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This paper introduces Deep Q-Managed, a novel multi-objective reinforcement
leaning (MORL) algorithm designed to discover all policies within the Pareto
Front. This approach enhances multi-objective optimization by integrating deep
leaning techniques, including Double and Dueling Networks, to effectively
mitigate the curve of dimensionality and overestimation bias. Deep Q-Managed
demonstrates high proficiency in attaining non-dominated multi-objective
policies across deterministic episodic environments, adapting to convex,
concave, or mixed Pareto Front complexities. Experiments on traditional MORL
benchmarks (Deep Sea Treasure, Bountiful Sea Treasure, and Modified Bountiful
Sea Treasure) show it consistently achieves maximum hypervolume values (e.g.,
1,155 for DST, 3,352 for BST, and 2,632 for MBST) and locates all Pareto Front
points. While robust and versatile for practical applications in robotics, finance,
and healthcare, this study’s validation is currently confined to deterministic
episodic settings, with stochastic environments reserved for future work.
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1 Introduction

Reinforcement learning (RL) is a pivotal branch within the realm of machine learning,
wherein an intelligent agent embarks on a quest to discern and execute optimal behaviors
within an unfamiliar setting. This learning paradigm requires the agent to gradually
discover the most advantageous actions to take within the myriad states presented by the
environment. In the realm of RL, the agent adheres to a fundamental principle of learning
through trial and error, meticulously investigating the consequences of various actions
when confronted with specific environmental states. This process involves the analysis of
scalar feedback signals, which are intricately linked to each action’s consequences (Sutton
and Barto, 2018). These feedback signals constitute the fundamental pillar of RL, guiding
the agent’s journey as it relentlessly strives to discern the optimal course of action for each
potential scenario, adeptly refining its decision-making skills.

Nevertheless, a significant number of real-world challenges exceed the scope of
a simple single feedback signal. Decision-making problems are often complex and
require simultaneous optimization of multiple criteria or objectives, which are frequently
conflicting. Prominent examples of such intricate challenges include multi-objective
scheduling problems in workshops, which necessitate balancing conflicting criteria like
production time, energy consumption, and product quality (Zhang et al., 2024). These
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objectives may share similarities or differences, but most of
the time, they are caught up in a web of conflict, a scenario
where boosting one objective’s performance always results in
a decrease in another’s, and vice versa. Furthermore, there
may exist multiple optimal solutions with varying priorities
between objectives (Deb, 2008). This intricate interplay of
objectives exemplifies the multifaceted nature of numerous real-
world problems, necessitating nuanced resolutions that balance
competing interests and priorities.

To address these
Multi-Objective Reinforcement Learning (MORL) has emerged,

complex decision-making scenarios,
extending the RL paradigm to optimize a vector of objectives
rather than a single reward signal. Various approaches have
surfaced in the literature, all sharing the common goal of crafting
specialized techniques for MORL. These techniques can broadly
be categorized into two main groups. One group deals with the
conversion of a Multi-objective Optimization (MOO) problem
into a Single-objective Optimization (SOO) problem through a
scalarizing function (Miettinen and Mikeld, 2002). This approach
typically yields a singular solution per run, making the algorithms
that use it known as single-policy algorithms. Representative
algorithms in this category include W-Learning (Humphrys,
1996), Modular Q-Learning (Karlsson, 1997), Scalarized MORL
(Van Moffaert et al., 2013), W-Steering, and Q-Steering (Vamplew
etal., 2015).

Another approach involves the search for multiple policies,
which can be performed simultaneously or iteratively, one policy
per run. The algorithms belonging to this category are referred to
as multi-policy algorithms. When it comes to MOO and the pursuit
of multiple policies, the most widely recognized and successful
algorithms have historically been based on evolutionary algorithms,
such as PESA (Corne et al., 2000), NSGA-II (Deb et al., 2002),
and SPEA2 (Zitzler et al., 2001). Recent research has significantly
advanced the integration of machine learning, particularly RL, with
Multi-Objective Evolutionary Algorithms (MOEAs) to enhance
their performance in complex optimization tasks, such as large-
scale scheduling problems (Zhang et al., 2024). This integration
is not only aimed at overcoming their respective limitations but
also at creating a more comprehensive and powerful optimization
framework, often saving computation time and potentially having
lower overall sample-complexity by exploiting the fact that multiple
policies need to be produced (Hayes et al., 2022).

Despite these advancements, many existing MORL approaches
face significant limitations. A pervasive challenge is their
inability to determine every conceivable optimal compromise
solution, leaving portions of the objective space unexplored and
underutilized. Furthermore, a significant subset of these MORL
approaches suffers from limited generalizability, restricting their
utility to particular application domains and curtailing their
broader applicability.

Another critical hurdle is the curse of dimensionality, a
challenge often faced by modern Q-Learning algorithms (Bellman,
1966). The number of states an agent must explore and evaluate
increases exponentially as the dimensionality of the state space
grows. Practically, as target problems grow more intricate, the
state space can expand exponentially, rendering conventional Q-
Learning approaches computationally impractical. This issue is
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of paramount importance, as it severely restricts the scalability
and suitability of these algorithms in intricate, granular domains.
Effectively mitigating the curse of dimensionality is critical for
RL research, as it holds the key to unlocking the full potential of
Q-Learning in tackling real-world, large-scale problems.

To overcome these challenges, this study introduces Deep
Q-Managed, a new MORL algorithm that aims to discover all
policies within the Pareto Front. This new approach builds
upon the original Q-Managed framework, firstly presented in
de Oliveira et al. (2021), by incorporating deep learning neural
networks. This expansion enhances its potential for tackling more
complex problems, empowering the algorithm to navigate and
optimize in high-dimensional state spaces with greater efficiency
and effectiveness.

Deep Q-Managed employs a hybrid MOO method, combining
the use of a linear scalarizing function with an e-constrained
approach. A key aspect is the utilization of Deep Double Dueling
Networks for the agent’s learning. This approach not only aims to
solve the curse of dimensionality that plagues traditional tabular
RL algorithms (Poggio and Liao, 2018) but also capitalizes on
the mitigation of overestimation bias and the accelerated learning
convergence facilitated by the combination of these deep learning
algorithms. The algorithm retains the main figure of the “manager”
(de Oliveira et al., 2021), allowing agents to sequentially learn the
set of policies that comprise the Pareto front for a posteriori choice,
inheriting the capabilities, simplicity, and performance of single-
policy algorithms. This capability to approximate and discover
the entire Pareto Front is particularly crucial in highly complex
and dynamic design spaces, such as those encountered in smart
material optimization, where multi-objective RL frameworks like
the Adaptive Pareto Optimization Model (APOM) are developed
to approximate continuous Pareto Frontiers and handle multiple
conflicting objectives like strength, flexibility, cost, and energy
efficiency (Zou, 2025).

This methodology has the potential to generate a set of agents
who possess specialized expertise in each of the policies, thereby
forming the optimal solution set for a particular environment.
The proposed algorithm achieves a desired characteristic of multi-
policy algorithms to not be limited to a subset of the Pareto
Front, and it achieves that with a competitive performance. Deep
Q-Managed is capable of learning deterministic non-stationary
policies and tackling problems where the region of optimal
solutions may exhibit various shapes, such as convex, concave, or
a combination of both. Furthermore, the algorithm is model-free,
inheriting this property from its Q-Learning core. To verify this
novel approach, extensive tests were conducted on conventional
benchmarks utilized for MORL algorithms in environments where
the Pareto Front is either convex, non-convex, or mixed, specifically
the Deep Sea Treasure (DST), Bountiful Sea Treasure (BST),
and Modified Bountiful Sea Treasure (MBST). While the deep
learning techniques employed by the algorithm can handle non-
episodic and stochastic environments, this paper solely addresses
deterministic episodic problems that possess a clearly defined
terminal state, with research into other problem types reserved for
future work.

The remainder of this paper is structured as follows:
Section 2 introduces key concepts of Deep RL and MORL
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and presents the proposed Deep Q-Managed algorithm in
Section 2.4. Section 3 discusses the experimental results,
and Section 4 provides the conclusion and outlines future
research directions.

2 Materials and methods

2.1 Deep reinforcement learning

Deep Reinforcement Learning (DRL) is an artificial
intelligence sub-field that integrates deep neural networks
(DNNs)  with (RL) to

complex decision-making in high-dimensional environments.

reinforcement learning address
Traditional RL algorithms frequently encounter difficulties
tasks (Goodfellow

et al, 2016). DRL effectively overcomes these challenges

with vast state spaces and intricate
by leveraging DNNs as powerful function approximators,
enabling agents to represent and learn from extensive and
complex data.

This integration is critical for frameworks like Deep Q-
Managed, directly supporting its ability to tackle multi-objective
problems. DNNs allow agents to learn complex mappings between
states, actions, and rewards, facilitating generalization from
observed experiences and decision-making in unexplored state
regions (LeCun et al., 2015). By processing high-dimensional input
data, DRL agents can extract meaningful features and intricate
patterns directly from the environment, which is essential for tasks
involving perception, representation, and decision-making in real-
world scenarios, including multi-objective scheduling problems
(Zhang et al., 2024).

Crucially, DRL techniques directly support the Deep Q-
Managed framework by mitigating the curse of dimensionality that
limits traditional tabular RL algorithms (Bellman, 1966; Poggio
and Liao, 2018). This capability is instrumental in expanding Deep
Q-Managed’s potential for tackling more complex multi-objective
problems and navigating high-dimensional state spaces with
greater efficiency and effectiveness. Furthermore, DRL algorithms
address the fundamental challenge of balancing exploration (trying
new actions) and exploitation (using gathered information to
maximize rewards), a key aspect in the successful discovery of
optimal policies.

2.2 Multiobjective deep reinforcement
learning

Multiobjective reinforcement learning (MORL) is a branch of
reinforcement learning that involves multiple, competing goals. An
agent learns to take actions in an environment to maximize a single
reward signal in a traditional reinforcement learning problem. In
many real-world situations, however, an agent may have multiple
objectives that conflict with one another. A robot, for example, may
have to navigate a crowded environment while avoiding collisions
and conserving energy. In these cases, a single objective function
cannot capture all the agent’s goals.
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MORL algorithms are designed to handle these types of
multi-objective optimization problems by considering multiple
conflicting objectives at the same time. MORL algorithms use
multiple reward signals to represent different objectives, rather than
a single reward signal. The algorithms then learn a policy that
attempts to balance these competing goals and find a compromise.

One of the most difficult aspects of MORL is determining
the objectives and their relative importance. In some cases, the
objectives are clear and well-defined; in others, they are hazy or
uncertain. MORL algorithms must be able to deal with uncertainty
and adapt to changing goals.

Before proceeding to the formal definition of MORL, it is
necessary to define a MOO. In summary, a MOO can be defined
as follows:

max F(X) = [(X), (XD, .., fn(X)]

(1)
st.gX)<0 I=1,...,L

where m denotes the number of objective functions, L the
number of constraint functions of the problem, and X =
[x1,...,xN] the vector of variables to be optimized (Deb and
Kalyanmoy, 2001; Back, 1996).

In contrast to single objective optimization problems, where the
reward is a scalar value, MORL provides the agent with a reward
vector of the same size as the number of objectives because each
vector position is a reward associated with a specific objective,
among several that the learning agent must optimize, as shown in
the reward formulation seen in Equation 2.

R(s,a) = [Rl(s, a), Ra(s,a), ..., Rm(s, a)] (2)

Similarly, a vector formulation of the state value function
and state-action value function can be structured, as shown in
Equations 3, 4, respectively.

V7 (s) =Ex |:Z Yok | se = 5:| (3)

k=0

o0
Q" (s,a) =Exn [Z Yok | s =sa; = a} (4)
k=0
The optimal vector state-action can then be defined according

to Equation 5.

Q*(s,a) = R(s,a) + E |:)/ max Q* (s/, a/)] 5)

Given that the environment has multiple objectives at the same
time, different optimal policies can be found, with the difference
being related to the priority given to each. Various optimality
criteria can be used to find optimal policies, since it is a MOO,
the concept of Pareto dominance is commonly used (Back, 1996;
Knowles and Corne, 2002).

Traditionally, the Pareto dominance relation (Pareto, 1964) is
used to compare two solutions. We can use it to determine whether
a solution is superior or inferior to others. This is formulated in the
MORL context by the following definitions:
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Definition 2.1. Given two policies 7 € IT and 7’ € I, policy 7 is
said to dominate policy 7/ (" < ) if the following criteria are met:

7' <7 = F:VI(s) > VT (A
J ) ] (6)
Vi#£j:Vi(s) £ VT (s),Vs €S

V7 (s) is strictly better than V7 ' (s) on at least one objective, and
V7 (s) isn’t strictly worse than V7 /(s) on no other objective across
all states.

Definition 2.2. If no other policy 7’ € II dominates policy = € II,
7 it is said to be Pareto optimal:

7 is Pareto optimal < Vn' € M:7 « 7’ (7)

These formulations result in a set of optimal solutions for the
Pareto front (Deb and Sundar, 2006).

Overall, MORL is an effective tool for resolving complex, real-
world problems with multiple, competing objectives. It enables
agents to learn and adapt in complex environments whilst also
balancing multiple goals.

2.3 Combined use of Double and Dueling
Networks in reinforcement learning

Reinforcement Learning (RL) algorithms have demonstrated
significant promise in solving intricate decision-making issues.
Two significant advancements in RL, namely Double Q-Learning
and Dueling Networks, have garnered significant attention due
to their capacity to enhance learning stability and enhance
performance. In this section, we explore the combined use of
Double and Dueling Networks and highlight their benefits in the
context of RL applications.

2.3.1 Double Q-Learning

The Double Q-Learning technique is an enhancement of
conventional Q-Learning algorithms that addresses the issue of
overestimation bias (Van Hasselt et al., 2016). By decoupling
the action selection and value estimation processes, Double Q-
Learning reduces overoptimistic value estimations. It maintains
two sets of Q-values: an online network for action selection
and a target network for unbiased value estimation. This
decoupling improves learning stability and results in more accurate
value estimates.

In traditional Q-Learning, the action-value function Q(s, a) is
updated using the Bellman equation (Sutton and Barto, 2018):

Qs,a) «<Q(s,a) +a - (r +y - maxQ(s,a) — Qs, a)) (8)

Where Q(s, a) represents the Q-value of taking action a in state
s, o is the learning rate, r is the immediate reward, y is the discount
factor, s’ is the next state, and a’ is the next action.

The update equation involves selecting the action 4’ that will
maximize the Q-value in the next state s'. This may however lead to
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an overestimation of the Q-values because the same Q-value is used
for both action selection and value estimation.

This overestimation bias is addressed by Double Q-Learning,
which decouples the action selection and value estimation
processes. Instead of relying solely on a singular set of Q-
values, Double Q-Learning maintains two distinct sets of Q-
values, commonly referred to as the online network and the
target network.

The online network is used for action selection, where the
action with the highest Q-value estimate is chosen. The target
network, on the other hand, is periodically updated using the online
network’s Q-values. This changes the equation for updating to:

Q(s,a; Ok) < Q(s,a; O) + o - (r +y-Q (s', argmax Q(s, a’;
7
0;)) — Qs a: )
©)
Where Q'(s/, @) represents the Q-value estimate from the target
network. By using the target network to estimate the Q-values for
action selection, Double Q-Learning reduces the overestimation
bias and provides more accurate value estimates. The Target-
Network parameters 6, are only updated every C iterations with
the Q-network parameters 6 and are held fixed between updates
(Van Hasselt et al., 2016).

2.3.2 Dueling networks

The Dueling Networks approach aims to address the challenge
of efficiently estimating state values and action advantages
(Wang et al, 2016). By separating the estimation of state
values and action advantages, Dueling Networks provide a more
effective and focused learning process. The network architecture
comprises two streams. One stream estimates the state value
function, which denotes the value of being in a particular
state, while the other stream estimates the action advantages,
which denote the distinctions between actions in that state.
This separation facilitates a more accurate representation of state
values and action advantages, resulting in enhanced learning
and decision-making.

Considering a reinforcement learning problem involving a
discrete action space and a set of states, the objective is to acquire
an optimal policy that maximizes the anticipated return over time.
The state-value function, V(s), denotes the value of being in state
s, whereas the action-value function, Q(s, a), denotes the value of
taking action a in state s.

The Dueling Network architecture consists of two distinct
components: the state value function, V(s), and the action
advantage function, A(s,a). This method of decomposition
facilitates a more effective assessment of state values and the
advantages of actions. The state value function estimates the value
of being in a specific state, whereas the action advantage function
estimates the disparities in values among actions in that state.

The formal mathematical formulation of Dueling Networks
can be expressed as follows, with 6! representing the weights
of the network before the two distinct components, 92
representing the weights of the advantage function neural
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network approximator, and 6> representing the weights of the
value function neural network:

Q(s,a; 0%,0%,6%) = V(s; 6%,0%)

1 (10)
A(s,a; 0',0%) — — A(s,d’; 01,07
(oot Gy S aionn)

Where Q(s,a) represents the action-value function, which is
the sum of the state value function V(s) and the action advantage
function A(s,a). V(s) represents the state value function, which
estimates the value of being in state s. A(s,a) represents the
action advantage function, which estimates the differences in values
between actions in state s. The term ﬁ > a2 Als,a’) represents
the mean advantage value, which ensures the identifiability of the
action advantages by subtracting the mean advantage across all
actions (Wang et al., 2016).

The Dueling Network design utilizes a loss function that
encompasses both the state value loss and the advantage loss during
training. The state value loss is intended to reduce the discrepancy
between estimated and desired state values. The advantage loss
tries to reduce the difference between the estimated and target
action advantages.

By separating the estimation of state values from action
benefits, this design provides for more focused learning and
improved generalization across states and actions. It enables the
agent to accurately estimate the value of staying in a specific
state while evaluating the variations in values across actions. This
separation improves learning and results in improved performance
on reinforcement learning tasks.

2.3.3 Combined use and benefits

The Deep Q-Managed algorithm critically integrates the
combined principles of Double Q-Learning and Dueling Networks,
as it shows remarkable performance enhancements in diverse
RL applications (Wang et al., 2016; Mnih et al., 2015; Dabney
et al,, 2018), referred to as Deep Double Dueling networks, as
the foundation for its agent’s learning mechanism. This integrated
approach is a cornerstone of Deep Q-Managed’s methodological
contributions, specifically designed to address key challenges in
MORL and ensure both clarity and reproducibility (Tamar et al.,
2016).

The primary methodological contribution of integrating these
techniques into Deep Q-Managed is the effective mitigation
of overestimation bias (a benefit of Double Q-Learning) and
accelerated, more efficient learning (a benefit of Dueling Networks).
This combined framework enables Deep Q-Managed agents to
make informed decisions without overly optimistic estimations and
facilitates better generalization across diverse states and actions.
This robust approach is instrumental in addressing the well-known
curse of dimensionality that often limits traditional tabular RL
algorithms (Poggio and Liao, 2018).

By leveraging Deep Double Dueling networks, Deep Q-
Managed expands its potential for tackling complex multi-objective
problems in high-dimensional state spaces with greater efficiency
and effectiveness. Furthermore, Deep Q-Managed is a model-
free algorithm, inheriting this property from its core Q-Learning

Frontiersin Artificial Intelligence

10.3389/frai.2025.1683323

framework. The agent learns iterative sets of deterministic non-
stationary policies within episodic environments to discover all
Pareto-optimal policies.

Within the Deep Q-Managed framework, the agent’s learning
process, as detailed in Algorithm 1, involves iteratively updating
its neural network parameters based on experiences gathered
during environmental exploration. The use of Deep Double
Dueling networks means that the neural network architecture
for approximating Q-values incorporates both the dual network
structure for target value calculation and the split stream
architecture for state value and action advantage estimation.

2.4 Deep Q-Managed

In this section, the Deep Q-Managed algorithm is further
described. This algorithm is an enhanced version of the Q-
Managed approach to MORL, and it incorporates certain concepts
of methods derived from MOO, such as epsilon-constraint and
scalarization technique. The name of the algorithm is given due to
the combination of Deep Q-Learning technics in its multi-objective
version and the fact that there is a figure to manage the behavior of
the algorithm, a manager, proposed in de Oliveira et al. (2021).

1: Initialize neural network parameters 6

2: Initialize replay buffer D with capacity N

3: for episode =1 to M do

4 Initialize environment state sgp

5: repeat

6: With probability e, select a random action
atc

7: Otherwise, select action ar =
argmax, Q(st, a; 0)

8: Execute action at, observe reward r¢ and next
state Stiq

9: if next state syy1 is a final state already
blocked then

10: Unblock the solution if it is a shorter
path

11: end if

12: Store transition (s¢, at, re, Seq1) in D

13: Sample batch of transitions from D

14: Set target y; =rj+y-maxy Q(sitq,a307)

15: Update parameters 6 by minimizing MSE loss

16: Every C steps, update target network: 67 <6

17: Set St < Sty

18: until s; is a final state

19: Stores trajectory identifier as a hash string

20: if convergence is detected as repetition of
hashs then

21: Reset e and some agent parameters

22: Block solution

23: end if

24: end for

Algorithm 1. Deep Q-Managed.
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Enviroment

FIGURE 1

Deep Q-Managed framework: manager-environment-agent
interaction for multi-objective reinforcement learning. This diagram
illustrates the interplay of the agent, environment, and manager
within the Deep Q-Managed algorithm. The agent learns optimal
behaviors by interacting with the environment (actions, states, and
rewards). The manager acts as a crucial supervisory component,
observing the environment and strategically intervening in the
agent's learning.

Deep Q-Managed is capable of learning deterministic non-
stationary policies and tackling problems where the region of
optimal solutions may exhibit certain shapes, such as convex,
concave, or a combination of both. Furthermore, the algorithm
is model-free, since the core of the algorithm derives from Q-
Learning and inherits this property. Lastly, it is noteworthy to
mention that despite the ability of the deep learning techniques
employed by the algorithm to handle non-episodic and stochastic
environments, this paper solely addresses deterministic episodic
problems that possess a clearly defined terminal state. The research
into the application of this new technique to these other types of
problems is being left for a future paper.

The manager concept is employed to gain a thorough
understanding of the interactions between the learning agent and
the objective environment, as well as to intervene in the actions
being undertaken; its contribution is illustrated in Figure 1. The
primary functions of this instrument are to assist the learning agent
in identifying the whole set of optimal policies.

As the guide for the learning agent, the manager is responsible
for observing what happens in the environment. Thus, whenever
a learning agent performs an action that results in a terminal
state, the manager observes the current policy’s value function to
compare it to the best value found and stored up to that point.

The learning of a given policy implies a terminal state linked
to it. The convergence criterion will be discussed in Section 3.
Whenever the agent reaches a terminal state associated with a
previously acquired policy, the manager conducts a comparison
of the value function associated with the present policy. This is
intended to evaluate whether the path to the final state associated
with this policy is superior to the one currently stored. The manager
updates the policy if there is a successful comparison, to reflect the
better path learned in the current episode. Otherwise, the manager
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modifies the learning agent’s action to avoid unnecessary repetition,
changing it to one that moves it to a random neighboring state,
except for the terminal state. This strategy allows the agent to learn
other policies and offers the possibility of changing to a superior
one if one is found.

It is noteworthy that upon the learning agent’s convergence
to a particular policy, the randomness probability parameter is
reset to 0.3, thereby enabling the agent to randomly explore the
environment searching for policies for the undiscovered final states.

Given the difficulty of identifying the impact of one objective
on another, it is recognized that the trade-off between objectives
is extremely complicated, even though there is no guarantee that
the solution will be isomorphic to the parameterization used (Das
and Dennis, 1997). The algorithm contours the problem using a
synthetic objective function, where no objective has a different
degree of importance than any other. This can be characterized as a
linear scalarizing function:

€3))

1
Yo e [1,m]:w, = —
m

This approach relieves the decision-maker of the concern about
which objective to prioritize and if there is a solution corresponding
to the parameterization chosen a priori.

The algorithm terminates when the number of converged
policies equals the number of constraints, as each constraint
represents a terminal state. This keeps the agent from learning all
the policies and still continuing to explore the environment.

The algorithm is based on the extensive Q-learning framework,
which has demonstrated remarkable efficacy in single-objective
reinforcement learning tasks. Deep Q-learning involves the training
of a neural network to approximate the Q-values of state-action
pairs, which represent the anticipated cumulative reward of taking
a specific action in a particular state. Through learning these Q-
values, the agent can make informed decisions about which actions
to take in different situations to maximize its camulative reward.

The proposed Algorithm 1 involves the agent learning a set
of policies for traversing environments with multiple objectives
by iteratively updating its neural network parameters based on
the experiences acquired during exploration. The fundamental
innovation lies in the incorporation of a management mechanism
that dynamically adjusts the agent’s behavior to encourage
exploration and guarantee convergence toward optimal solutions.

The management system works by periodically assessing the
agent’s progress and detecting alignment with optimal policies.
Upon detection of convergence, the management mechanism
intervenes by resetting agent parameters and blocking the
encountered solution path. This enables the agent to explore
alternate routes and continuously refine its policies to attain a more
comprehensive coverage of the solution space.

In addition to managing the exploration-exploitation trade-
off and overseeing the agent’s learning process, the manager
also plays a critical role in optimizing the agents’ search for
optimal solutions. During the main loop of learning, when the
agent attempts to navigate to a final state associated with an
already converged solution, the manager intervenes to assess the
quality of the current solution. If the manager determines that
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FIGURE 2

Benchmark environments used to evaluate the Deep Q-Managed algorithm. (a) Deep Sea Treasure (DST), (b) Bountiful Sea Treasure (BST), and (c)
Modified Bountiful Sea Treasure (MBST). In each grid-based environment, the agent controls a submarine starting from the upper-left corner and
navigates to treasure locations with varying rewards. DST features a concave Pareto Front, BST a convex Pareto Front, and MBST a mixed shape with
local concavities. (d) Illustrates the corresponding Pareto Fronts for each environment, which serve as ground truth for assessing the ability of Deep

Q-Managed to identify all optimal trade-off solutions.

the current solution is superior to those previously discovered,
it initiates a process to unblock the path to that solution. By
unblocking the path, the agent is granted the opportunity to
explore this potentially better route, thus enabling it to potentially
discover more efficient and effective solutions. This dynamic
intervention by the manager ensures that the agent’s learning
process remains adaptive and responsive to evolving conditions,
ultimately enhancing the algorithm’s ability to identify optimal
policies in complex environments.

2.4.1 Experimental setup

The proposed Deep Q-Managed algorithm was tested on
the traditional MORL benchmark and its variations, Deep Sea
Treasure (DST) (Vamplew et al., 2008) and Bountiful Sea Treasure
(BST) (Van Moffaert et al., 2014), to assess its performance and
capabilities. In addition to the benchmark tests already mentioned,
the algorithm was also evaluated on a variation of the BST proposed
in (de Oliveira et al., 2021), the Modified Bountiful Sea Treasure
(MBST). This section describes the benchmarks used, how the tests
were carried out, and how they were evaluated.

Frontiersin Artificial Intelligence

Deep Sea Treasure (DST), shown in Figure 2a is an episodic
deterministic problem in which a learning agent controls a vessel on
an underwater expedition searching for treasure. The environment
is made up of a grid of 11 rows and 10 columns containing 10
treasure locations, each with a different value assigned, with the
lowest treasure value located closest to the starting point and the
highest value positioned farthest away, implying that the value
increases with distance from the source.

Each episode begins with the submarine in the upper-left
corner and ends when the learning agent comes across any
of the ten treasure locations, regardless of value, or completes
1,000 actions. The agent can navigate the environment by
moving in any of the four cardinal directions: (I) up, (II)
right, (ITII) down, or (IV) left. Any movement that causes
the agent to leave the grid is disregarded, keeping it in the
same position.

In this environment, the learning agent has two goals: to
minimize the time needed to reach the treasure location and to
maximize the value of the treasure. The reward vector is composed
of two elements. The first of them is a penalty of -1 for each action
performed. The second is the value of the treasure, which is 0 until
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the agent moves to a location containing a treasure. The DST’s
Pareto Front is globally concave with local concavities.

The only difference between the BST, shown in Figure 2b, and
the DST is in the treasure values, which give the Pareto Front a
globally convex shape. Everything remains the same as the DST
in terms of environment structure, learning agent movements, and
reward system.

Lastly, there is the variation of the BST, the MBST, pictured in
Figure 2c. The changes in the environment in this variation are the
treasure site location, the best time situation to reach it, and some
treasure values. With the new treasure position, the learning agent
must now enter a "hole’ in the middle of two different locations,
which makes learning difficult because it can find one of the two
places in the middle to pass through and end the episode. For this,
variation the Pareto Front has a concavity in the middle dividing
the curve into two convex parts.

3 Results

In this section, we present the outcomes of our investigation
into the integration of Double and Dueling Networks in the
Deep Q-Managed approach to MORL. The purpose of this study
was to investigate the performance enhancements and benefits
achieved by integrating these two key advancements into the Q-
Managed algorithm.

It provides a thorough analysis of the results obtained from
our experiments. We demonstrate the remarkable performance
improvements achieved through the combined use of Double and
Dueling Networks in the analyzed RL tasks. Specifically, we present
empirical evidence for accelerated learning convergence, improved
sample efficiency, and enhanced decision-making capabilities of
RL agents. Since overestimation bias is reduced, informed and
reliable decision-making can be achieved, while the separation
of state values and action advantages provides a more focused
learning process.

The parameters utilized for conducting the experiments are
described in Table 1. The choice of values for hyperparameters was
empirical, and achieved through a series of tests, which resulted
in the same quality of policies found, with only a small range of
episodes needed for convergence.

A stringent convergence criterion was established to ensure
a thorough evaluation and robust learning of the agent. This
criterion introduces a distinct and crucial requirement: the agent
must replicate the identical path to a treasure state a predetermined
number of times. This criterion distinguishes our approach by
setting a convergence delta of zero, thus rendering it exceptionally
meticulous in gauging the agent’s learning.

The convergence criterion serves as a litmus test for the agent’s
proficiency in achieving the final states in a consistent and reliable
manner. By mandating the repetition of the same path toward a
treasure state, we emphasize the significance of not only discovering
a successful trajectory once but mastering it. This stringent criteria
not only measures the agents’ ability to learn, but also requires an
elevated level of accuracy in their actions.

In contrast to convergence criteria that solely focus on attaining
a predetermined reward or achieving consistent performance, this
methodology does not allow for approximation or variability.
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TABLE 1 Hyperparameters used in the Deep Q-Managed experiments.

Parameter Description Value
a Learning rate 1-107*
y Reward discounting 0.99
Initial € 0.9
Final € Randomness 0.1
Restored € 0.3

T € decay constant 3.1073
w, Vo€ [1,m] Objectives weights 1/m
m Number of objectives 2

z) Reference time objective -25
2z Reference treasure objective 0

Values were selected to balance learning stability and convergence speed across environments.

The agent is compelled precisely to replicate its successful routes,
thereby ensuring a level of comprehension and proficiency that is
uncommon in convergence assessments.

The hypervolume indicator, which is provided by the learning
agent after each experiment, serves as the metric utilized to
evaluate the algorithms’ performance (Vamplew et al, 2011).
The resulting hypervolume of policies is then compared to the
corresponding hypervolume of the best-case scenario represented
by the Pareto Front.

The selection of the corresponding reference points for
the hypervolume indicator was motivated by the desire to
establish a fair comparison between the proposed algorithm and
those cited in the literature. There are different methodologies
for selecting reference points; however, this specification must
consider the Pareto front’s shape in addition to other aspects
to be evaluated, such as performance or solution distribution.
According to Ishibuchi et al. (2018), the methodology replicated
in this work, with reference points much worse than the
nadir point, is adequate for the type of problem and what is
being evaluated.

The proposed methodology for the Deep Q-Managed algorithm
has proven to be efficacious and efficient in identifying all
optimal policies for the Pareto Front, and this is applicable to
all environments. In terms of efficiency, the algorithm behaved
similarly in all tests and learned the optimal policy, successfully
repeating the paths to all final state, that being considered a
conversion to an optimal policy for that state.

Figure 3 provides a visualization of the experimentation,
showcasing the hypervolume averages across 20 independent runs.
This serves as a testament to the performance of the proposed
approach, as it consistently attains maximum hypervolume values
across all three target environments. Specifically, in the DST
environment, the hypervolume peaks at 1,155. In the BST
environment, it soars to 3,352. Finally, in the MBST environment,
the maximum hypervolume is 2,632.

Furthermore, Figure3 demonstrates the exploration of
different threshold values as a parameter for verifying conversion
to a treasure state. These thresholds play a pivotal role in assessing
the agent’s convergence rigor. A higher threshold value signifies
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FIGURE 3
Average hypervolume values obtained by Deep Q-Managed across 20 independent runs for the three benchmark environments: (a) Deep Sea
Treasure (DST), (b) Bountiful Sea Treasure (BST), and (c) Modified Bountiful Sea Treasure (MBST). The x-axis represents the number of training
episodes, while the y-axis shows the hypervolume relative to the true Pareto Front. Different curves correspond to varying convergence thresholds
(100-300 repetitions). Higher thresholds impose stricter convergence criteria, requiring the agent to replicate paths more consistently before
confirming a policy. Results show that Deep Q-Managed consistently reaches the maximum hypervolume in all environments, though convergence
in MBST is slower and more computationally demanding.

a more stringent evaluation criterion, demanding that the agent
precisely replicate the same path to a treasure state a higher
number of times. This adaptability in threshold values underscores
the versatility of our approach, capable of accommodating diverse
challenges and learning scenarios.

Notably, our experimental results underscore the robustness
and adaptability of the proposed approach. Across all threshold
values and environment combinations, our method consistently
identifies and encompasses all points in the Pareto Front. This
exceptional capability highlights the approach’s versatility and its
ability to excel in a multitude of environments.

The consistent inclusion of all Pareto Front points across
different scenarios underscores the adaptability and robustness
of our approach, positioning it as a contender in the realm of
MORL methodologies.

The Deep Q-Managed approach has demonstrated its
capabilities in the analyzed environments. The robust learning
capabilities, efficient convergence, and adaptability of this
approach have established it as a contender in the field. In the
present investigation, our objective is not solely to introduce the
most recent advancement of the Deep Q-Managed algorithm. But
also to meticulously evaluate its advancements and performance in
comparison to its predecessor and other pertinent algorithms from
the existing literature.

Our primary objective is to elucidate the enhancements
and innovations that have been incorporated into the Deep Q-
Managed approach. By conducting this comprehensive analysis,
we aim to provide a comprehensive understanding of the
algorithm’s strengths, thereby illuminating its potential for
broader applications.

To accomplish this evaluation, we have devised a comparative
framework. This framework entails a side-by-side examination of
the latest Deep Q-Managed algorithm with the previous version
of the algorithm proposed in de Oliveira et al. (2021). Moreover,
we derive insights from two additional noteworthy algorithms
proposed in Van Moffaert (2016), namely Linear Scalarized and
Chebyshev Scalarized, which were devised and tested on the same
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benchmark analyzed in this work. The optimistic prefix was added
to the algorithm’s name to serve as an indication that the results
presented herein were exclusively derived from the test phase, with
any outcomes from the training phase being intentionally omitted
or discarded. This multi-faceted comparison allows us to assess the
progress made by the Deep Q-Managed approach and provides
valuable context for its achievements.

Our proposed approach is evaluated against these relevant
methodologies, not only in terms of learning efficiency, but also in
terms of its adaptability to diverse tasks. The rigorous evaluation
of the algorithm across a suite of environments demonstrates its
versatility and potential.

To this
comparative evaluation of the proposed Deep Q-Managed

accomplish comparison, Figure4 presents a
algorithm, alongside the three other pertinent strategies. The
purpose of this evaluation is to emphasize the capabilities
and characteristics of each algorithm in navigating the
test scenarios.

From this analysis, it is striking that only the Deep Q-Managed
and the Q-Managed approaches consistently found all the points in
the Pareto front across all environments. This demonstrates their
flexibility and robustness in addressing the multi-objective nature
of the tasks. Despite not being able to find the full Pareto front,
the Linear Scalarized and Chebyshev approaches demonstrated
commendable performance in the BST and MBST environments.
It is noteworthy that their final hypervolume in DST falls short
of expectations, achieving only half of the maximum value.
This disparity in performance across environments underscores
the unique challenges posed by each setting and the varying
adaptability of the algorithms.

An examination of the algorithms that encountered the full
Pareto front reveals an interesting trade-off between the Deep
Q-Managed and the other approaches. While Deep Q-Managed
required more episodes to find all points within the Pareto front,
it exhibited a notable advantage in discovering most of the initial
points more quickly. The algorithms’ efficiency in identifying
the initial points, especially those associated with shorter paths
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or not located in plateaus, demonstrates efficient exploration of
rewarding regions.

The remarkable capability of Deep Q-Managed, alongside
Q-Managed, to consistently locate all points in the Pareto
front across diverse environments merits highlighting. The
disparity in performance observed in DST, BST, and MBST
underscores the intricate and contextually dependent nature of
these tasks. Furthermore, the tradeoff between exploration and
exploitation efficiency in Deep Q-Managed underscores its unique
approach to multi-objective problem-solving. This provides a
nuanced perspective on algorithmic performance and provides
valuable insight into their strengths and adaptability across
challenging environments.

To further examine the tradeoffs inherent in the Deep
Q-Managed’s performance, Figure 5a examines the number of
episodes required by the Deep Q-Managed algorithm to reach
all final states, spanning 20 independent executions in all tested
environments, each separated by distinct conversion thresholds.
The resulting investigation illuminates the inherent stochastic
properties of the Deep Q-Managed strategy and emphasizes its
flexibility and effectiveness, particularly in scenarios involving
lower conversion thresholds.

It is noteworthy that the Deep Q-Managed algorithm exhibits
a total of convergence episodes that are comparable to the
3,000 episodes observed in Q-Managed. In certain instances,
the algorithm can achieve significantly faster convergence,
indicating its capacity for rapid learning and decision-making
in environments with less stringent convergence criteria. This
enhanced performance in scenarios that necessitates precise and
swift convergence exemplifies the algorithm’s adaptability and its
potential to excel.

To build on the analysis total number of episodes needed
for total convergence, Figure5b delves into the processing
time required by the Deep Q-Managed algorithm to complete
each environment across various threshold configurations. Since
the duration of the operations is entirely dependent on the
hardware being employed, it is pertinent to mention that, for the
experiments presented here, a system comprising an Intel i7-8565U
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CPU, 16 GB of RAM, and an NVIDIA GeForce MX150 GPU
was utilized.

The box plots depicted in Figure 5b highlight the diverse
processing times employed by the Deep Q-Managed algorithm
when tackling diverse environments and threshold combinations.
It is evident that the DST environment consistently requires
less processing time for completion. This outcome is in
accordance with expectations, as DST also necessitated a
lesser number of total episodes, thereby demanding fewer
computational resources.

Conversely, the MBST environment consistently exhibits a
notably higher processing time requirement. This observation
emphasizes the complexity and resource-intensive nature of
this environment, compared to others. The extended processing
times in MBST demonstrate the algorithm’s dedication and
computational effort needed to navigate the multi-objective
landscape effectively.

The varying processing times underscore the flexibility of the
Deep Q-Managed algorithm in handling diverse environments
and threshold configurations. Although processing times may
vary, the algorithm demonstrates its ability to efficiently allocate
computational resources to address the distinct challenges posed
by each environment. This ability to adapt is particularly
advantageous when the significance of computational efficiency
is paramount.

The analysis that the
Q-Managed algorithm is a multifaceted approach
MORL, characterized by a set of tradeoffs and distinct
advantages that set it apart from other methodologies. These

presented here showed Deep

to

characteristics contribute to its adaptability, efficiency, and
innovative contributions.

One notable tradeoff observed in Deep Q-Managed pertains
to its stochastic nature regarding convergence. Across different
environments and conversion thresholds, the number of episodes
required for completion is variable. While this might entail longer
convergence times stochastically in some cases, it also underscores
the algorithms’ capacity to adapt to different challenges. This
adaptability is in accordance with the dynamic nature of
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reinforcement learning tasks, where precise convergence times can
exhibit significant variations.

Another thing that was found is that the algorithm
processing time varies a lot between environments and threshold
configurations. The complexity of the environment and the
stringent nature of conversion criteria are some of the factors that
cause this variability. While Deep Q-Managed may require longer
processing times in certain instances, this attribute highlights
its capacity to effectively allocate computational resources,
ensuring that challenging tasks are tackled with the appropriate
computational resources.

However, despite these tradeoffs, Deep Q-Managed boasts
several notable advantages. One of its greatest strengths lies in
its ability to explore and exploit points in the Pareto front.
It consistently identifies all points within the Pareto front,
demonstrating its adeptness in multi-objective problem-solving, a
vital skill in practical applications where decisions often involve
balancing multiple objectives.

Deep Q-Managed
convergence, especially in scenarios with lower conversion
thresholds. This efficiency demonstrates its adaptability to learning
and making decisions in environments that require precise and

Furthermore, achieves competitive

rapid convergence. Its ability to perform well across diverse
environments underscores its robustness and versatility.

Another asset is the proposed approaches resource allocation
capabilities. It utilizes computational resources efficiently,
tailoring its efforts to meet the specific challenges posed by
each environment.

This presents a compelling mix of tradeoffs and advantages,
which reflect the dynamic and multifaceted nature of reinforcement
learning environments. The

processing times of the algorithm are balanced by its competitive

stochastically and fluctuating

convergence, adaptive resource allocation, and exceptional multi-
objective capabilities. These strengths position Deep Q-Managed
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as an approach that has the potential to excel in demanding,
real-world applications.

4 Conclusion

This paper introduced Deep Q-Managed, a multi-objective
reinforcement learning framework that combines Double
Q-learning and Dueling Network architectures to address
overestimation bias and the curse of dimensionality. Extending
the original Q-Managed method with deep neural networks,
the approach enables systematic discovery of Pareto-optimal
policies across environments with convex, concave, and mixed
Pareto Fronts.
all Deep Q-Managed consistently
attained the maximum hypervolume and successfully identified

Across benchmarks,
every point of the Pareto Front. Compared to scalarized
baselines, it demonstrated superior coverage and robustness,
while relative  to
the original Q-Managed framework. Notably, convergence
in DST and BST was achieved efficiently, whereas MBST
required longer training and higher computational effort
due to its more complex Pareto structure. This highlights
a characteristic trade-off of the method: broader policy
discovery at the expense of increased computational demand
in challenging environments.

retaining competitive convergence rates

The present study focused on deterministic episodic
environments and used averaged hypervolume indicators as
the primary measure of performance. Extending this analysis
to stochastic or continuous domains, incorporating statistical
tests, and exploring parallel multi-agent learning represent
natural directions to strengthen generality and efficiency. Looking
forward, extending validation to continuous control tasks [e.g.,

MuJoCo (Todorov et al., 2012)], incorporating formal statistical
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analyses, and exploring parallel multi-agent training are promising
directions to strengthen both scalability and robustness.

Deep Q-Managed thus offers a flexible and reproducible
framework for multi-objective reinforcement learning. With
open-source code available at https://github.com/xarmison/
deep_q_managed, we aim to encourage further validation and
application in real-world domains such as robotics, finance,
and healthcare.

In conclusion, Deep Q-Managed represents an advancement
in the field of MORL. It exhibits adaptability and robustness,
navigating environments with convex, concave, or hybrid Pareto
fronts. Its prowess at locating and exploiting points in the Pareto
front demonstrates its aptitude for tackling multiple objectives. The
core concept behind Deep Q-Managed is to provide a versatile,
effective, and cooperative framework for tackling the diverse
obstacles in multi-objective environments.
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