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models: an engineering case 
study
Yong Zhao 1, Xinpeng Zhang 2, Yanli Liu 2, Xuecheng Mao 2, 
Xi Chen 2, Yasheng Maimaitituerxun 2 and Weidong He 3*
1 Xinjiang Yaxin CBM Exploration and Development Co., Ltd., Urumqi, China, 2 Gas Storage Co., Ltd., 
PetroChina Xinjiang Oilfield, Hutubi, China, 3 School of Civil Engineering and Geomatics, Southwest 
Petroleum University, Chengdu, China

Pipeline monitoring frequently encounters missing data, leading to incomplete 
evaluation and hindering a comprehensive assessment of the pipeline’s structural 
health. To address this issue, this study proposes a novel PDO-BiGRU-GAN model 
for missing data recovery. The model integrates three components: the prairie 
dog optimization algorithm (PDO) for hyperparameter tuning, the bidirectional 
gated recurrent unit (BiGRU) for effective temporal feature extraction, and the 
generative adversarial network (GAN) for data generation and completion. A 
comprehensive monitoring database was established using field data from an 
open-source pipeline project. The contributions of individual modules to the 
overall performance were evaluated via hyperparameter sensitivity analysis and 
ablation studies. The impact of missing data ratio and the number of missing sensors 
on the model’s recovery performance was analyzed. In addition, the proposed 
model was compared with eight existing mainstream deep learning models. The 
results show that each component of the PDO-BiGRU-GAN significantly enhances 
overall performance. The model achieves strong recovery accuracy across various 
missing data scenarios, with the R2 consistently exceeding 0.93. Moreover, the 
model performs optimally when the missing data ratio is below 20/24. Compared 
to other models, PDO-BiGRU-GAN achieves the highest R2 and the lowest error 
metrics (MSE, RMSE, MAPE, MAE). In terms of computational efficiency, the model 
requires slightly more processing time than simpler models but is faster than more 
complex models. Overall, the proposed model provides a robust and scalable 
solution for pipeline monitoring data recovery, advancing intelligent pipeline health 
assessment and supporting the development of infrastructure safety management 
and smart monitoring technologies.
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1 Introduction

Pipeline systems are essential infrastructure supporting multiple urban functions such as 
water supply, drainage, heating and gas distribution (Mazumder et al., 2018; Xiong et al., 2020). 
Their safe operation is vital for ensuring stable urban systems and sustainable daily life. 
However, pipelines are typically laid across regions, over long distances, and beneath the 
ground (Li et al., 2022; Quej-Ake et al., 2020; Shirazi et al., 2023). They often traverse diverse 
geological formations and complex subsurface terrains. During service, pipelines are prone to 
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structural damage due to geostress variations, soil-induced 
degradation, and hydrochemical reactions, potentially leading to 
deformation and leakage (Sharma et al., 2024; Wong and McCann, 
2021). To address these challenges, a comprehensive system spanning 
the entire lifecycle of pipeline infrastructure is necessary for 
monitoring and assessment.

Commonly used pipeline monitoring techniques include acoustic 
detection, fiber-optic sensing, electromagnetic induction, pressure 
monitoring, and image recognition (Adegboye et al., 2019; Ho et al., 
2020; Sun et al., 2025a). Acoustic detection offers rapid response and 
is effective for leak localization; however, it is highly susceptible to 
environmental noise and interference (Xu et  al., 2013). 
Electromagnetic induction is suitable for detecting corrosion in 
metallic pipelines and benefits from non-contact operation, but it is 
limited to conductive materials and suffers from rapid signal 
attenuation (Vasagar et al., 2024). Pressure monitoring is structurally 
simple and cost-effective, providing basic insights into operational 
conditions, though it lacks multidimensional data and cannot 
effectively identify structural damage (Ciang et al., 2008; Lopez and 
Sarigul-Klijn, 2010). Image recognition enables intuitive visualization 
but relies on favorable environmental conditions and has limited 
coverage over large areas (Cai et al., 2019; Zhou, 2023). In contrast, 
fiber-optic sensing provides high sensitivity, supports long-distance 
continuous monitoring, and is relatively cost-effective (Sun et  al., 
2025b). Therefore, fiber-optic sensing systems offer significant 
potential for widespread application in pipeline monitoring.

However, similar to traditional electrical sensors, fiber-optic 
sensing technology still faces data loss (Feng et al., 2019). First, signal 
interruptions may occur at sensor splicing points due to manufacturing 
defects or mechanical stress (Kuntoğlu et al., 2021). Second, prolonged 
use can cause sensor material aging, resulting in failure to acquire 
valid data. Additionally, external factors such as geological shifts, 
construction disturbances, and chemical corrosion can damage 
sensors, affecting data continuity and accuracy (Wright et al., 2019). 
Moreover, fiber-optic systems typically require long-distance signal 
transmission, during which signal attenuation at splicing points 
accumulates along the transmission path and may result in the loss or 
distortion of valid data (Sun et al., 2025c). Furthermore, environmental 
noise can obscure or disrupt the original measurement signals, 
causing further loss of valid information.

Data loss undermines the monitoring system’s ability to perceive 
critical operational states in real time, compromises data integrity, and 
reduces analytical accuracy (Lei et  al., 2023; Tan et  al., 2016). 
Moreover, it increases the response delay and uncertainty in fault 
detection. In severe cases, data loss may obscure early risk indicators, 
weakening the system’s warning capability (Avula, 2021; Jieyang et al., 
2023). Furthermore, prolonged data gaps can lead to insufficient 
accumulation of historical data, impairing trend analysis of pipeline 
structural performance and lifespan prediction. Consequently, this 
affects the scientific basis for pipeline safety assessment and 
management strategy development. Therefore, it is imperative to 
develop effective solutions addressing data loss in fiber-optic 
sensing systems.

To address data loss issues, deep learning provides effective 
technical solutions (Bao et al., 2025; Li et al., 2025a; Ressi et al., 2022, 
2024a; Sun et  al., 2024a). Deep learning is a machine learning 
approach based on artificial neural networks, whose core concept is 
inspired by the structure of the human brain (Liu et al., 2025a; Sun 

et al., 2024b; Wang et al., 2025a, 2025b, 2025c). It employs multiple 
layers of nonlinear transformations to automatically extract complex 
features from data, enabling efficient modeling of large-scale 
information (Wei et  al., 2025). Compared to traditional machine 
learning, deep learning automatically captures intricate nonlinear 
relationships within data, thereby reducing reliance on manual feature 
engineering (Sun et al., 2024c). In the field of data recovery, deep 
learning leverages spatiotemporal dependencies in incomplete 
datasets to reconstruct missing information with high accuracy (Lei 
et  al., 2021). Common models for data loss recovery include the 
standard GAN (Sun et  al., 2025c), LSTM-GAN (Pu et al., 2022; 
Kumari et al., 2024), GRU-GAN (Huang et al., 2022; Shen et al., 2022), 
Bi-LSTM-GAN (Jiang et al., 2023), and STOA-Bi-LSTM-GAN (Sun 
et al., 2025c), all of which have demonstrated promising effectiveness 
in preliminary applications.

Nevertheless, existing models still exhibit several limitations. 
When applied to time-series data, the standard GAN often suffers 
from unstable training of the generator and discriminator. It fails to 
effectively capture sequential dependencies, resulting in imputed 
values that deviate from actual dynamic patterns (Ren and Xu, 2019). 
LSTM-GAN and GRU-GAN alleviate this issue by employing 
recurrent neural networks (LSTM or GRU), thereby improving the 
ability to model long-term dependencies. However, these models 
remain vulnerable to vanishing or exploding gradients when 
processing multivariate or long-sequence data. Their performance is 
also highly sensitive to hyperparameter settings, such that minor 
deviations can lead to overfitting or unstable generation (Wan and Liu, 
2023). BiLSTM-GAN enhances modeling by leveraging both past and 
future contextual information, yet it is still prone to mode collapse, 
unstable convergence, and challenging hyperparameter optimization 
(Wan, et al., 2023). STOA-BiLSTM-GAN demonstrates strong results 
across multiple benchmark datasets, but its high complexity and 
intensive training requirements hinder scalability in large-scale 
industrial applications. Therefore, there is an urgent need for a novel 
deep learning framework that maintains recovery accuracy while 
reducing model complexity and computational cost, thereby 
enhancing practicality and scalability.

Based on this, the study proposes a novel PDO-BiGRU-GAN 
model that integrates the prairie dog optimization algorithm (PDO), 
bidirectional gated recurrent units (BiGRU), and generative 
adversarial network (GAN). This model is designed to recover missing 
fiber-optic sensing data. Monitoring data from an open-source 
pipeline project were used to construct a pipeline monitoring dataset. 
Hyperparameter sensitivity analysis and ablation experiments were 
performed to evaluate the necessity and contribution of each module. 
The impact of ratios of missing data and the number of missing 
sensors on the recovery performance of the PDO-BiGRU-GAN model 
was analyzed. Furthermore, the model’s accuracy and computational 
efficiency were compared with eight existing deep learning models.

The main contributions and innovations of this study are as 
follows: First, a novel PDO-BiGRU-GAN deep learning framework 
was developed. This framework integrates the hyperparameter 
optimization capability of the PDO module, the temporal feature 
extraction capability of the BiGRU module, and the data generation 
and imputation ability of the GAN module. Second, fiber-optic 
monitoring data were obtained from an open-access pipeline project, 
and the model was systematically evaluated through hyperparameter 
sensitivity analysis and ablation studies. Additionally, the proposed 
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model was compared with eight existing mainstream models in terms 
of accuracy and computational efficiency under varying missing-data 
scenarios. Overall, the proposed framework provides a new approach 
for imputing missing pipeline monitoring data and plays a crucial role 
in ensuring the completeness of pipeline monitoring information.

2 Motivation for developing the 
PDO-BiGRU-GAN network

To address the issue of missing monitoring data, numerous studies 
have focused on developing techniques for managing missing values 
in time-series data. Traditional approaches can be broadly categorized 
into two types. The first involves case deletion, which removes 
observations containing missing values to avoid their impact on 
analytical results (Schafer and Graham, 2002; Silva and Zárate, 2014). 
The second includes statistical methods, such as spline interpolation, 
matrix completion, and mean imputation, which replace missing data 
points based on statistical estimates (Gu et al., 2021). However, these 
methods have notable limitations. First, they exhibit limited capability 
in modeling temporal dependencies and often fail to capture complex 
dynamic relationships among variables. Second, their performance 
becomes unstable under conditions with a high missing ratio, leading 
to substantial errors (Zhang and Wang, 2024). Finally, they struggle to 
accurately reconstruct the underlying data distribution, particularly 
when the interactions among multiple features are intricate (Zhang 
and Wang, 2024). Consequently, traditional methods often fail to meet 
the accuracy and reliability requirements for reconstructing pipeline 
monitoring data.

In recent years, researchers have explored the use of GANs to 
recover missing data. Unlike traditional methods, GANs can model 
the underlying data distribution, thereby enabling high-quality data 
imputation. This capability enhances the completeness and reliability 
of the recovered data. The advantages of GANs are particularly 
pronounced in multivariate time-series analysis. They can not only 
impute individual missing values but also maintain complex 
dependencies among variables (Oh et  al., 2021). Moreover, the 
generative framework of GANs enables adaptation to diverse missing 
data patterns, improving the robustness and flexibility of recovery 
outcomes (Gong et al., 2022). Studies have demonstrated that GANs 
achieve high accuracy in handling missing data, providing strong 
support for data analysis, prediction, and decision-making across 
various domains (Kachuee et al., 2020).

GANs have been widely applied to data recovery tasks. However, 
existing GAN-based approaches often neglect the interrelationships 
among variables and the bidirectional temporal dependencies 
inherent in time-series data (Wu et al., 2021). An ideal time-series 
imputation method should capture both characteristics while 
accurately modeling the underlying data distribution. Integrating 
temporal feature extraction modules into the GAN framework can 
therefore enhance model performance. Among temporal feature 
extraction networks, recurrent neural networks (RNNs) are 
particularly well-suited for modeling complex temporal dependencies. 
Nevertheless, they exhibit inherent limitations, including a restricted 
ability to extract fine-grained information and susceptibility to 
gradient explosion and vanishing. These issues reduce training 
efficiency and limit their applicability in temporal feature extraction 
tasks (Li et al., 2024). Recent advances in RNN architectures have 

addressed some of these challenges. In particular, the development of 
GRUs mitigates the vanishing gradient problem, accelerates 
convergence, and reduces computational uncertainty (Noh, 2021). 
Building on this, BiGRUs were introduced to process sequences in 
both forward and backward directions. Compared with BiLSTMs, 
BiGRUs retain the ability to model long-term dependencies. They also 
maintain a simpler structure, have fewer parameters, offer higher 
computational efficiency, and enable more stable training. They also 
demonstrate reduced sensitivity to overfitting in small datasets or 
noisy environments. BiGRUs excel at capturing both local temporal 
patterns and global trends, effectively lowering predictive uncertainty 
and alleviating forgetting effects. Therefore, embedding a BiGRU 
module within a GAN framework leverages the generative adversarial 
mechanism to approximate the original data distribution. It also fully 
exploits bidirectional temporal dependencies for feature modeling. 
This approach achieves higher accuracy and more robust performance 
in time-series missing value recovery tasks.

Furthermore, the performance of the BiGRU-GAN network is 
strongly influenced by hyperparameter configurations (Richter et al., 
2024). Existing studies typically rely on manual trial-and-error to 
identify optimal parameter combinations, a process that is both 
inefficient and prone to producing suboptimal predictive results. 
Consequently, the use of advanced optimization algorithms for 
automated hyperparameter search is essential. Inspired by prairie 
dogs’ natural behaviors, Ezugwu et  al. (2022) proposed the PDO 
algorithm. They compared PDO with several classical optimization 
methods, including the arithmetic optimization algorithm (Abualigah 
et al., 2021), grey wolf optimizer (Mirjalili et  al., 2014; Sun et al., 
2024d), differential evolution optimizer (Kosorukoff, 2001), salp 
swarm optimizer (Mirjalili et al., 2017), biogeography-based optimizer 
(Simon, 2008), sine cosine optimizer (Mirjalili, 2016), particle swarm 
optimizer (Kennedy and Eberhart, 1995; Sun et al., 2023a), and dwarf 
mongoose optimizer (Agushaka et al., 2022). Experimental results 
demonstrate that PDO excels in searching for the global optimum and 
exhibits a more stable convergence process than many of these 
algorithms. Statistical analyses further confirm its robustness in 
balancing exploration and exploitation. By leveraging these 
advantages, PDO can be integrated into the BiGRU-GAN framework 
to significantly improve hyperparameter search efficiency, thereby 
enhancing predictive accuracy and model stability. Based on this 
approach, the present study develops a PDO-BiGRU-GAN network 
to better capture the spatiotemporal correlations between missing and 
available data.

3 Basic principles of the 
PDO-BiGRU-GAN network

This study proposes a novel hybrid model, PDO-BiGRU-GAN, 
for missing data imputation. This model consists of three components: 
the PDO module, the BiGRU module, and the GAN module. The 
BiGRU module models the bidirectional temporal dependencies 
between available and missing data, thereby enhancing the 
representation of time series information (Du et al., 2019). The PDO 
module optimizes critical hyperparameters of the BiGRU model 
(learning rate, batch size, units per layer, and number of layers) to 
improve training efficiency and generalization performance. The GAN 
module introduces an adversarial mechanism to further enhance the 
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realism and distribution consistency of the recovered data. The 
following sections provide a detailed explanation of the principles 
underlying each module of the PDO-BiGRU-GAN network.

3.1 BiGRU module

The GRU is an improved variant derived from the long short-term 
memory (LSTM) network. It merges the forget gate and the input gate 
of the LSTM into a single update gate (Richter et  al., 2024). By 
integrating the cell state and hidden state of the LSTM, the GRU 
effectively mitigates the vanishing and exploding gradient problems 
encountered in modeling long-term dependencies. Furthermore, this 
architecture enhances both the convergence speed and computational 
efficiency of the model. The GRU primarily consists of two gates: the 
reset gate and the update gate, which, respectively, regulate the 
forgetting and retention of information before and after data 
transmission. This mechanism enables effective control and 
propagation of information within the neural units. The computational 
formulas of the GRU are presented in Equation 1.
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Where rt denotes the reset gate; Zt represents the update gate; ht is 
the output; 

˜
th  is the candidate activation; and σ denotes the sigmoid 

activation function.
BiGRU is an extension of the GRU model that integrates 

information flow from both forward and backward directions, 
thereby enhancing its ability to process time series data. By 
simultaneously capturing dependencies in both directions, the model 
achieves a more comprehensive understanding of the dynamic 
patterns within time series. Compared to the unidirectional GRU, 
BiGRU more effectively captures intricate temporal features, 
significantly improving prediction accuracy. This model maximizes 
the extraction of key features relevant to forecasting, resulting in 

enhanced precision and stability. The computational formulas of the 
model are shown in Equation 2. A schematic diagram of the BiGRU 
architecture is presented in Figure 1.
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3.2 PDO module

The hyperparameters of the BiGRU network (learning rate, batch 
size, number of neurons per layer, and number of layers) significantly 
affect its performance in data recovery. Selecting appropriate 
hyperparameters is crucial for enhancing the model’s training 
effectiveness and overall predictive accuracy. In view of this, this study 
employs the PDO module to optimize the BiGRU’s hyperparameters. 
The PDO algorithm is inspired by two primary behaviors of prairie 
dogs: foraging and burrowing (Ezugwu et al., 2022; Sun et al., 2024e). 
During the foraging phase, prairie dogs search for new food sources 
within a certain area and communicate the location of food to other 
individuals. They also estimate the required burrowing effort based on 
the quality of the discovered food. In the burrowing phase, prairie 
dogs move according to the shared food location information and 
hide in burrows to evade predators. The algorithm divides the total 
number of iterations into four equal stages: the first two simulate 
foraging behavior, while the last two simulate burrowing behavior. 
This staged approach allows PDO to balance exploration and 
exploitation dynamically, thereby enhancing the effectiveness of 
hyperparameter optimization.

During the foraging phase, the algorithm further divides the total 
number of iterations evenly. When the iteration count satisfies 
t < Max_iter/4, individuals explore new food sources across the entire 
search space. The position update method for this phase is given by 
Equation 3.

	 ( )ρ+ + = − ⋅ − ⋅1, 1 , , ,i j i j i j i jX GBest CBest CX Levy n 	 (3)

FIGURE 1

Structure diagram of the BiGRU model.
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Where GBesti,j represents the global best position, ρ denotes the 
food source alert level, CXi,j refers to the random cumulative effect of 
all individuals, and CBesti,j indicates the current best position. The 
function Levy(n) follows the Levy distribution, which enhances the 
diversity of food source exploration and strengthens the algorithm’s 
global search capability.

The calculation formulas for GBesti,j and CXi,j are presented in 
Equations 4 and 5, respectively.

	

( )
( )

, ,
, ,

,

i j n m
i j i j

i j j j

X mean X
CBest GBest

GBest ub lb

⋅
= ⋅∆ +

⋅ − + ∆
	

(4)

	 ( ) ( ), , , ,/i j i j i j i jCX GBest rX GBest= − + ∆
	 (5)

Where Δ represents the difference between individuals; ub and lb 
denote the upper and lower bounds of the search space, respectively; 
rX refers to the position of a randomly selected individual.

When the iteration count satisfies Max_iter/4 ≤ t ≤ Max_iter/ 2, 
the algorithm enters the phase of evaluating food quality and 
determining the mining intensity, as detailed in Equation 6.

	 ( )+ + = ⋅ ⋅ ⋅1, 1 ,i j i jX GBest rX DS Levy n 	 (6)

Where DS represents the mining intensity.
During the first half of the burrowing activities, when the iteration 

count satisfies Max_iter / 2 ≤ t < 3 Max_iter / 4, the algorithm 
evaluates the quality of the food sources. The position update method 
is as follows:

	 ε+ + = − ⋅ − ⋅1, 1 , , ,i j i j i j i jX GBest CBest CX rand 	 (7)

Where ε represents the quality of the food source, and rand is a 
random number between 0 and 1.

When the iteration count satisfies 3Max_iter /4 ≤ t < Max_iter, 
the prairie dogs retreat to their burrows to observe predators.

	 + + = × ⋅1, 1 ,i j i jX GBest PE rand	 (8)

Where PE represents the predator effect, as defined in Equation 9.
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Based on the above principle, this study integrates the PDO 
module with the BiGRU model. The PDO module systematically 
explores near-optimal combinations of hyperparameters (learning 
rate, batch size, the number of neurons per layer, and the number of 
network layers) by employing a predefined behavioral mechanism. 
Specifically, the learning rate is optimized within the range of [1e-4, 
1e-2], ensuring a stable and efficient training process while preventing 
gradient explosion or slow convergence. The batch size is set between 
16 and 256, enabling adaptive adjustments during mini-batch gradient 
descent; this facilitates efficient GPU memory utilization while 

preserving the model’s generalization capability. The number of layers 
is restricted to 1–4 to effectively mitigate gradient explosion during 
deep network training (Yang et al., 2016). The number of neurons per 
layer is optimized within the range of 32–256 to enhance the model’s 
capacity to capture temporal features while minimizing the risk of 
overfitting (Siami-Namini et al., 2019). In each iteration, the algorithm 
identifies a relatively optimal solution and updates the current 
configuration according to a specific replacement strategy. Through 
continuous iteration, the quality of the hyperparameter configuration 
progressively improves. Figure 2 illustrates the overall architecture of 
the PDO-BiGRU model.

3.3 GAN module

GANs are innovative deep learning architectures that demonstrate 
superior performance in data generation and complex distribution 
modeling tasks. The model consists of two main components: a 
generator and a discriminator. The generator learns the distribution 
characteristics of real data to produce highly similar synthetic samples, 
while the discriminator aims to distinguish whether the input data 
originates from the real dataset. These components are trained jointly 
through an adversarial process, where continuous competition drives 
ongoing improvements in model performance (Alqahtani et al., 2021). 
During training, the generator attempts to create samples that can 
“fool” the discriminator, whereas the discriminator strives to 
accurately differentiate between real and generated data. The loss 
functions for both components, which measure adversarial 
effectiveness and training convergence, are presented in 
Equations 10, 11.

	 ( )( ){ } = − ⋅  ~ log
zG z PL E D G z

	
(10)

	 ( ) ( ){ } ( ){ }{ }   = − − −   ~ ~log log 1
zr xD x P z PL E D x E D G z

	
(11)

Where LD and LG denote the discriminator and generator loss 
functions, respectively. Pr is the true data distribution derived from the 
training set. Pz is the distribution of the data generated by the 
generator. The variable z is a latent variable drawn from a predefined 
prior distribution. D(x) indicates the discriminator’s output score for 
a real data sample x. G(z) refers to the synthetic data sample produced 
by the generator given the input z. D(G(z)) reflects the discriminator’s 
assessment of the generated data sample.

3.4 PDO-BiGRU-GAN network

This study proposes a time series imputation model—
PDO-BiGRU-GAN—that integrates the PDO, BiGRU, and GAN. The 
model leverages BiGRU’s capability in capturing bidirectional 
temporal dependencies, PDO’s efficiency in hyperparameter 
optimization, and GAN’s potential in generating high-quality data. 
When addressing missing values in time series, the proposed approach 
demonstrates superior accuracy and robustness. In the modeling 
process, the generator receives time series data with missing values 
and utilizes a PDO-BiGRU architecture to extract bidirectional 
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temporal features. Through adversarial training, it continuously 
generates data samples that increasingly resemble the real ones. 
Meanwhile, the discriminator distinguishes between generated and 
original samples, providing gradient feedback to the generator to 
enhance output quality. The training process is grounded in game-
theoretic principles, where the generator and discriminator undergo 
iterative adversarial optimization, progressively enhancing the model’s 
imputation capability. To improve training stability, gradient penalty 
is applied to the discriminator. These strategies collectively reduce 
training oscillations and prevent overfitting, ensuring robust and 
reliable model convergence. The corresponding loss functions are 
defined in Equations 12–16.
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Where LR denotes the reconstruction loss, which measures the 
discrepancy in alignment of the model-generated sequence with the 
original incomplete input. LC refers to the calibration loss, which 
quantifies the deviation between the forward- and backward-
generated sequences in a time series. LG2 represents the discriminator 

loss, which evaluates the authenticity of the generated data. k serves 
to modulate the relative impact of the discriminator loss compared to 
the reconstruction loss in the total loss formulation.

Based on this approach, the study employs the PDO-BiGRU-GAN 
network to learn spatiotemporal dependencies from available data to 
infer missing values, thereby enabling the recovery of pipeline 
monitoring data. Figure  3 presents the network architecture, 
illustrating the workflow of the proposed model. The pseudocode of 
the PDO-BiGRU-GAN network is provided in Appendix 1.

4 Introduction to the engineering case

The data used in this study were obtained from an open-access 
monitoring database released by the project owner. All data were 
standardized according to a unified format to facilitate subsequent 
data analysis and model development. The implementation of the 
open-access mechanism has significantly improved the accessibility 
and reusability of engineering monitoring data, providing a reliable 
and authentic foundation for this research. A brief overview of the 
project background is presented below.

This study is based on a typical open-access data project from a 
natural gas pipeline engineering initiative in Hebei Province, China. 
The project, organized and implemented by the owner, deployed an 
advanced fiber optic sensing monitoring system along an operational 
gas pipeline. This system covers five key monitoring areas to enable 
real-time and continuous surveillance of the pipeline’s operational 
status (Figure 4). Upon project completion, the collected monitoring 
data were made available to research institutions, providing a 
multidimensional platform for academic analysis and 
methodological validation.

This study focuses on Area 2 as the primary research area, 
emphasizing the analysis of monitoring data collected by long-gauge 

FIGURE 2

Flowchart of the PDO-BiGRU model.
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fiber Bragg grating (FBG) sensors within this area. A dual-end data 
acquisition mode is employed, which enhances system stability and 
improves fault tolerance in the event of single-point sensor failure. 
Figure 4B illustrates the layout of the long-gauge FBG sensors in Area 
2. All sensors were installed in strict accordance with national technical 
standards and industry regulations (DB32/T 2880-2016, 2016; TSG 
D7005-2018, 2018). Data acquisition was performed using the MOI 
Sm125-500 demodulator, ensuring high precision and reliability. The 
construction cost of the monitoring system approached one million 
yuan. The system was completed and put into operation on November 
1, 2023, with data collection commencing on the same day.

5 Database construction and 
preprocessing

5.1 Database construction

Section 3 briefly introduces the basic overview of the pipeline 
monitoring project. Based on the project’s open-source data, this study 
conducted relevant analyses. Fiber-optic monitoring data exhibit high 
sensitivity to environmental factors. Under normal weather conditions, 
the data primarily correlate with variations in temperature and pipeline 

deformation. However, under rainy conditions, the changes in fiber-
optic monitoring data become more complex, influenced by multiple 
factors such as rainfall, temperature, pipeline deformation, and 
groundwater levels. As an initial exploration into pipeline monitoring 
data recovery, this study focuses on analyzing the feasibility of recovering 
fiber-optic monitoring data under normal weather conditions. 
Specifically, the data were collected on January 15, 2024, with sensors 
sampling at 1 Hz. A total of 86,400 data sets were obtained that day, each 
containing monitoring information from 14 sensors. Subsequently, a 
database was constructed based on this data set. Two methods were 
considered for database construction: (1) Strain-based method: This 
method derives strain data by removing the temperature component 
from wavelength shifts. However, it requires additional temperature 
sensors, which may introduce measurement errors and reduce the 
spatiotemporal consistency of the dataset. (2) Wavelength difference 
method: This method calculates the difference between the wavelength 
measured on the collection day and the reference wavelength recorded 
on November 1, 2023. Because wavelength shifts inherently reflect both 
strain and temperature effects, directly using wavelength differences 
better preserves the spatiotemporal characteristics of the sensor data and 
improves the reliability of data recovery. Given these advantages, this 
study adopts the wavelength difference method for database 
construction. The constructed database is shown in Figure 5.

FIGURE 3

Illustration of the PDO-BiGRU-GAN network architecture.

FIGURE 4

Pipeline layout and monitoring areas: (a) Five key areas; (b) Schematic diagram of sensor deployment in area.
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On this basis, it is necessary to further examine the causes and 
potential types of missing data to enable the construction of an 
incomplete dataset. Unlike conventional electrical sensors, the FBG 
sensors used in this study include multiple measurement points along 
a single optical fiber. This configuration results in distinctive data loss 
mechanisms. The main causes are as follows: (1) construction activities 
near the pipeline may render multiple sensors within localized regions 
unavailable. (2) Optical fibers are typically spliced, and splice points 
are prone to breakage, leading to partial data loss. (3) Individual FBG 
sensors may fail due to damage or aging. In this case, the optical path 
remains intact, but valid measurements cannot be obtained (Wu et al., 
2020). (4) Signal attenuation occurs during long-distance optical 
transmission. Without proper amplification, excessive attenuation 
prevents correct data interpretation at the receiving end, resulting in 
data loss (Torres et al., 2011). Collectively, these factors contribute to 
the occurrence of missing data in pipeline monitoring.

FBG monitoring systems typically perform signal demodulation 
via single-end wiring. However, a break in the optical fiber may prevent 
downstream sensors from functioning. To mitigate this risk, a dual-end 
redundant wiring strategy was implemented in this study (Figure 4). 
This strategy ensures that a fault in one sensor does not compromise 
the monitoring of others, thereby minimizing the overall system 
impact. Based on this sensor architecture and relevant literature (Jiang 
et al., 2022; Tien et al., 2024), missing sensor data are classified into two 
types: single-sensor loss and multiple-sensor loss. To investigate these 
scenarios, several incomplete datasets were constructed to simulate 
different conditions: (1) Single-sensor loss with proportions of 1/24, 
8/24, 16/24, 20/24, and 22/24; and (2) Multiple-sensor loss involving 
2/14, 4/14, 8/14, and 14/14 sensors. Figure 6 illustrates the incomplete 
datasets, while Table 1 summarizes key information. This completes 
the construction of the incomplete database.

5.2 Database preprocessing

Section 5.1 presents the construction of various types of incomplete 
datasets based on engineering data. Before inputting these multi-
condition incomplete datasets into the PDO-BiGRU-GAN network, 
data normalization is a critical preprocessing step (Liu et al., 2025b; Sun 
et al., 2025d). Normalization eliminates dimensional inconsistencies 
among features, ensuring that variables vary within comparable 
numerical ranges (Lv et al., 2023; Sun et al., 2023b). This reduces the 
risk of gradient shift and enhances model stability during training. 
Moreover, mapping raw data to a unified scale improves training 
efficiency, accelerates convergence, and mitigates the likelihood of the 
model becoming trapped in local minima (Li et al., 2025b). The specific 
normalization formula is provided in Equation 17 (Xie et al., 2025a).

	

−
=

−
min

max min

i
i

Q QG
Q Q 	

(17)

Where Qi and Gi are the original and normalized values of 
measured data, respectively. Qmax and Qmin are the maximum and 
minimum values of measured data, respectively.

6 Analysis of data recovery results 
based on the PDO-BiGRU-GAN 
network

Using incomplete datasets and the PDO-BiGRU-GAN network, 
this study investigates data recovery performance under various 
missing data scenarios. The experiments were conducted on the 
TensorFlow platform with hardware comprising 256 GB of memory, 
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FIGURE 5

Database construction: (a) Path 1; (b) Path 2.
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an NVIDIA TITAN X (Pascal) GPU, and two Intel Xeon(R) E5-2696 
v4 processors, ensuring efficient handling of large-scale computations. 
Specifically, Section 6.1 analyzes the model’s hyperparameter 
sensitivity to demonstrate the necessity of integrating the PDO 
module. Section 6.2 employs ablation experiments to evaluate the 
contribution of each module to overall performance. Section 6.3 
examines recovery performance across different missing data ratios 
(1/24, 8/24, 16/24, 20/24, and 22/24). Section 6.4 further assesses 
recovery under multiple sensor missing scenarios (2/14, 4/14, 8/14, 
and 14/14). Section 6.5 examines the model’s computational time. 
Additionally, to comprehensively evaluate the proposed model’s 
effectiveness, it is compared against eight existing deep 
learning methods.

6.1 Hyperparameter sensitivity analysis

This study employs the PDO module to optimize four key 
hyperparameters: learning rate, batch size, units per layer, and number 
of layers. The rationale for focusing on these hyperparameters is 
explained as follows. The learning rate controls the speed of parameter 
updates. An excessively high learning rate can cause oscillation or 
divergence, while a rate that is too low may result in slow convergence 
or entrapment in local optima (Dohare et al., 2024). Batch size directly 
affects both generalization and computational efficiency. Smaller 
batches increase the stochasticity of gradient estimates, thereby 
enhancing generalization, whereas larger batches enable faster 
computation and more stable convergence (Offiong et al., 2023). The 
number of neurons per layer determines the representational capacity 
of each layer. Too few neurons can lead to underfitting, while too 
many may cause overfitting and substantially increase computational 
cost. Network depth, indicated by the number of layers, reflects the 
model’s capacity for feature extraction. Shallow networks may fail to 
capture long-term dependencies, while excessively deep networks can 
suffer from vanishing gradients, overfitting, and training instability 
(Offiong et al., 2023). Given these considerations, the PDO module 
focuses on optimizing these four hyperparameters to enhance model 
performance while controlling computational costs. In contrast, 
secondary hyperparameters, such as dropout rate or regularization 

coefficients, exert only indirect effects. Including them would 
significantly expand the search space, potentially increasing 
computational costs and reducing optimization efficiency (Bian and 
Priyadarshi, 2024). Therefore, this study excludes them from the 
optimization process.

To evaluate the effectiveness of the PDO module in 
hyperparameter optimization, this study conducts a hyperparameter 
sensitivity analysis. This approach assesses the model’s performance 
variations across different hyperparameter configurations, thereby 
demonstrating the necessity of integrating the PDO module. Table 2 
presents the configurations of learning rate, batch size, units per layer, 
and number of layers automatically selected by the PDO module 
across various recovery tasks. These results indicate that the PDO 
module can select appropriate hyperparameter combinations based 
on task characteristics. Specifically, when the missing ratio is relatively 
low (e.g., 1/24), the model tends to adopt a higher learning rate (0.02), 
a smaller batch size (32), a shallow two-layer structure, and an 
asymmetric distribution of units (98). This “low-capacity–shallow” 
configuration reduces complexity and mitigates overfitting while 
preserving temporal features. In contrast, under a higher missing ratio 
(e.g., 20/24), the model prefers a lower learning rate (0.0011), a larger 
batch size (128), a larger number of units (196), and a deeper three-
layer stacked structure. Such a configuration enhances the generative 
adversarial network’s ability to model sparse data and enables it to 
capture long-term dependencies through increased depth. Further 
analysis involves varying each hyperparameter sequentially to assess 
the tuning effect of the PDO module, as shown in Figure  7. It is 
evident that the hyperparameter configurations selected by the PDO 
module yield the lowest MSE, thereby achieving optimal tuning and 
enhanced model performance. Overall, the hyperparameter sensitivity 
analysis demonstrates that the PDO module exhibits strong 
adaptability to varying task complexities by dynamically adjusting 
hyperparameter settings, thereby enhancing the accuracy of 
data recovery.

6.2 Ablation study analysis

Ablation experiments selectively remove specific components of 
a model to evaluate their impact on overall performance. This 
approach effectively confirms the necessity and contribution of each 
module in the model architecture. Based on this methodology, the 
present study analyzed three models—GAN, BiGRU-GAN, and 
PDO-BiGRU-GAN—via selective module removal (Table 3). Initially, 
loss curves were plotted for the three models under a missing data 
ratio of 1/24 (Figure  8). The basic GAN model exhibited a rapid 
decrease in loss; however, its loss curves displayed pronounced 
fluctuations, indicating instability in missing data recovery tasks. 
Incorporating the BiGRU module (BiGRU-GAN) produced smoother 
loss curves, demonstrating that the integration of temporal 
information enhances model stability and generalization. Further 
addition of the PDO module in PDO-BiGRU-GAN achieved more 
favorable convergence characteristics. Loss decreased rapidly and 
stabilized at a low level, indicating that PDO-based hyperparameter 
optimization significantly improves training efficiency and overall 
model performance. The contributions of each component were 
further assessed under varying data missing ratios of 1/24, 8/24, and 
16/24 (Table 3). The results indicate that removing either the PDO 

TABLE 1  Statistics of the incomplete dataset.

Statistical information Corresponding results

Sampling frequency 1HZ

Total number of sensors 14个

Types of missing 

data

Different missing 

data ratios

1/24

8/24

16/24

20/24

22/24

Different numbers of 

missing sensors

2 (BL3, UL3)

4 (BL3, UL3, BL4, UL4)

8 (BL2, UL2, BL3, UL3, BL4, UL4, 

BL5, UL5)

14
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FIGURE 6

Illustration of the incomplete dataset: (a) Missing data ratio 1/24; (b) Missing data ratio 8/24; (c) Missing data ratio 16/24; (d) Missing data ratio 20/24; 
(e) Missing data ratio 22/24; (f) Missing data from 2 sensors; (g) Missing data from 4 sensors; (h) Missing data from 8 sensors; (i) Missing data from 14 
sensors.

TABLE 2  Hyperparameter optimization results.

Hyperparameters Missing data ratio Multiple-sensor data loss

1/24 8/24 16/24 20/24 24/24 2 Missing 
sensors

4 Missing 
sensors

8 Missing 
sensors

14 
Missing 
sensors

Learning rate 0.002 0.0018 0.0016 0.0013 0.0011 0.0022 0.0018 0.0018 0.0012

Batch size 32 64 64 64 128 32 64 64 128

Units per layer 98 122 148 175 196 106 130 164 208

Number of layers 2 3 3 3 3 2 2 3 3
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Hyperparameter sensitivity analysis: (a) Missing data ratio 1/24; (b) 2 Missing sensors.
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module or the BiGRU structure degrades the model’s predictive 
capability. Specifically, when the missing data ratio ranges from 1/24 
to 16/24, excluding the PDO module leads to increases in mean 
absolute error (MAE) by 9.80–21.88%, root mean square error 
(RMSE) by 18.30–23.05%, mean absolute percentage error (MAPE) 
by 16.72–27.23%, and MSE by 33.26–40.79%, while coefficient of 
determination (R2) decreases by 0.53–1.00%. Further removal of the 
BiGRU structure causes more pronounced performance deterioration: 
MAE increases by 53.67–60.03%, RMSE by 42.28–61.73%, MAPE by 
42.35–57.07%, MSE by 66.68–85.35%, and R2 declines by 3.27–5.08%. 
These findings indicate that the GAN module provides fundamental 
generative capability, the BiGRU structure captures temporal 
dependencies to improve reconstruction accuracy, and the PDO 
module optimizes key hyperparameters to enhance training efficiency 
and generalization (Ezugwu et al., 2022). The synergistic effect of these 
three components enables PDO-BiGRU-GAN to achieve optimal 
performance in data imputation tasks, confirming the necessity and 
contribution of each module in the model architecture.

6.3 Data recovery results of the 
PDO-BiGRU-GAN model under different 
missing data ratios

The pipeline project employed a total of 14 sensors. This section 
focuses on analyzing three sensors: BL1, BL4, and BL7. The recovery 
performance of these sensors was evaluated using the 
PDO-BiGRU-GAN model under varying missing data ratios of 1/24, 
8/24, 16/24, 20/24, and 22/24. Figure 9 illustrates five performance 
metrics of data recovery based on the PDO-BiGRU-GAN model. 
Notably, all data were normalized to eliminate the influence of 
differing measurement units (Liu et al., 2025c; Sun et al., 2025e). 
Overall, the PDO-BiGRU-GAN model demonstrated strong 
recovery capabilities across all missing data ratios, with the R2 
consistently above 0.95. Further analysis revealed that as the missing 
data ratio increased, error metrics (MSE, RMSE, MAPE, and MAE) 
showed an increasing trend, while R2 values gradually decreased. 
Particularly, a sharp decline in model performance occurred when 
the missing ratio increased from 20/24 to 22/24. This performance 
drop is attributed to the significant reduction of available historical 
data, which impairs the model’s ability to capture the intrinsic 

temporal patterns of the time series, thus weakening the imputation 
effect. Under conditions of extreme data sparsity, the model 
struggles to accurately restore complex features, resulting in 
substantially higher error metrics and notably lower R2 values. 
Therefore, when employing the PDO-BiGRU-GAN model for data 
recovery, the missing data ratio within incomplete data windows 
should be  maintained below 20/24 to ensure optimal 
recovery performance.

This section presents a detailed comparison between the proposed 
PDO-BiGRU-GAN model and eight representative data recovery 
models, aiming to demonstrate its superior performance. These 
models span from basic generative frameworks to advanced 
architectures, providing a comprehensive overview of mainstream 
techniques in time-series recovery tasks. The selected models include 
the traditional GAN, GRU-GAN, LSTM-GAN, CNN-GRU-GAN, 
CNN-LSTM-GAN, Bi-GRU-GAN, Bi-LSTM-GAN, and STOA-Bi-
LSTM-GAN. These models span from basic generative frameworks to 
advanced architectures, providing a comprehensive overview of 
commonly used techniques in time-series recovery tasks. Specifically, 
the traditional GAN serves as a baseline generative model. GRU-GAN 
and LSTM-GAN emphasize unidirectional temporal dependencies, 
making them suitable for capturing long-term trends. Bi-GRU-GAN 
and Bi-LSTM-GAN capture both past and future dependencies 
through bidirectional sequence modeling, thereby improving recovery 
accuracy for rare events or edge cases. CNN-GRU-GAN and 
CNN-LSTM-GAN extract local temporal features via convolutional 
layers and combine them with recurrent structures to model 
multivariate dependencies, thereby enhancing recovery of complex 
patterns. The STOA-Bi-LSTM-GAN represents the state-of-the-art 
approach, integrating bidirectional recurrent modeling with optimized 
training strategies to achieve greater adaptability and stability. To 
ensure a fair comparison between PDO-BiGRU-GAN and the eight 
baseline models, all models were trained under identical data 
preprocessing and normalization conditions (Sun et al., 2024f; Xie 
et al., 2025b), and with the same computational resources. Notably, 
PDO-BiGRU-GAN employs the PDO algorithm for automated 
optimization, whereas STOA-Bi-LSTM-GAN uses the STOA 
algorithm. The hyperparameters of the remaining seven baseline 
models were not taken directly from literature values, as optimal 
settings can vary across different data recovery tasks. Instead, a grid 
search was conducted to tune these models, ensuring they achieved 

TABLE 3  Ablation study results.

Model Module Proportion Performance metrics

GAN KOA GPS MAPE MSE*100 MAE*10 RMSE*10 R2

GAN 

(baseline)

1/24 0.10232 0.33849 0.45093 0.5818 0.9588

√ 8/24 0.11543 0.7928 0.86601 0.89039 0.9421

16/24 0.19215 1.25729 1.01144 1.12129 0.94

BiGRU-GAN

1/24 0.07082 0.19048 0.23163 0.43643 0.985

√ √ 8/24 0.08376 0.18989 0.44451 0.43577 0.98

16/24 0.10064 0.33225 0.51753 0.57641 0.9778

PDO-

BiGRU-GAN

1/24 0.05898 0.11278 0.20892 0.33582 0.9902

√ √ √ 8/24 0.06095 0.11613 0.37233 0.34078 0.98994

16/24 0.08249 0.22174 0.40428 0.4709 0.9872
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their best possible performance for the current task and maintaining 
the objectivity of the comparison.

For clarity, this study selected the recovery results of sensor BL4 
under three missing data ratios: 1/24, 8/24, and 16/24. Figure 10 
presents radar charts of the performance metrics for all models 
under these conditions. The results indicate that PDO-BiGRU-GAN 
consistently achieves the lowest error metrics (MSE, RMSE, MAPE, 
MAE) and the highest R2 across all three scenarios, demonstrating 
its superior data recovery capability. In contrast, the remaining 
eight models exhibit varying degrees of performance degradation 
across the five evaluated metrics. For example, at a missing ratio of 
1/24, the PDO-BiGRU-GAN model attained an R2 of 0.9902, MSE 
of 0.001128, RMSE of 0.03358, MAPE of 0.05898, and MAE of 

0.02089. Compared to other models, PDO-BiGRU-GAN improved 
R2 by 0.197–3.28%, reduced MSE by 21.77–66.68%, RMSE by 
11.55–42.28%, MAPE by 5.25–42.36%, and MAE by 2.93–53.67%. 
To verify the statistical significance of these performance 
differences, Wilcoxon signed-rank tests were conducted on R2, 
MAE, RMSE, MSE, and MAPE [see Taheri and Hesamian (2013) 
and Woolson (2007) for calculation details]. The results indicate 
that PDO-BiGRU-GAN significantly outperforms all eight baseline 
models across all metrics (p < 0.05), confirming that its 
performance improvements are statistically robust and not due to 
random variation. Overall, the PDO-BiGRU-GAN model exhibits 
optimal recovery performance across various missing 
data conditions.
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FIGURE 8

Loss curves of the three models (GAN, BiGRU-GAN, and PDO-BiGRU-GAN) under a missing data ratio of 1/24.

FIGURE 9

Data recovery results based on the PDO-BiGRU-GAN network: (a) BL1; (b) BL4; (c) BL7.
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6.4 Data recovery results of the 
PDO-BiGRU-GAN model under different 
numbers of missing sensors

To assess the model’s robustness in the face of multi-sensor data 
loss, this section investigates the recovery capabilities of the 
PDO-BiGRU-GAN model under varying degrees of sensor 
unavailability. Four missing data scenarios were designed: missing 2 
sensors (BL3, UL3), missing 4 sensors (BL3, UL3, BL4, UL4), missing 
8 sensors (BL2, UL2, BL3, UL3, BL4, UL4, BL5, UL5), and missing 14 
sensors. In all scenarios, data from UL3 and BL3 were reconstructed. 
To simplify the analysis, only the recovery results of sensors UL3 and 
BL3 were evaluated. Figure 11 presents the performance metrics of the 
PDO-BiGRU-GAN model for recovering UL3 and BL3 under 
different levels of sensor loss. All performance metrics were computed 
using normalized values to ensure comparability and mitigate the 
impact of differences in data magnitude. Overall, the results indicate 
that the PDO-BiGRU-GAN model consistently demonstrates strong 
recovery performance across all scenarios. The R2 values remain 
generally above 0.93, suggesting that the model effectively captures 
spatiotemporal features and reconstructs missing data by leveraging 
latent dynamic correlations among sensors. However, as the number 
of missing sensors increases, the R2 value gradually decreases. 
Meanwhile, error metrics (MSE, RMSE, MAPE, MAE) increase 
accordingly, indicating a decline in model performance. This 
degradation can be attributed to two primary factors: the diminishing 
volume of available reference data and the growing complexity of 
underlying data patterns, both of which increase the difficulty of 
accurately estimating missing values. Despite the observed 
degradation as the number of missing sensors increases, the 
PDO-BiGRU-GAN model still exhibits remarkable recovery 
performance when dealing with multi-sensor data loss. Its advanced 
capacity for learning temporal–spatial dependencies and modeling 
nonlinear relationships makes it particularly suitable for recovering 
critical sensor information under complex operating conditions. 
These advantages highlight the model’s significant potential for 
application in intelligent monitoring systems and structural health 
diagnostics, offering both wide applicability and notable 
engineering value.

Furthermore, this section provides a comprehensive evaluation of 
the PDO-BiGRU-GAN model’s recovery performance compared to 

eight other models under multi-sensor data loss conditions. For 
brevity, sensor UL3 is chosen as the representative for multi-model 
comparison. Figure  12 presents the performance metrics of 
PDO-BiGRU-GAN and the eight compared models. The results 
demonstrate that PDO-BiGRU-GAN consistently achieves the best 
performance across all evaluation metrics, exhibiting the lowest error 
levels and the highest R2 values. For example, with eight sensors 
missing, PDO-BiGRU-GAN attains an R2 of 0.9522, MSE of 0.001588, 
RMSE of 0.03985, MAPE of 0.7209, and MAE of 0.02960. Compared 
to other models, its R2 improves by 0.197 to 3.28%; MSE decreases by 
21.77 to 66.68%; RMSE reduces by 11.55 to 42.28%; MAPE declines 
by 5.25 to 42.36%; and MAE lowers by 2.93 to 53.67%. Consistent with 
Section 6.3, Wilcoxon signed-rank tests were conducted on the five 
performance metrics across different numbers of missing sensors. The 
results show that PDO-BiGRU-GAN outperforms all eight 
comparison models, with p-values below 0.05 for all metrics, 
indicating that the performance differences are statistically significant. 
Overall, the comparison among the nine models indicates that 
PDO-BiGRU-GAN maintains superior recovery accuracy for UL3 
data across different sensor loss scenarios. Furthermore, the model 
shows similar stable advantages in recovering data from other sensors; 
however, these results are not detailed here due to space constraints. 
In summary, PDO-BiGRU-GAN demonstrates excellent imputation 
capability under multi-sensor data loss conditions and represents a 
promising approach for this problem.

6.5 Computational efficiency analysis

The PDO-BiGRU-GAN model has a relatively complex 
architecture and many parameters, resulting in higher computational 
costs during training and inference. To evaluate its feasibility and 
deployment potential in practical applications, a systematic assessment 
of its computation time is necessary. This section compares the 
computation time of PDO-BiGRU-GAN with eight existing methods 
under identical task conditions, as shown in Figure 13. Compared 
with simpler models (standard GAN, GRU-GAN, and LSTM-GAN), 
PDO-BiGRU-GAN’s computation time increases by approximately 
8.77 to 15.11%. Despite this increase, the additional cost is acceptable 
given the significant improvement in recovery accuracy. Further 
comparisons show that, relative to more complex architectures 
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FIGURE 10

Performance comparison between PDO-BiGRU-GAN and eight models: (a) 1/24; (b) 8/24; (c) 16/24.
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(CNN-GRU-GAN, CNN-LSTM-GAN, Bi-LSTM-GAN, and 
BiGRU-GAN), PDO-BiGRU-GAN’s computation time increases only 
by 1.25 to 7.32%, indicating that slight computational overhead yields 
substantial performance gains. Additionally, relative to the most 
complex STOA-Bi-LSTM-GAN model, PDO-BiGRU-GAN reduces 
computation time by approximately 3.17 to 7.27%. Overall, 

PDO-BiGRU-GAN incurs only a slight increase in computational cost 
compared to simpler models, while outperforming the most complex 
ones in efficiency. This advantage results from two main factors. First, 
the PDO algorithm employs a more efficient hyperparameter search 
strategy, significantly reducing ineffective computations during 
training (Biswas et  al., 2024; Izci et  al., 2024). Second, the model 

FIGURE 11

Data recovery results for sensors UL3 and BL3 with multiple missing sensors using the PDO-BiGRU-GAN model: (a) UL3; (b) BL3.
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FIGURE 12

Data recovery performance of UL3 under multiple missing sensors: (a) 2 Missing sensors; (b) 4 Missing sensors; (c) 8 Missing sensors; (d) 14 Missing 
sensors.
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architecture preserves essential feature extraction capabilities while 
avoiding redundant layer stacking, effectively controlling resource 
consumption and ensuring improved recovery efficiency. In summary, 
PDO-BiGRU-GAN achieves substantial improvements in recovery 
accuracy while maintaining controlled computation time, making it a 
promising model for pipeline monitoring data recovery tasks.

6.6 Summary of comparative analysis 
between PDO-BiGRU-GAN and eight 
existing models

Sections 6.3–6.5 systematically compare the performance of 
PDO-BiGRU-GAN with eight existing models—GAN, GRU-GAN, 
LSTM-GAN, CNN-GRU-GAN, CNN-LSTM-GAN, BiGRU-GAN, 
BiLSTM-GAN, and STOA-BiLSTM-GAN—on data reconstruction 
tasks. This section further summarizes the advantages and limitations 
of each model and the trade-offs between accuracy and computational 
cost, as shown in Table 4. In the pipeline monitoring project examined 
in this study, PDO-BiGRU-GAN emerged as the optimal model based 
on a trade-off between accuracy and computational efficiency. For 
future research, investigators can select an appropriate model based 
on the characteristics in Table 4 and the specific requirements of their 
projects for data reconstruction.

7 Discussion

This study tackles the prevalent issue of missing data in pipeline 
monitoring by proposing a novel PDO-BiGRU-GAN framework. The 
framework integrates three key components: the PDO module for 
hyperparameter optimization, the BiGRU module for temporal 
feature extraction, and the GAN module for data generation and 
distribution approximation. To validate the method, a pipeline 
monitoring dataset was established using field data collected from 
actual pipeline projects. The study first analyzes the model’s sensitivity 
to hyperparameters, demonstrating the necessity of the PDO module 
in the optimization process. Ablation experiments were then 

conducted to assess the independent contribution of each module. 
Furthermore, the proposed model is compared with eight mainstream 
deep learning models in terms of prediction accuracy and 
computational efficiency. Overall, the PDO-BiGRU-GAN framework 
effectively reconstructs missing information in pipeline monitoring 
from a data-driven perspective, thereby providing more complete and 
reliable support for pipeline performance evaluation.

Although the proposed PDO-BiGRU-GAN model demonstrates 
high accuracy in recovering missing data in pipeline monitoring, it 
has several key limitations. These limitations can be categorized into 
three areas: the model itself, engineering applicability, and the 
intelligence of the pipeline monitoring system. Regarding the 
limitations of the model itself, the PDO-BiGRU-GAN model can 
generate samples that closely match the statistical characteristics of 
real data. However, it may struggle to capture rare fault patterns or 
extreme anomalies, such as those occurring under heavy rain, snow, 
or pipeline malfunctions. This limitation could potentially pose risks 
in pipeline monitoring. Future research could focus on modeling such 
exceptional operating conditions to enhance the model’s learning 
capability and robustness. Due to the focus and length constraints of 
the current study, the model’s performance across datasets of varying 
scales was not examined. Broader investigations into diverse data loss 
scenarios are required to address this gap. The approach also heavily 
depends on training data. When historical data are biased or 
incomplete, the model may produce misleading patterns, 
compromising the reliability of decisions. To mitigate this, future 
studies could incorporate physical model constraints, expert 
knowledge, or multi-source data into the PDO-BiGRU-GAN 
framework. This would reduce reliance on single historical datasets 
and improve both anomaly detection and overall predictive 
performance. Additionally, due to space limitations, this study only 
explored the combination of GAN and BiGRU modules and validated 
its effectiveness. Future research could explore the integration of 
GANs with other recurrent architectures, such as Transformer-based 
models or temporal convolutional networks, to assess data recovery 
performance across different frameworks. Finally, the 
PDO-BiGRU-GAN model is inherently a black-box model, lacking 
transparency and interpretability in its generation process. In practical 
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FIGURE 13

Computation time comparison of nine models across different data recovery tasks: (a) Varying missing data ratios; (b) Multiple missing sensors.
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applications, false positives or false negatives could complicate 
responsibility assignment and regulatory compliance. Future work 
could incorporate interpretability-enhancing techniques, coupled 
with uncertainty quantification and human-in-the-loop verification, 
to ensure the safety and reliability of data recovery.

Regarding engineering applicability, several limitations should 
be noted. First, the model has only been validated on the pipeline 
project in Tangshan, Hebei. Its generalizability across different 

pipelines or regions remains unassessed. Future studies could 
investigate the model’s transferability and adaptability across 
various pipeline types, geographic regions, and operating 
conditions. Second, the model requires significant computational 
resources during training, limiting direct deployment on low-power 
devices. In this study, it required approximately 2 GB of GPU 
memory and 4.9 GFLOPs. Future work could explore model 
lightweighting, parameter compression, and efficient inference 
strategies to enable deployment on low-power or edge devices. 
Third, the model can function as a data recovery module within 
pipeline monitoring systems and can be seamlessly integrated with 
existing optical fiber or other sensor data acquisition systems. While 
training in this study was conducted on a high-performance 
workstation, practical deployment can leverage a single GPU or 
high-performance CPU depending on data scale and real-time 
requirements, meeting computational demands for data recovery. 
From a software perspective, the model was developed on the 
TensorFlow platform and can interface with existing industrial 
pipeline monitoring systems, supporting deployment and extension 
across mainstream deep learning frameworks. Finally, this study 
applied the model solely to optical fiber sensor data recovery. Future 
research could extend the model to other sensor types, such as 
pressure, flow, and temperature, to systematically evaluate its 
applicability, stability, and cross-sensor generalization. This would 
further validate the model’s versatility across multi-source 
heterogeneous monitoring data.

In the context of intelligent pipeline monitoring, blockchain 
technology can be  leveraged to enhance system reliability and 
automation. It ensures the integrity and traceability of both raw sensor 
data and AI-reconstructed data. Moreover, smart contracts can 
automatically trigger alerts or initiate maintenance actions based on 
recovered signals. For example, when a recovered signal indicates a 
potential risk, a smart contract can immediately activate warning 
mechanisms or execute pre-defined maintenance tasks, thereby 
reducing manual intervention and improving response efficiency. 
Furthermore, blockchain-based decentralized learning frameworks 
can improve privacy and robustness in multi-site deployments (Ressi 
et  al., 2024b). Overall, the integration of blockchain, artificial 
intelligence, and other advanced technologies holds significant 
promise for advancing intelligent pipeline monitoring and providing 
a more robust technical foundation for the long-term safety 
of pipelines.

8 Conclusion

This study developed a novel PDO-BiGRU-GAN network to 
efficiently recover missing pipeline data. The model’s performance was 
evaluated using real engineering monitoring data under various types 
of data loss. The main findings are summarized as follows:

	(1)	 This study developed a novel PDO-BiGRU-GAN network, 
which integrates the hyperparameter optimization capability of 
the PDO module, the temporal feature extraction strength of 
the BiGRU module, and the data generation and imputation 
functionality of the GAN module. The proposed network was 
subsequently applied to recover missing data in pipeline 
monitoring systems.

TABLE 4  Comparative analysis of the proposed PDO-BiGRU-GAN model 
and eight existing models.

Model Technical 
advantage

Limitations Accuracy–
computational 
cost trade-off

GAN

Basic generative 

modeling for 

missing data 

recovery

No temporal 

dependency 

modeling, limited 

sequence feature 

capture

Low accuracy, Very 

Low computational cost

GRU-GAN

Unidirectional 

GRU captures 

short-term 

temporal patterns

Limited ability for 

long-term 

dependencies

Moderate accuracy, 

Low computational cost

LSTM-

GAN

Unidirectional 

LSTM captures 

long-term 

dependencies

Limited local 

feature extraction

Moderate-high 

accuracy, Moderate-

Low computational cost

CNN-

GRU-GAN

Convolution 

extracts local 

features + GRU 

handles temporal 

dependencies

Complex 

architecture, 

higher training 

cost

High accuracy, 

Moderate-High 

computational cost

CNN-

LSTM-

GAN

Convolution + 

LSTM captures 

both local and 

long-term 

dependencies

Large number of 

parameters, long 

training time

High accuracy, High 

computational cost

Bi-GRU-

GAN

Bidirectional 

GRU captures 

past and future 

dependencies

Weak in local 

feature extraction

High accuracy, 

Moderate-High 

computational cost

Bi-LSTM-

GAN

Bidirectional 

LSTM captures 

short- and long-

term 

dependencies

Complex 

architecture, 

relatively long 

training time

High accuracy, High 

computational cost

STOA-Bi-

LSTM-

GAN

Bidirectional 

LSTM + STOA 

hyperparameter 

optimization

Hyperparameter 

search overhead, 

long training time

Very high accuracy, 

Very High 

computational cost

PDO-

BiGRU-

GAN

Bidirectional 

LSTM + STOA 

hyperparameter 

optimization

Computational 

cost during 

hyperparameter 

optimization

Very high accuracy, 

High computational 

cost; similar or better 

precision than STOA 

with lower overhead
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	(2)	 Using an open-access pipeline project, a pipeline monitoring 
dataset was obtained. This dataset was employed to evaluate the 
proposed PDO-BiGRU-GAN network. Hyperparameter 
sensitivity analysis and ablation experiments were conducted 
to assess the model. The sensitivity analysis demonstrated that 
the PDO module substantially improved model performance 
by guiding optimal hyperparameter selection. Ablation 
experiments further showed that removing either the PDO or 
BiGRU module led to significant performance degradation, 
underscoring their essential roles in enhancing data 
recovery accuracy.

	(3)	 The study evaluated the data recovery capability of the 
PDO-BiGRU-GAN model under various missing-data 
scenarios. Results demonstrated that the model accurately 
reconstructed missing values by effectively leveraging 
underlying spatiotemporal dependencies, achieving an R2 
greater than 0.93. Furthermore, to maintain optimal recovery 
performance, the missing data ratio within any given window 
should not exceed approximately 20/24.

	(4)	 The study compared the proposed PDO-BiGRU-GAN model 
with eight existing models in terms of accuracy and 
computational efficiency. Results indicated that 
PDO-BiGRU-GAN achieved the lowest values across all error 
metrics (MSE, RMSE, MAPE, MAE) and the highest R2, 
demonstrating a clear advantage in accuracy. Moreover, the 
model’s computation time increased only marginally. Overall, 
PDO-BiGRU-GAN substantially improved data recovery 
accuracy while maintaining efficient computational 
performance, highlighting its promise for pipeline 
monitoring applications.
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Appendix 1: Pseudocode of the PDO model.

Initialization

search_space = {learning_rate, batch_size, units, layers}

pdo = PrairieDogOptimizationAlgorithm(search_space)

best_params = pdo.optimize(

 �   fitness = function(params):

 �       generator = BiGRU_Generator(units = params.units, layers = params.layers)

 �       discriminator = BiGRU_Discriminator(units = params.units, layers = params.layers)

 �       gan = GAN (generator, discriminator, lr = params.learning_rate)

 �       gan.train(batch_size = params.batch_size, epochs = small_number)

 �       return gan.validation_loss()

generator = BiGRU_Generator(units = best_params.units, layers = best_params.layers)

discriminator = BiGRU_Discriminator(units = best_params.units, layers = best_params.layers)

final_gan = GAN(generator, discriminator, lr = best_params.learning_rate)

final_gan.train(batch_size = best_params.batch_size, epochs = full_training)

recovered_data = final_gan.generate(missing_data)

End
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