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The growing interest in utilizing clinical blood biomarkers for non-invasive diagnostics 
has transformed the approach to early detection and prognosis of respiratory diseases. 
Biomarker-driven diagnostics offer cost-effective, rapid, and scalable alternatives 
to traditional imaging and clinical assessments. In this study, we conducted a 
retrospective analysis of 913 patients from a local respiratory clinic in Hail region, 
evaluating the diagnostic relevance of 15 blood biomarkers across four respiratory 
conditions: COVID-19, pneumonia, asthma, and other complications. Through 
data-driven analysis, statistical correlation assessments, and machine learning 
classification models (decision tree classifiers), we identified significant biomarker 
interactions that contributed to disease differentiation. Notably, CRP and HGB 
demonstrated a strong negative correlation (−55%), supporting the well-established 
role of systemic inflammation in anemia of chronic disease. Additionally, Ferritin 
and LDH exhibited a positive correlation (+50%), indicating metabolic stress and 
cellular injury in severe respiratory illnesses. Other significant correlations included 
Creatinine and ESR being negatively associated with RBC, while GGT and ALT 
were positively correlated (+49%). Additionally, bilirubin and HGB were positively 
correlated (+49%), collectively reflecting systemic inflammatory and metabolic 
responses associated with respiratory pathology. The machine learning model 
demonstrated high predictive accuracy, with the following performance metrics: 
COVID-19: Precision (0.94), Recall (0.96), F1-score (0.95). Pneumonia: Precision 
(0.97), Recall (0.71), F1-score (0.85). Asthma: Precision (1.00), Recall (0.95), F1-score 
(0.97). Other Complications: Precision (0.88), Recall (0.90), F1-score (0.90). These 
findings validate the diagnostic potential of biomarker panels in respiratory disease 
classification, offering a novel approach to integrating statistical and computational 
modeling for clinical decision-making. By leveraging biomarker relationships 
and machine learning algorithms, this study contributes to the development of 
personalized, non-invasive, and cost-effective diagnostic tools for respiratory 
diseases, ultimately improving patient outcomes and healthcare efficiency.
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1 Introduction

The early and accurate diagnosis of respiratory diseases holds the 
potential to enhance patient outcomes while simultaneously reducing 
healthcare costs (Larsson et  al., 2019). Recently, there has been a 
growing interest in clinical blood biomarkers for non-invasive 
diagnosis and prognosis of various lung diseases (Liu et al., 2021). 
Biomarkers such as C-reactive protein (CRP), procalcitonin, and club 
cell protein 16 (CC16) have been investigated for their association 
with inflammatory lung diseases like COPD (Rosenberg and Kalhan, 
2012). Elevated levels of fibrinogen and white blood cell counts have 
been reported in COPD patients, indicating their potential as 
prognostic markers (Thomsen et al., 2012).

The recent development in lung cancer diagnosis has shown 
progress through the investigation of blood-based biomarkers, such 
as circulating tumor DNA (ctDNA), microRNAs (miRNAs), and 
certain proteins that display promising potential for early detection 
(Saman et al., 2022). In a notable study by Smith et al., a combination 
of multiple biomarkers, including carcinoembryonic antigen (CEA) 
and cytokeratin 19 fragment (CYFRA 21-1), demonstrated the 
potential to enhance the predictive accuracy for lung cancer diagnosis 
(Okamura et  al., 2013). Similarly, pulmonary fibrosis has been 
associated with increased levels of matrix metalloproteinases (MMPs) 
and Krebs von den Lungen-6 (KL-6) in the blood (Hamai et al., 2016). 
The use of advanced techniques like mass spectrometry and next-
generation sequencing has facilitated the identification and validation 
of novel biomarkers with high sensitivity and specificity (Wheelock 
et al., 2013).

Nonetheless, challenges remain in standardizing these blood 
biomarker tests; factors such as age, sex, and comorbid conditions can 
influence their levels (Chang and Wu, 2022). The future trajectory of 
this field encompasses the integration of clinical, imaging, and multi-
omics data to develop comprehensive models for lung disease 
prediction (Blutt et al., 2023).

Respiratory diseases encompass a wide range of pathologies, from 
chronic conditions like COPD and asthma to acute and severe diseases 
such as lung cancer. The search for non-invasive diagnostic and 
prognostic markers has led researchers to examine various clinical 
blood biomarkers. For instance, several studies have highlighted the 
importance of CRP as a potential marker for COPD and its 
exacerbations (Ridker, 2007). Elevated CRP levels in the blood 
indicate inflammation and have been associated with increased risk 
and severity of COPD (Mannino et  al., 2012). The procalcitonin 
biomarker, mainly tied to bacterial infections, has been investigated 
for its potential in distinguishing bacterial from viral pneumonia—an 
insight which can help in appropriate antibiotic administration 
(Christ-Crain and Müller, 2005). Elevated levels of the Cytokeratin-19 
fragment (CYFRA 21-1) have been identified in patients with 
non-small cell lung cancer (NSCLC), suggesting its potential role as a 
diagnostic or prognostic marker (Pujol et al., 1996). Emerging studies 
focusing on lung cancer emphasize the potential of circulating tumor 
DNA (ctDNA) as a minimally invasive technique for detecting 
mutations, monitoring treatment response, and potentially predicting 
disease recurrence (Wan et  al., 2017). Club cell secretory protein 
(CC16) levels have been explored for their relation with lung function 
decline and COPD risk. Lower serum CC16 levels have been linked 
to an elevated risk of COPD and rapid lung function deterioration 
(Guerra et al., 2015). An accumulating list of evidence suggests that 

the Neutrophil-to-lymphocyte ratio (NLR) could be  a promising 
prognostic marker for various lung diseases, including 
NSCLC. Elevated NLR is linked with poorer outcomes and decreased 
survival rates in NSCLC patients (Cedrés et al., 2012). Additionally, 
soluble ST2 (sST2) levels have demonstrated associations with 
idiopathic pulmonary fibrosis (IPF) severity and prognosis. Elevated 
sST2 levels may indicate a higher risk of disease progression and 
mortality (Yu et al., 2022).

Correlations between various blood markers and respiratory 
diseases have been extensively explored in clinical medicine. Many of 
these markers offer insights into the inflammatory, metabolic, and 
structural status of the body, relevant to respiratory conditions. 
Elevated C-reactive protein (CRP) levels typically indicate 
inflammation, with conditions like pneumonia, COPD exacerbations, 
and asthma showing increased CRP levels due to the inflammatory 
response in lung tissue (Póvoa, 1998). Similarly, an elevated 
Erythrocyte sedimentation rate (ESR) is indicative of inflammation, 
with conditions like tuberculosis and sarcoidosis showing heightened 
ESR levels (Chopra and Abdel-Naser, 2018). While high ferritin levels 
are not specific to lung diseases, they can be  observed in acute 
inflammatory states or conditions like hemochromatosis. Rare cases, 
such as pulmonary hemosiderosis, may also exhibit such levels 
(Milman and Kirchhoff, 1992). Elevated Lactate dehydrogenase 
(LDH) can be  seen in conditions where there is tissue damage, 
including pneumonia and pulmonary embolism. LDH might 
be  particularly elevated in conditions like Pneumocystis jirovecii 
pneumonia, a common condition in immune-compromised 
individuals (Yale and Limper, 1996). While not directly related to 
respiratory diseases, elevated BUN and Creatinine levels might 
indicate kidney dysfunction, which could occur as a secondary effect 
of conditions like ARDS, affecting multiple organ systems (Bellomo 
and Ronco, 1998). Lower albumin levels may suggest chronic illness, 
malnutrition, or liver disease. Some chronic respiratory conditions 
like COPD can be associated with a decreased albumin level due to 
chronic inflammation or reduced dietary intake (Schols et al., 1998). 
Direct correlations between liver enzymes (such as ALT, AST, 
Bilirubin, GGT) and lung diseases are limited. However, right-sided 
heart failure induced by severe lung disease (cor pulmonale) can lead 
to liver congestion and elevated liver enzymes (Alvarez and 
Mukherjee, 2011). Although not directly linked to respiratory 
diseases, the total protein test might reflect nutritional status and 
overall health. Additionally, chronic hypoxia from lung diseases like 
COPD can stimulate the production of more RBCs, resulting in 
elevated hemoglobin (HGB) levels (El-Korashy, 2012). Likewise, 
chronic lung diseases causing hypoxia could lead to an elevated Red 
blood cell (RBC) count, a condition known as secondary polycythemia 
(Smith and Landaw, 1978). Elevated White blood count (WBC) could 
indicate infection or inflammation, often seen in respiratory infections 
like pneumonia or bronchitis (Macfarlane, 1995).

With the above backdrop, we can observe that blood biomarkers 
are widely considered as a convenient means to diagnose and assess 
the severity of respiratory diseases. While many markers show 
promising results in the early detection of respiratory diseases, it is 
essential to conduct further large-scale studies to establish their 
validity and clinical utility. In this pilot study, we  retrospectively 
collected data from a cohort from the local Hospital in Hail, 
Saudi Arabia. The focus was on the patients who visited the respiratory 
clinics and were diagnosed with COVID-19, asthma, pneumonia, or 
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other respiratory diseases. Then, statistical analysis and a fitted model 
were performed to analyze the blood markers that could together 
indicate these diseases. To the best of our knowledge, this is the first 
study to combine multiple blood markers and compare them to find 
possible correlations to the diagnosis of respiratory disease in Hail, 
Saudi Arabia.

2 Materials and methods

2.1 Study population

Our study considered a cohort from the local Hospital located in 
Hail city. The study was approved by the institutional review board 
(IRB) of Hail University, Kingdom of Saudi Arabia. We considered 
patients who visited the respiratory clinics in that hospital. Thus, 
we collected clinical datasets for 913 patients with 1,632 encounters 
on March 4th, 2025. We did not consider two or more visits within 
2 weeks’ time. We did this to avoid the discrepancy and repetitions of 
the data, and a wider range of different patients with their associated 
clinical markers.

2.2 Study sample

We focused on 15 blood markers to see their contribution to 
respiratory diseases. We also included the age and gender as different 
features. We have chosen four different diagnoses’ codes (according to 
the applied clinical coding). These four diseases represent COVID-19 
(U07.1), pneumonia (J18.9, J12.9, and J15.9), asthma (J45.9), and 
other respiratory complications (U07.2). Regarding the blood 
markers, we have chosen the C-reactive protein (CRP), Erythrocyte 
sedimentation rate (ESR), Ferritin, Lactate dehydrogenase (LDH), 
Blood Urea Nitrogen (BUN), Creatinine, Albumin, ALanine 
Transaminase (ALT), ASpartate aminoTransferase (AST), Bilirubin, 
Gamma-Glutamyl Transferase (GGT), total protein, HemoGloBin test 
(HGB), Red Blood Cell (RBC), and White Blood Count (WBC). The 
other complications category comprises clinically coded respiratory 
presentations that did not meet the predefined criteria for COVID-19, 
pneumonia, or asthma (e.g., non-specific lower/upper respiratory 
illness or mixed presentations as recorded by the treating team). 
We recognize that this label is heterogeneous and may affect precision.

2.3 Overall statistics

This work is a descriptive/associational analysis using 
nonparametric tests and multinomial regression for adjusted 
associations. We  did not train or tune predictive models, and 
we therefore did not perform cross-validation, held-out testing, ROC/
PR analysis, or calibration. Where relevant, we report goodness-of-fit 
diagnostics. We used Python, including NumPy, Pandas packages, to 
do the analysis and calculate the averages, standard deviations. Also, 
we  used Python to plot figures using the Matplotlib package. In 
addition, we  used model fitness to see if the data we  have can 
be learned to predict the diagnosis or the disease, where we used the 
Sklearn package in Python to generate a decision tree classifier for 4 
different classes. These classes represent the four different diseases.

2.4 Setting and period

We retrospectively assembled encounters from 2019 to 
2020 dataset.

2.5 Inclusion criteria

Encounters with a clinician-assigned diagnosis in four categories: 
COVID-19 (U07.1), Pneumonia (J18.9; J12.9; J15.9 collapsed to 
J18.9), Asthma (J45.9), other complications (U07.2).

2.6 Exclusion criteria

(i) Missing or non-mappable outcome code, (ii) no laboratory 
result within the analysis window, (iii) duplicate encounters within 
14 days of a prior encounter for the same patient (earliest retained), 
and (iv) implausible laboratory values or unresolved unit conflicts.

2.7 Laboratory timing window

For each encounter, we matched laboratory results via a patient-
level nearest-date join within ±14 days of the index encounter date; 
when multiple results existed in the window, the nearest result 
was used.

2.8 Handling repeated encounters

Because patients may re-present, the primary inferential models 
use cluster-robust standard errors. As a sensitivity analysis, 
we  repeated the analyses on the index encounter only (earliest 
per patient).

2.9 Missing data

We first excluded encounters with fewer than 19 non-missing 
fields. For descriptive summaries and correlations, analyses were 
performed on pairwise complete cases; correlation cells with fewer 
than 20 co-observations were suppressed and null values removed 
during the correlation calculation process. For predictive modeling, 
remaining missing laboratory values were imputed as 0 (no 
missingness indicators were used). For descriptive summaries and 
nonparametric comparisons, analyses were performed on pairwise 
complete cases without imputation. To characterize data availability, 
we computed the proportion of missing values for each biomarker 
across the full overall cohort. These results are reported in 
Supplementary Table S5.

2.10 Adjusted associations

For each biomarker, we fit a multivariable multinomial logistic 
regression with diagnosis (CODE; reference U07.1) as the outcome 
and the biomarker (z-scored) as the predictor, adjusted for age (per 
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decade) and sex (male vs. female). Results are reported as adjusted 
odds ratios per 1 SD with 95% confidence intervals. We  applied 
Benjamini–Hochberg FDR across all coefficients (15 biomarkers × 3 
non-reference contrasts), reporting q-values and considering 
q < 0.05 significant.

3 Results

3.1 Overall description of the data, 
including age and gender distribution

We have performed several tests and studies on the data collected. 
There are 913 patients with 1,632 visits on different dates (more than 
2 weeks for a single patient). Thus, the data distribution based on the 
gender and age was performed (Table 1). From this table, it shows that 
the highest age was 101 years old and the youngest patient was 
10 years old. It shows that the males are more than the females overall, 
in 57% male to 43% female, where the male average age was 51 and 
the female was 53 (both genders’ average is around 52(±17) years old). 
Then, the distribution of the ages is based on three different levels, 
where the first one is between 40 and 60 years old, the second level is 
below 40 years old, and the last one is above 60 years old. The first level 
(the second part from Table 1) has around 641 patients (60% male and 
40% female) with an average age of around 50 (±6) years old. The 
second level has 449 patients (57% male and 43% female) with an 
average age of around 31 (±6) years. The last level has around 532 
patients (53% male and 47% female) with an average age of around 72 
(±8) years. Overall, based on the analysis of the age and gender, 40% 
of the patients’ ages range between 40 and 60, 27.5% are less than 40, 
and lastly, 32.5% are above 60 years old.

Across the 15 biomarkers, overall missingness was substantial 
(mean 73.37%, median 74.69%; range 52.51–86.95%). The highest 
missingness was observed for GGT (86.95%), Protein (85.85%), and 

LDH (85.11%), whereas the lowest was for RBC (52.51%), WBC 
(52.82%), and BUN (59.13%) (see Supplementary Table S5). Given 
this pattern, inferential analyses were restricted to pairwise complete 
cases for each comparison, and results should be interpreted with 
awareness of the varying data availability across biomarkers.

In multivariable analyses (multinomial logistic regression of 
diagnosis on each biomarker, adjusted for age and sex; effect per 1-SD 
increase), we tested 45 contrasts (15 biomarkers × 3 non-reference 
outcomes vs. U07.1/COVID-19) and controlled multiplicity with 
Benjamini–Hochberg FDR. Two contrasts remained significant after 
adjustment (q < 0.05), both for J18.9 (Pneumonia) vs. U07.1 (COVID-
19) and involving RBC and WBC. No adjusted associations met the 
FDR threshold for J45.9 (Asthma) or U07.2 (Other). Full results are 
reported in Supplementary Table S6.

3.2 Normal ranges for the blood markers 
and correlations with the respiratory 
diseases

Table 2 shows the number of patients based on each blood marker 
because some other patients for one measure are not tested and thus 
have null values. Those null values are not counted where the counts 
column represents the number of real values (not null) in each 
measure. Then, we  calculated the median, standard deviation, 
minimum, and maximum values for each measure among the patients 
shown in the count column.

Similar to Table  2 and Supplementary Table  1 summarizes 
patients’ information, but only those diagnosed with asthma with the 
known code for asthma (J45.9). Low, high, and normal columns 
represent the number of asthma patients who have lower values than 
the normal ranges based on each measure, higher values than the 
normal ranges, or normal within the ranges for each measure, 
respectively.

TABLE 1  Shows the distribution of the patients based on age and gender.

Gender\age Counts Mean (std. dev) Median Minimum Maximum

Age All ages

Male 926 51.04 (±17.08) 49.00 10 101

Female 696 52.76 (±17.32) 52.00 16 93

All 1,622 51.75 (±17.20) 50.50 10 101

Between 40 and 60 years old inclusive

Male 387 49.14 (±6.03) 48.00 40 60

Female 254 50.43 (±5.70) 50.00 40 60

All 641 49.65 (±5.92) 49.00 40 60

Less than 40 years old

Male 257 31.08 (±6.33) 32.00 10.00 39

Female 192 31.32 (±5.10) 32.00 16.00 39

All 449 31.18 (±5.84) 32.00 10.00 39

Above 60 years old

Male 282 71.82 (±8.44) 69.00 61.00 101

Female 250 71.58 (±8.26) 70.00 61.00 93

All 532 71.71 (±8.35) 69.00 61.00 101
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Similarly, Supplementary Tables 2–4 have been generated to 
show the same information as in Supplementary Table 2, but for 
patients who were diagnosed with COVID-19 disease (U07.1), 
other respiratory diseases (other than COVID-19 disease) patients 
(U07.2), and the pneumonia patients (J18.9, J12.9, and J15.9), 
respectively.

Table 3 shows the normal ranges for the blood markers. Also, 
we show the correlation ratio between each blood marker and the 
diagnosis (diseases) since it measures the relationship between the 
unordered nominal (4 diseases) column and continuous-value 
features. Here, we  have classified the patients into four different 
diseases (COVID-19, asthma, pneumonia, and other respiratory 
diseases). The blood markers that have a higher than 20% correlation 
are ESR, LDH, GGT, total protein, and HGB.

In the biomarker-by-diagnosis analyses, we summarize, as shown 
in Table 4, each test with the following fields. N denotes the number 
of non-missing observations used for that biomarker (after pairwise 
deletion with 4 classes), and k is the number of distinct diagnosis 
categories actually present in those observations (up to 4  in our 
setting; if k < 2, no omnibus test is performed; if k < 4, at least one 
class had no data for that biomarker). The Kruskal–Wallis statistic 
(KW_H), reported with degrees of freedom (KW_df = k − 1), 
quantifies the rank-based separation among groups; its corresponding 
p-value (KW_p) tests the null hypothesis that all group distributions 
are identical. Because multiple biomarkers are tested, we control the 
false discovery rate using Benjamini–Hochberg and report the 
FDR-adjusted q-value (KW_q); results with q < 0.05 are considered 
statistically significant. To convey magnitude (not just significance), 
we report epsilon-squared (KW_epsilon_sq) as an effect size for the 
Kruskal–Wallis test and interpreted as the proportion of variability 
attributable to between-group differences (rough benchmarks: ≈0.01 
small, ≈0.06 medium, ≈0.14 large). Where N is small or k < 4, results 
are interpreted cautiously and complemented by descriptive 
summaries; for biomarkers with significant omnibus tests, post-hoc 

Dunn comparisons (FDR-adjusted) can be  provided to identify 
which pairs of groups differ.

As in Table  4, for each biomarker we  performed an omnibus 
Kruskal–Wallis test across the four diagnosis groups. To account for 
testing multiple biomarkers, we controlled the false discovery rate 
(FDR) using the Benjamini–Hochberg (BH) procedure at α = 0.05 
across the set of omnibus p-values (m = 15). We report BH-adjusted 
q-values, with q < 0.05 considered statistically significant, alongside 
the Kruskal–Wallis effect size epsilon-squared (ε2) to convey 
magnitude. The interpretation is based on the omnibus tests, ε2, and 
per-group descriptive summaries (medians and IQRs).

3.3 Distributions of the values of each 
blood marker compared with the normal 
ranges

We have generated a comparison of the normal ranges of each 
blood marker and COVID-19, pneumonia, asthma, and other 
respiratory diseases. In each subfigure, black vertical lines represent 
the minimum and maximum values for normal ranges for the 
represented blood marker, as shown in Figure 1.

3.4 Correlations between the blood 
markers

Based on the 15 chosen different blood markers, as there are 
missing data for patients regarding these markers, we want to highlight 
this drawback and the lack of information from the hospital. Thus, 
we generated Table 5, which shows the distribution of the patients 
based on the available data in each combination of two blood markers. 

TABLE 2  Shows the number of patients, the median, standard deviation, 
minimum, and maximum values for each measure.

Measure Counts Median Std. 
Dev.

Min Max

CRP 390 2.50 3.93 0.13 24.10

ESR 487 52.00 33.48 1.00 150.00

FERRITIN 381 363.10 437.91 4.10 1650.00

LDH 242 275.50 222.91 4.80 1372.00

BUN 658 5.13 10.20 0.98 139.76

CREATININE 479 79.90 45.56 4.92 490.51

Albumin 428 31.00 5.92 16.00 62.10

ALT 411 34.00 38.70 2.25 309.00

AST 412 29.00 40.09 5.00 407.00

Bilirubin 297 7.10 5.82 0.20 44.50

GGT 212 49.00 86.41 4.00 450.00

Protein 229 67.90 7.25 45.90 89.10

HGB 320 13.55 2.25 1.60 18.50

RBC 766 4.86 0.65 2.62 7.43

WBC 761 7.06 4.03 1.03 44.88

TABLE 3  Shows the normal ranges for each measure taken from the 
hospital.

Measure Min Max Unit Corr. 
Ratio

CRP 0 0.6 Mg/dL 0.199416

ESR 0 15 Mm/Hour 0.21415

FERRITIN 10 291 Ng/ml 0.174845

LDH 100 190 U/L 0.253731

BUN 2.5 6.4 Mmol/L 0.098134

CREATININE 49 115 Umol/L 0.153747

Albumin 34 50 g/L 0.084836

ALT 14 63 U/L 0.168551

AST 15 37 U/L 0.156218

Bilirubin 3 17 umol/L 0.044861

GGT 5 85 U/L 0.268126

Total Protein 64 82 g/L 0.281393

HGB 11.8 17.2 g/dL 0.249529

RBC 3.85 5.75 10^6/uL 0.163705

WBC 3.6 11.4 10^3/uL 0.194183

The Correlation Ratio between each measure and the diseases (asthma, COVID-19, 
pneumonia, and other respiratory complications).
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For example, 286 patients have both CRP and ESR values. Our 
objective from this table is to generate Table  6, which shows the 
correlation coefficient between each pair of blood markers based on 
the Spearman correlation coefficient. If the value is positive, it means 
a positive correlation (when the blood marker increases, the other one 
tends to increase by a percentage associated with the sign). The same 
thing is applied when the sign is negative; when blood markers 
increase, the other one tends to decrease. For example, the correlation 
coefficient between CRP and HGB (hemoglobin) is 55% negatively 
correlated. That’s when CRP increases, HGB decreases, and vice versa. 
Another example of a positive correlation is the correlation between 
Ferritin and LDH. It is 50% positively correlated. That’s when LDH 
increases, and Ferritin increases, as well. On the other side, when LDH 
decreases, Ferritin decreases, as well. Overall, it is noted that the 
Creatinine and ESR are negatively correlated with RBC. There is also 
a correlation between GGT and ALT, with a 49% positive correlation. 
Also, Bilirubin with HGB has a 49% positive correlation, and a 28% 
positive correlation between HGB with RBC. As shown in Table 6, it 
is a bit difficult to look at the table with many numbers. Thus, 
we  generated Figure  2, which shows a heat map representing the 
correlation coefficients as shown in Table 6.

3.5 Goodness of the fitted model

To see if multiple variables could lead to a specific diagnosis, 
we used a decision tree algorithm (max tree 30). We had a good fit of 
the model, as shown in the following tables. Table  7 shows the 
confusion matrix for the four different diseases, where the rows 
represent the actual number of patients who are diagnosed with their 
corresponding diseases. The columns represent the predicted number 
of patients to be diagnosed in each disease, as shown in each column. 
Tables 8, 9 show the goodness of the fitted model on the whole dataset 
based on different metrics, where we  used precision, recall, and 
F1-score. Table 8 evaluates the model without having the age and 

gender into account; whereas Table 9 takes this into account. To show 
more details of the model, we generated Figure 3, which shows the 
performance based on the sensitivity and specificity of the model. 
Also, Figure 4 is generated to show the performance based on other 
different measures, which are recall, precision, and F1-score, as shown 
in the table.

3.6 Age and gender information effects on 
the fitted model

To assess the contribution of basic demographic factors, 
we  trained two otherwise identical models: a baseline without 
demographics and a demographically augmented variant that ingests 
age and gender. Table  8 shows the per-class precision, recall, and 
F1-scores and the corresponding aggregate metrics.

Overall, incorporating age and gender yields consistent 
performance gains across diagnostic categories. The demographically 
augmented model exhibits higher recall for the major disease classes 
and improved precision where classes are clinically overlapping (e.g., 
“other complications”), translating into higher overall F1 at both the 
macro and support-weighted levels. These improvements are observed 
despite class imbalance, indicating that demographic cues function as 
informative priors that help the classifier resolve borderline cases 
without sacrificing specificity.

Table  8 suggests that adding age and gender enhances 
discrimination in a way that is both practically meaningful and 
methodologically sound, provided that deployment is accompanied 
by routine bias monitoring and calibration checks.

4 Discussion

This study analyzed routine laboratory biomarkers in four 
respiratory disease groups and examined their joint behavior and 

TABLE 4  Shows the Kruskal–Wallis test for the biomarkers and the diseases (asthma, COVID-19, pneumonia, and other respiratory complications).

Measure N k KW_H KW_df KW_p KW_epsilon_sq KW_q

AST 414 4 58.21 3 0.000000 0.134656 0.000000

WBC 770 4 35.31 3 0.000000 0.042183 0.000001

Albumin 430 4 34.85 3 0.000000 0.074762 0.000001

GGT 213 4 33.32 3 0.000000 0.145081 0.000001

FERRITIN 381 4 27.99 3 0.000004 0.066298 0.000010

CRP 390 4 27.81 3 0.000004 0.064277 0.000010

ESR 488 4 26.04 3 0.000009 0.047602 0.000020

CREATININE 487 4 25.75 3 0.000011 0.047100 0.000020

Protein 231 4 24.36 3 0.000021 0.094081 0.000035

BUN 667 4 24.00 3 0.000025 0.031681 0.000037

LDH 243 4 22.93 3 0.000042 0.083396 0.000057

HGB 320 4 21.89 3 0.000069 0.059790 0.000086

RBC 775 4 19.85 3 0.000182 0.021861 0.000210

ALT 413 4 18.49 3 0.000349 0.037868 0.000374

Bilirubin 298 4 0.56 3 0.904577 0.000000 0.904577
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diagnostic relevance. As summarized in Figure  1, several 
inflammation-linked analytes (e.g., CRP, ESR, LDH) exhibited 
distributions that are directionally consistent with known 
pathophysiology, while other markers displayed disease-specific 
density shifts that help differentiate between entities such as 
COVID-19, asthma, pneumonia, and other complications. These 
aggregate patterns support the premise that routinely collected 
blood tests can carry clinically meaningful signal for triage and 
decision support.

We further evaluated whether incorporating basic demographic 
information enhances model behavior. Table 9 contrasts an otherwise 

identical model trained with versus without age and gender. The 
demographically augmented specification demonstrates consistently 
improved discrimination across classes, primarily through gains in 
recall for the major categories and improved precision where clinical 
overlap is expected (e.g., “other complications”). Conceptually, these 
variables act as low-cost priors that help the model resolve borderline 
cases without materially sacrificing specificity.

At the same time, it is important to contextualize biomarker 
signal. Several analytes considered here (e.g., liver enzymes, creatinine, 
CRP) can reflect systemic illness severity rather than pathology 
confined to the respiratory tract. We have therefore moderated causal 

FIGURE 1 (Continued)
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language and interpret the associations as indicators of overall 
physiological stress that, in combination with clinical context, may 
assist physician judgment.

This work has notable limitations. First, it is a single-center 
study, which may limit generalizability to settings with different 
case mix and practice patterns. We  suggest combine different 
datasets to do further analysis (Alghadhban et al., 2025). Second, 
while age and gender were available and analyzed (Table  9), 
structured comorbidity fields were not available in the current 
dataset. Residual confounding is therefore possible, and future data 
collections should incorporate comorbidity profiles and medication 

history to enable explicit adjustment and subgroup analyses. Third, 
although our primary objective was to characterize associations 
rather than to develop a deployable classifier, we  included a 
comparative model analysis to contextualize effect sizes; rigorous 
external validation and prospective evaluation remain necessary 
before any clinical use.

The category labeled “other complications” aggregates clinically 
coded respiratory presentations that do not meet the criteria for 
the three primary labels (e.g., non-specific or mixed presentations 
as recorded by the treating team). We  recognize that such 
heterogeneity can dilute class purity and affect precision/recall; 

FIGURE 1 (Continued)
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future work should refine this label through stricter coding 
guidelines or by subdividing it once larger annotated cohorts 
are available.

In sum, routine laboratory biomarkers, especially when paired 
with minimal demographics, provide reproducible signals aligned 
with clinical expectations and can support downstream machine-
learning models for respiratory care. To translate these findings, 
subsequent studies should include comorbidities and medications to 
reduce confounding, perform subgroup/fairness analyses by age and 
gender, and conduct external validation and calibration to ensure 
robustness across populations and platforms. Because our aim was 
association rather than prediction, we  did not include train/test 
model evaluation; this will be the focus of future work.

5 Conclusion

This study underscores the diagnostic potential of blood 
biomarkers in distinguishing between major respiratory diseases, 
including COVID-19, pneumonia, asthma, and other complications. 
The integration of biomarker correlation analysis and machine 
learning-based classification (decision tree models) demonstrated 
high diagnostic accuracy, reinforcing the role of non-invasive 

biomarker-driven diagnostics in clinical practice. Notably, CRP and 
HGB, Ferritin and LDH, and other biomarker pairs showed 
statistically significant correlations that align with known 
inflammatory and metabolic pathways, further validating their role 
in respiratory disease progression.

The findings of this study provide a novel framework for utilizing 
biomarker relationships as predictive indicators in respiratory disease 
classification. Unlike traditional diagnostic approaches, which often 
rely on imaging and symptomatic assessments, this study presents an 
AI-driven, cost-effective, and scalable diagnostic strategy. The 
proposed methodology can be integrated into clinical workflows to 
enhance early disease detection, optimize patient stratification, and 
improve treatment decision-making. However, this study has some 
limitations. The dataset, though extensive, is limited to a single 
medical center, and external validation in diverse populations and 
healthcare settings is required. Additionally, while decision tree 
classifiers provided strong performance, comparative evaluations 
with deep learning and multi-marker integration models could 
further enhance predictive accuracy.

Future research should focus on expanding the biomarker panel, 
incorporating multi-omics data (genomics, proteomics, 
metabolomics), and exploring real-time biomarker monitoring 
systems for dynamic disease progression analysis. A translational 

FIGURE 1

Shows the measures compared to their associated normal ranges. The two vertical black lines represent the minimum and maximum values of the 
normal ranges.
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TABLE 5  Shows the number of patients who have laboratory results based on the two measures.

CRP ESR FERRITIN LDH BUN CREATININE Albumin ALT AST Bilirubin GGT Protein HGB RBC WBC

CRP 390 286 149 61 157 87 86 82 78 62 68 53 36 152 154

ESR 286 487 184 72 195 121 117 106 111 83 75 65 68 196 191

FERRITIN 149 184 381 76 131 87 65 60 63 53 50 40 36 121 130

LDH 61 72 76 242 117 65 73 88 77 49 43 43 33 108 109

BUN 157 195 131 117 658 399 201 193 189 117 98 95 125 315 312

CREATININE 87 121 87 65 399 479 130 114 118 74 69 68 134 223 224

Albumin 86 117 65 73 201 130 428 334 341 225 166 196 84 212 210

ALT 82 106 60 88 193 114 334 411 361 223 154 190 69 220 218

AST 78 111 63 77 189 118 341 361 412 225 153 187 75 211 209

Bilirubin 62 83 53 49 117 74 225 223 225 297 143 180 55 146 142

GGT 68 75 50 43 98 69 166 154 153 143 212 158 25 91 95

Protein 53 65 40 43 95 68 196 190 187 180 158 229 25 105 103

HGB 36 68 36 33 125 134 84 69 75 55 25 25 320 317 312

RBC 152 196 121 108 315 223 212 220 211 146 91 105 317 766 737

WBC 154 191 130 109 312 224 210 218 209 142 95 103 312 737 761
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TABLE 6  Shows the Spearman correlation coefficients between the two measures (null values removed).

CRP ESR FERRITIN LDH BUN CREATININE Albumin ALT AST Bilirubin GGT Protein HGB RBC WBC

CRP 1.00 0.37 0.33 0.18 0.30 0.22 −0.39 −0.07 −0.05 −0.03 0.13 −0.51 −0.54 −0.26 0.07

ESR 0.37 1.00 0.31 0.34 0.20 0.16 −0.59 0.07 0.23 −0.17 0.18 −0.40 −0.16 −0.42 0.19

FERRITIN 0.33 0.31 1.00 0.52 0.27 0.50 −0.20 0.14 0.21 0.14 0.36 −0.39 0.26 −0.06 0.05

LDH 0.18 0.34 0.52 1.00 0.18 −0.16 −0.52 0.14 0.45 0.20 0.06 −0.24 0.23 0.02 −0.18

BUN 0.30 0.20 0.27 0.18 1.00 0.54 −0.31 0.12 0.09 −0.02 −0.03 −0.28 −0.16 −0.31 0.20

CREATININE 0.22 0.16 0.50 −0.16 0.54 1.00 −0.04 0.23 0.15 0.23 0.03 −0.22 −0.10 −0.21 −0.06

Albumin −0.39 −0.59 −0.20 −0.52 −0.31 −0.04 1.00 −0.08 −0.36 −0.13 −0.27 0.64 0.37 0.44 −0.06

ALT −0.07 0.07 0.14 0.14 0.12 0.23 −0.08 1.00 0.70 0.21 0.55 −0.02 −0.09 0.02 0.05

AST −0.05 0.23 0.21 0.45 0.09 0.15 −0.36 0.70 1.00 0.35 0.61 −0.18 −0.16 −0.13 −0.19

Bilirubin −0.03 −0.17 0.14 0.20 −0.02 0.23 −0.13 0.21 0.35 1.00 0.11 −0.08 0.55 0.30 −0.01

GGT 0.13 0.18 0.36 0.06 −0.03 0.03 −0.27 0.55 0.61 0.11 1.00 −0.17 −0.19 0.19 0.13

Protein −0.51 −0.40 −0.39 −0.24 −0.28 −0.22 0.64 −0.02 −0.18 −0.08 −0.17 1.00 0.30 0.35 0.03

HGB −0.54 −0.16 0.26 0.23 −0.16 −0.10 0.37 −0.09 −0.16 0.55 −0.19 0.30 1.00 0.77 0.11

RBC −0.26 −0.42 −0.06 0.02 −0.31 −0.21 0.44 0.02 −0.13 0.30 0.19 0.35 0.77 1.00 0.05

WBC 0.07 0.19 0.05 −0.18 0.20 −0.06 −0.06 0.05 −0.19 −0.01 0.13 0.03 0.11 0.05 1.00
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approach integrating AI-driven biomarker profiling into personalized 
medicine platforms could revolutionize respiratory disease 
diagnostics, ultimately improving patient outcomes and reducing 
healthcare burdens.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

FIGURE 2

Shows the Spearman correlation coefficients between the two measures (null values removed).

TABLE 7  Shows the confusion matrix for the goodness of fit of the decision tree algorithm.

Actual/predicted COVID-19 Pneumonia Asthma Not COVID-19 Actual total

COVID-19 855 0 0 29 884

Pneumonia 11 41 0 1 53

Asthma 1 1 246 10 258

Not COVID-19 44 1 1 391 437

Predicted total 911 43 247 431 1,632

TABLE 8  Shows the performance of the whole data based on precision, 
recall, and F1-score measures.

Disease Precision recall f1-score Support

COVID-19 0.94 0. 97 0.95 884

Pneumonia 0.95 0.77 0.85 53

Asthma 1 0.95 0.97 258

Other complications 0.91 0.89 0.90 437

TABLE 9  Shows the performance of the whole data when including the age 
and gender information based on precision, recall, and F1-score measures.

Disease Precision Recall f1-score Support

COVID-19 0.94 0. 98 0.96 884

Pneumonia 0.95 0.79 0.87 53

Asthma 1 0.99 0.99 258

Other complications 0.96 0.89 0.93 437
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