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Multi-modal multi-task (M3T) foundation models (FMs) have recently shown
transformative potential in artificial intelligence, with emerging applications
in education. However, their deployment in real-world educational settings
is hindered by privacy regulations, data silos, and limited domain-specific
data availability. We introduce M3T Federated Foundation Models (FedFMs)
for education: a paradigm that integrates federated learning (FL) with M3T
FMs to enable collaborative, privacy-preserving training across decentralized
institutions while accommodating diverse modalities and tasks. Subsequently,
this perspective paper aims to unveil M3T FedFMs as a promising yet
underexplored approach to the education community, explore its potentials, and
reveal its related future research directions. We outline how M3T FedFMs can
advance three critical pillars of next-generation intelligent education systems: (i)
privacy preservation, by keeping sensitive multi-modal student and institutional
data local; (ii) personalization, through modular architectures enabling tailored
models for students, instructors, and institutions; and (iii) equity and inclusivity,
by facilitating participation from underrepresented and resource-constrained
entities. We finally identify various open research challenges, including studying
of (i) inter-institution heterogeneous privacy regulations, (ii) the non-uniformity
of data modalities’ characteristics, (iii) the unlearning approaches for M3T
FedFMs, (iv) the continual learning frameworks for M3T FedFMs, and (v) M3T
FedFM model interpretability, which must be collectively addressed for practical
deployment.

KEYWORDS

AI-assisted education, foundation models, multi-modal learning, multi-task learning,
federated learning

1 Introduction

The modern era has witnessed a surge in the use of artificial intelligence
(AI) and machine learning (ML) to support a range of education-related tasks.
These include predicting student learning outcomes and success (Ofori et al., 2020),
analyzing peer-to-peer collaboration patterns in online/in-person classrooms (Hridi
et al., 2025), monitoring students with behavioral or neurodevelopmental needs (Barua
et al., 2022), designing curricula for diverse educational settings (Ball et al., 2019),
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improving the students’ mental health (Ebrahimi et al., 2025),
and enabling personalized learning experiences in self-regulated
learning environments (Ingkavara et al., 2022). With the expansion
of AI/ML applications in education, two parallel trends have
emerged. On one hand, leveraging multiple data modalities (e.g.,
text, audio, video, image) collected in educational environments to
train multi-modal ML models, capable of outperforming their uni-
modal counterparts, has become a vibrant area of research (Xie
et al., 2025; Griol et al., 2014). On the other hand, the use
of these diverse modalities to train multi-task ML models that
serve a variety of downstream educational tasks has also attracted
growing attention (An et al., 2022; Geden et al., 2020). For
example, video input in a humanoid robot can simultaneously
support gesture tracking, object identification, and enhance speech
understanding. As a result, the convergence of these trends has
positioned multi-modal multi-task (M3T) learning at the forefront
of AI/ML applications in education (Küchemann et al., 2025; Xu
et al., 2024).

In parallel, the broader AI/ML community has undergone
a significant transformation with the rise of M3T ML models.
Initially popularized as foundation models (FMs) in the form
of large language models (LLMs)—such as GPT-3 (Brown et al.,
2020), BERT (Devlin et al., 2019), LLaMA (Touvron et al., 2023),
and PaLM (Chowdhery et al., 2023), which focused primarily on
text-based tasks—they have now evolved into M3T FMs, such as
ChatGPT-4 (Achiam et al., 2023), Gemini (Team et al., 2023),
Llama-3 (Grattafiori et al., 2024), and CLIP (Radford et al.,
2021). These emerging M3T FMs are capable of simultaneously
processing multiple input modalities and capturing contextual
relationships across multiple modalities and tasks. They have
demonstrated remarkable generalization abilities, which is a result
of (pre-)training on massive data. Despite their promise, M3T FMs
remain largely underexplored in the education domain mostly due
to their recent emergence. In particular, there exists a growing
body of literature on the use-cases of AI/ML in the education
domain that focuses on training/fine-tuning centralized LLMs for
various pedagogical means, while M3T FMs remain to be rather
unexplored. For example, the researchers in Moon et al. (2024) used
LLMs to process multi-modal data for knowledge extraction and
tracing which enhances the instructors’ capabilities for automated
assessment. Also, the authors of Hoq et al. (2025) proposed using
LLMs to assist instructors in designing programming problems
for students, leveraging both the novel ideas generated by the
(human) instructor and the LLMs’ ability to formulate an idea
into a well-described problem. Further, the proposed method in
Valverde-Rebaza et al. (2024) experimented with participants of
non-computational fields on tackling a data analytics task and
showed improved performance in the group of participants that
employed an LLM to learn how to proceed with their task.
Moreover, the work Rao et al. (2025) integrated an LLM in
providing assistance to the students in abstraction, algorithmic
thinking, and generalization when being taught about a new
concept. They then evaluated the performance of the LLM-
assisted framework with concepts from mathematics, biology, and
networking to show how LLMs perform in teaching scientific
problem-solving to middle school STEM students. Additionally,

the researchers in Whitehead et al. (2025) experimented with multi-
modal LLMs in analyzing instructors’ non-verbal signals, such as
posture, for determining collaborative learning effectiveness. Other
existing works on LLMs in the education domain have focused on
a variety of tasks, such as automated feedback generation and essay
grading (Jia et al., 2024), question answering (Mitra et al., 2024),
and intelligent tutoring systems (Molina et al., 2024). Following
the aforementioned growing body of literature, the influence of
FMs and LLMs is now being extended beyond traditional classroom
contexts: they are being integrated into remote learning platforms,
used to provide real-time feedback, and applied to educational
research by offering analytical insights derived from classroom
data (Küchemann et al., 2025).

Although the use of M3T FMs in education has been
proposed only in a few recent studies (Küchemann et al., 2025;
Xu et al., 2024), a critical and largely unresolved question
remains: Where does the data come from to train or fine-tune
these data-hungry models in educational settings? Specifically,
educational tasks require domain-specific data, which is typically
siloed across multiple infrastructure layers, ranging from school-
level and departmental servers to college and university data
repositories. A major obstacle in utilizing this data lies in
stringent data-sharing restrictions, including privacy regulations
on both institutional and regional levels (e.g., FERPA) (Zeide and
Nissenbaum, 2018), ethical considerations, and student consent
requirements (Prinsloo and Slade, 2018), all of which prohibit the
transfer of sensitive educational data to external servers for model
training. As a result, the conventional centralized training/fine-
tuning of M3T FMs becomes infeasible for deploying them in
many real-world educational environments. Even if centralized
access to the above siloed data were possible (e.g., a statewide
institution that uses its own data and aims to train a unified
model for all students), the issue of data scarcity persists:
high-quality, task-relevant educational data is often limited and
fragmented across the isolated data sources (e.g., institutions
across the nation). This challenge is further compounded by
equity concerns, where models trained primarily on data from
a single institution or demographically skewed population risk
amplifying bias and marginalizing underrepresented or under-
resourced learners. Without addressing these fundamental barriers,
the deployment of M3T FMs in education, despite their theoretical
promise, remains largely aspirational. In this paper, we propose
a path forward by leveraging federated learning (FL) (McMahan
et al., 2017), a pioneering distributed learning paradigm that
enables collaborative model training without sharing raw data, for
the training/fine-tuning of M3T FMs. Specifically, we give our
perspective on M3T Federated Foundation Models (FedFMs) for
education, a novel direction that opens up an untapped research
space at the intersection of M3T FMs, FL, and privacy-preserving
human-centered AI/ML.

The remainder of the paper is organized as follows. We
begin by reviewing the relevant literature on M3T FMs and FL
within educational contexts. We then explore the potential of
M3T FedFMs to advance education through three key dimensions:
(1) privacy preservation, (2) personalization, and (3) equity
enhancement. Finally, we discuss the key challenges associated with
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implementing M3T FedFMs in education and outline promising
future research directions.

2 Overview on FL, M3T FMs, and M3T
FedFMs

2.1 Federated learning (FL)

FL is a pioneering distributed ML paradigm that enables
collaborative model training across multiple clients/participants
(e.g., students, educators, institutions). FL operates through a
series of global aggregation rounds, each comprising four key
steps: (1) each client trains a local model on its own data (e.g.,
via stochastic gradient descent approach), (2) the locally trained
models/gradients of clients are periodically sent to the server
through uplink transmissions, (3) the server aggregates (e.g.,
via weighted averaging) the received trained models to create
an updated global model, (4) the server broadcasts the updated
global model to the clients, synchronizing their local models and
initiating the next round of local model training. FL is widely
regarded as a privacy-preserving distributed ML approach, as it
replaces the transmission of sensitive raw data with model/gradient
parameters. Note that although prior work has shown that
even such transmitted parameters are still prone to adversarial
attacks, such as reconstruction attacks that aim to regenerate
training data (Chen C. et al., 2022) or model inversion attacks
that extract client private information (Li et al., 2022) from the
transmitted parameters, several countermeasures exist, including:
(1) Differential Privacy (DP) (El Ouadrhiri and Abdelhadi, 2022),
which injects calibrated noise into transmitted parameters to
obfuscate the underlying client data used to train the model,
and (2) Functional Encryption (Fang and Qian, 2021; Chang
et al., 2023), where model parameters are encrypted in a way
that allows only specific FL-related computations (e.g., model
aggregation) to be performed without exposing the underlying
client data.

By facilitating collaboration across a diverse network of
institutions, FL helps overcome two key challenges typically faced
when employing ML in education domains: (1) data scarcity, by
enabling isolated and limited datasets to contribute collectively
to a shared global model, and (2) equity and inclusion, by
incorporating data from underrepresented or marginalized groups,
distributed across different institutions, into the global model.
Given these promising capabilities, FL has recently gained attention
in the AI-assisted education literature (Fachola et al., 2023;
Guo et al., 2020; Hridi et al., 2024; Chu et al., 2022, 2024).
For example, in Fachola et al. (2023), FL is applied to the
learning-analytics task of student dropout prediction, showing
privacy-preserving training can attain performance comparable
to centralized models while avoiding raw data centralization.
Also, the authors in Guo et al. (2020) proposed FEEDAN, an
FL framework that enables multi-institution pedagogical data
analysis. Further, the researchers in Hridi et al. (2024) articulated
how FL can benefit students, classrooms, and institutions while
detailing technical, logistical, and ethical challenges for sustainable
FL adoption in educational settings. Moreover, the work Chu
et al. (2022) introduced an attention-based, subgroup-personalized

FL approach with self-supervised behavioral pretraining that
mitigates model biases and improves prediction accuracy across
various student demographic groups in real-world online course
datasets. As a follow-up, the work Chu et al. (2024) extended
subgroup personalization with a multi-layer FL strategy (by
course and demographics) for knowledge tracing and outcome
prediction, yielding higher average performance and lower model
variance (i.e., improved fairness) across student subgroups.
Despite the tremendous contributions of the above-described
body of works, the majority of these studies focus on the
adoption of FL for training of conventional ML models
(e.g., convolutional neural networks) and have yet to explore
the FL-driven training/fine-tuning of M3T FMs within the
education domain.

2.2 Multi-modal multi-task foundation
models (M3T FMs)

M3T FMs are typically pre-trained on massive, heterogeneous
datasets using self-supervised or unsupervised learning techniques,
enabling them to acquire broad contextual understanding that
can be effectively adapted to a wide range of domain-specific
applications (e.g., enabling the operation of humanoid robots in
domestic environments and extended reality systems) (Borazjani
et al., 2025b; Nadimi et al., 2025). Fundamentally, M3T FMs
extend the capabilities of conventional LLMs by incorporating
multiple input modalities (e.g., text, audio, image, and video) and
supporting a more diverse set of tasks (e.g., video understanding,
conditional image generation, and image classification) alongside
traditional text-based applications like question answering and text
generation. Their potential in the education domain has recently
been recognized (Küchemann et al., 2025), with emerging use cases
such as intelligent tutoring, automated feedback generation, and
curriculum design. While the seminal work in Küchemann et al.
(2025) provides an in-depth analysis of the educational impact of
M3T FMs, it does not address the specific training mechanisms
behind these models and implicitly assumes their centralized
training/fine-tuning. We therefore refer the reader to that work
for broader context and position this paper as a complementary
contribution, with the main focus on introducing the education
community to the novelties of distributed, privacy-preserving, FL-
driven training/fine-tuning of M3T FMs under the umbrella of
M3T FedFMs.

To facilitate a clear understanding of their internal
mechanisms, we next present a high-level overview of the
general architecture of M3T FMs. Depicted in Figure 1, M3T
FMs architecturally consist of three main components: (1)
modality encoders, (2) backbone, and (3) task heads. They also can
accommodate two additional components in their architecture,
more commonly used in the scenarios entailing fine-tuning a
pre-trained model to new contexts or tasks: prompt tuner, and
adapter. For a more detailed description of these components
refer to the caption/legend of Figure 1. M3T FMs support a
wide range of training regimes, offering flexibility to either train
from scratch or fine-tune on downstream tasks after large-scale
pretraining.
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FIGURE 1

High-level architecture of an M3T FM, consisting of three major components. (1) Modality encoders: These modules transform raw input data from
various modalities into intermediate embeddings. Fusion of modality-specific embeddings can be achieved via simple concatenation or more
sophisticated mechanisms such as neural fusion blocks or attention-based integration. It can also be non-existent in some cases (e.g., CLIP). (2)
Backbone: The backbone performs contextual reasoning, inter-modality correlation, and task generalization. It can be instantiated using various
architectures, including Mixture-of-Experts (MoEs) (Chen and Zhang, 2024), dual encoders (as in CLIP; Radford et al., 2021), or stacked transformers
(as in GPT models; Achiam et al., 2023). (3) Task heads: These are task-specific output layers that generate the results (e.g., classification labels,
generated text) based on the representations produced by the backbone. M3T FMs also support lightweight fine-tuning strategies, where most of the
model parameters are frozen and only a small subset is adapted. Three instances of these strategies are as follows. (1) Prompt tuners (Guo et al.,
2024; Jia et al., 2022): Modules that condition input embeddings to align with task-specific contexts. (2) Adapters (Long et al., 2024; Zhang and Ré,
2022): Trainable parameter blocks inserted at different depths of the model to enable rapid adaptation to new tasks or modalities. (3) Low-rank
adaptations (LoRA) (Yang et al., 2024; Wen and Chaudhuri, 2023): Efficient fine-tuning methods that decompose and optimize a low-rank subset of
parameters or adapter weights, significantly reducing training cost while preserving performance.

2.3 Multi-modal multi-task federated
foundation models (M3T FedFMs)

M3T FedFMs can be understood as the FL-driven training of
M3T FMs across a distributed set of clients. Similar to conventional
FL, M3T FedFMs operate through a series of global aggregation
rounds, each comprising the standard aforementioned four steps:
(1) local training, (2) uplink transmission of local models/gradients,
(3) server-side model aggregation, and (4) broadcast of the updated
global model back to clients. However, a key distinction between
M3T FedFMs and traditional FL training of conventional ML
models lies in the nature of local adaptation and aggregation. In
M3T FedFMs, local training typically involves lightweight fine-
tuning techniques, where only a subset of the model components,
such as modality encoders, task heads, adapters, or prompt tuners,
are updated. These components can then be selectively aggregated
to produce a unified, fine-tuned global model that better generalizes
across diverse client data distributions. This modular1 training and
aggregation approach (Chen and Zhang, 2024) enables clients to
obtain local M3T FMs suitable for their own tasks or modalities.

While M3T FedFMs hold great promise for enabling high-
performance, locally adapted M3T FMs across distributed
clients (Chen and Zhang, 2024; Chen et al., 2024), their
implementation introduces a range of challenges. These

1 Here, “modularity” refers to the capability of training various local M3T

FM modules (e.g., encoders, task heads, adapters) independently across the

clients.

include inherited issues from conventional FL [data
heterogeneity (Borazjani et al., 2025a, 2024), intermittent
client connectivity (Parasnis et al., 2023), and limited client-side
computational resources (Chai et al., 2019)], as well as challenges
specific to M3T FMs (e.g., selecting which components or
parameters to fine-tune and aggregate). Moreover, the integration
of M3T FMs with FL introduces a set of unique challenges at their
intersection (as will be explained later in the context of “Challenges
and Open Directions”), challenges that are not fully addressed by
existing work in either field alone and are unique to M3T FedFMs.
It is worth mentioning that M3T FedFMs represent a highly
emerging topic within the AI/ML community, with only a handful
of early studies exploring their theoretical foundations (Chen et al.,
2024; Chen and Zhang, 2024) and envisioning their applicability
across domains such as healthcare (Li et al., 2025), embodied
AI (Borazjani et al., 2025b), extended reality (Nadimi et al., 2025),
and wireless edge/fog networks (Abdisarabshali et al., 2025). One
promising domain still poised for breakthroughs enabled by M3T
FedFMs is education, which we explore in the remainder of this
paper to illuminate its unique applications and challenges.

2.4 Tailoring M3T FedFMs to education
ecosystem

Here, we describe the system model envisioned for realizing a
network of M3T FedFMs, as illustrated in Figure 2a. The system
model follows the conventional “star topology” (Wu et al., 2024) in
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FL setting which includes a global server interacting with a set of
clients,2 each described as follows:

1. Global server, which hosts a comprehensive M3T FedFM
consisting of globally aggregated versions of each available
component, including modality encoders, task-specific heads,
backbone structures, and context-specific prompt tuners.
This global server selectively broadcasts necessary model
components to the clients.

2. Clients, comprising of three groups: institutions, instructors
and students. The clients receive relevant subsets of the model
components according to the modalities and tasks involved
in the operations at each group from the global server. For
instance, an instructor involved in a course might receive
modality encoders and task heads corresponding to video, text,
and image data for curriculum design, feedback generation, and
content visualization. Also, a student in the same course may be
provided with components that support video, audio, and text
modalities necessary for classroom transcription, conceptual
visualization, and supplementary research tasks. These clients
subsequently transmit their locally trained/fine-tuned model
parameters directly back to the global server for aggregation.

Note that, as depicted in Figure 2, additional modifications,
such as introducing or removing connections between the
individual client groups and changing the style of model
aggregations, can be explored (e.g., to enhance model performance,
convergence speed, and resource efficiency).

3 Unique applications of M3T FedFMs
for education

Prior works (Ebrahimi et al., 2025; Küchemann et al., 2025;
Hridi et al., 2024; Chu et al., 2022, 2024) have highlighted
the broad benefits of adopting FL over conventional centralized
ML approaches within the education domain. However, these
discussions have largely focused on the application of FL
to traditional ML models, such as multi-layer perceptrons
and convolutional neural networks, without examining the
unique potential of FL when applied to M3T FMs under the
emerging M3T FedFM paradigm. In this section, we revisit three
critical dimensions commonly emphasized in the aforementioned
literature (i.e., privacy, personalization, and equity) and reframe
them through the lens of M3T FedFMs. To solidify this discussion,
we provide forward-looking examples that illustrate how the
unique properties of M3T FedFMs can further advance these
objectives in practical educational settings.

3.1 Dimension 1: privacy-enhanced M3T
intelligence

M3T FedFMs naturally address longstanding data privacy
concerns in educational ML applications by transmitting only

2 Star topology refers to the usage of client-to-server links for model

aggregation and broadcast.

model or gradient parameters between clients and the server,
rather than raw sensitive data. By mitigating data privacy risks,
M3T FedFMs enable greater participation from privacy-conscious
individuals and institutions whose strict policies on raw-data
sharing would have prevented them from contributing to the
model training upon relying on the centralized training/fine-tuning
of M3T FMs. This enhanced participation contributes to the
development of models that generalize across varied educational
settings. Below are three examples illustrating how M3T FedFMs
can enable privacy-aware intelligence across M3T educational
applications:

• Student activity traces: Future education systems may
integrate smartphone-based learning companions and
augmented reality (AR) headsets that passively collect
contextual data such as study hours, geolocation patterns
(e.g., time spent in libraries or study zones), ambient noise,
or device interactions (Antonioli et al., 2014; Bower et al.,
2014; Kleftodimos et al., 2023). These data sources span
various modalities such as time-series logs, location metadata,
ambient audio, and app usage sequences. Such data is often
privacy-sensitive in nature as it can reveal private user
information, and thus cannot be shared or transferred across
the network and must remain local to its data collecting
unit/device. M3T FedFMs can process such collected data
across the smartphones and AR devices to support education-
related downstream tasks such as predicting study burnout,
recommending optimal study windows, or modeling learning
motivation, all without exposing raw activity data to external
servers.

• Mental health assistance: With the rise of Internet-of-Things
(IoT) wearable biosensors, such as electroencephalogram
(EEG) headbands and smartwatches equipped with heart
rate variability (HRV) sensors, digital learning assistants can
unobtrusively collect physiological, behavioral, and emotional
cues to assess student well-being (Xu and Zhong, 2018;
Kim et al., 2024; Aranberri-Ruiz et al., 2022). When
combined with other privacy-sensitive modalities such as
speech samples, writing patterns, and facial micro-expressions
captured during classroom interactions or reflective exercises,
this geo-distributed multi-modal data becomes a valuable
resource for mental health analytics. Specifically, leveraging
the collaborative training of M3T FedFMs over this data,
digital learning assistants can be equipped with models for
downstream tasks such as stress detection, mood tracking,
and early intervention for depression or anxiety, all without
exposing raw student data or violating privacy norms.

• Student learning outcome prediction: Future classrooms
are expected to increasingly incorporate ambient sensors and
camera-equipped devices, such as AI-driven smartboards
and virtual reality (VR) learning environments, to assess
student engagement in real-time (Lin et al., 2024; Grewe
and Gie, 2023). In this technological realm, features such as
gaze tracking, posture analysis, voice tone, and note-taking
behavior, derived from privacy-sensitive modalities (e.g.,
audio and video), offer deep insights into cognitive and
behavioral states. However, due to their sensitive nature,
such data cannot be shared across institutions/classrooms.
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FIGURE 2

Various configurations can be adopted for M3T FedFM-enabled networks across clients in the education contexts, three of which are depicted: (a)
Star Topology FL: A global server maintains a comprehensive global model encompassing all task and modality variations present across the system.
All clients (i.e., institutions, instructors, and students) are directly connected to the global server. Client receive customized subsets of the global
model tailored to their specific tasks and input modalities. Following local training/fine-tuning, clients updated models are transmitted back to the
global server for aggregation. (b) Hierarchical FL: The global server distributes task- and modality-relevant subsets of the global model to each

(Continued)
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FIGURE 2 (Continued)

institution. These subsets contain only the components required by the institution’s associated instructors and students. Each institution then relays
the necessary parts of the model to its end users based on their individual task and modality needs. After local training/fine-tuning, local models of
end users are sent back to the institutions for aggregation. These institution-level models can then be further aggregated at the global server,
combining insights across multiple institutions. (c) Decentralized FL: Without a global server, model aggregation is performed in a decentralized
manner across clients (e.g., through consensus-based methods). Clients exchange model updates directly with their neighbors, aggregate the
exchanged models on their devices, and proceed with the next round of model training/fine-tuning.

Here, M3T FedFMs provide a viable solution by enabling
distributed, privacy-preserving model training across
institutions/classrooms. This allows for the development
of generalizable models capable of predicting attention
span, learning progress, and knowledge retention without
compromising student privacy.

3.2 Dimension 2: personalization of M3T
intelligence

Personalization is a foundational pillar of effective education,
reflecting the need to tailor the learning experience to the unique
characteristics, preferences, and needs of various educational
entities, including students, instructors, and institutions. M3T
FedFMs, with their inherently modular and flexible architectures,
are uniquely positioned to support model personalization.
Specifically, the notion of personalization within M3T FedFMs
can be understood from two complementary perspectives: (1) Soft
Personalization (local fine-tuning): At the core of this perspective
lies the ability to perform local fine-tuning, allowing clients to
personalize prediction or generation tasks based on their own
data distributions and contextual nuances, such as behavioral
patterns, cultural or linguistic backgrounds, and interaction styles.
M3T FedFMs leverage attention-based mechanisms and adaptable
modules (e.g., prompt tuners and adapters) to personalize
outputs dynamically, without the need for retraining the entire
global model. (2) Hard Personalization (Architectural/Component
Adaptation): In this approach, personalization is embedded in the
model architecture itself. Specifically, each client (e.g., institution,
instructor, or student) is served a version of the M3T FedFM
that contains only the components relevant to their available data
modalities and educational tasks, such as specific modality encoders
(e.g., for audio or video) and task heads (e.g., for problem solving,
code generation, or essay evaluation). This selective architectural
deployment ensures efficiency and relevance while maintaining
interoperability with the broader intelligent education ecosystem.
In the following, we describe three examples of personalization
across client groups (students, instructors, institutions):

• Student personalization: Students require personalized
learning in various contexts, including concept explanation
and problem-solving support. For example, some learners may
benefit from visual explanations (e.g., video demonstrations
or interactive visualizations), whereas others require textual
or verbal guidance (e.g., spoken explanations, interactive
Q&A sessions). M3T FedFMs can leverage multi-modal
inputs such as handwritten notes (image modality), spoken
questions (audio), and clickstream behaviors (event logs), to

address these varied needs by locally fine-tuning models (e.g.,
via adapters) for personalized concept explanations, adaptive
problem-solving assistance, and real-time feedback.

• Instructor personalization: Personalization for instructors
often revolves around customized assessment generation
and curricular support, which can differ based on the
taught subject matter (e.g., essays, presentations, coding
tasks, or visual projects). M3T FedFMs facilitate instructor
personalization by employing specialized task heads
and adapters that efficiently generate these customized
assessments, minimizing preparation time and enhancing
instructional quality. For instance, a language arts teacher
may require automated feedback systems that assess creativity
and narrative flow, whereas a computer science instructor
might rely on auto-generated problem sets with dynamic test
cases.

• Institution personalization: Institutions vary in curricular
standards, target outcomes, and infrastructural capabilities. A
vocational training center focused on mechanical skills may
use video-based object manipulation tasks, while a liberal arts
college may emphasize text analysis. M3T FedFMs support
this diversity by allowing each institution to personalize the
model’s architecture, activating only relevant modalities (e.g.,
image and video for one, text and speech for another), and
updating specific components (e.g., adapters or task heads) to
reflect their educational mission.

3.3 Dimension 3: equitable and inclusive
M3T intelligence

While personalization focuses on tailoring educational models
to the individual preferences, behaviors, or needs of specific users
(e.g., students, instructors, or institutions), equity and inclusivity
emphasize system-wide fairness and representation across diverse
social, cultural, linguistic, and infrastructural contexts. More
specifically, personalization ensures that each user receives an
optimized experience; equity and inclusivity ensure that every type
of user (regardless of region, resources, identity, or participation
patterns) is fairly represented in the training and utility of AI
models. In this context, M3T FedFMs offer a practical pathway
toward fostering a more equitable and inclusive educational
ecosystem by accommodating variations in both curricular content
and hardware/computation infrastructure across diverse learners
and institutions. Specifically, unlike centralized models that
often reflect dominant languages, curricula, or well-resourced
environments/institutions, M3T FedFMs empower geographically
distributed institutions to collaboratively train M3T FMs using
locally relevant data while maintaining data sovereignty. Below, we
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present three examples that highlight how equity and inclusivity are
advanced through M3T FedFMs in education:

• Cultural and linguistic representation: In distributed
educational systems, curriculum content, language,
and cultural references may vary significantly across
regions. Centralized models often fail to capture this
diversity, especially for languages belonging to low-resource
communities or locally relevant subjects. M3T FedFMs enable
institutions to train/fine-tune local models using culturally
specific data, such as textbooks in indigenous languages or
region-specific historical texts. As a result, the global model
becomes more representative of diverse educational needs
and fosters inclusivity in its learned knowledge.

• Infrastructure/hardware-aware participation: Educational
entities participating in M3T FedFM training or fine-tuning
often differ widely in their computational resources. While
some (e.g., universities or research centers) may possess high-
performance servers capable of full-scale model training,
others (e.g., individual students or small schools) may rely
on resource-constrained devices such as smartphones or
tablets. To accommodate such disparities in computation
capabilities, M3T FedFMs support modular engagement,
allowing resource-constrained education entities to contribute
via lightweight computations (e.g., training only task heads
or prompts) or to perform inference using relevant pre-
trained components. This flexibility ensures that both high-
end and low-resource education entities can benefit from and
contribute to the collective learning process.

• Gender bias and fairness mitigation: Centralized training
of M3T FMs often risks amplifying existing gender biases,
particularly when the underlying data disproportionately
represents one gender over others. Such imbalance can lead to
models that perform better for overrepresented groups while
exhibiting reduced accuracy, relevance, or responsiveness for
underrepresented genders, ultimately reinforcing inequality in
educational outcomes. M3T FedFMs offer a more equitable
alternative compared to centralized M3T FM training/fine-
tuning by enabling distributed, gender-diverse participation in
model training. Institutions and users across different regions
and demographics can contribute model/gradient parameters
reflecting balanced or marginalized gender identities without
compromising privacy.

3.4 Toward the implementation of M3T
FedFMs in educational environments

Although M3T FedFMs have yet to be explored within
the education domain, they are already gaining significant
attention across other fields. Notably, the implementation strategies
developed in other domains can serve as a basis for adapting M3T
FedFMs to educational contexts. In particular, publicly available
implementations from recent works (Borazjani et al., 2025b; Chen
et al., 2024; Abdisarabshali et al., 2025; Fang et al., 2025) offer
practical starting points for such adaptations. However, to evaluate
the performance of these models in education-specific scenarios,

access to publicly available datasets curated within educational
settings is essential. In this regard, while existing works such
as Xu et al. (2025) and Huang et al. (2025) have employed
centralized training of LLMs and M3T FMs, their datasets can
be repurposed for federated training by employing standard
FL data partitioning techniques, such as those demonstrated in
the aforementioned M3T FedFM implementations. Furthermore,
given that M3T FedFMs are inherently capable of training
across pooled datasets, a broader datalake can be constructed
by integrating various education-relevant datasets. For example,
datasets from Mathew et al. (2022) and Hiippala et al. (2021)
on visual question answering, Lu et al. (2023) and Wang et al.
(2024) on visual mathematical reasoning, and Sabuncuoglu and
Sezgin (2023) on multimodal classroom analytics, although not
originally designed for M3T FedFMs, can be collectively leveraged
to support the development and evaluation of M3T FedFMs in
realistic educational environments.

Despite the above-described implementation pathways,
advancing M3T FedFM research in education will benefit from
the development of a unified corpus that offers multi-modal,
multi-task data spanning diverse user roles, i.e., students and
teachers. Such a curated dataset should be designed to support
federated evaluation by incorporating site-, school-, or device-level
partitions, along with consented and de-identified metadata, to
enable the study of non-IID (non-independent and identically
distributed) data distributions and realistic client (e.g., student
or institution) participation dynamics commonly encountered in
educational settings. Moreover, realizing the practical deployment
of M3T FedFMs in education entails addressing a range of
domain-specific challenges, which we detail in Section 4.

4 Challenges and open directions of
federated foundation models (FedFMs)
in education

Despite their potential, M3T FedFMs face unique deployment
challenges in education. Below, we formulate overarching research
questions aimed at addressing them.

4.1 Inter-institution heterogeneous privacy
regulations and their impact on data
availability

As educational institutions across the globe adopt AI-driven
systems, the deployment of M3T FedFMs in practice will
become increasingly constrained by diverse and evolving privacy
regulations. Specifically, legal frameworks such as the General
Data Protection Regulation (GDPR) in the European Union and
the Family Educational Rights and Privacy Act (FERPA) in the
United States impose different requirements on how sensitive
educational data, such as video, voice recordings, and physiological
signals, can be used or shared across the education systems.
These jurisdictional differences introduce a significant barrier to
uniform collaboration in model training across institutions. In FL,
where raw data remains local and only model/gradient parameters
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are shared, the variability in legal constraints manifests as DP
budgets or encryption standards applied to local updates. For
example, an institution in a stricter jurisdiction may be obligated
to inject stronger DP noise into model updates derived from
video or speech data, reducing their informativeness relative to
updates from regions with less strict regulations in parameter
sharing. As a result, the aggregation process in M3T FedFMs
becomes non-trivial: updates now vary not only in content and
modality but also in privacy-induced distortion levels. This privacy
heterogeneity is especially problematic in educational contexts,
where certain tasks (e.g., affect recognition or engagement tracking)
heavily rely on privacy-sensitive modalities. In particular, a naïve
aggregation of differentially distorted model updates from clients
can inadvertently amplify the influence of under-regulated clients
while marginalizing updates from more privacy-conscious clients,
leading to skewed global model behavior.

So far, the study of regulation-aware model aggregation in
multi-modal FL has been limited to Liu X. et al. (2024), which
introduces a multi-modal gradient inversion attack and defense
framework for conventional multi-modal ML models (e.g., multi-
encoder neural networks) that exploits cross-modal correlations
to reconstruct multi-modal inputs. This leaves regulation-driven
privacy mechanisms in M3T FedFMs an unexplored area, raising
an urgent research question: How can trust-aware aggregation
mechanisms be designed in M3T FedFMs to fairly and effectively
integrate updates subject to heterogeneous privacy regulations, while
preserving convergence, modality balance, and cross-jurisdictional
equity in global model behavior?

4.2 Modality-specific characteristics and
transmission overhead

While the above-discussed jurisdictional differences constrain
data handling policies across institutions, an orthogonal and
equally critical dimension arises from the inherent privacy
sensitivity and computational demands associated with different
input modalities themselves. Specifically, in educational settings,
the multi-modal nature of M3T FedFMs introduces distinct
privacy risks across different input streams. While modalities
such as text logs or quiz responses are generally considered
lower-risk, others such as eye gaze, facial expressions, EEG
signals, or audio recordings carry higher privacy sensitivity due
to their biometric nature and potential to reveal deeply personal
information. As ambient sensing technologies become more
prevalent in classrooms, ensuring appropriate protection for these
high-risk modalities is essential. Compounding this challenge is
the asymmetric contribution of modalities to different downstream
educational tasks supported by M3T FedFMs. For example, facial
expressions and vocal tone might be pivotal for engagement
estimation, whereas textual responses are more relevant for concept
mastery or personalized feedback. This variation makes uniform
privacy-preserving strategies infeasible. Instead, techniques such as
DP must be selectively applied based on each modality’s sensitivity
and its utility for specific learning objectives.

Given that privacy calibration across modalities remains
underexplored in M3T FedFMs, this raises a key open research

question: How can privacy-preserving techniques in M3T FedFMs be
dynamically adapted across modalities to balance privacy risks and
task-specific utility, especially when different modalities contribute
asymmetrically to various tasks?

4.3 User-initiated data removal and the
need for federated unlearning

A critical challenge in privacy-aware educational systems is
enabling users and institutions to revoke their data contributions
after participation, an increasingly important right under
regulations such as GDPR and FERPA. In the context of M3T
FedFMs, this necessitates the development of effective federated
unlearning mechanisms: methods that can selectively remove
the influence of a client’s data from the global model without
requiring model retraining from scratch. Unlike traditional
centralized models, M3T FedFMs present unique obstacles
for unlearning due to their modular structure, multi-modal
data inputs, and decentralized training process. Specifically,
client contributions are distributed across various components,
such as modality encoders, adapters, and task heads, making
their influence deeply entangled within the global model
parameters. This makes it difficult to (1) accurately isolate and
remove a client’s impact, and (2) maintain the global model’s
utility, adaptation capability, and fairness for the remaining
participants.

Federated unlearning has begun to receive attention in classical
FL settings (Halimi et al., 2022; Liu Z. et al., 2024). Particularly,
Halimi et al. (2022) proposed a client-level federated unlearning
method that performs local unlearning at the departing client and
then runs a few additional FL rounds with the remaining clients,
removing the necessity for the server to have access to historical
updates. Yet, federated unlearning remains entirely unexplored
in the context of M3T FedFMs. This gap raises a crucial and
timely research question: How can we design scalable, component-
aware unlearning techniques for M3T FedFMs that ensure efficient,
verifiable removal of user-contributed knowledge, while preserving
model performance, fairness, and adaptability across heterogeneous
and privacy-sensitive educational environments?

4.4 Continual learning

Educational systems are inherently dynamic: new subjects
are introduced, pedagogical approaches evolve, institutional
priorities shift, and the nature of data modalities continually
changes. In such an environment, static M3T FedFMs can quickly
become misaligned with emerging learning objectives or newly
introduced input modalities, limiting their adaptability and long-
term relevance. This issue is amplified in federated/distributed
settings, where decentralized and asynchronous model updates
from various clients can complicate continual model adaptation.
A central challenge arising from this distributed evolution
is federated catastrophic forgetting: as local model updates
from clients are integrated sequentially or asynchronously,
newly learned patterns (often specific to a subset of clients)
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can inadvertently overwrite previously acquired knowledge
encoded in the global model. This forgetting effect is especially
detrimental in education contexts, where preserving knowledge
pertaining to personalized pedagogical methods (e.g., a student’s
learning history or an institution’s domain-specific curriculum)
is critical for long-term model effectiveness. Specifically,
without robust mechanisms to manage incremental learning
and protect previously acquired knowledge, M3T FedFMs
risk deteriorating in performance over time, especially for
clients whose data distributions are no longer active but
remain pedagogically important. This compromises the global
model’s reliability and generalization, reducing its value over
time.

Continual learning remains an emerging topic in the FM
literature (Ostapenko et al., 2022; Yi et al., 2023; Yang et al.,
2025). For instance, in Ostapenko et al. (2022), the authors have
benchmarked the use of pre-trained vision encoders as feature
extractors for continual learning, showing that latent-space replay
can achieve strong performance at low compute costs while
highlighting how encoder characteristics and pre-training data
influence knowledge forgetting and transfer. Also, the researchers
in Yi et al. (2023) have explored vision-language models as medical
FMs and demonstrated that rehearsal-based continual learning
substantially improves cross-domain and cross-task generalization.
Despite these efforts, continual learning remains to be highly
unexplored in the context of M3T FedFMs, which raises a
pressing research question: How can continual learning strategies
for M3T FedFMs be designed to balance asynchronous client updates
with prior knowledge retention, effectively mitigating federated
catastrophic forgetting while supporting evolving educational tasks
and modalities?

4.5 Model interpretability

In educational settings, transparency and trust are paramount.
Specifically, AI models that influence high-stakes decisions, such
as grading, personalized feedback, skill assessment, or behavioral
monitoring, must be explainable/interpretable to a wide range of
stakeholders, including students, instructors, administrators, and
parents. When the reasoning behind model outputs is unclear
or opaque, it can undermine confidence, hinder adoption, and
raise critical ethical concerns. Interpretability becomes especially
challenging in the context of M3T FedFMs, which introduce a
compounded layer of complexity. First, their multi-modal nature
involves inputs such as text, audio, video, and physiological signals,
each varying in semantics, structure, and abstraction. Second,
their modular architecture, comprising independently functioning
components, such as prompt tuners, adapters, and task heads,
makes it difficult to attribute predictions to specific modules or
modalities. Third, the federated training paradigm adds further
opacity: models are updated across decentralized clients with non-
IID data distributions, meaning that the global model’s behavior
emerges from a combination of locally trained, heterogeneous data
sources. As a result, interpretability tools applied to the global
model may fail to capture client-specific nuances or may produce
misleading explanations when generalized across participants.

Together, compared to traditional centralized ML models, these
challenges make it substantially harder to trace how specific
input modalities or data features influence a given prediction,
to identify hidden biases, or to justify model decisions for each
separate client.

Model interpretability is a rather nascent area in FMs (Chen J.
et al., 2022; Rajendran et al., 2024; Fu et al., 2024), with the notable
work (Chen J. et al., 2022) introducing RNA-FM, which is a large-
scale self-supervised FM that learns interpretable sequential and
evolutionary features for improvement in function prediction tasks.
Nevertheless, interpretability remains almost unexplored in M3T
FedFMs, which raises a foundational open research question: How
can we design inherently interpretable M3T FedFMs that not only
provide accurate outputs but also generate actionable, role-sensitive
explanations aligned with the pedagogical and ethical demands of
education systems?

5 Conclusion

In this perspective paper, we examined the emerging
convergence of federated learning and foundation models
within the education domain, framing the concept of multi-
modal, multi-task federated foundation models (M3T FedFMs)
as a transformative step toward next-generation intelligent
educational systems. We outlined the architectural structure of
M3T FedFMs and discussed how their modular and distributed
design offers a framework to address core needs in education,
specifically: preserving privacy in learning processes, enabling
model personalization, and promoting equity and inclusivity.
We also identified a set of open challenges and articulated key
research questions designed to guide future inquiry in this
nascent area.
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