:' frontiers ‘ Frontiers in Artificial Intelligence

@ Check for updates

OPEN ACCESS

EDITED BY

Sunyoung Jang,

SUNY Upstate Medical University,
United States

REVIEWED BY

Abedalmuhdi Almomany,

Gulf University for Science and Technology,
Kuwait

Precious Idogun,

Beaumont Health, United States

*CORRESPONDENCE
Meshari Alazmi
ms.alazmi@uoh.edu.sa

RECEIVED 11 August 2025
REVISED 09 October 2025
ACCEPTED 04 November 2025
PUBLISHED 27 November 2025

CITATION
Alazmi M, AlGhadhban A, Almalaqg A,

Said KB and Faden Y (2025) Statistical and
machine learning approaches for identifying
biomarker associations in respiratory diseases
in a population-specific region.

Front. Artif. Intell. 8:1682774.

doi: 10.3389/frai.2025.1682774

COPYRIGHT

© 2025 Alazmi, AlGhadhban, Almalaqg,

Said and Faden. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Artificial Intelligence

TYPE Original Research
PUBLISHED 27 November 2025
pol 10.3389/frai.2025.1682774

Statistical and machine learning
approaches for identifying
biomarker associations in
respiratory diseases in a
population-specific region

Meshari Alazmil?*, Amer AlGhadhban?3, Abdulaziz Almalag??,
Kamaleldin B. Said®* and Yazeed Faden®

!College of Computer Science and Engineering, University of Hail, Hail, Saudi Arabia, 2Medical and
Diagnostic Research Center, University of Hail, Hail, Saudi Arabia, *College of Engineering, University
of Hail, Hail, Saudi Arabia, *Department of Pathology, College of Medicine, University of Hail, Hail,
Saudi Arabia, °Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh,
Saudi Arabia

The growing interest in utilizing clinical blood biomarkers for non-invasive diagnostics
has transformed the approach to early detection and prognosis of respiratory diseases.
Biomarker-driven diagnostics offer cost-effective, rapid, and scalable alternatives
to traditional imaging and clinical assessments. In this study, we conducted a
retrospective analysis of 913 patients from a local respiratory clinic in Hail region,
evaluating the diagnostic relevance of 15 blood biomarkers across four respiratory
conditions: COVID-19, pneumonia, asthma, and other complications. Through
data-driven analysis, statistical correlation assessments, and machine learning
classification models (decision tree classifiers), we identified significant biomarker
interactions that contributed to disease differentiation. Notably, CRP and HGB
demonstrated a strong negative correlation (—55%), supporting the well-established
role of systemic inflammation in anemia of chronic disease. Additionally, Ferritin
and LDH exhibited a positive correlation (+50%), indicating metabolic stress and
cellular injury in severe respiratory illnesses. Other significant correlations included
Creatinine and ESR being negatively associated with RBC, while GGT and ALT
were positively correlated (+49%). Additionally, bilirubin and HGB were positively
correlated (+49%), collectively reflecting systemic inflammatory and metabolic
responses associated with respiratory pathology. The machine learning model
demonstrated high predictive accuracy, with the following performance metrics:
COVID-19: Precision (0.94), Recall (0.96), F1-score (0.95). Pneumonia: Precision
(0.97), Recall (0.71), F1-score (0.85). Asthma: Precision (1.00), Recall (0.95), F1-score
(0.97). Other Complications: Precision (0.88), Recall (0.90), F1-score (0.90). These
findings validate the diagnostic potential of biomarker panels in respiratory disease
classification, offering a novel approach to integrating statistical and computational
modeling for clinical decision-making. By leveraging biomarker relationships
and machine learning algorithms, this study contributes to the development of
personalized, non-invasive, and cost-effective diagnostic tools for respiratory
diseases, ultimately improving patient outcomes and healthcare efficiency.
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1 Introduction

The early and accurate diagnosis of respiratory diseases holds the
potential to enhance patient outcomes while simultaneously reducing
healthcare costs (Larsson et al., 2019). Recently, there has been a
growing interest in clinical blood biomarkers for non-invasive
diagnosis and prognosis of various lung diseases (Liu et al., 2021).
Biomarkers such as C-reactive protein (CRP), procalcitonin, and club
cell protein 16 (CC16) have been investigated for their association
with inflammatory lung diseases like COPD (Rosenberg and Kalhan,
2012). Elevated levels of fibrinogen and white blood cell counts have
been reported in COPD patients, indicating their potential as
prognostic markers (Thomsen et al., 2012).

The recent development in lung cancer diagnosis has shown
progress through the investigation of blood-based biomarkers, such
as circulating tumor DNA (ctDNA), microRNAs (miRNAs), and
certain proteins that display promising potential for early detection
(Saman et al., 2022). In a notable study by Smith et al., a combination
of multiple biomarkers, including carcinoembryonic antigen (CEA)
and cytokeratin 19 fragment (CYFRA 21-1), demonstrated the
potential to enhance the predictive accuracy for lung cancer diagnosis
(Okamura et al., 2013). Similarly, pulmonary fibrosis has been
associated with increased levels of matrix metalloproteinases (MMPs)
and Krebs von den Lungen-6 (KL-6) in the blood (Hamai et al., 2016).
The use of advanced techniques like mass spectrometry and next-
generation sequencing has facilitated the identification and validation
of novel biomarkers with high sensitivity and specificity (Wheelock
etal., 2013).

Nonetheless, challenges remain in standardizing these blood
biomarker tests; factors such as age, sex, and comorbid conditions can
influence their levels (Chang and Wu, 2022). The future trajectory of
this field encompasses the integration of clinical, imaging, and multi-
omics data to develop comprehensive models for lung disease
prediction (Blutt et al., 2023).

Respiratory diseases encompass a wide range of pathologies, from
chronic conditions like COPD and asthma to acute and severe diseases
such as lung cancer. The search for non-invasive diagnostic and
prognostic markers has led researchers to examine various clinical
blood biomarkers. For instance, several studies have highlighted the
importance of CRP as a potential marker for COPD and its
exacerbations (Ridker, 2007). Elevated CRP levels in the blood
indicate inflammation and have been associated with increased risk
and severity of COPD (Mannino et al., 2012). The procalcitonin
biomarker, mainly tied to bacterial infections, has been investigated
for its potential in distinguishing bacterial from viral pneumonia—an
insight which can help in appropriate antibiotic administration
(Christ-Crain and Miiller, 2005). Elevated levels of the Cytokeratin-19
fragment (CYFRA 21-1) have been identified in patients with
non-small cell lung cancer (NSCLC), suggesting its potential role as a
diagnostic or prognostic marker (Pujol et al., 1996). Emerging studies
focusing on lung cancer emphasize the potential of circulating tumor
DNA (ctDNA) as a minimally invasive technique for detecting
mutations, monitoring treatment response, and potentially predicting
disease recurrence (Wan et al., 2017). Club cell secretory protein
(CC16) levels have been explored for their relation with lung function
decline and COPD risk. Lower serum CC16 levels have been linked
to an elevated risk of COPD and rapid lung function deterioration
(Guerra et al,, 2015). An accumulating list of evidence suggests that
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the Neutrophil-to-lymphocyte ratio (NLR) could be a promising
prognostic marker for various lung diseases, including
NSCLC. Elevated NLR is linked with poorer outcomes and decreased
survival rates in NSCLC patients (Cedrés et al., 2012). Additionally,
soluble ST2 (sST2) levels have demonstrated associations with
idiopathic pulmonary fibrosis (IPF) severity and prognosis. Elevated
sST2 levels may indicate a higher risk of disease progression and
mortality (Yu et al., 2022).

Correlations between various blood markers and respiratory
diseases have been extensively explored in clinical medicine. Many of
these markers offer insights into the inflammatory, metabolic, and
structural status of the body, relevant to respiratory conditions.
Elevated C-reactive protein (CRP) levels typically indicate
inflammation, with conditions like pneumonia, COPD exacerbations,
and asthma showing increased CRP levels due to the inflammatory
response in lung tissue (Pdvoa, 1998). Similarly, an elevated
Erythrocyte sedimentation rate (ESR) is indicative of inflammation,
with conditions like tuberculosis and sarcoidosis showing heightened
ESR levels (Chopra and Abdel-Naser, 2018). While high ferritin levels
are not specific to lung diseases, they can be observed in acute
inflammatory states or conditions like hemochromatosis. Rare cases,
such as pulmonary hemosiderosis, may also exhibit such levels
(Milman and Kirchhoff, 1992). Elevated Lactate dehydrogenase
(LDH) can be seen in conditions where there is tissue damage,
including pneumonia and pulmonary embolism. LDH might
be particularly elevated in conditions like Pneumocystis jirovecii
pneumonia, a common condition in immune-compromised
individuals (Yale and Limper, 1996). While not directly related to
respiratory diseases, elevated BUN and Creatinine levels might
indicate kidney dysfunction, which could occur as a secondary effect
of conditions like ARDS, affecting multiple organ systems (Bellomo
and Ronco, 1998). Lower albumin levels may suggest chronic illness,
malnutrition, or liver disease. Some chronic respiratory conditions
like COPD can be associated with a decreased albumin level due to
chronic inflammation or reduced dietary intake (Schols et al., 1998).
Direct correlations between liver enzymes (such as ALT, AST,
Bilirubin, GGT) and lung diseases are limited. However, right-sided
heart failure induced by severe lung disease (cor pulmonale) can lead
to liver congestion and elevated liver enzymes (Alvarez and
Mukherjee, 2011). Although not directly linked to respiratory
diseases, the total protein test might reflect nutritional status and
overall health. Additionally, chronic hypoxia from lung diseases like
COPD can stimulate the production of more RBCs, resulting in
elevated hemoglobin (HGB) levels (El-Korashy, 2012). Likewise,
chronic lung diseases causing hypoxia could lead to an elevated Red
blood cell (RBC) count, a condition known as secondary polycythemia
(Smith and Landaw, 1978). Elevated White blood count (WBC) could
indicate infection or inflammation, often seen in respiratory infections
like pneumonia or bronchitis (Macfarlane, 1995).

With the above backdrop, we can observe that blood biomarkers
are widely considered as a convenient means to diagnose and assess
the severity of respiratory diseases. While many markers show
promising results in the early detection of respiratory diseases, it is
essential to conduct further large-scale studies to establish their
validity and clinical utility. In this pilot study, we retrospectively
collected data from a cohort from the local Hospital in Hail,
Saudi Arabia. The focus was on the patients who visited the respiratory
clinics and were diagnosed with COVID-19, asthma, pneumonia, or
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other respiratory diseases. Then, statistical analysis and a fitted model
were performed to analyze the blood markers that could together
indicate these diseases. To the best of our knowledge, this is the first
study to combine multiple blood markers and compare them to find
possible correlations to the diagnosis of respiratory disease in Hail,
Saudi Arabia.

2 Materials and methods
2.1 Study population

Our study considered a cohort from the local Hospital located in
Hail city. The study was approved by the institutional review board
(IRB) of Hail University, Kingdom of Saudi Arabia. We considered
patients who visited the respiratory clinics in that hospital. Thus,
we collected clinical datasets for 913 patients with 1,632 encounters
on March 4th, 2025. We did not consider two or more visits within
2 weeks’ time. We did this to avoid the discrepancy and repetitions of
the data, and a wider range of different patients with their associated
clinical markers.

2.2 Study sample

We focused on 15 blood markers to see their contribution to
respiratory diseases. We also included the age and gender as different
features. We have chosen four different diagnoses’ codes (according to
the applied clinical coding). These four diseases represent COVID-19
(U07.1), pneumonia (J18.9, J12.9, and J15.9), asthma (J45.9), and
other respiratory complications (U07.2). Regarding the blood
markers, we have chosen the C-reactive protein (CRP), Erythrocyte
sedimentation rate (ESR), Ferritin, Lactate dehydrogenase (LDH),
Blood Urea Nitrogen (BUN), Creatinine, Albumin, ALanine
Transaminase (ALT), ASpartate aminoTransferase (AST), Bilirubin,
Gamma-Glutamyl Transferase (GGT), total protein, HemoGloBin test
(HGB), Red Blood Cell (RBC), and White Blood Count (WBC). The
other complications category comprises clinically coded respiratory
presentations that did not meet the predefined criteria for COVID-19,
pneumonia, or asthma (e.g., non-specific lower/upper respiratory
illness or mixed presentations as recorded by the treating team).
We recognize that this label is heterogeneous and may affect precision.

2.3 Overall statistics

This work is a descriptive/associational analysis using
nonparametric tests and multinomial regression for adjusted
associations. We did not train or tune predictive models, and
we therefore did not perform cross-validation, held-out testing, ROC/
PR analysis, or calibration. Where relevant, we report goodness-of-fit
diagnostics. We used Python, including NumPy, Pandas packages, to
do the analysis and calculate the averages, standard deviations. Also,
we used Python to plot figures using the Matplotlib package. In
addition, we used model fitness to see if the data we have can
be learned to predict the diagnosis or the disease, where we used the
Sklearn package in Python to generate a decision tree classifier for 4
different classes. These classes represent the four different diseases.
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2.4 Setting and period

We retrospectively assembled encounters from 2019 to
2020 dataset.

2.5 Inclusion criteria

Encounters with a clinician-assigned diagnosis in four categories:
COVID-19 (U07.1), Pneumonia (J18.9; J12.9; J15.9 collapsed to
J18.9), Asthma (J45.9), other complications (U07.2).

2.6 Exclusion criteria

(i) Missing or non-mappable outcome code, (ii) no laboratory
result within the analysis window, (iii) duplicate encounters within
14 days of a prior encounter for the same patient (earliest retained),
and (iv) implausible laboratory values or unresolved unit conflicts.

2.7 Laboratory timing window

For each encounter, we matched laboratory results via a patient-
level nearest-date join within +14 days of the index encounter date;
when multiple results existed in the window, the nearest result
was used.

2.8 Handling repeated encounters

Because patients may re-present, the primary inferential models
use cluster-robust standard errors. As a sensitivity analysis,
we repeated the analyses on the index encounter only (earliest
per patient).

2.9 Missing data

We first excluded encounters with fewer than 19 non-missing
fields. For descriptive summaries and correlations, analyses were
performed on pairwise complete cases; correlation cells with fewer
than 20 co-observations were suppressed and null values removed
during the correlation calculation process. For predictive modeling,
remaining missing laboratory values were imputed as 0 (no
missingness indicators were used). For descriptive summaries and
nonparametric comparisons, analyses were performed on pairwise
complete cases without imputation. To characterize data availability,
we computed the proportion of missing values for each biomarker
across the full overall cohort. These results are reported in
Supplementary Table S5.

2.10 Adjusted associations
For each biomarker, we fit a multivariable multinomial logistic

regression with diagnosis (CODE; reference U07.1) as the outcome
and the biomarker (z-scored) as the predictor, adjusted for age (per

frontiersin.org


https://doi.org/10.3389/frai.2025.1682774
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Alazmi et al.

decade) and sex (male vs. female). Results are reported as adjusted
odds ratios per 1 SD with 95% confidence intervals. We applied
Benjamini-Hochberg FDR across all coefficients (15 biomarkers x 3
non-reference contrasts), reporting q-values and considering
q < 0.05 significant.

3 Results

3.1 Overall description of the data,
including age and gender distribution

We have performed several tests and studies on the data collected.
There are 913 patients with 1,632 visits on different dates (more than
2 weeks for a single patient). Thus, the data distribution based on the
gender and age was performed (Table 1). From this table, it shows that
the highest age was 101 years old and the youngest patient was
10 years old. It shows that the males are more than the females overall,
in 57% male to 43% female, where the male average age was 51 and
the female was 53 (both genders’ average is around 52(+17) years old).
Then, the distribution of the ages is based on three different levels,
where the first one is between 40 and 60 years old, the second level is
below 40 years old, and the last one is above 60 years old. The first level
(the second part from Table 1) has around 641 patients (60% male and
40% female) with an average age of around 50 (£6) years old. The
second level has 449 patients (57% male and 43% female) with an
average age of around 31 (+6) years. The last level has around 532
patients (53% male and 47% female) with an average age of around 72
(£8) years. Overall, based on the analysis of the age and gender, 40%
of the patients’ ages range between 40 and 60, 27.5% are less than 40,
and lastly, 32.5% are above 60 years old.

Across the 15 biomarkers, overall missingness was substantial
(mean 73.37%, median 74.69%; range 52.51-86.95%). The highest

10.3389/frai.2025.1682774

LDH (85.11%), whereas the lowest was for RBC (52.51%), WBC
(52.82%), and BUN (59.13%) (see Supplementary Table S5). Given
this pattern, inferential analyses were restricted to pairwise complete
cases for each comparison, and results should be interpreted with
awareness of the varying data availability across biomarkers.

In multivariable analyses (multinomial logistic regression of
diagnosis on each biomarker, adjusted for age and sex; effect per 1-SD
increase), we tested 45 contrasts (15 biomarkers x 3 non-reference
outcomes vs. U07.1/COVID-19) and controlled multiplicity with
Benjamini-Hochberg FDR. Two contrasts remained significant after
adjustment (g < 0.05), both for J18.9 (Pneumonia) vs. U07.1 (COVID-
19) and involving RBC and WBC. No adjusted associations met the
FDR threshold for J45.9 (Asthma) or U07.2 (Other). Full results are
reported in Supplementary Table S6.

3.2 Normal ranges for the blood markers
and correlations with the respiratory
diseases

Table 2 shows the number of patients based on each blood marker
because some other patients for one measure are not tested and thus
have null values. Those null values are not counted where the counts
column represents the number of real values (not null) in each
measure. Then, we calculated the median, standard deviation,
minimum, and maximum values for each measure among the patients
shown in the count column.

Similar to Table 2 and Supplementary Table 1 summarizes
patients’ information, but only those diagnosed with asthma with the
known code for asthma (J45.9). Low, high, and normal columns
represent the number of asthma patients who have lower values than
the normal ranges based on each measure, higher values than the
normal ranges, or normal within the ranges for each measure,

missingness was observed for GGT (86.95%), Protein (85.85%), and  respectively.

TABLE 1 Shows the distribution of the patients based on age and gender.
Gender\age Counts Mean (std. dev) Median Minimum Maximum
Age All ages
Male 926 51.04 (+17.08) 49.00 10 101
Female 696 52.76 (+17.32) 52.00 16 93
All 1,622 51.75 (+17.20) 50.50 10 101

Between 40 and 60 years old inclusive
Male 387 49.14 (£6.03) 48.00 40 60
Female 254 50.43 (£5.70) 50.00 40 60
All 641 49.65 (£5.92) 49.00 40 60
Less than 40 years old
Male 257 31.08 (£6.33) 32.00 10.00 39
Female 192 31.32 (£5.10) 32.00 16.00 39
All 449 31.18 (£5.84) 32.00 10.00 39
Above 60 years old

Male 282 71.82 (+8.44) 69.00 61.00 101
Female 250 71.58 (+£8.26) 70.00 61.00 93
All 532 71.71 (+8.35) 69.00 61.00 101
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TABLE 2 Shows the number of patients, the median, standard deviation,
minimum, and maximum values for each measure.

10.3389/frai.2025.1682774

TABLE 3 Shows the normal ranges for each measure taken from the
hospital.

Measure Counts  Median Std. Min Max Measure Min Max Unit Corr.
Dev. Ratio

CRP 390 2.50 3.93 0.13 24.10 CRP 0 0.6 Mg/dL 0.199416
ESR 487 52.00 33.48 1.00 150.00 ESR 0 15 Mm/Hour 0.21415

FERRITIN 381 363.10 437.91 4.10 1650.00 FERRITIN 10 291 Ng/ml 0.174845
LDH 242 275.50 222.91 4.80 1372.00 LDH 100 190 U/L 0.253731
BUN 658 5.13 10.20 0.98 139.76 BUN 25 6.4 Mmol/L 0.098134
CREATININE 479 79.90 45.56 4.92 490.51 CREATININE 49 115 Umol/L 0.153747
Albumin 428 31.00 5.92 16.00 62.10 Albumin 34 50 g/L 0.084836
ALT 411 34.00 38.70 2.25 309.00 ALT 14 63 U/L 0.168551
AST 412 29.00 40.09 5.00 407.00 AST 15 37 U/L 0.156218
Bilirubin 297 7.10 5.82 0.20 44.50 Bilirubin 3 17 umol/L 0.044861
GGT 212 49.00 86.41 4.00 450.00 GGT 5 85 U/L 0.268126
Protein 229 67.90 7.25 45.90 89.10 Total Protein 64 82 g/L 0.281393
HGB 320 13.55 225 1.60 18.50 HGB 11.8 17.2 g/dL 0.249529
RBC 766 4.86 0.65 2.62 7.43 RBC 3.85 5.75 10A6/ul. 0.163705
WBC 761 7.06 4.03 1.03 44.88 WBC 36 11.4 10A3/uL 0.194183

Similarly, Supplementary Tables 2—-4 have been generated to
show the same information as in Supplementary Table 2, but for
patients who were diagnosed with COVID-19 disease (U07.1),
other respiratory diseases (other than COVID-19 disease) patients
(U07.2), and the pneumonia patients (J18.9, J12.9, and J15.9),
respectively.

Table 3 shows the normal ranges for the blood markers. Also,
we show the correlation ratio between each blood marker and the
diagnosis (diseases) since it measures the relationship between the
unordered nominal (4 diseases) column and continuous-value
features. Here, we have classified the patients into four different
diseases (COVID-19, asthma, pneumonia, and other respiratory
diseases). The blood markers that have a higher than 20% correlation
are ESR, LDH, GGT, total protein, and HGB.

In the biomarker-by-diagnosis analyses, we summarize, as shown
in Table 4, each test with the following fields. N denotes the number
of non-missing observations used for that biomarker (after pairwise
deletion with 4 classes), and k is the number of distinct diagnosis
categories actually present in those observations (up to 4 in our
setting; if k < 2, no omnibus test is performed; if k < 4, at least one
class had no data for that biomarker). The Kruskal-Wallis statistic
(KW_H), reported with degrees of freedom (KW_df=k—1),
quantifies the rank-based separation among groups; its corresponding
p-value (KW_p) tests the null hypothesis that all group distributions
are identical. Because multiple biomarkers are tested, we control the
false discovery rate using Benjamini-Hochberg and report the
FDR-adjusted g-value (KW_q); results with q < 0.05 are considered
statistically significant. To convey magnitude (not just significance),
we report epsilon-squared (KW_epsilon_sq) as an effect size for the
Kruskal-Wallis test and interpreted as the proportion of variability
attributable to between-group differences (rough benchmarks: ~0.01
small, ~0.06 medium, ~0.14 large). Where N is small or k < 4, results
are interpreted cautiously and complemented by descriptive
summaries; for biomarkers with significant omnibus tests, post-hoc
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The Correlation Ratio between each measure and the diseases (asthma, COVID-19,
pneumonia, and other respiratory complications).

Dunn comparisons (FDR-adjusted) can be provided to identify
which pairs of groups differ.

As in Table 4, for each biomarker we performed an omnibus
Kruskal-Wallis test across the four diagnosis groups. To account for
testing multiple biomarkers, we controlled the false discovery rate
(FDR) using the Benjamini-Hochberg (BH) procedure at a = 0.05
across the set of omnibus p-values (m = 15). We report BH-adjusted
q-values, with g < 0.05 considered statistically significant, alongside
the Kruskal-Wallis effect size epsilon-squared (¢?) to convey
magnitude. The interpretation is based on the omnibus tests, &%, and
per-group descriptive summaries (medians and IQRs).

3.3 Distributions of the values of each
blood marker compared with the normal
ranges

We have generated a comparison of the normal ranges of each
blood marker and COVID-19, pneumonia, asthma, and other
respiratory diseases. In each subfigure, black vertical lines represent
the minimum and maximum values for normal ranges for the
represented blood marker, as shown in Figure 1.

3.4 Correlations between the blood
markers

Based on the 15 chosen different blood markers, as there are
missing data for patients regarding these markers, we want to highlight
this drawback and the lack of information from the hospital. Thus,
we generated Table 5, which shows the distribution of the patients
based on the available data in each combination of two blood markers.
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TABLE 4 Shows the Kruskal-Wallis test for the biomarkers and the diseases (asthma, COVID-19, pneumonia, and other respiratory complications).

Measure N k KW_H KW_df KW_p KW_epsilon_sq KW_q
AST 414 4 58.21 3 0.000000 0.134656 0.000000
WBC 770 4 3531 3 0.000000 0.042183 0.000001
Albumin 430 4 34.85 3 0.000000 0.074762 0.000001
GGT 213 4 33.32 3 0.000000 0.145081 0.000001
FERRITIN 381 4 27.99 3 0.000004 0.066298 0.000010
CRP 390 4 27.81 3 0.000004 0.064277 0.000010
ESR 488 4 26.04 3 0.000009 0.047602 0.000020
CREATININE 487 4 25.75 3 0.000011 0.047100 0.000020
Protein 231 4 24.36 3 0.000021 0.094081 0.000035
BUN 667 4 24.00 3 0.000025 0.031681 0.000037
LDH 243 4 22.93 3 0.000042 0.083396 0.000057
HGB 320 4 21.89 3 0.000069 0.059790 0.000086
RBC 775 4 19.85 3 0.000182 0.021861 0.000210
ALT 413 4 18.49 3 0.000349 0.037868 0.000374
Bilirubin 298 4 0.56 3 0.904577 0.000000 0.904577

For example, 286 patients have both CRP and ESR values. Our
objective from this table is to generate Table 6, which shows the
correlation coefficient between each pair of blood markers based on
the Spearman correlation coefficient. If the value is positive, it means
a positive correlation (when the blood marker increases, the other one
tends to increase by a percentage associated with the sign). The same
thing is applied when the sign is negative; when blood markers
increase, the other one tends to decrease. For example, the correlation
coefficient between CRP and HGB (hemoglobin) is 55% negatively
correlated. That's when CRP increases, HGB decreases, and vice versa.
Another example of a positive correlation is the correlation between
Ferritin and LDH. It is 50% positively correlated. That's when LDH
increases, and Ferritin increases, as well. On the other side, when LDH
decreases, Ferritin decreases, as well. Overall, it is noted that the
Creatinine and ESR are negatively correlated with RBC. There is also
a correlation between GGT and ALT, with a 49% positive correlation.
Also, Bilirubin with HGB has a 49% positive correlation, and a 28%
positive correlation between HGB with RBC. As shown in Table 6, it
is a bit difficult to look at the table with many numbers. Thus,
we generated Figure 2, which shows a heat map representing the
correlation coefficients as shown in Table 6.

3.5 Goodness of the fitted model

To see if multiple variables could lead to a specific diagnosis,
we used a decision tree algorithm (max tree 30). We had a good fit of
the model, as shown in the following tables. Table 7 shows the
confusion matrix for the four different diseases, where the rows
represent the actual number of patients who are diagnosed with their
corresponding diseases. The columns represent the predicted number
of patients to be diagnosed in each disease, as shown in each column.
Tables 8, 9 show the goodness of the fitted model on the whole dataset
based on different metrics, where we used precision, recall, and
Fl-score. Table 8 evaluates the model without having the age and
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gender into account; whereas Table 9 takes this into account. To show
more details of the model, we generated Figure 3, which shows the
performance based on the sensitivity and specificity of the model.
Also, Figure 4 is generated to show the performance based on other
different measures, which are recall, precision, and F1-score, as shown
in the table.

3.6 Age and gender information effects on
the fitted model

To assess the contribution of basic demographic factors,
we trained two otherwise identical models: a baseline without
demographics and a demographically augmented variant that ingests
age and gender. Table 8 shows the per-class precision, recall, and
F1-scores and the corresponding aggregate metrics.

Overall, incorporating age and gender yields consistent
performance gains across diagnostic categories. The demographically
augmented model exhibits higher recall for the major disease classes
and improved precision where classes are clinically overlapping (e.g.,
“other complications”), translating into higher overall F1 at both the
macro and support-weighted levels. These improvements are observed
despite class imbalance, indicating that demographic cues function as
informative priors that help the classifier resolve borderline cases
without sacrificing specificity.

Table 8 suggests that adding age and gender enhances
discrimination in a way that is both practically meaningful and
methodologically sound, provided that deployment is accompanied
by routine bias monitoring and calibration checks.

4 Discussion

This study analyzed routine laboratory biomarkers in four
respiratory disease groups and examined their joint behavior and
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diagnostic relevance. As summarized in Figure 1, several
inflammation-linked analytes (e.g., CRP, ESR, LDH) exhibited
distributions that are directionally consistent with known
pathophysiology, while other markers displayed disease-specific
density shifts that help differentiate between entities such as
COVID-19, asthma, pneumonia, and other complications. These
aggregate patterns support the premise that routinely collected
blood tests can carry clinically meaningful signal for triage and
decision support.

We further evaluated whether incorporating basic demographic
information enhances model behavior. Table 9 contrasts an otherwise

Frontiers in Artificial Intelligence

identical model trained with versus without age and gender. The
demographically augmented specification demonstrates consistently
improved discrimination across classes, primarily through gains in
recall for the major categories and improved precision where clinical
overlap is expected (e.g., “other complications”). Conceptually, these
variables act as low-cost priors that help the model resolve borderline
cases without materially sacrificing specificity.

At the same time, it is important to contextualize biomarker
signal. Several analytes considered here (e.g., liver enzymes, creatinine,
CRP) can reflect systemic illness severity rather than pathology
confined to the respiratory tract. We have therefore moderated causal
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language and interpret the associations as indicators of overall
physiological stress that, in combination with clinical context, may
assist physician judgment.

This work has notable limitations. First, it is a single-center
study, which may limit generalizability to settings with different
case mix and practice patterns. We suggest combine different
datasets to do further analysis (Alghadhban et al., 2025). Second,
while age and gender were available and analyzed (Table 9),
structured comorbidity fields were not available in the current
dataset. Residual confounding is therefore possible, and future data
collections should incorporate comorbidity profiles and medication
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history to enable explicit adjustment and subgroup analyses. Third,
although our primary objective was to characterize associations
rather than to develop a deployable classifier, we included a
comparative model analysis to contextualize effect sizes; rigorous
external validation and prospective evaluation remain necessary
before any clinical use.

The category labeled “other complications” aggregates clinically
coded respiratory presentations that do not meet the criteria for
the three primary labels (e.g., non-specific or mixed presentations
as recorded by the treating team). We recognize that such
heterogeneity can dilute class purity and affect precision/recall;
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FIGURE 1
Shows the measures compared to their associated normal ranges. The two vertical black lines represent the minimum and maximum values of the
normal ranges.

future work should refine this label through stricter coding
guidelines or by subdividing it once larger annotated cohorts
are available.

In sum, routine laboratory biomarkers, especially when paired
with minimal demographics, provide reproducible signals aligned
with clinical expectations and can support downstream machine-
learning models for respiratory care. To translate these findings,
subsequent studies should include comorbidities and medications to
reduce confounding, perform subgroup/fairness analyses by age and
gender, and conduct external validation and calibration to ensure
robustness across populations and platforms. Because our aim was
association rather than prediction, we did not include train/test
model evaluation; this will be the focus of future work.

5 Conclusion

This study underscores the diagnostic potential of blood
biomarkers in distinguishing between major respiratory diseases,
including COVID-19, pneumonia, asthma, and other complications.
The integration of biomarker correlation analysis and machine
learning-based classification (decision tree models) demonstrated
high diagnostic accuracy, reinforcing the role of non-invasive
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biomarker-driven diagnostics in clinical practice. Notably, CRP and
HGB, Ferritin and LDH, and other biomarker pairs showed
statistically significant correlations that align with known
inflammatory and metabolic pathways, further validating their role
in respiratory disease progression.

The findings of this study provide a novel framework for utilizing
biomarker relationships as predictive indicators in respiratory disease
classification. Unlike traditional diagnostic approaches, which often
rely on imaging and symptomatic assessments, this study presents an
Al-driven, cost-effective, and scalable diagnostic strategy. The
proposed methodology can be integrated into clinical workflows to
enhance early disease detection, optimize patient stratification, and
improve treatment decision-making. However, this study has some
limitations. The dataset, though extensive, is limited to a single
medical center, and external validation in diverse populations and
healthcare settings is required. Additionally, while decision tree
classifiers provided strong performance, comparative evaluations
with deep learning and multi-marker integration models could
further enhance predictive accuracy.

Future research should focus on expanding the biomarker panel,
data
metabolomics), and exploring real-time biomarker monitoring

incorporating  multi-omics (genomics,  proteomics,

systems for dynamic disease progression analysis. A translational
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TABLE 5 Shows the number of patients who have laboratory results based on the two measures.

CRP ESR FERRITIN LDH BUN CREATININE Albumin ALT AST Bilirubin GGT Protein HGB RBC WBC
CRP 390 286 149 61 157 87 86 82 78 62 68 53 36 152 154
ESR 286 487 184 72 195 121 117 106 111 83 75 65 68 196 191
FERRITIN 149 184 381 76 131 87 65 60 63 53 50 40 36 121 130
LDH 61 72 76 242 117 65 73 88 77 49 43 43 33 108 109
BUN 157 195 131 117 658 399 201 193 189 117 98 95 125 315 312
CREATININE 87 121 87 65 399 479 130 114 118 74 69 68 134 223 224
Albumin 86 117 65 73 201 130 428 334 341 225 166 196 84 212 210
ALT 82 106 60 88 193 114 334 411 361 223 154 190 69 220 218
AST 78 111 63 77 189 118 341 361 412 225 153 187 75 211 209
Bilirubin 62 83 53 49 117 74 225 223 225 297 143 180 55 146 142
GGT 68 75 50 43 98 69 166 154 153 143 212 158 25 91 95
Protein 53 65 40 43 95 68 196 190 187 180 158 229 25 105 103
HGB 36 68 36 33 125 134 84 69 75 55 25 25 320 317 312
RBC 152 196 121 108 315 223 212 220 211 146 91 105 317 766 737
WBC 154 191 130 109 312 224 210 218 209 142 95 103 312 737 761

e 3 lwzely

¥££2897'G2021e43/685£¢°0T


https://doi.org/10.3389/frai.2025.1682774
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

25uab1))23U] 1eIDYIY Ul SI913U0I

17

B10"uISI1UO0L

TABLE 6 Shows the Spearman correlation coefficients between the two measures (null values removed).

CRP ESR FERRITIN LDH BUN CREATININE Albumin ALT AST Bilirubin GGT Protein HGB RBC WBC
CRP 1.00 037 0.33 0.18 0.30 0.22 -0.39 —0.07 -0.05 -0.03 0.13 -0.51 —0.54 -0.26 0.07
ESR 0.37 1.00 031 0.34 0.20 0.16 -0.59 0.07 0.23 -0.17 0.18 —0.40 ~0.16 —0.42 0.19
FERRITIN 0.33 0.31 1.00 0.52 0.27 0.50 -0.20 0.14 021 0.14 0.36 -0.39 0.26 -0.06 0.05
LDH 0.18 0.34 0.52 1.00 0.18 -0.16 -0.52 0.14 045 0.20 0.06 —0.24 0.23 0.02 -0.18
BUN 0.30 0.20 0.27 0.18 1.00 0.54 -031 0.12 0.09 —0.02 -0.03 -0.28 -0.16 -031 020
CREATININE 022 0.16 0.50 -0.16 0.54 1.00 ~0.04 023 0.15 023 0.03 -0.22 -0.10 -021 ~0.06
Albumin -0.39 -0.59 -0.20 —0.52 -031 ~0.04 1.00 —0.08 ~0.36 -0.13 -0.27 0.64 037 0.44 ~0.06
ALT -0.07 0.07 0.14 0.14 0.12 023 —0.08 1.00 0.70 021 055 —0.02 ~0.09 0.02 0.05
AST -0.05 023 021 045 0.09 0.15 ~0.36 0.70 1.00 035 0.61 -0.18 -0.16 -0.13 -0.19
Bilirubin -0.03 -0.17 0.14 020 ~0.02 023 -0.13 021 035 1.00 0.11 —0.08 0.55 0.30 -0.01
GGT 0.13 0.18 0.36 0.06 -0.03 0.03 -027 0.55 0.61 0.11 1.00 -0.17 -0.19 0.19 0.13
Protein -0.51 ~0.40 -0.39 -0.24 -0.28 -0.22 0.64 —0.02 -0.18 ~0.08 —0.17 1.00 0.30 035 0.03
HGB —0.54 -0.16 026 023 -0.16 -0.10 0.37 —0.09 -0.16 055 -0.19 0.30 1.00 0.77 0.11
RBC -0.26 —0.42 ~0.06 0.02 -031 -021 0.44 0.02 -0.13 0.30 0.19 0.35 0.77 1.00 0.05
WBC 0.07 0.19 0.05 -0.18 0.20 -0.06 -0.06 0.05 -0.19 -0.01 0.13 0.03 0.11 0.05 1.00
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FIGURE 2
Shows the Spearman correlation coefficients between the two measures (null values removed).

TABLE 7 Shows the confusion matrix for the goodness of fit of the decision tree algorithm.

Actual/predicted COVID-19 Pneumonia Asthma Not COVID-19 Actual total
COVID-19 855 0 0 29 884
Pneumonia 11 41 0 1 53
Asthma 1 1 246 10 258
Not COVID-19 44 1 1 391 437
Predicted total 911 43 247 431 1,632
TABLE 8 Shows the performance of the whole data based on precision, TABLE 9 Shows the performance of the whole data when including the age
recall, and F1-score measures. and gender information based on precision, recall, and F1-score measures.
Disease Precision recall fl-score Support Disease Precision = Recall fl-score Support
COVID-19 0.94 0.97 0.95 884 COVID-19 0.94 0.98 0.96 884
Pneumonia 0.95 0.77 0.85 53 Pneumonia 0.95 0.79 0.87 53
Asthma 1 0.95 0.97 258 Asthma 1 0.99 0.99 258
Other complications 0.91 0.89 0.90 437 Other complications 0.96 0.89 0.93 437

approach integrating Al-driven biomarker profiling into personalized Data availabi llty statement

medicine platforms could revolutionize respiratory disease

diagnostics, ultimately improving patient outcomes and reducing The raw data supporting the conclusions of this article will
healthcare burdens. be made available by the authors, without undue reservation.
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Shows the performance of the goodness of fit for the model based
on recall, precision, and F1-score measures.
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