025) classifies such
techniques into agent-, reward-, state-, and task-based explanations,

underscoring their relevance for trust-building in SDN environments.

5.7 Future scope: hybrid and federated
architectures

In order to optimize scalability, responsiveness, energy efficiency,
and interpretability, the next generation of DQLframeworks for SDN
must move from isolated algorithmic experimentation to integrated,
system-level design. Future research is now shifting from what
algorithms can achieve to how those algorithms can coexist and
cooperate within realistic, multi-controller environments. Building on
recent progress, three prioritized and mutually reinforcing research
pathways are emerging as the foundation for deployable, production-
grade DQL-enabled networks.

(i) The highest priority is Federated-Hybrid Learning for Scalability
and Privacy.

frontiersin.org


https://doi.org/10.3389/frai.2025.1685155
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Goteti and Reddy

Scalability is unavoidably constrained by centralized training, which
also presents data-sharing risks. Suh et al. (2022) showed how federated
DRL achieves horizontal scalability with built-in privacy by enabling
local controllers to train on private data while synchronizing only model
parameters. Qin et al. (2024) advanced this principle for 5G network
slicing, using multi-controller federated agents to balance load and
enhance fault tolerance.

Future hybrid frameworks that fuse hierarchical coordination (for
rapid local adaptation) with federated aggregation (for global policy
consistency) can eliminate single-controller bottlenecks and make SDN
learning architectures elastic and privacy-aware at scale.

(i) Lightweight and Energy-Efficient Inference for Real-
Time Operation.

Even with federated training, high-complexity neural networks still
hinder real-time decision-making. Emerging solutions, model pruning,
quantization, distillation, adaptive compression, and edge/GPU/TPU
acceleration, can cut inference latency from tens of milliseconds to near-
instant responses while reducing power consumption. Integrating these
optimizations with controller scheduling mechanisms will be essential
for latency-sensitive environments such as industrial IoT, autonomous
systems, and cloud-edge orchestration.

(iii) Explainability, Security, and Trustworthiness
Decision Making.

in DQL

As DQL gains control authority over network routing, human
interpretability and system reliability become critical. Explainable-RL
techniques, including causal state visualization, attention-based policy
mapping, and counterfactual analysis, can expose how routing decisions
are derived and why specific actions are chosen. In parallel, adversarially
robust and privacy-preserving training strategies (Nguyen et al., 2024)
will guard against malicious manipulation of learning policies and
ensure secure coordination among distributed agents.

5.7.1 Integrated road map and outlook
Collectively, these three research directions outline a unified
roadmap for the field:

o Federated-hybrid learning enables intelligence that is both scalable
and privacy-aware.

 Energy efficiency and real-time responsiveness are achieved
through lightweight inference.

o Transparency and operator trust are strengthened through
explainable and secure DQL.

Together, they form the technical triad required to transform DQL
from a promising research paradigm into a standards-compliant,
deployable, and self-optimizing SDN control layer. To balance
computational efficiency with learning depth and to create networks
that are not only intelligent but also accountable and sustainable, these
priorities should be integrated into cohesive frameworks in
subsequent research.

This review therefore presents a strategic, practice-oriented research
agenda for achieving intelligent, large-scale, and reliable SDN
infrastructures by defining future work through these interconnected
and prioritized pathways.

Frontiers in Artificial Intelligence

11

10.3389/frai.2025.1685155

6 Discussion and conclusion

Integrating DQL into SDN enables enhanced network
management, with real-time, adaptive routing that optimizes
throughput, latency, and flow stability. Although the benefits are
obvious, issues such as inference delay, scalability, and security
have continued to stand as major barriers to deployment. This
review highlights both the potential and practical limitations of
DQL, underscoring the necessity for high-quality, reliable, and
interoperable solutions to facilitate large-scale adoption.

Compared with earlier descriptive surveys, e.g., Prakoso et al.
(2024), this Mini Review offers a practice-oriented and analytical
point of view. In particular, it: (i) provides the first systematic
taxonomy of DQL techniques to SDN; (ii) synthesizes the results
of the recent research quantitatively to discover empirical trade-
offs; and, (iii) critically analyzes the issues associated with
deployment in the context of scalability, interoperability, and trust.
The combination of these elements brings the review beyond
summary in order to provide an evidence based roadmap to
further development of DQL research into production ready and
intelligent SDN systems. The next wave of research needs to be in
the area of standardized benchmarking, cross-environment
validation and integration of controllers to expedite the creation of
self-organizing, resilient, and quality of service oriented network
control systems. Overall, this work presents a structured taxonomy
of DQL methods for SDN, providing a practice-oriented synthesis
of empirical trade-offs and deployment challenges to guide future
research and implementation.

7 Additional requirements

This Mini Review synthesizes prior research on Q-Learning,
reinforcement learning, and DQLfor SDN routing and QoS
optimization, in line with the Frontiers in Artificial Intelligence
guidelines for Mini Reviews. It provides a focused overview,
includes only peer-reviewed and publicly available data, and
maintains a balanced, unbiased tone. The review outlines future
directions like graph-based models, federated training, hybrid
RL. While
methodologies, empirical findings, and open challenges (such as

agents, and explainable critically examining
scalability, convergence, and real-time deployment). Researchers
studying AI/ML and networking professionals working on 5G/6G
networks and next-generation data centers will find the

manuscript useful.

Author contributions

DG: Methodology, Visualization, Writing - original draft,
Writing - review & editing. VR: Conceptualization, Formal analysis,
Supervision, Validation, Writing - review & editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

frontiersin.org


https://doi.org/10.3389/frai.2025.1685155
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Goteti and Reddy

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Gen Al was used in the creation of
this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial

References

Abubakar, M., Raza, A., Nagra, AA., Bilal, A., Alshammari, A., Abdullah, M., et al.
(2025). ECGNet: High-Precision ECG Classification Using Deep Learning and
Advanced Activation Functions. IEEE Access 13, 133191-133207. doi:
10.1109/ACCESS.2025.3592240

Aguirre-Sanchez, L. P, Shen, Y., and Guo, M. (2024). DQS: A QoS-driven routing
optimization approach in SDN using deep reinforcement learning. Journal of Parallel
and Distributed Computing 188:104851. doi: 10.1016/j.jpdc.2024.104851

Alenazi, M. J. F (2024). An effective deep-Q learning scheme for QoS
improvement in SDN routing. J. Netw. Comput. Appl. 66, 102387. doi: 10.1016/j.
phycom.2024.102387

Al-Fares, M., Loukissas, A., and Vahdat, A. (2008). A scalable, commodity data center
network architecture. ACM SIGCOMM Computer Communication Review 38, 63-74.
doi: 10.1145/1402946.1402967

Arulkumaran, K., Deisenroth, M. P, Brundage, M., and Bharath, A. A. (2017). A brief
survey of deep reinforcement learning. IEEE Signal Process. Mag. 34, 26-38. doi:
10.1109/MSP.2017.2743240

Bhardwaj, S., and Panda, S. N. (2022). Performance evaluation using RYU SDN
controller in software-defined networking environment. Wirel. Pers. Commun. 122,
701-723. doi: 10.1007/s11277-021-08920-3

Bohrium (2024). A transformer-based deep Q-learning approach for dynamic load
balancing in software-defined networks. arXiv:2501.12829.

Chiesa, M., Kindler, G., and Schapira, M. (2014). “Traffic engineering with equal-cost-
multipath: an algorithmic perspective” In IEEE INFOCOM. pp. 1590-1598.

Deneke, B. B,, Beyene, A. M., and Haile, E. A. (2024). Improving software defined
network controllers in a multi-vendor environment. Heliyon 10:€26215. doi:
10.1016/j.heliyon.2024.626215

Faezi, S., and Shirmarz, A. (2023). A comprehensive survey on machine learning using
in software defined networks (SDN). J. Netw. Syst. Manag. 3, 312-343. doi:
10.1007/s44230-023-00025-3

Fontes, R. R, Afzal, S., Brito, S. H. B., and Rothenberg, C. E. (2015). “Mininet-WiFi:
Emulating software-defined wireless networks” in Proceedings of the 11th International
Conference on Network and Service Management (CNSM 2015), IEEE/IFIP, 384-389.
doi: 10.1109/CNSM.2015.7367387

Fu, Q, Sun, E,, Meng, K., Li, M., and Zhang, Y. (2020). Deep Q-learning for routing
schemes in SDN-based data center networks. IEEE Access 8, 103491-103499. doi:
10.1109/ACCESS.2020.2995511

Gkarmpounis, G., Vranis, C., Vretos, N., and Daras, P. (2024). Survey on graph neural
networks. IEEE Access 99:1. doi: 10.1109/ACCESS.2024.3456913

Goteti, D., and Rasheed, 1. (2023). “An approach to integrate reinforcement learning
in wireless sensor network to evade congestion.” in 2023 International Conference on
Sustainable Communication Networksand Application (ICSCNA), pp. 58-65.

Goteti, D., and Rasheed, I. (2025). “Optimal path identification to resist congestion
through applying intelligence to software-defined network” in Soft computing and signal
processing. Lecture notes in networks and systems, Eds. V. Sivakumar Reddy, J. Wang, P.
Chetti, K. T. V. Reddy. 1221 (Singapore: Springer).

Hasselt, H. V., Guez, A., and Silver, D. (2016). “Deep reinforcement learning with
double Q-learning” in Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence (AAAI-16), 2094-2100. doi: 10.1609/aaai.v30i1.10295

He, J., Xiao, Z., Zhu, Y., Zou, X., and Liang, L. (2024). Reinforcement learning-
based SDN routing scheme empowered by action influence quantification and
graph neural network. Front. Comput. Neurosci. 18:1393025. doi:
10.3389/fncom.2024.1393025

Frontiers in Artificial Intelligence

12

10.3389/frai.2025.1685155

intelligence and reasonable efforts have been made to ensure accuracy,
including review by the authors wherever possible. If you identify any
issues, please contact us.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or claim
that may be made by its manufacturer, is not guaranteed or endorsed
by the publisher.

Islam, M. A., Ismail, M., Atat, R., Boyaci, O., and Shannigrahi, S. (2023). Software-
defined network-based proactive routing strategy in smart power grids using graph
neural network and reinforcement learning. e-Prime Adv. Elect. Eng. Elect. Energy
5:100187. doi: 10.1016/j.prime.2023.100187

Jaafari, S., Nassiri, M., and Mohammadi, R. (2022). Traffic-aware routing with
software-defined networks using reinforcement learning and fuzzy logic. Int. . Comput.
21, 318-324. doi: 10.47839/ijc.21.3.2687

Jayawardena, C., Chen, J., Bhalla, A., and Bu, L. (2025). Comparative analysis of POX
and RYU SDN controllers in scalable networks. Int. J. Comput. Netw. Commun. Secur.
17, 35-51. doi: 10.5121/ijenc.2025.17203

Kamboj, P, Pal, S., Bera, S., and Misra, S. (2023). QoS-aware multipath routing in
software-defined networks. IEEE Trans. Netw. Sci. Eng. 10, 723-732. doi:
10.1109/TNSE.2022.3219417

Kokila, M., and Konda, S. R. (2025). DeepSDN: deep learning-based software defined
network model for cyberthreat detection in IoT network. ACM transactions on internet
technology. doi: 10.1145/3737875

Li, X,, Li, J., Zhou, J., and Liu, J. (2025). Towards robust routing: enabling long-range
perception with the power of graph transformers and deep reinforcement learning in
software-defined networks. Electronics 14:476. doi: 10.3390/electronics14030476

Li, J., Wang, S., Huang, Y., Liao, K,, Bi, E, and Lou, X. (2022). “An adaptive deep
Q-learning strategy for routing schemes in SDN-based data center networks.” in 2022
International Symposium on Advances in Informatics, Electronics and Education
(ISAIEE), pp. 178-186.

Lin, G.-J,, Hung, C.-E, and Ke, C.-H. (2025). A deep reinforcement learning-based
bandwidth demand-oriented routing in software-defined networking. ICT Express. 11.
doi: 10.1016/j.icte.2025.07.009

Liu, W. X,, Cai, J., Chen, Q. C., and Wang, Y. (2021). DRL-R: deep reinforcement
learning approach for intelligent routing in software-defined data-center networks. J.
Netw. Comput. Appl. 177:102865. doi: 10.1016/j.jnca.2020.102865

Lu, X,, Zhao, J., Fryen, J., Lee, J., and Li, M. (2023). Causal state distillation for
explainable reinforcement learning. arXiv:arXiv:2401.00104.

Ma, ], Jin, R., Dong, L., Zhu, G., and Jiang, X. (2022). Implementation of SDN traffic
monitoring based on Ryu controller. Proc. Int. Symp. Comput. Appl. Inf. Syst. 12250,
203-212. doi: 10.1117/12.2639589

Mao, B,, Tang, E, Fadlullah, Z. M., Kato, N., Akashi, O., Inoue, T,, et al. (2018). A novel
non-supervised deep-learning-based network traffic control method for software-
defined wireless networks. IEEE Wirel. Commun. 25, 74-81. doi:
10.1109/MWC.2018.1700417

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,
et al. (2008). OpenFlow: Enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review 38, 69-74. doi: 10.1145/1355734.1355746

Milani, S., Lanzi, P. L., and Pellegrini, G. (2025). A survey on explainable reinforcement
learning. arXiv:arXiv:2211.06665.

Nguyen, T., Luu, T. M., Ton, T., and Yoo, C. D. (2024). Towards robust policy:
enhancing offline reinforcement learning with adversarial attacks and defenses.
arXiv:arXiv:2405.11206. doi: 10.48550/arXiv.2405.11206

Nougnanke, K. B. (2021). Towards ML-based management of software-defined
networks (doctoral dissertation, Université Paul Sabatier-Toulouse I1I)

Osman, M., Isa, M. R. M., Khairuddin, M. A., Shukran, M. A. M., and Razali, N. A.
M. (2023). A novel network optimization framework based on software-defined
networking (SDN) and deep learning (DL) approach. Int. J. Adv. Comput. Sci. Appl. 14,
35-45. doi: 10.62527/j0iv.8.4.2169

frontiersin.org


https://doi.org/10.3389/frai.2025.1685155
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://doi.org/10.1109/ACCESS.2025.3592240
https://doi.org/10.1016/j.jpdc.2024.104851
https://doi.org/10.1016/j.phycom.2024.102387
https://doi.org/10.1016/j.phycom.2024.102387
https://doi.org/10.1145/1402946.1402967
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1007/s11277-021-08920-3
https://doi.org/10.1016/j.heliyon.2024.e26215
https://doi.org/10.1007/s44230-023-00025-3
https://doi.org/10.1109/CNSM.2015.7367387
https://doi.org/10.1109/ACCESS.2020.2995511
https://doi.org/10.1109/ACCESS.2024.3456913
https://doi.org/10.1609/aaai.v30i1.10295
https://doi.org/10.3389/fncom.2024.1393025
https://doi.org/10.1016/j.prime.2023.100187
https://doi.org/10.47839/ijc.21.3.2687
https://doi.org/10.5121/ijcnc.2025.17203
https://doi.org/10.1109/TNSE.2022.3219417
https://doi.org/10.1145/3737875
https://doi.org/10.3390/electronics14030476
https://doi.org/10.1016/j.icte.2025.07.009
https://doi.org/10.1016/j.jnca.2020.102865
https://doi.org/10.1117/12.2639589
https://doi.org/10.1109/MWC.2018.1700417
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.48550/arXiv.2405.11206
https://doi.org/10.62527/joiv.8.4.2169

Goteti and Reddy

Pham, T. A. Q., Martin, S., Leguay, J., Gong, X., and Zeng, F. (2021). “Intent-based
policy optimization in SD-WAN” in Proceedings of the SIGCOMM’ 21 Poster and
Demo Sessions, 74-75. doi: 10.1145/3472716.3472858

Phaneendra, Y. S. D., Prabu, U, Yasmine, S., and Geetha, V. (2024). An effective
deployment of controllers in software-defined networks. Proc. Comput. Sci. 233, 77-86.
doi: 10.1016/j.procs.2024.03.197

Piardi, L., Lima, J., Pereira, A. I, and Costa, P. (2019). “Coverage path planning
optimization based on Q-learning algorithm? in AIP Conference Proceedings.

Prakoso, D. B, Salman, M., and Sari, R. F. (2024). A survey of deep reinforcement
learning-based routing optimization in SDN. AIP Conf. Proc. 3215:080009. doi:
10.1109/SVCC65277.2025.11133620

Qin, K., Xie, X, and Qian, K. (2024). “Multi-path routing in hybrid software-defined
networking” in 2024 International Conference on Computer Science, Electronic
Information Engineering and Intelligent Control Technology (CEI), pp. 219-223.

Rikhtegar, N., Bushehrian, O., and Keshtgari, M. (2021). DeepRLB: a deep
reinforcement learning-based load balancing in data center networks. Int. J. Commun.
Syst. 34:¢4912. doi: 10.1002/dac.4912

Sensors. (2022). A routing optimization method for software-defined optical transport
networks based on ensembles and reinforcement learning. Sensors 22:8139. doi:
10.3390/s22218139

Sezer, S., Scott-Hayward, S., Chouhan, P. K., Fraser, B., Lake, D., Finnegan, J., et al.
(2013). Are we ready for SDN? Implementation challenges for software-defined
networks. IEEE Commun. Mag. 51, 36-43. doi: 10.1109/MCOM.2013.6553676

Sha, A., Madhan, S., NeemKar, S., Varma, V. B. C., and Nair, L. S. (2023). “Machine
learning integrated software defined networking architecture for congestion control” in
2023 International Conference on Distributed Computing and Electrical Circuits and
Electronics (ICDCECE), pp. 1-5.

Sharma, A., Balasubramanian, V., and Kamruzzaman, J. (2024). A temporal deep
Q-learning for optimal load balancing in software-defined networks. Sensors 24:1216.
doi: 10.3390/s24041216

Silver, D. (2016). Mastering the game of go with deep neural networks and tree search.
Nature 529, 484-489. doi: 10.1038/nature16961

Song, Y., Qian, X., Zhang, N., Wang, W,, and Xiong, A. (2024). QoS routing
optimization based on deep reinforcement learning in SDN. Comput. Mater. Contin. 79,
3007-3021. doi: 10.32604/cmc.2024.051217

Suh, K., Kim, S., Ahn, Y., Kim, S., Ju, H., and Shim, B. (2022). Deep reinforcement
learning-based network slicing for beyond 5G. IEEE Access 10, 7384-7395. doi:
10.1109/ACCESS.2022.3141789

Sutton, R. S., and Barto, A. G. (2018). Reinforcement learning: An introduction. 2nd
Edn. Cambridge, MA, USA: MIT Press.

Tang, Y., Li, C., and Zhang, Y. (2023). “Reinforcement learning with contrastive
unsupervised representations for traffic engineering in hybrid SDN” in Proceedings of
the 2023 15th International Conference on Communication Software and Networks
(ICCSN 2023) (IEEE), 1-6. doi: 10.1109/ICCSN57992.2023.10297329

Tahi, N., Soro, E., Boca, K. T,, Asseu, O., and Konate, A. (2024). An intelligent load
balancing strategy to improve performance and QoS in SD-DCN (software defined data
center network). Far East J. Appl. Math. 117, 149-167. doi: 10.17654/0972096024008

Wang, J., Codeca, L., and Li, Z. (2019). Multi-agent deep reinforcement learning for large-
scale traffic signal control. IEEE Trans. Intell. Transp. Syst. doi: 10.1109/T1TS.2019.2901791

Frontiers in Artificial Intelligence

13

10.3389/frai.2025.1685155

Wang, J., Liu, J., Guo, H., and Mao, B. (2022). Deep reinforcement learning for
securing software-defined industrial networks with distributed control plane. IEEE
Trans. Ind. Inform. 18, 4275-4285. doi: 10.1109/TI1.2021.3128581

Wang, Y., Zhao, P., Zheng, X., and Chen, K. (2024). DFRDRL: a dynamic fuzzy
routing algorithm based on deep reinforcement learning with guaranteed latency
and bandwidth for software-defined networks. J. Big Data. 11:29. doi:
10.1186/s40537-024-01029-x

Wassie, G., Ding, J., and Wondie, Y. (2024). Detecting and predicting models for
QoS optimization in SDN. J. Comput. Netw. Commun. 2024:307338. doi:
10.1155/2024/3073388

Wette, P, Drixler, M., Schwabe, A., Wallaschek, F., Zahraee, M. H., and Karl, H.
(2014). “MaxiNet: Distributed emulation of software-defined networks” in Proceedings
of the 2014 IFIP Networking Conference (Networking 2014), 1-9. doi:
10.1109/IFIPNetworking.2014.6857078

Wirawan, M. N., Lubis, M., and Kurniawan, M. T. (2024). “Evaluating quality of service:
throughput, packet loss, and delay in tree topology with Ryu and POX controllers in
software-defined network” in 2024 International Conference of Science and Information
Technology in Smart Administration (ICSINTESA), pp. 457-462.

Wu, Z., Zheng, D, Pan, S., Gan, Q., Long, G., and Karypis, G. (2022). TraverseNet:
Unifying space and time in message passing for traffic forecasting. IEEE Transactions on
Neural Networks and Learning Systems. doi: 10.1109/TNNLS.2022.3186103

Xie, J., Yu, F. R., Huang, T,, Xie, R,, Liu, J., Wang, C., et al. (2019). A survey of
machine learning techniques applied to software-defined networking (SDN):
research issues and challenges. IEEE Commun. Surv. Tutor. 21, 393-430. doi:
10.1109/COMST.2018.2866942

XRL Survey. (2025). Explainable reinforcement learning for networking: a survey.
arXiv preprint, arXiv:2502.04122.

Yahya, W, Basuki, A., and Jiang, J. (2015). The extended Dijkstra’s-based load
balancing for OpenFlow network. International Journal of Electrical and Computer
Engineering (ITECE) 5, 289-296. doi: 10.11591/ijece.v5i2.pp289-296

Yao, H., Mai, T,, Xu, X., Zhang, P, Li, M., and Liu, Y. (2018). NetworkALI: an intelligent
network architecture for self-learning control strategies in software-defined networks.
IEEE Internet Things J. 5, 4319-4327. doi: 10.1109/JI0T.2018.2859480

Yassen, T., and Athab, O. (2025). Recent tools of software-defined networking
traffic generation and data collection. Al-Khwarizmi Eng. J. 21, 93-105. doi:
10.22153/kej.2025.06.002

Yu, H., Ruan, J., and Xing, E. (2023). Explainable reinforcement learning via a
causal world model. arXiv, arXiv:2305.02749. doi: 10.48550/arXiv.2305.02749

Zabeehullah, Arif, F, Khan, N. A, Igbal, J., Karim, F. K., Innab, N, et al. (2024).
Dqgs: deep reinforcement learning-based technique for enhancing security and
performance in SDN-IoT environments. IEEE Access. 12, 60568-60587. doi:
10.1109/ACCESS.2024.3392279

Zhang, L., Lu, Y, Zhang, D., Cheng, H., and Dong, P. (2022). DSOQR: Deep
reinforcement learning for online QoS routing in SDN-based networks. Wireless

Communications and Mobile Computing. Published 29 November 2022. doi:
10.1155/2022/4457645

Zhang, Y., Qiu, L., Xu, Y., Wang, X., Wang, S., Paul, A,, et al. (2023). Multipath routing
algorithm based on deep reinforcement learning for SDN. Appl. Sci. 13:12520. doi:
10.3390/app132212520

frontiersin.org


https://doi.org/10.3389/frai.2025.1685155
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://doi.org/10.1145/3472716.3472858
https://doi.org/10.1016/j.procs.2024.03.197
https://doi.org/10.1109/SVCC65277.2025.11133620
https://doi.org/10.1002/dac.4912
https://doi.org/10.3390/s22218139
https://doi.org/10.1109/MCOM.2013.6553676
https://doi.org/10.3390/s24041216
https://doi.org/10.1038/nature16961
https://doi.org/10.32604/cmc.2024.051217
https://doi.org/10.1109/ACCESS.2022.3141789
https://doi.org/10.1109/ICCSN57992.2023.10297329
https://doi.org/10.17654/0972096024008
https://doi.org/10.1109/TITS.2019.2901791
https://doi.org/10.1109/TII.2021.3128581
https://doi.org/10.1186/s40537-024-01029-x
https://doi.org/10.1155/2024/3073388
https://doi.org/10.1109/IFIPNetworking.2014.6857078
https://doi.org/10.1109/TNNLS.2022.3186103
https://doi.org/10.1109/COMST.2018.2866942
https://doi.org/10.11591/ijece.v5i2.pp289-296
https://doi.org/10.1109/JIOT.2018.2859480
https://doi.org/10.22153/kej.2025.06.002
https://doi.org/10.48550/arXiv.2305.02749
https://doi.org/10.1109/ACCESS.2024.3392279
https://doi.org/10.1155/2022/4457645
https://doi.org/10.3390/app132212520

	AI-driven routing pipeline in software-defined networks using DQL: a mini review
	1 Introduction
	1.1 Contributions

	2 Artificial intelligence, machine learning, and deep Q-learning in software-defined networks
	2.1 Foundations of reinforcement learning
	2.2 Machine learning in the SDN context
	2.3 Overview of deep Q-learning (DQL)
	2.4 Transition to deep reinforcement learning (DRL)
	2.5 Applications and research trends
	2.6 Challenges and considerations

	3 Deep Q-learning for intelligent routing in SDN
	3.1 DQL for routing optimization
	3.2 Adaptive routing in fat-tree topologies
	3.3 Multipath and QoS-aware extensions
	3.4 Advanced architectures: graphs, transformers, and hybrid models

	4 Performance evaluation in fat-tree topologies
	4.1 Fat-tree: a preferred topology
	4.2 Simulation tools and environment setup
	4.3 Key metrics for evaluation

	5 Challenges, limitations, and future directions
	5.1 Scalability of learning models
	5.2 Learning efficiency and convergence time
	5.3 Real-time inference constraints
	5.4 Security and robustness issues
	5.5 Integration and interoperability
	5.6 Interpretability and transparency
	5.7 Future scope: hybrid and federated architectures
	5.7.1 Integrated road map and outlook

	6 Discussion and conclusion
	7 Additional requirements

	References

