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Introduction: The need for eXplainable Artificial Intelligence (XAI) in healthcare
is more critical than ever, especially as regulatory frameworks such as the
European Union Artificial Intelligence (EU AI) Act mandate transparency in clinical
decision support systems. Post hoc XAI techniques such as Local Interpretable
Model-Agnostic Explanations (LIME), SHapley Additive exPlanations (SHAP) and
Partial Dependence Plots (PDPs) are widely used to interpret Machine Learning
(ML) models for disease risk prediction, particularly in tabular Electronic Health
Record (EHR) data. However, their reliability under real-world scenarios is not
fully understood. Class imbalance is a common challenge in many real-world
datasets, but it is rarely accounted for when evaluating the reliability and
consistency of XAI techniques.
Methods: In this study, we design a comparative evaluation framework to
assess the impact of class imbalance on the consistency of model explanations
generated by LIME, SHAP, and PDPs. Using UK primary care data from the Clinical
Practice Research Datalink (CPRD), we train three ML models: XGBoost (XGB),
Random Forest (RF), and Multi-layer Perceptron (MLP), to predict lung cancer
risk and evaluate how interpretability is affected under class imbalance when
compared against a balanced dataset. To our knowledge, this is the first study to
evaluate explanation consistency under class imbalance across multiple models
and interpretation methods using real-world clinical data.
Results: Our main finding is that class imbalance in the training data can
significantly affect the reliability and consistency of LIME and SHAP explanations
when evaluated against models trained on balanced data. To explain these
empirical findings, we also present a theoretical analysis of LIME and SHAP to
understand why explanations change under different class distributions. It is
also found that PDPs exhibit noticeable variation between models trained on
imbalanced and balanced datasets with respect to clinically relevant features for
predicting lung cancer risk.
Discussion: These findings highlight a critical vulnerability in current XAI
techniques, i.e., their interpretability are significantly affected under skewed class
distributions, which is common in medical data and emphasises the importance
of consistent model explanations for trustworthy ML deployment in healthcare.
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1 Introduction

Local Interpretable Model-Agnostic Explanations (LIME) and SHapley
Additive exPlanations (SHAP) are among the most widely adopted techniques
for interpreting machine learning (ML) models in disease risk prediction tasks
(Alabi et al., 2023; Fu et al., 2024; Rai et al., 2025). Despite their popularity,
there is a lack of rigorous evaluation of their reliability in clinical contexts,

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1682919
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1682919&domain=pdf&date_stamp=2025-11-13
mailto:teena.rai2022@my.ntu.ac.uk
https://doi.org/10.3389/frai.2025.1682919
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2025.1682919/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Rai et al. 10.3389/frai.2025.1682919

particularly under conditions of severe class imbalance, which are
common in real-world healthcare datasets (Hassanzadeh et al.,
2023; Rahman and Davis, 2013; Xu et al., 2020). Diseases such as
lung cancer illustrate this challenge because the prevalence is low in
the general population, but they are associated with a high mortality
rate (Navani et al., 2022) largely due to late-stage diagnosis.

While some recent studies on diabetes prediction has
introduced interpretability metrics, they were not directly
integrated into their model training and evaluation pipeline
(Ahmed et al., 2024). Furthermore, studies addressing class
imbalance typically apply resampling strategies such as Synthetic
Minority Oversampling Technique (SMOTE), oversampling, and
undersampling prior to interpreting models with LIME or SHAP
(Advithi and Umadevi, 2024; Kokkotis et al., 2022). However,
very few have critically examined how these resampling strategies
influence the trustworthiness or consistency of model explanations.
For example, rule-based model research has shown that resampling
techniques can substantially alter feature importance rankings
(Gao et al., 2022), and similar findings have been reported
for global explanation techniques like Partial Dependence and
Accumulated Local Effects profiles (Stando et al., 2024).

According to Molnar (2025), stability refers to the extent to
which explanations remain similar for similar input instances for
the same model. A recent study has explored explanation stability
under class imbalance, demonstrating that balanced datasets often
yield more stable explanations (Chen et al., 2024). Background
data in SHAP refers to the dataset used to marginalize over
“absent” features when estimating Shapley values. Studies have
shown that the background data used in SHAP can influence
explanation stability (Ihalapathirana et al., 2024), with larger
background datasets generally producing more stable results (Yuan
et al., 2022). In this study, we define consistency as the degree
to which explanation outputs given by LIME and SHAP remain
similar across models trained under different class distributions
for the same predictive task (Molnar, 2025). While a study
(Chen et al., 2024) examines explanation stability by analyzing
variability across multiple training runs under class imbalance,
our study takes a different approach by systematically evaluating
how explanation consistency varies across models trained on
datasets with different class distributions, using a balanced model as
a reference.

The main contributions of the study are as listed in
the following:

1. We design a comparative framework using Jaccard similarity
index and Rank Agreement to evaluate the consistency of LIME
and SHAP explanations under class imbalance in predicting lung
cancer risk from Clinical Practice Research Datalink (CPRD)
data. To our knowledge, no prior research has comprehensively
investigated how the consistency and reliability of LIME and
SHAP explanations are affected by class imbalance relative to a
balanced model, using real-world clinical data.

2. Changes in explanation rankings across different class
distributions are assessed, and their relationship with model
performance is examined to identify potential trade-offs
between model performance and interpretability.

3. We apply Partial Dependence Plots (PDPs) as part of our
evaluation framework to assess how the model’s learning of

clinically relevant features for predicting lung cancer risk
changes across balanced and imbalanced datasets.

4. We analyse the internal mechanisms of LIME and SHAP to
explain why class imbalance influences explanation consistency,
providing a theoretical context for observed empirical patterns.

This study is a significant expansion of our accepted short
study presented at the 4th International Workshop on Explainable
Artificial Intelligence in Healthcare, held at the 23rd International
Conference on Artificial Intelligence in Medicine. The workshop
study focused only on the first contribution, that is, evaluating
the consistency of LIME and SHAP under class imbalance. The
current study adds several new components: (i) an analysis of
the relationship between class imbalance, model performance and
interpretability, (ii) the use of PDPs to evaluate model behavior
on clinically relevant features in predicting lung cancer risk, and
(iii) a deeper theoretical and empirical investigation of how the
consistency of explanations based on LIME and SHAP varies under
class imbalance and how this impacts interpretability.

The structure of the study is as follows. Section 2 outlines the
methodology employed to evaluate the consistency of LIME, SHAP,
and PDPs under varying levels of class imbalance using CPRD
data. Moreover, the theoretical foundations of LIME and SHAP
are discussed in detail to explain why explanation consistency
is affected under different class distributions. Section 3 presents
the results from evaluating the machine learning (ML) models,
analyzing LIME and SHAP consistency under class imbalance
and PDP visualizations across models trained under different
class distributions. Furthermore, an empirical illustration of
variation in the explanations provided by LIME and SHAP is
presented. Section 4 discusses the need for systematic evaluation
of eXplainable Artificial Intelligence (XAI) techniques. Finally,
Section 5 summarizes the key findings and implications of
the study.

2 Methodology

2.1 Data

In this study, CPRD data (Herrett et al., 2015), a comprehensive
UK-based primary care database containing anonymised patient
records from general practices across the UK, was used. The
primary outcome of interest was the diagnosis of lung cancer.
By looking at data between 1 January 2014 and 1 January 2020,
our cohort consisted of 1,390,070 non-lung cancer cases and
8,412 lung cancer cases, resulting in a highly imbalanced dataset
with lung cancer cases comprising approximately 0.6 % of the
total. The predictive task was formulated as a binary classification
problem. The features used during model training were age,
smoking status and intensity, history of bronchiectasis, history of
cerebrovascular disease, history of chronic kidney disease, Chronic
Obstructive Pulmonary Disease (COPD)/emphysema, diabetes with
end-stage complications, diabetes without end-stage complications,
family history of cancer, family history of lung cancer, idiopathic
fibrosis, lower respiratory tract infections, body mass index (BMI)
status, peptic ulcer, alcohol status, peripheral vascular disease, radio
therapy, and personal history of breast cancer, bladder cancer, head
and neck cancer and thyroid cancer. Finally, symptoms reported
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TABLE 1 Number of lung cancer and non-lung cancer cases in the
training data under varying percentage of lung cancer cases.

Percentage of
lung cancer
cases

Number of
lung cancer

cases

Number of
non-lung cancer

cases

Balanced 6,730 6,730

40% 5,384 8,076

30% 4,038 9,422

20% 2,692 10,768

10% 1,346 12,114

5% 673 12,787

1% 135 13,325

Original 82 13,378

within the year preceding the 2-year period before follow-up—
dyspnoea, haemoptysis, cough, sputum production, back pain, and
any blood test performed were also included.

2.2 Model training and evaluation

The data was split into 80% for training and 20% for testing,
with stratification applied to ensure the proportion of lung cancer
cases was preserved in both sets. Hence, the training data had
6,730 lung cancer cases and 1,112,055 non-lung cancer cases. To
investigate the effect of varying degrees of class imbalance on LIME
and SHAP explanations, several training subsets of identical sample
size were randomly selected from the original training data. Each
subset consisted of different proportions of lung cancer cases: 40%,
30%, 20%, 10%, 5%, and 1%, and the original (highly imbalanced)
distribution. A balanced dataset with 50% lung cancer cases and
50% non-lung cancer cases served as the reference which was
obtained by using random undersampling. A balanced model was
used as the reference because we found that most studies used some
form of balancing techniques, such as SMOTE, undersampling,
and oversampling, to overcome the class imbalance problem in
their dataset as part of their data preprocessing before model
development (Abdoh et al., 2018; Bhavani and Govardhan, 2023;
Hsu et al., 2015). We selected undersampling because the dataset
contained a sufficient number of the minority (lung cancer cases)
class to construct balanced data without the need to generate
synthetic samples (with SMOTE) or duplicate existing cases (with
oversampling) (Hasanin and Khoshgoftaar, 2018). More details
with the number of lung cancer and non-lung cancer cases for
the different class distributions used during model training can be
found in Table 1.

Three ML models: eXtreme Gradient Boosting (XGB), Random
Forest (RF) and Multi Layer Perception (MLP) were trained on
each of these subsets in Table 1. A balanced testing set with 1,682
lung cancer cases and 1,682 non-lung cancer cases was used
for model evaluation. Heatmaps of area under the curve (AUC),
sensitivity, and specificity across the different training subsets
were used to assess whether explanation consistency is linked
to changes in model performance. Models were implemented

in Python using scikit-learn and XGBoost (Chen and Guestrin,
2016) libraries. For MLP, default hyperparameters were used.
For RF and XGB, the max_depth parameter was set at 5, while
other parameters were left at their defaults. No hyperparameter
optimisation was performed because the primary aim of this study
was to compare explanation consistency across models rather than
maximize predictive performance.

2.3 Metrics for measuring consistency

We designed a comparative framework using two metrics to
systematically assess explanation consistency under varying class
distributions. First, LIME and SHAP explanations for predicting
lung cancer risk were generated for the same 100 randomly
selected test instances across all models trained with different
class distributions as described in Section 2.2. Second, to capture
whether the set of top-10 ranked features remains consistent across
models trained under different class distributions, we compute the
Jaccard similarity index between the top-10 feature rankings of each
model and those of the balanced reference model. Third, to assess
whether the ordering of these features is preserved, we calculate
the Rank Agreement which measures the concordance in ranking
positions across models. Moreover, a separate class-wise analysis
was also performed to see the trends observed in explanation
consistency for the minority (lung cancer cases) and majority
(non-lung cancer cases) classes. LIME and SHAP explanations for
100 lung cancer and 100 non-lung cancer cases were randomly
selected from the test dataset across all models. For each instance,
explanations from the imbalanced models were compared with
those of their respective balanced models. The mean Jaccard
similarity and Rank Agreement across the 100 instances were
reported with error bars indicating the variability in the explanation
consistency of the minority and majority classes separately. These
metrics together allow us to evaluate not only which features are
deemed important across different models but also whether their
relative importance is consistent. This approach enables a more
rigorous assessment of explanation consistency beyond simple
overlap. The metrics have been defined in detail below.

1. Given two explanations Ea and Eb, the Jaccard similarity index
is defined as (Verma and Aggarwal, 2020):

Jaccard Similarity Index = |Top(Ea, k) ∩ Top(Eb, k)|
|Top(Ea, k) ∪ Top(Eb, k)| (1)

where Top(E, k) denotes the set of top k features of explanation
E and | . | denotes the cardinality of the set.

2. Rank Agreement as discussed in a previous study (Krishna
et al., 2022) measures how consistently the top k features are
ordered across different explanations Ea and Eb. However, their
approach only considers the top k features in the denominator
when calculating Rank Agreement. In contrast, our method
differs by considering the union of the top k features from the
explanations Ea and Eb, similar to the Jaccard similarity index.
The rank agreement is defined as:

| ⋃
s∈S

{s | (s ∈ Top(Ea , k) ∩ Top(Eb , k)) and rank(Ea , s) = rank(Eb , s)}|
|Top(Ea , k) ∪ Top(Eb , k)| (2)
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where S is the set of features in the data, Top(E, k) and | . | are
defined as above and rank(E, s) denotes the position or rank of
the feature s according to the explanation E.

We use an example to illustrate how Rank Agreement is
calculated. For simplicity, we consider two ordered rankings,
each with five elements: Ranking 1 = {a, b, c, d, e} and Ranking
2 = {a, f , g, d, e}. Three elements a, d, and e appear in both
rankings, and they also maintain the same relative order in both
sets. The total number of distinct elements across both rankings
(the union) is 7. Therefore, the rank agreement using Equation 2
is 3/7.

2.4 Partial dependence plots

To investigate how class imbalance influences model behavior,
we incorporated PDPs as part of our evaluation framework. We
focused on two clinically important features for predicting lung
cancer risk: age and smoking status and intensity provided by
Callender et al. (2023) and Guo et al. (2022), where age is a
continuous variable and smoking status and intensity is a categorical
variable with nine levels (Ex Unknown, Ex Light, Ex Moderate,
Ex Heavy, Current Unknown, Current Light, Current Moderate,
Current Heavy, and Missing). For models trained on both the
balanced dataset and the original highly imbalanced data, we
generated PDPs to examine how predicted risk varies with respect
to these features. This enabled a systematic comparison of how
class distribution in training data affects the model’s sensitivity to
learning of clinically meaningful features.

PDPs show the marginal effect a feature has on the predicted
outcome of an ML model. Let X be the dataset, S be the set of
features we are interested in knowing the effects on the predicted
outcome, and C denote the set of features which are not in S.
Hence, xS are the features we are interested in plotting the partial
dependence function and XC are the remaining features in the
model f̃ . The feature vectors xS and XC make the dataset X. The
partial dependence function is defined as

f̃S(xS) = EXC [f̃ (xS, XC)] =
∫

f̃ (xS, XC)dP(XC) (3)

where EXC represents the expected value of the function (xS,
XC) with respect to the probability distribution of the features XC,
denoted by P(XC).

From Equation 3, we can see that PDP works by marginalizing
the output of the ML model over the distribution of features in C so
that we can see the relationship between the function in set S and
the predicted outcome.

Let n be the number of instances in the dataset. The partial
function f̃S is calculated by averaging over the training data.

f̃S(xS) = 1
n

n∑
i=1

f̃ (xS, x(i)
C ) (4)

In our case, where we are interested in binary classification and
the feature (age) is continuous, the PDPs display the probability
of developing lung cancer for different values of the features

in S, holding the features in C fixed. For categorical features
(smoking status and intensity), we get a PDP estimate by forcing
all data instances to have the same category. These plots were
compared between models trained on the balanced dataset and
those trained on the original, highly imbalanced data, allowing
visual inspection of how the learned relationships between features
and predictions differed.

2.5 LIME and imbalanced data

In this section, we examine how LIME works to explain why its
explanations change under different class distributions.

LIME (Ribeiro et al., 2016) approximates a black box model
f with a simple interpretable model g ∈ G locally around an
instance x:

explanation(x) = arg min
g∈G

∑
x′∈Z

πx(x′)(f (x′) − g(x′))2 + �(g), (5)

where Z is a set of perturbed samples around x, πx(x′) is a
proximity measure between x and x′ that assigns higher weight to
samples closer to x, f (x′) is the black box model’s prediction on
perturbed sample x′ ∈ Z, g(x′) is the surrogate (or interpretable)
model’s prediction and �(g) is a regularization term controlling the
complexity of the surrogate model.

For a model trained on imbalanced data with a majority
negative class, most predictions on the perturbed sample x′ ∈ Z
will be of the negative class, that is, f (x′) = 0 in many cases.
This skews the local neighborhood toward a single class, and the
surrogate model g, which is trained on these targets, learns the
decision boundary of the negative class rather than the local points
around x. The explanation may no longer reflect what influences
the positive prediction for x.

Suppose the surrogate model g is a linear model:

g(x′) = β0 +
d∑

j=1

βix′j (6)

The optimisation problem in Equation 5 becomes

arg min
β

∑
x′∈Z

πx(x′)(f (x′) − β0 −
d∑

j=1

βix′j)
2 (7)

Under imbalanced data where most f (x′) = 0, g(x′) becomes
biased toward approximating the negative class. The learned
coefficients βj then no longer represent the local contribution of
each feature to the prediction at x, causing different explanations
when compared across models trained on balanced datasets.

2.6 SHAP and imbalanced data

In this section, we analyse SHAP’s underlying mechanism
to explain changes in its explanations across different training
class distributions.
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SHAP (Lundberg and Lee, 2017) values are grounded
in cooperative game theory, originally proposed by Lloyd
Shapley in 1953. In this framework, the model prediction
represents the “payout” of the game, and input features act as
“players” contributing to that payout. SHAP values aim to fairly
distribute the model’s output among the features based on their
marginal contributions.

Let p be the number of features in dataset X ∈ R
p and let

S ⊆ {1, . . . , p} be a set of features. Let us denote the complement
of S as SC = {1, . . . , p}\S, that is, the set of features not in S and
i ∈ {1, . . . , p} be the features of interest.

The Shapley value for a feature i and data instance x(j) is
(Molnar, 2025):

φi(f , x(j)) =
∑

S⊆{1,...,p}\{i}

|S|!(p − |S| − 1)!
p!

[(v(S ∪ {i}) − v(S))], (8)

where v(S) is the model’s expected output when only the features in
S are known. This value function is formally defined as:

v(S) = EXSC [f (XS, XSC ], (9)

which can be rewritten as an integral over the marginal distribution:

v(S) =
∫

f (Xs ∪ XSC )P(XSC |XS)dXSC (10)

Here, P(XSC |XS) reflects the conditional distribution of the
unknown features SC given the known ones S. The conditional
distribution and therefore the value function depends directly on
the overall data distribution P(X).

In imbalanced datasets, P(X) is heavily skewed toward the
majority class. However, when the model is trained on balanced
data, the training distribution is changed to Pbalanced(X), where:

Pbalanced(Y = 1) ≈ Pbalanced(Y = 0) (11)

This changes both the learned model f and the conditional
distribution Pbalanced(XSC |XS)| in Equation 10. Therefore, the
SHAP value function v(S) is computed over a different distribution,
that is,

vimbalanced(S) �= vbalanced(S) 	⇒ φimbalanced
i �= φbalanced

i (12)

Moreover, when models are trained on imbalanced data, the
prediction for the minority class shrinks, which in turn shrinks the
value function v(S) and, in turn, shrinks (Equation 8). We will see
an empirical example of this in Section 3.2.1.

Because global feature importance scores are derived from
mean absolute SHAP values across the dataset:

Ii = 1
n

n∑
j=1

|φi(f , x(j))|,

it follows that a shift in the underlying distribution P(X) will
influence the SHAP values φi and thus resulting importance scores
Ii. This results in different feature rankings when comparing
models trained on imbalanced compared to balanced datasets.

3 Results

3.1 Evaluation of model performance under
class imbalance

The performance of the models was evaluated using AUC,
sensitivity, and specificity. We computed sensitivity and specificity
for all models at optimal thresholds, with different levels of class
imbalance, using Youden’s J index (Schisterman et al., 2008).
Figures 1, 2 show the model’s performance of MLP, RF, and XGB
trained across different levels of class imbalance. The highest AUC
is achieved for RF and MLP when trained on balanced data with
40%, 30%, and 20% lung cancer cases. The AUC is also consistently
high for RF at all levels of class imbalance. The AUC of both
MLP and XGB starts dropping as the lung cancer cases drop
to 5% and goes down further when trained under the original
imbalanced class distribution. Hence, the AUC of the models
dropped as the level of class imbalance increased. Similarly, RF
achieved the highest sensitivity when trained with 40% lung cancer
cases, with sensitivity remaining comparable across models trained
under different levels of class imbalance. Both XGB and MLP
maintained a good trade-off between sensitivity and specificity
across all imbalance levels.

To evaluate whether the observed differences in AUC,
sensitivity, and specificity were statistically significant, we
compared each imbalanced model with the balanced reference
model using the Mann-Whitney U test. We applied bootstrapping
on the test dataset to generate 100 bootstrap samples, from
which we obtained distributions of model performance for
each metric. The null hypothesis stated that there was no
difference in performance between balanced and imbalanced
models, while the alternative hypothesis stated that there was a
difference. Across all comparisons and metrics, the p-value was
less than 0.01, indicating statistically significant differences in
performance of imbalanced models compared to the balanced
reference model.

3.2 Evaluation of LIME and SHAP under
class imbalance

3.2.1 Evaluation using consistency metrics
Figures 3, 4 present the evaluation of top-10 feature rankings

given by LIME and SHAP across models trained with varying
percentages of lung cancer cases relative to a reference balanced
model using Jaccard similarity index and Rank Agreement.

For LIME, the highest Jaccard similarity with respect to the
balanced model was observed in the RF model trained on 40%
lung cancer cases with a gradual decline in Jaccard similarity as
the class imbalance increased (Figure 3a). A similar trend was
observed for XGB and MLP, where models trained on 40% lung
cancer cases showed relatively high Jaccard similarity, followed
by a gradual decline as class imbalance increased and reached
its lowest values for models trained on the original imbalanced
distribution. In terms of rank agreement, similar patterns were
observed with rank agreement highest for models trained on 40%
lung cancer cases and decreasing as the percentage of cases declined
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FIGURE 1

AUC of models across different imbalance levels.

FIGURE 2

Performance of models across different imbalance levels.

(Figure 3b). Moreover, for all models, the rank agreement between
the balanced and original imbalanced models remained below
10%, indicating minimal overlap in the most important features
identified by LIME.

For SHAP, the MLP models trained on 30%–40% lung cancer
cases showed the highest Jaccard similarity with the balanced
reference (Figure 4a). As the degree of imbalance increased, the
Jaccard similarity gradually declined, mirroring similar patterns
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FIGURE 3

Comparison of top-10 feature rankings generated by LIME across varying percentages of lung cancer cases, evaluated against the balanced model
using (a) Jaccard Similarity Index and (b) Rank Agreement. All error bars shown in the figures throughout the study represent the standard error.

FIGURE 4

Comparison of top-10 feature rankings generated by SHAP across varying percentages of lung cancer cases, evaluated against the balanced model
using (a) Jaccard Similarity Index and (b) Rank Agreement.

observed with LIME. RF and XGB models showed a comparable
pattern, with relatively high Jaccard similarity at 40% lung cancer
cases that dropped as class imbalance increased, reaching its lowest
values for models trained on the original imbalanced distribution.
Rank agreement followed similar patterns, decreasing with greater
imbalance and falling below 10% across all models when compared
against the balanced reference model (Figure 4b).

To formally assess whether explanation consistency differed
between balanced and imbalanced models, we performed pairwise
statistical testing. For each imbalanced model and explanation
technique, we generated explanations for 100 test instances and
computed the Jaccard similarity and Rank Agreement between the
top-10 feature rankings of the imbalanced model and its balanced
reference. This produced 100 paired values per metric for each
setting. We then used the Wilcoxon signed-rank test to evaluate
whether these distributions were significantly different from the
balanced reference. For both LIME and SHAP, all models trained

on imbalanced datasets showed significant differences in both
Jaccard similarity and Rank Agreement (p < 0.01), indicating that
their feature rankings substantially differed from their respective
balanced reference model.

Therefore, the consistency of LIME and SHAP explanations
decreased with increasing class imbalance when evaluated against
a balanced dataset, highlighting that both techniques were sensitive
to changes in class distributions. The models trained on more
balanced data generally performed better compared to imbalanced
datasets in terms of AUC, sensitivity, and specificity; however,
the relationship between predictive performance and explanation
consistency is not perfectly linear across all models and class
imbalance levels. This suggests that although poorer model
performances often coincide with less reliable feature attribution
rankings, factors related to class distribution also influence
explanation consistency. Therefore, it is important to carefully
evaluate explanation techniques in imbalanced clinical datasets
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FIGURE 5

Class-wise comparison of the top-10 feature rankings generated by LIME across different imbalanced models relative to the balanced model using:
(a) Jaccard Similarity Index for explanations of lung cancer cases, (b) Rank Agreement for lung cancer cases, (c) Jaccard Similarity Index for non-lung
cancer cases, (d) Rank Agreement for non-lung cancer cases.

because changes in data balance can affect both model performance
and interpretability.

3.2.2 Evaluation of class-wise explanation
consistency

In this section, we present a class-wise evaluation of
explanation consistency for the minority (lung cancer
cases) and majority (non-lung cancer cases) classes
using LIME and SHAP. Figures 5, 6 show class-wise
comparisons of the top-10 feature rankings from balanced
and imbalanced models, evaluated using the Jaccard
similarity index and Rank Agreement for LIME and
SHAP, respectively.

For LIME, explanations of lung cancer cases (Figures 5a, b)
showed the highest Jaccard similarity in RF models trained on
40% lung cancer cases, followed by a gradual decline as class
imbalance increased. XGB models displayed a similar pattern,
with relatively higher Jaccard similarity at a higher percentage
of lung cancer cases and the lowest similarity when trained
on the original imbalanced dataset. Comparable results were
observed for explanations of non-lung cancer cases (Figures 5c,
d), where Jaccard similarity was consistently lowest for models
trained on the original imbalanced data. Rank Agreement followed
a similar trend across both classes, with agreement against the
balanced reference models decreasing as the imbalance increased,

showing minimal overlap in feature orderings for the most
imbalanced models.

For SHAP, explanations of lung cancer cases (Figures 6a, b)
showed that MLP models trained on 5%–40% lung cancer cases
achieved higher Jaccard similarity than XGB and RF models trained
on the same distributions. However, as the imbalance increased
further, their similarity declined below that of RF and XGB. A
similar pattern was observed for explanations of non-lung cancer
cases (Figures 6c, d). Rank Agreement also decreased steadily with
greater imbalance for both classes, with all models sharing less than
5% of feature orderings with their balanced reference when trained
on the original imbalanced dataset.

To formally assess whether explanation consistency differed
between balanced and imbalanced models, we performed statistical
testing for explanations of both minority and majority classes,
following the procedure described in Section 3.2. For both LIME
and SHAP, explanations of minority and majority classes showed
significant differences in Jaccard similarity and Rank Agreement
when comparing imbalanced models with their balanced reference
(p < 0.01), indicating that feature rankings were substantially
altered under imbalance. We also tested whether explanation
consistency differed significantly between minority and majority
classes within each imbalanced model. For this, we compared the
distributions of Jaccard similarity and Rank Agreement of each
imbalanced model relative to their balanced reference for the two
classes. No significant differences were observed (all p > 0.01).
This suggests that imbalance primarily affects Jaccard similarity and
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FIGURE 6

Class-wise comparison of the top-10 feature rankings generated by SHAP across different imbalanced models relative to the balanced model using:
(a) Jaccard Similarity Index for explanations of lung cancer cases, (b) Rank Agreement for lung cancer cases, (c) Jaccard Similarity Index for non-lung
cancer cases, (d) Rank Agreement for non-lung cancer cases.

Rank Agreement of both classes relative to the balanced reference
but does not create a significant difference between classes within
the same imbalanced model.

3.2.3 An empirical illustration of variation in
explanations by LIME and SHAP

We present an empirical example demonstrating how LIME
and SHAP explanations differ when models are trained on balanced
vs. imbalanced data.

We selected a patient diagnosed with lung cancer and examined
the LIME coefficients, that is, the weights of the local surrogate
linear model for this individual prediction. Figures 7, 8 display
the LIME explanations generated from the XGB model trained on
balanced and original imbalanced datasets for the same patient,
respectively. Each bar in the plots represents the contribution of
a feature to the predicted outcome for the selected patient, with
feature values shown alongside.

In Figure 7, the feature age is assigned a coefficient of 0.15.
In contrast, in Figure 8, the same feature receives a coefficient of
only 0.01 when the model is trained on the original imbalanced
dataset. This substantial difference in attribution highlights how the
LIME explanations and thus the local interpretability are affected
by the underlying training distribution of the model. Moreover,
we see that the feature diabetes with no end stage complications
appears in the top-5 important features for the patient when the
model is trained on the original imbalanced data (Figure 8) but

FIGURE 7

LIME explanations from the XGB model trained on balanced data for
a patient diagnosed with lung cancer.

does not appear for the balanced model. These findings reinforce
the theoretical result that changes in the training data distribution
lead to changes in the learned model f , which in turn alters
the predictions on locally perturbed samples and thus results
in different LIME surrogate models. Therefore, LIME feature
attributions are not consistent across models trained with differing
class distributions.

Similarly, we illustrate how SHAP values differ for the same
patient as above when using an XGB model trained on the original
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FIGURE 8

LIME explanations from XGB model trained on original imbalanced
data for a patient diagnosed with lung cancer.

imbalanced dataset compared to the balanced dataset. For this
instance x(j), we compute the SHAP value φj(f , x(j)) for each
feature i. Figures 9, 10 show SHAP waterfall plots for this patient,
using models trained on the balanced and the original imbalanced
dataset, respectively. The x-axis represents the SHAP values, and
the y-axis represents the individual features, along with their
specific values for the selected patient.

In Figures 9, 10 the top of each plot shows the predicted
probability f (x(j)) for the selected patient and the model’s expected
output E[f (X)] along the x-axis. For this positive case, the model
trained on imbalanced data produces a lower predicted probability
because it is biased toward the majority class (Figure 10). Since
SHAP values are additive, their sum equals the difference between
the predicted and expected probabilities. A lower predicted
probability, therefore, reduces the absolute size of the SHAP values,
as seen in Figure 10, where the SHAP values of the top-10 features
are smaller than in Figure 9. For example, in Figure 9, the balanced
model assigns a SHAP value of 0.16 to feature smoking status
and intensity, making it the second most important feature. In
the imbalanced model (Figure 9), the same feature for the same
patient has a SHAP value of 0.05 and is ranked third. This shows
that class imbalance affects both the model’s predictions and the
feature attribution values used for interpretation, supporting our
theoretical explanation in Section 2.6.

3.3 Evaluation of PDPs under class
imbalance

To further evaluate the changes in model behavior due to class
imbalance, PDPs were generated for the top-2 clinically plausible
features, age and smoking status and intensity (Callender et al., 2023;
Rai et al., 2024) for models trained on balanced and the original
imbalanced datasets.

Figure 11 illustrates the PDPs for the predictors age and
smoking status and intensity in XGB models trained on balanced
and highly imbalanced datasets. For the balanced model, a
monotonic relationship is observed between age and predicted
probability of lung cancer diagnosis, that is, the likelihood increases

with age. This trend aligns with epidemiological evidence reported
in Cancer Research UK (2019), which shows that lung cancer
incidence rates rise substantially between ages 40 and 79. In
contrast, the model trained on the original imbalanced dataset
displays a non-monotonic, erratic relationship between age and
lung cancer probability, suggesting that the model fails to learn a
clinically coherent pattern under severe class imbalance. Similarly,
for smoking status and intensity, the model trained on balanced data
assigns increasing probabilities of lung cancer from Ex Unknown
to Current Unknown smokers, with the highest for Current Heavy
smokers. This pattern is consistent with findings from Liao et al.
(2023) where heavy smoking is associated with highest hazard ratio
relative to other categories. However, the imbalanced model’s PDP
for smoking status and intensity shows less consistent structure.
While Current Unknown and Current Heavy smokers still yield
higher predicted probabilities, it lacks the smooth or clinically
intuitive pattern observed in the balanced model.

In Figure 12, for the RF model trained on balanced data, the
predicted probability of lung cancer shows an upward trend with
age, leveling off between ages 70 and 80. This indicates a strong,
clinically plausible relationship between increasing age and lung
cancer risk. In the RF model trained on an imbalanced dataset, a
generally monotonic relationship with age is still present, but the
pattern is less distinct compared to the balanced model, suggesting
that class imbalance may reduce the model’s ability to learn specific
patterns. With respect to smoking status and intensity, the balanced
RF model shows higher predicted probabilities for Current and Ex
smokers, although the variation across smoking intensities is less
pronounced than observed in the XGB model. In the RF model
trained on imbalanced data, the predicted probabilities follow a
pattern similar to the balanced model with higher lung cancer
risk associated with Current smokers compared to Ex smokers. In
this instance, the model captures clinically relevant distinctions in
smoking behavior in both balanced and imbalanced data.

In Figure 13, for the MLP model trained on both balanced and
imbalanced datasets, the relationship between age and the predicted
probability of lung cancer appears approximately linear. In the
balanced model, there is a clear and clinically coherent pattern
that the probability of lung cancer increases with smoking status
and intensity, with Current smokers exhibiting higher predicted
risk than Ex smokers, aligning well with established findings in
the literature. In contrast, for the MLP model trained on the
original imbalanced dataset, the pattern deviates from this expected
trend, resembling a bell-shaped curve. The highest predicted
probability is assigned to Ex Heavy smokers, suggesting that the
model may misrepresent the true risk distribution under severe
class imbalance.

The analysis of PDPs across models trained on balanced
and original imbalanced datasets suggests that class imbalance
may degrade the interpretability or clinical relevance of model
behavior. For some models (e.g. RF), predictions remained
relatively consistent across models trained under different class
distributions, capturing clinically plausible relationships in both
balanced and imbalanced scenarios. However, other models (e.g.
MLP) showed notable shifts in learned patterns under class
imbalance, particularly in interpreting smoking status and intensity.
Hence, model-specific evaluation of explanation robustness and

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2025.1682919
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Rai et al. 10.3389/frai.2025.1682919

FIGURE 9

SHAP values with XGB model trained on balanced data for patient diagnosed with lung cancer.

FIGURE 10

SHAP values with XGB model trained on original imbalanced data for a patient diagnosed with lung cancer.

consistency is essential in high-stakes settings such as healthcare,
where trust in both model predictions and explanations is critical.

4 Discussion

Despite the rapid advancement and widespread publication
of AI techniques in medical research, statistical methods remain
the primary tools used in clinical practice. For example,
QRISK3 (Hippisley-Cox et al., 2017), a Cox proportional hazards
model used to estimate 10-year cardiovascular risk, is routinely

implemented in UK primary care by the National Health Service
(NHS). These models are favored for their interpretability, as
hazard ratios provide a clear and direct way to compare risks across
patient groups. Similarly, logistic regression’s output in the form
of odds ratios is widely understood and trusted by clinicians. The
Liverpool Lung Project (LLP) risk model (Cassidy et al., 2008),
which applies logistic regression to case-control data, has been used
in selecting individuals for the UK Lung Cancer Screening Trial
(Field et al., 2016). While ML models such as XGB and RF (Pan
et al., 2023; Rai et al., 2023) have demonstrated improvements in
discrimination and calibration over traditional statistical models,
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FIGURE 11

Comparison of PDPs for (a, b) age and (c, d) smoking status and intensity in XGB models, trained on balanced (a, c) and imbalanced (b, d) data,
showing changes in model behavior.

their adoption in clinical practice remains limited. This is especially
true for risk prediction models using structured tabular data,
where statistical models still perform quite well and are inherently
interpretable.

To facilitate the clinical acceptance of ML-based decision
support tools, XAI techniques must be stable, trustworthy, and
robust, especially when dealing with rare health outcomes such
as lung cancer, where class imbalance is common. In this study,
we have shown that ML models trained on imbalanced data can
produce different explanations than those trained on balanced
data, which not only affects predictive performance but also
undermines the reliability of XAI techniques. Previous work,
such as Chen et al. (2024), has investigated how class imbalance
affects the stability of LIME and SHAP explanations by measuring
variance across multiple runs. However, their study focuses on
a financial credit dataset. Our study extends this by assessing

consistency in feature attribution rankings across models trained
under different class distributions by using models trained on
balanced data as a reference. We also examined how explanation
consistency relates to model performance and provided theoretical
foundations to explain why LIME and SHAP explanations become
less consistent under skewed class distributions. Moreover, while
Wang et al. (2023) uses ML models with SHAP and PDP to
interpret their models to predict Chronic Obstructive Pulmonary
Disease (COPD), their study employed SMOTE to address an
imbalance ratio of approximately 5%. Our findings show that
PDPs are sensitive to the training data distribution, which implies
that different levels of class imbalance can lead to varying model
interpretations, highlighting the need for careful treatment of
class imbalance when using visual interpretability tools. While Lai
et al. (2019) explores feature importance variability across models
using textual data, they do not provide theoretical explanations
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FIGURE 12

Comparison of PDPs for (a, b) age and (c, d) smoking status and intensity in RF models, trained on balanced (a, c) and imbalanced (b, d) data,
showing changes in model behavior.

for the observed inconsistencies. In contrast, our study contributes
theoretical insight into how and why LIME and SHAP explanations
change under different class distributions, which is also supported
by empirical evidence.

This study has several limitations. The reference dataset
used for comparison was created through an undersampling
approach to achieve class balance. Future research could explore
whether similar findings hold when using oversampling methods
such as SMOTE. However, the balanced reference dataset
created by random undersampling may introduce biases. By
artificially reducing the number of non-lung cancer cases, the
models are trained on a distribution that does not reflect real-
world prevalence, which can affect model calibration (Piccininni
et al., 2024). In particular, the estimated probabilities of
lung cancer are inflated under undersampling even though
class balance may improve model performance. Future study
should therefore explore alternative balancing strategies such as

oversampling (e.g., SMOTE) or matching-based approaches and
systematically assess how different methods affect both calibration
and explanation consistency. Additionally, our experiments were
conducted exclusively on a lung cancer cohort derived from the
CPRD dataset. Future studies could involve replicating the analysis
across diverse datasets to strengthen the generalisability of our
conclusions. Moreover, our experiments were conducted on a
lung cancer cohort from the CPRD dataset (version 2021), which
included follow-up data up to 2020 and was the most recent version
available to us. Future study could extend our analysis to more
recent releases to confirm whether the findings hold in updated
populations. Another limitation is the lack of external validation
to evaluate model performance and explanation consistency in an
independent dataset. Such validation will be essential to establish
robustness and clinical applicability. However, we argue that the
theoretical foundations we provide for LIME and SHAP offer
a rationale for why explanation consistency deteriorates under
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FIGURE 13

Comparison of PDPs for (a, b) age and (c, d) smoking status and intensity in MLP models, trained on balanced (a, c) and imbalanced (b, d) data,
showing changes in model behavior.

class imbalance, supported by our empirical evaluation with the
CPRD dataset. These insights are further supported by the patterns
observed in PDPs.

Hence, a systematic framework for evaluating the reliability
and consistency of XAI techniques is needed before these
methods can be deployed in healthcare settings. Therefore,
more studies on evaluating XAI techniques are needed to
build clinical trust and enable the broader adoption of AI in
primary care.

5 Conclusion

In this study, we developed a comparative framework using
Jaccard similarity index and Rank Agreement to evaluate the
consistency of LIME and SHAP explanations under class imbalance
in predicting lung cancer risk from CPRD data. A balanced

dataset achieved using random undersampling with an equal
number of lung cancer and non-lung cancer cases is used as
a reference to compare explanation consistency across models
trained under different class distributions. We trained XGB, RF,
and MLP models and examined the relationship between model
performance and explanation consistency to identify potential
trade-offs between performance and interpretability. Furthermore,
we conducted a deeper theoretical and empirical investigation of
how the consistency of explanations based on LIME and SHAP
varies under class imbalance using Jaccard similarity and Rank
Agreement, and how this impacts interpretability. We further
conducted a detailed assessment of explanation consistency for
the minority (lung cancer cases) and majority (non-lung cancer
cases) classes. Lastly, we incorporated PDPs into our evaluation
framework to assess how the model’s learning of clinically relevant
features for predicting lung cancer risk changed across balanced
and imbalanced datasets.
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First, we find that the AUC of the models decreased as class
imbalance increased, especially for MLP and XGB models, where
performance dropped significantly when trained on datasets with
1% class imbalance and the original lung cancer prevalence. RF
achieved the highest sensitivity when trained with 40% lung cancer
cases, while both XGB and MLP maintained a good trade-off
between sensitivity and specificity across all imbalance levels.
Second, the consistency of LIME and SHAP explanations decreased
as class imbalance increased when evaluated against a balanced
dataset, highlighting that both techniques were sensitive to changes
in class distribution. This effect was also observed when looking
specifically into explanations of lung cancer and non-lung cancer
cases, confirming that explanation consistency deteriorates equally
for minority and majority classes under class imbalance. Third,
we analyzed the internal mechanisms of LIME and SHAP and
empirically demonstrated that LIME coefficients and SHAP values
shrink under models trained on a highly imbalanced dataset
compared to a balanced dataset. Lastly, PDPs revealed changes
in model behavior between balanced and imbalanced training
scenarios with respect to clinically relevant features for predicting
lung cancer risk: age and smoking status and intensity. Our findings
suggest that model interpretability, rather than just predictive
performance, is affected by class imbalance. Therefore, researchers
and practitioners must exercise caution when applying resampling
techniques or interpreting XAI outputs, particularly in imbalanced
data scenarios, which are common in healthcare data.

Our findings have important clinical implications. In settings
where models are trained on highly imbalanced data, explanation
variability may lead to different clinical features being highlighted
as important, undermining clinical trust and affecting decision-
making. To mitigate this, we recommend using balanced models
as reference baselines when evaluating explanation consistency. In
practice, explanations of ML models should be benchmarked across
multiple XAI techniques and under different training distributions
to identify features that are consistently important. Future research
should also focus on developing explanation techniques that are
inherently more robust to class imbalance. Establishing a systematic
framework for evaluating explanation consistency under varying
data distributions will be an important step toward the reliable and
clinically responsible use of XAI in healthcare.
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