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Pipeline monitoring data recovery
using novel deep learning
models: an engineering case
study
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Pipeline monitoring frequently encounters missing data, leading to incomplete
evaluation and hindering a comprehensive assessment of the pipeline’s structural
health. To address this issue, this study proposes a novel PDO-BiGRU-GAN model
for missing data recovery. The model integrates three components: the prairie
dog optimization algorithm (PDO) for hyperparameter tuning, the bidirectional
gated recurrent unit (BiGRU) for effective temporal feature extraction, and the
generative adversarial network (GAN) for data generation and completion. A
comprehensive monitoring database was established using field data from an
open-source pipeline project. The contributions of individual modules to the
overall performance were evaluated via hyperparameter sensitivity analysis and
ablation studies. The impact of missing data ratio and the number of missing sensors
on the model’s recovery performance was analyzed. In addition, the proposed
model was compared with eight existing mainstream deep learning models. The
results show that each component of the PDO-BiGRU-GAN significantly enhances
overall performance. The model achieves strong recovery accuracy across various
missing data scenarios, with the R? consistently exceeding 0.93. Moreover, the
model performs optimally when the missing data ratio is below 20/24. Compared
to other models, PDO-BIGRU-GAN achieves the highest R? and the lowest error
metrics (MSE, RMSE, MAPE, MAE). In terms of computational efficiency, the model
requires slightly more processing time than simpler models but is faster than more
complex models. Overall, the proposed model provides a robust and scalable
solution for pipeline monitoring data recovery, advancing intelligent pipeline health
assessment and supporting the development of infrastructure safety management
and smart monitoring technologies.

KEYWORDS

data recovery, pipeline monitoring, optical-fiber sensing, prairie dog optimization,
deep learning

1 Introduction

Pipeline systems are essential infrastructure supporting multiple urban functions such as
water supply, drainage, heating and gas distribution (Mazumder et al., 2018; Xiong et al., 2020).
Their safe operation is vital for ensuring stable urban systems and sustainable daily life.
However, pipelines are typically laid across regions, over long distances, and beneath the
ground (Li et al., 2022; Quej-Ake et al., 20205 Shirazi et al., 2023). They often traverse diverse
geological formations and complex subsurface terrains. During service, pipelines are prone to
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structural damage due to geostress variations, soil-induced
degradation, and hydrochemical reactions, potentially leading to
deformation and leakage (Sharma et al., 2024; Wong and McCann,
2021). To address these challenges, a comprehensive system spanning
the entire lifecycle of pipeline infrastructure is necessary for
monitoring and assessment.

Commonly used pipeline monitoring techniques include acoustic
detection, fiber-optic sensing, electromagnetic induction, pressure
monitoring, and image recognition (Adegboye et al., 2019; Ho et al.,
2020; Sun et al., 2025a). Acoustic detection offers rapid response and
is effective for leak localization; however, it is highly susceptible to
2013).
Electromagnetic induction is suitable for detecting corrosion in

environmental noise and interference (Xu et al,
metallic pipelines and benefits from non-contact operation, but it is
limited to conductive materials and suffers from rapid signal
attenuation (Vasagar et al., 2024). Pressure monitoring is structurally
simple and cost-effective, providing basic insights into operational
conditions, though it lacks multidimensional data and cannot
effectively identify structural damage (Ciang et al., 2008; Lopez and
Sarigul-Klijn, 2010). Image recognition enables intuitive visualization
but relies on favorable environmental conditions and has limited
coverage over large areas (Cai et al., 2019; Zhou, 2023). In contrast,
fiber-optic sensing provides high sensitivity, supports long-distance
continuous monitoring, and is relatively cost-effective (Sun et al.,
2025b). Therefore, fiber-optic sensing systems offer significant
potential for widespread application in pipeline monitoring.

However, similar to traditional electrical sensors, fiber-optic
sensing technology still faces data loss (Feng et al., 2019). First, signal
interruptions may occur at sensor splicing points due to manufacturing
defects or mechanical stress (Kuntoglu et al., 2021). Second, prolonged
use can cause sensor material aging, resulting in failure to acquire
valid data. Additionally, external factors such as geological shifts,
construction disturbances, and chemical corrosion can damage
sensors, affecting data continuity and accuracy (Wright et al., 2019).
Moreover, fiber-optic systems typically require long-distance signal
transmission, during which signal attenuation at splicing points
accumulates along the transmission path and may result in the loss or
distortion of valid data (Sun et al., 2025¢). Furthermore, environmental
noise can obscure or disrupt the original measurement signals,
causing further loss of valid information.

Data loss undermines the monitoring system’s ability to perceive
critical operational states in real time, compromises data integrity, and
reduces analytical accuracy (Lei et al, 2023; Tan et al., 2016).
Moreover, it increases the response delay and uncertainty in fault
detection. In severe cases, data loss may obscure early risk indicators,
weakening the system’s warning capability (Avula, 2021; Jieyang et al.,
2023). Furthermore, prolonged data gaps can lead to insufficient
accumulation of historical data, impairing trend analysis of pipeline
structural performance and lifespan prediction. Consequently, this
affects the scientific basis for pipeline safety assessment and
management strategy development. Therefore, it is imperative to
develop effective solutions addressing data loss in fiber-optic
sensing systems.

To address data loss issues, deep learning provides effective
technical solutions (Bao et al., 2025; Li et al., 2025a; Ressi et al., 2022,
2024a; Sun et al,, 2024a). Deep learning is a machine learning
approach based on artificial neural networks, whose core concept is
inspired by the structure of the human brain (Liu et al., 2025a; Sun
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et al,, 2024b; Wang et al., 2025a, 2025b, 2025¢). It employs multiple
layers of nonlinear transformations to automatically extract complex
features from data, enabling efficient modeling of large-scale
information (Wei et al., 2025). Compared to traditional machine
learning, deep learning automatically captures intricate nonlinear
relationships within data, thereby reducing reliance on manual feature
engineering (Sun et al., 2024c). In the field of data recovery, deep
learning leverages spatiotemporal dependencies in incomplete
datasets to reconstruct missing information with high accuracy (Lei
et al,, 2021). Common models for data loss recovery include the
standard GAN (Sun et al,, 2025¢), LSTM-GAN (Pu et al., 2022;
Kumari et al., 2024), GRU-GAN (Huang et al., 2022; Shen et al., 2022),
Bi-LSTM-GAN (Jiang et al., 2023), and STOA-Bi-LSTM-GAN (Sun
etal,, 2025c¢), all of which have demonstrated promising effectiveness
in preliminary applications.

Nevertheless, existing models still exhibit several limitations.
When applied to time-series data, the standard GAN often suffers
from unstable training of the generator and discriminator. It fails to
effectively capture sequential dependencies, resulting in imputed
values that deviate from actual dynamic patterns (Ren and Xu, 2019).
LSTM-GAN and GRU-GAN alleviate this issue by employing
recurrent neural networks (LSTM or GRU), thereby improving the
ability to model long-term dependencies. However, these models
remain vulnerable to vanishing or exploding gradients when
processing multivariate or long-sequence data. Their performance is
also highly sensitive to hyperparameter settings, such that minor
deviations can lead to overfitting or unstable generation (Wan and Liu,
2023). BILSTM-GAN enhances modeling by leveraging both past and
future contextual information, yet it is still prone to mode collapse,
unstable convergence, and challenging hyperparameter optimization
(Wan, et al., 2023). STOA-BiLSTM-GAN demonstrates strong results
across multiple benchmark datasets, but its high complexity and
intensive training requirements hinder scalability in large-scale
industrial applications. Therefore, there is an urgent need for a novel
deep learning framework that maintains recovery accuracy while
reducing model complexity and computational cost, thereby
enhancing practicality and scalability.

Based on this, the study proposes a novel PDO-BiGRU-GAN
model that integrates the prairie dog optimization algorithm (PDO),
bidirectional gated recurrent units (BiGRU), and generative
adversarial network (GAN). This model is designed to recover missing
fiber-optic sensing data. Monitoring data from an open-source
pipeline project were used to construct a pipeline monitoring dataset.
Hyperparameter sensitivity analysis and ablation experiments were
performed to evaluate the necessity and contribution of each module.
The impact of ratios of missing data and the number of missing
sensors on the recovery performance of the PDO-BiGRU-GAN model
was analyzed. Furthermore, the model’s accuracy and computational
efficiency were compared with eight existing deep learning models.

The main contributions and innovations of this study are as
follows: First, a novel PDO-BiGRU-GAN deep learning framework
was developed. This framework integrates the hyperparameter
optimization capability of the PDO module, the temporal feature
extraction capability of the BIGRU module, and the data generation
and imputation ability of the GAN module. Second, fiber-optic
monitoring data were obtained from an open-access pipeline project,
and the model was systematically evaluated through hyperparameter
sensitivity analysis and ablation studies. Additionally, the proposed
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model was compared with eight existing mainstream models in terms
of accuracy and computational efficiency under varying missing-data
scenarios. Overall, the proposed framework provides a new approach
for imputing missing pipeline monitoring data and plays a crucial role
in ensuring the completeness of pipeline monitoring information.

2 Motivation for developing the
PDO-BiGRU-GAN network

To address the issue of missing monitoring data, numerous studies
have focused on developing techniques for managing missing values
in time-series data. Traditional approaches can be broadly categorized
into two types. The first involves case deletion, which removes
observations containing missing values to avoid their impact on
analytical results (Schafer and Graham, 2002; Silva and Zarate, 2014).
The second includes statistical methods, such as spline interpolation,
matrix completion, and mean imputation, which replace missing data
points based on statistical estimates (Gu et al., 2021). However, these
methods have notable limitations. First, they exhibit limited capability
in modeling temporal dependencies and often fail to capture complex
dynamic relationships among variables. Second, their performance
becomes unstable under conditions with a high missing ratio, leading
to substantial errors (Zhang and Wang, 2024). Finally, they struggle to
accurately reconstruct the underlying data distribution, particularly
when the interactions among multiple features are intricate (Zhang
and Wang, 2024). Consequently, traditional methods often fail to meet
the accuracy and reliability requirements for reconstructing pipeline
monitoring data.

In recent years, researchers have explored the use of GANs to
recover missing data. Unlike traditional methods, GANs can model
the underlying data distribution, thereby enabling high-quality data
imputation. This capability enhances the completeness and reliability
of the recovered data. The advantages of GANs are particularly
pronounced in multivariate time-series analysis. They can not only
impute individual missing values but also maintain complex
dependencies among variables (Oh et al., 2021). Moreover, the
generative framework of GANSs enables adaptation to diverse missing
data patterns, improving the robustness and flexibility of recovery
outcomes (Gong et al., 2022). Studies have demonstrated that GANs
achieve high accuracy in handling missing data, providing strong
support for data analysis, prediction, and decision-making across
various domains (Kachuee et al., 2020).

GAN' s have been widely applied to data recovery tasks. However,
existing GAN-based approaches often neglect the interrelationships
among variables and the bidirectional temporal dependencies
inherent in time-series data (Wu et al., 2021). An ideal time-series
imputation method should capture both characteristics while
accurately modeling the underlying data distribution. Integrating
temporal feature extraction modules into the GAN framework can
therefore enhance model performance. Among temporal feature
extraction networks, recurrent neural networks (RNNs) are
particularly well-suited for modeling complex temporal dependencies.
Nevertheless, they exhibit inherent limitations, including a restricted
ability to extract fine-grained information and susceptibility to
gradient explosion and vanishing. These issues reduce training
efficiency and limit their applicability in temporal feature extraction
tasks (Li et al., 2024). Recent advances in RNN architectures have
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addressed some of these challenges. In particular, the development of
GRUs mitigates the vanishing gradient problem, accelerates
convergence, and reduces computational uncertainty (Noh, 2021).
Building on this, BiIGRUs were introduced to process sequences in
both forward and backward directions. Compared with BiLSTMs,
BiGRUs retain the ability to model long-term dependencies. They also
maintain a simpler structure, have fewer parameters, offer higher
computational efficiency, and enable more stable training. They also
demonstrate reduced sensitivity to overfitting in small datasets or
noisy environments. BiGRUs excel at capturing both local temporal
patterns and global trends, effectively lowering predictive uncertainty
and alleviating forgetting effects. Therefore, embedding a BiGRU
module within a GAN framework leverages the generative adversarial
mechanism to approximate the original data distribution. It also fully
exploits bidirectional temporal dependencies for feature modeling.
This approach achieves higher accuracy and more robust performance
in time-series missing value recovery tasks.

Furthermore, the performance of the BiGRU-GAN network is
strongly influenced by hyperparameter configurations (Richter et al.,
2024). Existing studies typically rely on manual trial-and-error to
identify optimal parameter combinations, a process that is both
inefficient and prone to producing suboptimal predictive results.
Consequently, the use of advanced optimization algorithms for
automated hyperparameter search is essential. Inspired by prairie
dogs’ natural behaviors, Ezugwu et al. (2022) proposed the PDO
algorithm. They compared PDO with several classical optimization
methods, including the arithmetic optimization algorithm (Abualigah
et al., 2021), grey wolf optimizer (Mirjalili et al., 2014; Sun et al,,
2024d), differential evolution optimizer (Kosorukoff, 2001), salp
swarm optimizer (Mirjalili et al., 2017), biogeography-based optimizer
(Simon, 2008), sine cosine optimizer (Mirjalili, 2016), particle swarm
optimizer (Kennedy and Eberhart, 1995; Sun et al., 2023a), and dwarf
mongoose optimizer (Agushaka et al., 2022). Experimental results
demonstrate that PDO excels in searching for the global optimum and
exhibits a more stable convergence process than many of these
algorithms. Statistical analyses further confirm its robustness in
balancing exploration and exploitation. By leveraging these
advantages, PDO can be integrated into the BIGRU-GAN framework
to significantly improve hyperparameter search efficiency, thereby
enhancing predictive accuracy and model stability. Based on this
approach, the present study develops a PDO-BiGRU-GAN network
to better capture the spatiotemporal correlations between missing and
available data.

3 Basic principles of the
PDO-BiGRU-GAN network

This study proposes a novel hybrid model, PDO-BiGRU-GAN,
for missing data imputation. This model consists of three components:
the PDO module, the BiGRU module, and the GAN module. The
BiGRU module models the bidirectional temporal dependencies
between available and missing data, thereby enhancing the
representation of time series information (Du et al., 2019). The PDO
module optimizes critical hyperparameters of the BiGRU model
(learning rate, batch size, units per layer, and number of layers) to
improve training efficiency and generalization performance. The GAN
module introduces an adversarial mechanism to further enhance the
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realism and distribution consistency of the recovered data. The
following sections provide a detailed explanation of the principles
underlying each module of the PDO-BiGRU-GAN network.

3.1 BiGRU module

The GRU is an improved variant derived from the long short-term
memory (LSTM) network. It merges the forget gate and the input gate
of the LSTM into a single update gate (Richter et al., 2024). By
integrating the cell state and hidden state of the LSTM, the GRU
effectively mitigates the vanishing and exploding gradient problems
encountered in modeling long-term dependencies. Furthermore, this
architecture enhances both the convergence speed and computational
efficiency of the model. The GRU primarily consists of two gates: the
reset gate and the update gate, which, respectively, regulate the
forgetting and retention of information before and after data
transmission. This mechanism enables effective control and
propagation of information within the neural units. The computational
formulas of the GRU are presented in Equation 1.

Zy = O'(WZ 'l:htfl,xtjl“‘ bz)
= O'(Wr ~|:ht,1,xt:|+ br)

- 1
ht =tanh(Wr-[rOht_1,xt]+bh) W

ht :(17‘2[)@’1[—14’21‘ Oht

Where r, denotes the reset gate; Z, represents the update gate; h, is
the output; A is the candidate activation; and o denotes the sigmoid
activation function.

BiGRU is an extension of the GRU model that integrates
information flow from both forward and backward directions,
thereby enhancing its ability to process time series data. By
simultaneously capturing dependencies in both directions, the model
achieves a more comprehensive understanding of the dynamic
patterns within time series. Compared to the unidirectional GRU,
BiGRU more effectively captures intricate temporal features,
significantly improving prediction accuracy. This model maximizes
the extraction of key features relevant to forecasting, resulting in

10.3389/frai.2025.1684018

enhanced precision and stability. The computational formulas of the
model are shown in Equation 2. A schematic diagram of the BIGRU
architecture is presented in Figure 1.

iy =GRU(x,,ﬁt_1)

iy = GRU(x,,flt_l) )

ht = Wt];t + Vtﬁt +b

3.2 PDO module

The hyperparameters of the BIGRU network (learning rate, batch
size, number of neurons per layer, and number of layers) significantly
affect its performance in data recovery. Selecting appropriate
hyperparameters is crucial for enhancing the model’s training
effectiveness and overall predictive accuracy. In view of this, this study
employs the PDO module to optimize the BiGRU’s hyperparameters.
The PDO algorithm is inspired by two primary behaviors of prairie
dogs: foraging and burrowing (Ezugwu et al., 2022; Sun et al., 2024e).
During the foraging phase, prairie dogs search for new food sources
within a certain area and communicate the location of food to other
individuals. They also estimate the required burrowing effort based on
the quality of the discovered food. In the burrowing phase, prairie
dogs move according to the shared food location information and
hide in burrows to evade predators. The algorithm divides the total
number of iterations into four equal stages: the first two simulate
foraging behavior, while the last two simulate burrowing behavior.
This staged approach allows PDO to balance exploration and
exploitation dynamically, thereby enhancing the effectiveness of
hyperparameter optimization.

During the foraging phase, the algorithm further divides the total
number of iterations evenly. When the iteration count satisfies
t < Max_iter/4, individuals explore new food sources across the entire
search space. The position update method for this phase is given by
Equation 3.

Xi+1,j+l = GBESt,',j —CBESti,j P —CX,"]' -Levy(n) (3)

Input layer

Forward hidden layer

FIGURE 1
Structure diagram of the BiGRU model.

Backward hidden layer

Output layer
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Where GBest;; represents the global best position, p denotes the
food source alert level, CX;; refers to the random cumulative effect of
all individuals, and CBest;; indicates the current best position. The
function Levy(n) follows the Levy distribution, which enhances the
diversity of food source exploration and strengthens the algorithm’s
global search capability.

The calculation formulas for GBest;; and CX;; are presented in
Equations 4 and 5, respectively.

Xi,j -mean(X,,)m)
GBESt,"j (Mb] —lb])+A

CBest;,j =GBest;,j- A+ (4)

CX; j =(GBest; j—1X; ;) / (GBest; j +A) )

Where A represents the difference between individuals; ub and Ib
denote the upper and lower bounds of the search space, respectively;
rX refers to the position of a randomly selected individual.

When the iteration count satisfies Max_iter/4 < t < Max_iter/ 2,
the algorithm enters the phase of evaluating food quality and
determining the mining intensity, as detailed in Equation 6.

Xi+1,j+1 =GBest; j-rX-DS-Levy (n) 6)

Where DS represents the mining intensity.

During the first half of the burrowing activities, when the iteration
count satisfies Max_iter / 2 <t<3 Max_iter / 4, the algorithm
evaluates the quality of the food sources. The position update method
is as follows:

Xi+1,j+1 = GBest,-,j - CBESt,"j & CXi,j -rand (7)

Where ¢ represents the quality of the food source, and rand is a
random number between 0 and 1.

When the iteration count satisfies 3Max_iter /4 < t < Max_iter,
the prairie dogs retreat to their burrows to observe predators.

Xit1,j+1=GBest; jx PE-rand (8)

Where PE represents the predator effect, as defined in Equation 9.

)

2t
t ] max_iter

PE=15x%|1-
max_ iter

Based on the above principle, this study integrates the PDO
module with the BIGRU model. The PDO module systematically
explores near-optimal combinations of hyperparameters (learning
rate, batch size, the number of neurons per layer, and the number of
network layers) by employing a predefined behavioral mechanism.
Specifically, the learning rate is optimized within the range of [le-4,
le-2], ensuring a stable and efficient training process while preventing
gradient explosion or slow convergence. The batch size is set between
16 and 256, enabling adaptive adjustments during mini-batch gradient
descent; this facilitates efficient GPU memory utilization while
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preserving the model’s generalization capability. The number of layers
is restricted to 1-4 to effectively mitigate gradient explosion during
deep network training (Yang et al., 2016). The number of neurons per
layer is optimized within the range of 32-256 to enhance the model’s
capacity to capture temporal features while minimizing the risk of
overfitting (Siami-Namini et al., 2019). In each iteration, the algorithm
identifies a relatively optimal solution and updates the current
configuration according to a specific replacement strategy. Through
continuous iteration, the quality of the hyperparameter configuration
progressively improves. Figure 2 illustrates the overall architecture of
the PDO-BiGRU model.

3.3 GAN module

GANSs are innovative deep learning architectures that demonstrate
superior performance in data generation and complex distribution
modeling tasks. The model consists of two main components: a
generator and a discriminator. The generator learns the distribution
characteristics of real data to produce highly similar synthetic samples,
while the discriminator aims to distinguish whether the input data
originates from the real dataset. These components are trained jointly
through an adversarial process, where continuous competition drives
ongoing improvements in model performance (Alqahtani et al., 2021).
During training, the generator attempts to create samples that can
“fool” the discriminator, whereas the discriminator strives to
accurately differentiate between real and generated data. The loss
functions for both components, which measure adversarial
effectiveness and training

convergence, are presented in

Equations 10, 11.

o =E.» {log(D [6(2)])

(10)

Lp =~Ex-r,, {log[ D(x) |}~ E=-p {logl1-D[G(2) J}  a»

Where Lj and L; denote the discriminator and generator loss
functions, respectively P, is the true data distribution derived from the
training set. P, is the distribution of the data generated by the
generator. The variable z is a latent variable drawn from a predefined
prior distribution. D(x) indicates the discriminator’s output score for
areal data sample x. G(z) refers to the synthetic data sample produced
by the generator given the input z. D(G(z)) reflects the discriminator’s
assessment of the generated data sample.

3.4 PDO-BiGRU-GAN network

This study proposes a time series imputation model—
PDO-BiGRU-GAN—that integrates the PDO, BiGRU, and GAN. The
model leverages BiGRU’s capability in capturing bidirectional
temporal dependencies, PDO’s efficiency in hyperparameter
optimization, and GAN’s potential in generating high-quality data.
When addressing missing values in time series, the proposed approach
demonstrates superior accuracy and robustness. In the modeling
process, the generator receives time series data with missing values
and utilizes a PDO-BiGRU architecture to extract bidirectional
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FIGURE 2
Flowchart of the PDO-BIGRU model.

temporal features. Through adversarial training, it continuously
generates data samples that increasingly resemble the real ones.
Meanwhile, the discriminator distinguishes between generated and
original samples, providing gradient feedback to the generator to
enhance output quality. The training process is grounded in game-
theoretic principles, where the generator and discriminator undergo
iterative adversarial optimization, progressively enhancing the model’s
imputation capability. To improve training stability, gradient penalty
is applied to the discriminator. These strategies collectively reduce
training oscillations and prevent overfitting, ensuring robust and
reliable model convergence. The corresponding loss functions are
defined in Equations 12-16.

Lr=lxOm-G(z)Om]|, (12)
Loy =— [x] (13)

f b
Lc = Deviation| ¢t ,ct (14)
Lg=k-Ly+Lg+Lc (15)
Lo :_D(x)w[;] (16)

Where L; denotes the reconstruction loss, which measures the
discrepancy in alignment of the model-generated sequence with the
original incomplete input. L refers to the calibration loss, which
quantifies the deviation between the forward- and backward-
generated sequences in a time series. L, represents the discriminator
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loss, which evaluates the authenticity of the generated data. k serves
to modulate the relative impact of the discriminator loss compared to
the reconstruction loss in the total loss formulation.

Based on this approach, the study employs the PDO-BiGRU-GAN
network to learn spatiotemporal dependencies from available data to
infer missing values, thereby enabling the recovery of pipeline
monitoring data. Figure 3 presents the network architecture,
illustrating the workflow of the proposed model. The pseudocode of
the PDO-BiGRU-GAN network is provided in Appendix 1.

4 Introduction to the engineering case

The data used in this study were obtained from an open-access
monitoring database released by the project owner. All data were
standardized according to a unified format to facilitate subsequent
data analysis and model development. The implementation of the
open-access mechanism has significantly improved the accessibility
and reusability of engineering monitoring data, providing a reliable
and authentic foundation for this research. A brief overview of the
project background is presented below.

This study is based on a typical open-access data project from a
natural gas pipeline engineering initiative in Hebei Province, China.
The project, organized and implemented by the owner, deployed an
advanced fiber optic sensing monitoring system along an operational
gas pipeline. This system covers five key monitoring areas to enable
real-time and continuous surveillance of the pipeline’s operational
status (Figure 4). Upon project completion, the collected monitoring
data were made available to research institutions, providing a
multidimensional ~ platform  for academic analysis and
methodological validation.

This study focuses on Area 2 as the primary research area,

emphasizing the analysis of monitoring data collected by long-gauge
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Pipeline layout and monitoring areas: (a) Five key areas; (b) Schematic diagram of sensor deployment in area.

fiber Bragg grating (FBG) sensors within this area. A dual-end data
acquisition mode is employed, which enhances system stability and
improves fault tolerance in the event of single-point sensor failure.
Figure 4B illustrates the layout of the long-gauge FBG sensors in Area
2. All sensors were installed in strict accordance with national technical
standards and industry regulations (DB32/T 2880-2016, 2016; TSG
D7005-2018, 2018). Data acquisition was performed using the MOI
Sm125-500 demodulator, ensuring high precision and reliability. The
construction cost of the monitoring system approached one million
yuan. The system was completed and put into operation on November
1, 2023, with data collection commencing on the same day.

5 Database construction and
preprocessing

5.1 Database construction

Section 3 briefly introduces the basic overview of the pipeline
monitoring project. Based on the project’s open-source data, this study
conducted relevant analyses. Fiber-optic monitoring data exhibit high
sensitivity to environmental factors. Under normal weather conditions,
the data primarily correlate with variations in temperature and pipeline
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deformation. However, under rainy conditions, the changes in fiber-
optic monitoring data become more complex, influenced by multiple
factors such as rainfall, temperature, pipeline deformation, and
groundwater levels. As an initial exploration into pipeline monitoring
data recovery, this study focuses on analyzing the feasibility of recovering
fiber-optic monitoring data under normal weather conditions.
Specifically, the data were collected on January 15, 2024, with sensors
sampling at 1 Hz. A total of 86,400 data sets were obtained that day, each
containing monitoring information from 14 sensors. Subsequently, a
database was constructed based on this data set. Two methods were
considered for database construction: (1) Strain-based method: This
method derives strain data by removing the temperature component
from wavelength shifts. However, it requires additional temperature
sensors, which may introduce measurement errors and reduce the
spatiotemporal consistency of the dataset. (2) Wavelength difference
method: This method calculates the difference between the wavelength
measured on the collection day and the reference wavelength recorded
on November 1, 2023. Because wavelength shifts inherently reflect both
strain and temperature effects, directly using wavelength differences
better preserves the spatiotemporal characteristics of the sensor data and
improves the reliability of data recovery. Given these advantages, this
study adopts the wavelength difference method for database
construction. The constructed database is shown in Figure 5.
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On this basis, it is necessary to further examine the causes and
potential types of missing data to enable the construction of an
incomplete dataset. Unlike conventional electrical sensors, the FBG
sensors used in this study include multiple measurement points along
a single optical fiber. This configuration results in distinctive data loss
mechanisms. The main causes are as follows: (1) construction activities
near the pipeline may render multiple sensors within localized regions
unavailable. (2) Optical fibers are typically spliced, and splice points
are prone to breakage, leading to partial data loss. (3) Individual FBG
sensors may fail due to damage or aging. In this case, the optical path
remains intact, but valid measurements cannot be obtained (Wu et al.,
2020). (4) Signal attenuation occurs during long-distance optical
transmission. Without proper amplification, excessive attenuation
prevents correct data interpretation at the receiving end, resulting in
data loss (Torres et al., 2011). Collectively, these factors contribute to
the occurrence of missing data in pipeline monitoring.

FBG monitoring systems typically perform signal demodulation
via single-end wiring. However, a break in the optical fiber may prevent
downstream sensors from functioning. To mitigate this risk, a dual-end
redundant wiring strategy was implemented in this study (Figure 4).
This strategy ensures that a fault in one sensor does not compromise
the monitoring of others, thereby minimizing the overall system
impact. Based on this sensor architecture and relevant literature (Jiang
etal., 2022; Tien et al., 2024), missing sensor data are classified into two
types: single-sensor loss and multiple-sensor loss. To investigate these
scenarios, several incomplete datasets were constructed to simulate
different conditions: (1) Single-sensor loss with proportions of 1/24,
8/24, 16/24, 20/24, and 22/24; and (2) Multiple-sensor loss involving
2/14,4/14, 8/14, and 14/14 sensors. Figure 6 illustrates the incomplete
datasets, while Table 1 summarizes key information. This completes
the construction of the incomplete database.

10.3389/frai.2025.1684018

5.2 Database preprocessing

Section 5.1 presents the construction of various types of incomplete
datasets based on engineering data. Before inputting these multi-
condition incomplete datasets into the PDO-BiGRU-GAN network,
data normalization is a critical preprocessing step (Liu et al., 2025b; Sun
et al., 2025d). Normalization eliminates dimensional inconsistencies
among features, ensuring that variables vary within comparable
numerical ranges (Lv et al., 2023; Sun et al., 2023b). This reduces the
risk of gradient shift and enhances model stability during training.
Moreover, mapping raw data to a unified scale improves training
efficiency, accelerates convergence, and mitigates the likelihood of the
model becoming trapped in local minima (Li et al., 2025b). The specific
normalization formula is provided in Equation 17 (Xie et al., 2025a).

Qi - Qmin

= 17
Qmax - Qmin ( )

i

Where Q; and G; are the original and normalized values of
measured data, respectively. Q. and Q.;, are the maximum and
minimum values of measured data, respectively.

6 Analysis of data recovery results
based on the PDO-BiGRU-GAN
network

Using incomplete datasets and the PDO-BiGRU-GAN network,
this study investigates data recovery performance under various
missing data scenarios. The experiments were conducted on the
TensorFlow platform with hardware comprising 256 GB of memory,
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TABLE 1 Statistics of the incomplete dataset.

Statistical information ‘ Corresponding results

Sampling frequency 1HZ
Total number of sensors 144>
1/24
8/24
Different missing
16/24
data ratios
20/24
Types of missing 22/24
data 2 (BL3, UL3)

4 (BL3, UL3, BL4, UL4)
Different numbers of
8 (BL2, UL2, BL3, UL3, BL4, UL4,

BL5, UL5)

missing sensors

14

an NVIDIA TITAN X (Pascal) GPU, and two Intel Xeon(R) E5-2696
v4 processors, ensuring efficient handling of large-scale computations.
Specifically, Section 6.1 analyzes the model's hyperparameter
sensitivity to demonstrate the necessity of integrating the PDO
module. Section 6.2 employs ablation experiments to evaluate the
contribution of each module to overall performance. Section 6.3
examines recovery performance across different missing data ratios
(1/24, 8/24, 16/24, 20/24, and 22/24). Section 6.4 further assesses
recovery under multiple sensor missing scenarios (2/14, 4/14, 8/14,
and 14/14). Section 6.5 examines the model’s computational time.
Additionally, to comprehensively evaluate the proposed model’s
effectiveness, it is compared against eight existing deep
learning methods.

6.1 Hyperparameter sensitivity analysis

This study employs the PDO module to optimize four key
hyperparameters: learning rate, batch size, units per layer, and number
of layers. The rationale for focusing on these hyperparameters is
explained as follows. The learning rate controls the speed of parameter
updates. An excessively high learning rate can cause oscillation or
divergence, while a rate that is too low may result in slow convergence
or entrapment in local optima (Dohare et al., 2024). Batch size directly
affects both generalization and computational efficiency. Smaller
batches increase the stochasticity of gradient estimates, thereby
enhancing generalization, whereas larger batches enable faster
computation and more stable convergence (Offiong et al., 2023). The
number of neurons per layer determines the representational capacity
of each layer. Too few neurons can lead to underfitting, while too
many may cause overfitting and substantially increase computational
cost. Network depth, indicated by the number of layers, reflects the
model’s capacity for feature extraction. Shallow networks may fail to
capture long-term dependencies, while excessively deep networks can
suffer from vanishing gradients, overfitting, and training instability
(Offiong et al., 2023). Given these considerations, the PDO module
focuses on optimizing these four hyperparameters to enhance model
performance while controlling computational costs. In contrast,
secondary hyperparameters, such as dropout rate or regularization
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coeficients, exert only indirect effects. Including them would
significantly expand the search space, potentially increasing
computational costs and reducing optimization efficiency (Bian and
Priyadarshi, 2024). Therefore, this study excludes them from the
optimization process.

PDO module in
hyperparameter optimization, this study conducts a hyperparameter

To evaluate the effectiveness of the

sensitivity analysis. This approach assesses the model’s performance
variations across different hyperparameter configurations, thereby
demonstrating the necessity of integrating the PDO module. Table 2
presents the configurations of learning rate, batch size, units per layer,
and number of layers automatically selected by the PDO module
across various recovery tasks. These results indicate that the PDO
module can select appropriate hyperparameter combinations based
on task characteristics. Specifically, when the missing ratio is relatively
low (e.g., 1/24), the model tends to adopt a higher learning rate (0.02),
a smaller batch size (32), a shallow two-layer structure, and an
asymmetric distribution of units (98). This “low-capacity—shallow”
configuration reduces complexity and mitigates overfitting while
preserving temporal features. In contrast, under a higher missing ratio
(e.g., 20/24), the model prefers a lower learning rate (0.0011), a larger
batch size (128), a larger number of units (196), and a deeper three-
layer stacked structure. Such a configuration enhances the generative
adversarial network’s ability to model sparse data and enables it to
capture long-term dependencies through increased depth. Further
analysis involves varying each hyperparameter sequentially to assess
the tuning effect of the PDO module, as shown in Figure 7. It is
evident that the hyperparameter configurations selected by the PDO
module yield the lowest MSE, thereby achieving optimal tuning and
enhanced model performance. Overall, the hyperparameter sensitivity
analysis demonstrates that the PDO module exhibits strong
adaptability to varying task complexities by dynamically adjusting
hyperparameter settings, thereby enhancing the accuracy of
data recovery.

6.2 Ablation study analysis

Ablation experiments selectively remove specific components of
a model to evaluate their impact on overall performance. This
approach effectively confirms the necessity and contribution of each
module in the model architecture. Based on this methodology, the
present study analyzed three models—GAN, BiGRU-GAN, and
PDO-BiGRU-GAN—via selective module removal (Table 3). Initially,
loss curves were plotted for the three models under a missing data
ratio of 1/24 (Figure 8). The basic GAN model exhibited a rapid
decrease in loss; however, its loss curves displayed pronounced
fluctuations, indicating instability in missing data recovery tasks.
Incorporating the BiGRU module (BiGRU-GAN) produced smoother
loss curves, demonstrating that the integration of temporal
information enhances model stability and generalization. Further
addition of the PDO module in PDO-BiGRU-GAN achieved more
favorable convergence characteristics. Loss decreased rapidly and
stabilized at a low level, indicating that PDO-based hyperparameter
optimization significantly improves training efficiency and overall
model performance. The contributions of each component were
further assessed under varying data missing ratios of 1/24, 8/24, and
16/24 (Table 3). The results indicate that removing either the PDO
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Hyperparameter sensitivity analysis: (a) Missing data ratio 1/24; (b) 2 Missing sensors.

TABLE 2 Hyperparameter optimization results.

Hyperparameters Missing data ratio Multiple-sensor data loss
4 16/24 20/24 2 Missing 4 Missing 8 Missing 14
sensors sensors sensors Missing
sensors
Learning rate 0.002 0.0018 0.0016 0.0013 0.0011 0.0022 0.0018 0.0018 0.0012
Batch size 32 64 64 64 128 32 64 64 128
Units per layer 98 122 148 175 196 106 130 164 208
Number of layers 2 3 3 3 3 2 2 3 3
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TABLE 3 Ablation study results.

10.3389/frai.2025.1684018

Module Proportion Performance metrics
GAN KOA MSE*100 MAE*10 RMSE*10
1/24 0.10232 0.33849 0.45093 0.5818 0.9588
GAN
v 8/24 0.11543 0.7928 0.86601 0.89039 0.9421
(baseline)
16/24 0.19215 1.25729 1.01144 1.12129 0.94
1/24 0.07082 0.19048 0.23163 0.43643 0.985
BiGRU-GAN v v 8/24 0.08376 0.18989 0.44451 0.43577 0.98
16/24 0.10064 0.33225 051753 0.57641 0.9778
1/24 0.05898 0.11278 0.20892 0.33582 0.9902
PDO-
v v v 8/24 0.06095 0.11613 0.37233 034078 0.98994
BiGRU-GAN
16/24 0.08249 0.22174 0.40428 0.4709 0.9872

module or the BiGRU structure degrades the model’s predictive
capability. Specifically, when the missing data ratio ranges from 1/24
to 16/24, excluding the PDO module leads to increases in mean
absolute error (MAE) by 9.80-21.88%, root mean square error
(RMSE) by 18.30-23.05%, mean absolute percentage error (MAPE)
by 16.72-27.23%, and MSE by 33.26-40.79%, while coefficient of
determination (R*) decreases by 0.53-1.00%. Further removal of the
BiGRU structure causes more pronounced performance deterioration:
MAE increases by 53.67-60.03%, RMSE by 42.28-61.73%, MAPE by
42.35-57.07%, MSE by 66.68-85.35%, and R* declines by 3.27-5.08%.
These findings indicate that the GAN module provides fundamental
generative capability, the BiGRU structure captures temporal
dependencies to improve reconstruction accuracy, and the PDO
module optimizes key hyperparameters to enhance training efficiency
and generalization (Ezugwu et al., 2022). The synergistic effect of these
three components enables PDO-BiGRU-GAN to achieve optimal
performance in data imputation tasks, confirming the necessity and
contribution of each module in the model architecture.

6.3 Data recovery results of the
PDO-BiGRU-GAN model under different
missing data ratios

The pipeline project employed a total of 14 sensors. This section
focuses on analyzing three sensors: BL1, BL4, and BL7. The recovery
performance of these sensors was evaluated using the
PDO-BiGRU-GAN model under varying missing data ratios of 1/24,
8/24, 16/24, 20/24, and 22/24. Figure 9 illustrates five performance
metrics of data recovery based on the PDO-BiGRU-GAN model.
Notably, all data were normalized to eliminate the influence of
differing measurement units (Liu et al., 2025¢; Sun et al., 2025¢).
Overall, the PDO-BiGRU-GAN model demonstrated strong
recovery capabilities across all missing data ratios, with the R?
consistently above 0.95. Further analysis revealed that as the missing
data ratio increased, error metrics (MSE, RMSE, MAPE, and MAE)
showed an increasing trend, while R* values gradually decreased.
Particularly, a sharp decline in model performance occurred when
the missing ratio increased from 20/24 to 22/24. This performance
drop is attributed to the significant reduction of available historical
data, which impairs the model’s ability to capture the intrinsic
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temporal patterns of the time series, thus weakening the imputation
effect. Under conditions of extreme data sparsity, the model
struggles to accurately restore complex features, resulting in
substantially higher error metrics and notably lower R* values.
Therefore, when employing the PDO-BiGRU-GAN model for data
recovery, the missing data ratio within incomplete data windows
should be maintained below 20/24
recovery performance.

to ensure optimal

This section presents a detailed comparison between the proposed
PDO-BiGRU-GAN model and eight representative data recovery
models, aiming to demonstrate its superior performance. These
models span from basic generative frameworks to advanced
architectures, providing a comprehensive overview of mainstream
techniques in time-series recovery tasks. The selected models include
the traditional GAN, GRU-GAN, LSTM-GAN, CNN-GRU-GAN,
CNN-LSTM-GAN, Bi-GRU-GAN, Bi-LSTM-GAN, and STOA-Bi-
LSTM-GAN. These models span from basic generative frameworks to
advanced architectures, providing a comprehensive overview of
commonly used techniques in time-series recovery tasks. Specifically,
the traditional GAN serves as a baseline generative model. GRU-GAN
and LSTM-GAN emphasize unidirectional temporal dependencies,
making them suitable for capturing long-term trends. Bi-GRU-GAN
and Bi-LSTM-GAN capture both past and future dependencies
through bidirectional sequence modeling, thereby improving recovery
accuracy for rare events or edge cases. CNN-GRU-GAN and
CNN-LSTM-GAN extract local temporal features via convolutional
layers and combine them with recurrent structures to model
multivariate dependencies, thereby enhancing recovery of complex
patterns. The STOA-Bi-LSTM-GAN represents the state-of-the-art
approach, integrating bidirectional recurrent modeling with optimized
training strategies to achieve greater adaptability and stability. To
ensure a fair comparison between PDO-BiGRU-GAN and the eight
baseline models, all models were trained under identical data
preprocessing and normalization conditions (Sun et al., 2024f; Xie
et al,, 2025b), and with the same computational resources. Notably,
PDO-BiGRU-GAN employs the PDO algorithm for automated
optimization, whereas STOA-Bi-LSTM-GAN uses the STOA
algorithm. The hyperparameters of the remaining seven baseline
models were not taken directly from literature values, as optimal
settings can vary across different data recovery tasks. Instead, a grid
search was conducted to tune these models, ensuring they achieved
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their best possible performance for the current task and maintaining
the objectivity of the comparison.

For clarity, this study selected the recovery results of sensor BL4
under three missing data ratios: 1/24, 8/24, and 16/24. Figure 10
presents radar charts of the performance metrics for all models
under these conditions. The results indicate that PDO-BiGRU-GAN
consistently achieves the lowest error metrics (MSE, RMSE, MAPE,
MAE) and the highest R* across all three scenarios, demonstrating
its superior data recovery capability. In contrast, the remaining
eight models exhibit varying degrees of performance degradation
across the five evaluated metrics. For example, at a missing ratio of
1/24, the PDO-BiGRU-GAN model attained an R? of 0.9902, MSE
of 0.001128, RMSE of 0.03358, MAPE of 0.05898, and MAE of
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0.02089. Compared to other models, PDO-BiGRU-GAN improved
R? by 0.197-3.28%, reduced MSE by 21.77-66.68%, RMSE by
11.55-42.28%, MAPE by 5.25-42.36%, and MAE by 2.93-53.67%.
To verify the statistical significance of these performance
differences, Wilcoxon signed-rank tests were conducted on R?
MAE, RMSE, MSE, and MAPE [see Taheri and Hesamian (2013)
and Woolson (2007) for calculation details]. The results indicate
that PDO-BiGRU-GAN significantly outperforms all eight baseline
models across all metrics (p <0.05), confirming that its
performance improvements are statistically robust and not due to
random variation. Overall, the PDO-BiGRU-GAN model exhibits
optimal recovery performance various

across missing

data conditions.
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6.4 Data recovery results of the
PDO-BiGRU-GAN model under different
numbers of missing sensors

To assess the model’s robustness in the face of multi-sensor data
loss, this section investigates the recovery capabilities of the
PDO-BiGRU-GAN model under varying degrees of sensor
unavailability. Four missing data scenarios were designed: missing 2
sensors (BL3, UL3), missing 4 sensors (BL3, UL3, BL4, UL4), missing
8 sensors (BL2, UL2, BL3, UL3, BL4, UL4, BL5, UL5), and missing 14
sensors. In all scenarios, data from UL3 and BL3 were reconstructed.
To simplify the analysis, only the recovery results of sensors UL3 and
BL3 were evaluated. Figure 11 presents the performance metrics of the
PDO-BiGRU-GAN model for recovering UL3 and BL3 under
different levels of sensor loss. All performance metrics were computed
using normalized values to ensure comparability and mitigate the
impact of differences in data magnitude. Overall, the results indicate
that the PDO-BiGRU-GAN model consistently demonstrates strong
recovery performance across all scenarios. The R* values remain
generally above 0.93, suggesting that the model effectively captures
spatiotemporal features and reconstructs missing data by leveraging
latent dynamic correlations among sensors. However, as the number
of missing sensors increases, the R* value gradually decreases.
Meanwhile, error metrics (MSE, RMSE, MAPE, MAE) increase
accordingly, indicating a decline in model performance. This
degradation can be attributed to two primary factors: the diminishing
volume of available reference data and the growing complexity of
underlying data patterns, both of which increase the difficulty of
accurately estimating missing values. Despite the observed
degradation as the number of missing sensors increases, the
PDO-BiGRU-GAN model still exhibits remarkable recovery
performance when dealing with multi-sensor data loss. Its advanced
capacity for learning temporal-spatial dependencies and modeling
nonlinear relationships makes it particularly suitable for recovering
critical sensor information under complex operating conditions.
These advantages highlight the model’s significant potential for
application in intelligent monitoring systems and structural health
diagnostics, offering both wide applicability and notable
engineering value.

Furthermore, this section provides a comprehensive evaluation of
the PDO-BiGRU-GAN model’s recovery performance compared to
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eight other models under multi-sensor data loss conditions. For
brevity, sensor UL3 is chosen as the representative for multi-model
comparison. Figure 12 presents the performance metrics of
PDO-BiGRU-GAN and the eight compared models. The results
demonstrate that PDO-BiGRU-GAN consistently achieves the best
performance across all evaluation metrics, exhibiting the lowest error
levels and the highest R? values. For example, with eight sensors
missing, PDO-BiGRU-GAN attains an R? of 0.9522, MSE of 0.001588,
RMSE of 0.03985, MAPE of 0.7209, and MAE of 0.02960. Compared
to other models, its R* improves by 0.197 to 3.28%; MSE decreases by
21.77 to 66.68%; RMSE reduces by 11.55 to 42.28%; MAPE declines
by 5.25 to 42.36%; and MAE lowers by 2.93 to 53.67%. Consistent with
Section 6.3, Wilcoxon signed-rank tests were conducted on the five
performance metrics across different numbers of missing sensors. The
results show that PDO-BiGRU-GAN outperforms all eight
comparison models, with p-values below 0.05 for all metrics,
indicating that the performance differences are statistically significant.
Overall, the comparison among the nine models indicates that
PDO-BiGRU-GAN maintains superior recovery accuracy for UL3
data across different sensor loss scenarios. Furthermore, the model
shows similar stable advantages in recovering data from other sensors;
however, these results are not detailed here due to space constraints.
In summary, PDO-BiGRU-GAN demonstrates excellent imputation
capability under multi-sensor data loss conditions and represents a
promising approach for this problem.

6.5 Computational efficiency analysis

The PDO-BiGRU-GAN model has a relatively complex
architecture and many parameters, resulting in higher computational
costs during training and inference. To evaluate its feasibility and
deployment potential in practical applications, a systematic assessment
of its computation time is necessary. This section compares the
computation time of PDO-BiGRU-GAN with eight existing methods
under identical task conditions, as shown in Figure 13. Compared
with simpler models (standard GAN, GRU-GAN, and LSTM-GAN),
PDO-BiGRU-GAN’s computation time increases by approximately
8.77 to 15.11%. Despite this increase, the additional cost is acceptable
given the significant improvement in recovery accuracy. Further
comparisons show that, relative to more complex architectures
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(CNN-GRU-GAN, CNN-LSTM-GAN, Bi-LSTM-GAN, and
BiGRU-GAN), PDO-BiGRU-GAN’s computation time increases only
by 1.25 to 7.32%, indicating that slight computational overhead yields
substantial performance gains. Additionally, relative to the most
complex STOA-Bi-LSTM-GAN model, PDO-BiGRU-GAN reduces
computation time by approximately 3.17 to 7.27%. Overall,
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PDO-BiGRU-GAN incurs only a slight increase in computational cost
compared to simpler models, while outperforming the most complex
ones in efficiency. This advantage results from two main factors. First,
the PDO algorithm employs a more efficient hyperparameter search
strategy, significantly reducing ineffective computations during
training (Biswas et al., 2024; Izci et al., 2024). Second, the model
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Computation time comparison of nine models across different data recovery tasks: (a) Varying missing data ratios; (b) Multiple missing sensors.

architecture preserves essential feature extraction capabilities while
avoiding redundant layer stacking, effectively controlling resource
consumption and ensuring improved recovery efficiency. In summary;,
PDO-BiGRU-GAN achieves substantial improvements in recovery
accuracy while maintaining controlled computation time, making it a
promising model for pipeline monitoring data recovery tasks.

6.6 Summary of comparative analysis
between PDO-BiGRU-GAN and eight
existing models

Sections 6.3-6.5 systematically compare the performance of
PDO-BiGRU-GAN with eight existing models—GAN, GRU-GAN,
LSTM-GAN, CNN-GRU-GAN, CNN-LSTM-GAN, BiGRU-GAN,
BiLSTM-GAN, and STOA-BiLSTM-GAN—on data reconstruction
tasks. This section further summarizes the advantages and limitations
of each model and the trade-offs between accuracy and computational
cost, as shown in Table 4. In the pipeline monitoring project examined
in this study, PDO-BiGRU-GAN emerged as the optimal model based
on a trade-off between accuracy and computational efliciency. For
future research, investigators can select an appropriate model based
on the characteristics in Table 4 and the specific requirements of their
projects for data reconstruction.

7 Discussion

This study tackles the prevalent issue of missing data in pipeline
monitoring by proposing a novel PDO-BiGRU-GAN framework. The
framework integrates three key components: the PDO module for
hyperparameter optimization, the BiGRU module for temporal
feature extraction, and the GAN module for data generation and
distribution approximation. To validate the method, a pipeline
monitoring dataset was established using field data collected from
actual pipeline projects. The study first analyzes the model’s sensitivity
to hyperparameters, demonstrating the necessity of the PDO module
in the optimization process. Ablation experiments were then
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conducted to assess the independent contribution of each module.
Furthermore, the proposed model is compared with eight mainstream
deep learning models in terms of prediction accuracy and
computational efficiency. Overall, the PDO-BiGRU-GAN framework
effectively reconstructs missing information in pipeline monitoring
from a data-driven perspective, thereby providing more complete and
reliable support for pipeline performance evaluation.

Although the proposed PDO-BiGRU-GAN model demonstrates
high accuracy in recovering missing data in pipeline monitoring, it
has several key limitations. These limitations can be categorized into
three areas: the model itself, engineering applicability, and the
intelligence of the pipeline monitoring system. Regarding the
limitations of the model itself, the PDO-BiGRU-GAN model can
generate samples that closely match the statistical characteristics of
real data. However, it may struggle to capture rare fault patterns or
extreme anomalies, such as those occurring under heavy rain, snow,
or pipeline malfunctions. This limitation could potentially pose risks
in pipeline monitoring. Future research could focus on modeling such
exceptional operating conditions to enhance the model’s learning
capability and robustness. Due to the focus and length constraints of
the current study, the model’s performance across datasets of varying
scales was not examined. Broader investigations into diverse data loss
scenarios are required to address this gap. The approach also heavily
depends on training data. When historical data are biased or
incomplete, the model may produce misleading patterns,
compromising the reliability of decisions. To mitigate this, future
studies could incorporate physical model constraints, expert
knowledge, or multi-source data into the PDO-BiGRU-GAN
framework. This would reduce reliance on single historical datasets
and improve both anomaly detection and overall predictive
performance. Additionally, due to space limitations, this study only
explored the combination of GAN and BiGRU modules and validated
its effectiveness. Future research could explore the integration of
GANSs with other recurrent architectures, such as Transformer-based
models or temporal convolutional networks, to assess data recovery
performance across different frameworks. Finally, the
PDO-BiGRU-GAN model is inherently a black-box model, lacking
transparency and interpretability in its generation process. In practical
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TABLE 4 Comparative analysis of the proposed PDO-BiGRU-GAN model
and eight existing models.

Technical Limitations  Accuracy—
advantage computational
cost trade-off
No temporal
Basic generative
dependency
modeling for Low accuracy, Very
GAN modeling, limited
missing data Low computational cost
sequence feature
recovery
capture
Unidirectional
Limited ability for
GRU captures Moderate accuracy,
GRU-GAN long-term
short-term Low computational cost
dependencies
temporal patterns
Unidirectional
Moderate-high
LSTM- LSTM captures Limited local
accuracy, Moderate-
GAN long-term feature extraction
Low computational cost
dependencies
Convolution
Complex
extracts local High accuracy,
CNN- architecture,
features + GRU Moderate-High
GRU-GAN higher training
handles temporal computational cost
cost
dependencies
Convolution +
CNN- LSTM captures Large number of
High accuracy, High
LSTM- both local and parameters, long
computational cost
GAN long-term training time
dependencies
Bidirectional
High accuracy,
Bi-GRU- GRU captures Weak in local
Moderate-High
GAN past and future feature extraction
computational cost
dependencies
Bidirectional
Complex
LSTM captures
Bi-LSTM- architecture, High accuracy, High
short- and long-
GAN relatively long computational cost
term
training time
dependencies
STOAB Bidirectional - Very hish
-Bi- erparameter ery high accuracy,
LSTM + STOA yper v ¥
LSTM- search overhead, Very High
hyperparameter
GAN long training time | computational cost
optimization
Very high accuracy,
Bidirectional Computational
PDO- High computational
LSTM + STOA cost during
BiGRU- b b cost; similar or better
erparameter erparameter
GAN yper vper precision than STOA
optimization optimization
with lower overhead

applications, false positives or false negatives could complicate
responsibility assignment and regulatory compliance. Future work
could incorporate interpretability-enhancing techniques, coupled
with uncertainty quantification and human-in-the-loop verification,
to ensure the safety and reliability of data recovery.

Regarding engineering applicability, several limitations should
be noted. First, the model has only been validated on the pipeline
project in Tangshan, Hebei. Its generalizability across different
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pipelines or regions remains unassessed. Future studies could
investigate the model’s transferability and adaptability across
various pipeline types, geographic regions, and operating
conditions. Second, the model requires significant computational
resources during training, limiting direct deployment on low-power
devices. In this study, it required approximately 2 GB of GPU
memory and 4.9 GFLOPs. Future work could explore model
lightweighting, parameter compression, and efficient inference
strategies to enable deployment on low-power or edge devices.
Third, the model can function as a data recovery module within
pipeline monitoring systems and can be seamlessly integrated with
existing optical fiber or other sensor data acquisition systems. While
training in this study was conducted on a high-performance
workstation, practical deployment can leverage a single GPU or
high-performance CPU depending on data scale and real-time
requirements, meeting computational demands for data recovery.
From a software perspective, the model was developed on the
TensorFlow platform and can interface with existing industrial
pipeline monitoring systems, supporting deployment and extension
across mainstream deep learning frameworks. Finally, this study
applied the model solely to optical fiber sensor data recovery. Future
research could extend the model to other sensor types, such as
pressure, flow, and temperature, to systematically evaluate its
applicability, stability, and cross-sensor generalization. This would
further validate the model’s versatility across multi-source
heterogeneous monitoring data.

In the context of intelligent pipeline monitoring, blockchain
technology can be leveraged to enhance system reliability and
automation. It ensures the integrity and traceability of both raw sensor
data and Al-reconstructed data. Moreover, smart contracts can
automatically trigger alerts or initiate maintenance actions based on
recovered signals. For example, when a recovered signal indicates a
potential risk, a smart contract can immediately activate warning
mechanisms or execute pre-defined maintenance tasks, thereby
reducing manual intervention and improving response efficiency.
Furthermore, blockchain-based decentralized learning frameworks
can improve privacy and robustness in multi-site deployments (Ressi
et al, 2024b). Overall, the integration of blockchain, artificial
intelligence, and other advanced technologies holds significant
promise for advancing intelligent pipeline monitoring and providing
a more robust technical foundation for the long-term safety
of pipelines.

8 Conclusion

This study developed a novel PDO-BiGRU-GAN network to
efficiently recover missing pipeline data. The model’s performance was
evaluated using real engineering monitoring data under various types
of data loss. The main findings are summarized as follows:

(1) This study developed a novel PDO-BiGRU-GAN network,
which integrates the hyperparameter optimization capability of
the PDO module, the temporal feature extraction strength of
the BIGRU module, and the data generation and imputation
functionality of the GAN module. The proposed network was
subsequently applied to recover missing data in pipeline
monitoring systems.
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(2) Using an open-access pipeline project, a pipeline monitoring
dataset was obtained. This dataset was employed to evaluate the
proposed PDO-BiGRU-GAN network. Hyperparameter
sensitivity analysis and ablation experiments were conducted
to assess the model. The sensitivity analysis demonstrated that
the PDO module substantially improved model performance
by guiding optimal hyperparameter selection. Ablation
experiments further showed that removing either the PDO or
BiGRU module led to significant performance degradation,
underscoring their essential roles in enhancing data
recovery accuracy.

(3) The study evaluated the data recovery capability of the

PDO-BiGRU-GAN model under various missing-data

scenarios. Results demonstrated that the model accurately

reconstructed missing values by effectively leveraging

underlying spatiotemporal dependencies, achieving an R?

greater than 0.93. Furthermore, to maintain optimal recovery

performance, the missing data ratio within any given window

should not exceed approximately 20/24.

The study compared the proposed PDO-BiGRU-GAN model

with eight existing models in terms of accuracy and

computational  efficiency.  Results  indicated  that

PDO-BiGRU-GAN achieved the lowest values across all error

metrics (MSE, RMSE, MAPE, MAE) and the highest R?,

demonstrating a clear advantage in accuracy. Moreover, the

(4)

model’s computation time increased only marginally. Overall,
PDO-BiGRU-GAN substantially improved data recovery
accuracy  while efficient

maintaining computational

performance, highlighting its promise for pipeline

monitoring applications.
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Appendix 1: Pseudocode of the PDO model.

Initialization

search_space = {learning_rate, batch_size, units, layers}

pdo = PrairieDogOptimizationAlgorithm(search_space)

best_params = pdo.optimize(

fitness = function(params):

generator = BiIGRU_Generator(units = params.units, layers = params.layers)
discriminator = BiGRU_Discriminator(units = params.units, layers = params.layers)
gan = GAN (generator, discriminator, Ir = params.learning_rate)
gan.train(batch_size = params.batch_size, epochs = small_number)
return gan.validation_loss()

generator = BiIGRU_Generator(units = best_params.units, layers = best_params.layers)

discriminator = BiGRU_Discriminator(units = best_params.units, layers = best_params.layers)

final_gan = GAN(generator, discriminator, Ir = best_params.learning_rate)

final_gan.train(batch_size = best_params.batch_size, epochs = full_training)

recovered_data = final_gan.generate(missing_data)

End
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