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Leveraging multi-scale feature
integration in UNet and FPN for
semantic segmentation of lung
nodules

Sarah Prithvika, Jani Anbarasi* and Modigari Narendra

School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India

Introduction: Lung cancer remains as an important source of cancer-related
mortality worldwide, demonstrating a substantial challenge to public health
systems. The absence of evident symptoms in the early stages makes timely
diagnosis of lung cancer challenging. Early identification and treatment will
reduce the mortality rate caused by lung cancer. Abnormal growths identified
as lung or pulmonary nodules can be found in the lungs and some of these
could be malignant. A Computer-Aided Detection (CAD) framework can aid in
identifying pulmonary nodules by investigating medical images. Automated CAD
systems assist radiologists by reducing the diagnostic workload and increasing
the possibility of early lung cancer identification. Finding and accurately outlining
lung nodules is the specific task of lung nodule segmentation in medical image
analysis.
Methods: Multi-scale UNet, Feature Pyramid Network (FPN) with Linear
Attention Mechanism and UNet with Asynchronous Convolution Blocks (ACB)
and Channel Attention Mechanism were used to segment lung nodules. Multi-
scale UNet improvises the traditional UNet architecture by incorporating multi-
scale convolutional operations, which improves feature extraction and boosts
segmentation accuracy. The UNet with ACB and Channel Attention Mechanism
employs a cross-like receptive field that can reduce the impact of redundant
information in obtaining representative characteristics. FPN with Linear Attention
mechanism uses a multi-scale feature pyramid to identify nodules of different
sizes and a linear attention mechanism is employed to improve feature
extraction. FPN with Linear Attention mechanism attains a linear time and spatial
complexity while effectively segmenting pulmonary nodules.
Results and discussion: Employing the FPN with Linear Attention mechanism
yielded the highest performance in the experiments. The highest results in the
study using FPN with Linear Attention were achieved using GELU on the LIDC-
IDRI dataset with a DSC of 71.59% and IoU of 58.57%. The smooth, probabilistic
weighting of GeLU complements the model’s attention mechanisms.

KEYWORDS

lung nodule segmentation, UNET, residual network, neural network, linear attention
mechanism, encoder-decoder

1 Introduction

The World Health Organization’s (WHO) affiliated International Agency for Research
on Cancer (IARC) (Ferlay et al., 2024) is devoted to cancer research. According to the
latest report in the Global Cancer Observatory (GLOBOCAN) database, which is accessible
through the IARC, there were 1,817,469 lung cancer-related deaths and 2,480,675 new cases
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FIGURE 1

Lung cancer incidence and mortality statistics for both genders in
2022.

of lung cancer globally as depicted in Figure 1. The 5-year
prevalence is the total number of individuals diagnosed with lung
cancer within the last 5 years and still alive at a given time. The
5-year prevalence for lung cancer is is 3,221,461. It is reported
that the most common cause of new cancer diagnoses and cancer-
related deaths was lung cancer. The estimated number of trachea,
bronchus and lung cancer cases worldwide in both males and
females, across all age groups from 2022 to 2045 is estimated
to be 4.25 million (Ferlay et al., 2024). The significance of lung
cancer prevention measures, such as tobacco control and lowering
exposure to environmental risk factors, is highlighted by the high
incidence rate. Continuous research is required to increase early
identification, treatment, and survival rates due to the significant
number of new instances of lung cancer.

According to the National Lung Screening Trial (Wu and Raz,
2016), early detection of lung cancer using Computed Tomography
(CT) image analysis lowers the death rate from the deadly disease
by 20% (Wu et al., 2016). A low-dose CT is recommended
for routine screening of high-risk individuals allowing for early
detection of potential issues while minimizing radiation exposure.
The images are created in real time for medical practitioners to
view. To diagnose illnesses, find damage and help with treatment
planning, radiologists analyze CT images. Nodules in the lungs
are denser than normal tissue on a CT scan (American Thoracic
Society, 2025). A CT scan contains a lot of images, so the nodule
identification process takes a long time and the radiologists may
not agree on the detection of pulmonary nodules. An automated
pulmonary nodule identification system resolves this problem by
aiding radiologists avoid missing nodules, incorrect diagnoses and
also by giving them a second opinion. The appearance, texture,
and intensity of pulmonary nodules change depending on their
innate qualities (Cao et al., 2020). It is particularly challenging
to establish an effective nodule identification approach because of
these variations in the pulmonary nodule’s appearance and their
high degree of similarity to the surrounding tissues.

Lung nodules are frequently early signs of lung cancer,
but because they are small (sometimes just a few millimeters)
and resemble benign structures, they are difficult to identify.
Convolutional neural network’s (CNN) ability to recognize patterns
helps them spot tiny indicators that human observers or less

sophisticated algorithms would overlook (Litjens et al., 2017).
Their generalization ability makes them suitable for real-world
deployment across a variety of medical imaging contexts, and their
hierarchical feature learning guarantees that they can differentiate
nodules from false positives (such as calcifications or scarring).

The spatial hierarchies of features can be automatically and
adaptively learned from input data by CNNs. In order to
identify significant characteristics like edges, textures, and patterns,
CNNs employ a mathematical process known as convolution,
in which tiny filters or kernels move over the input data.
After each convolutional layer, activation functions are applied
to introduce non-linearity, helping the network learn complex
patterns. Pooling layers are used to lower the computational effort
and spatial dimensions while simultaneously strengthening the
model’s resistance to changes such as minor distortions or shifts.

The proposed work is to explore pulmonary nodule
segmentation systems based on multi-scale feature integration
architectures such as UNet and FPN by enhancing it for effective
segmentation of lung nodules. The contributions in the proposed
work to semantically segment lung nodules are as follows:

• Pre-processing techniques using filters like the median and
anisotropic diffusion, as well as certain clustering algorithms
and morphological processes are used to segment the lungs
from the CT scans. The annotations from the dataset are then
used to build the nodule masks.

• Multi-scale UNet improvises the traditional UNet architecture
by incorporating multi-scale convolutional operations which
improves feature extraction and boosts segmentation
performance metrics.

• The UNet with ACB and Channel Attention Mechanism
employs a cross-like receptive field that can reduce the
impact of redundant information in obtaining representative
characteristics.

• FPN with Linear Attention mechanism uses a multi-scale
feature pyramid to identify nodules of different sizes and a
linear attention mechanism to improve feature extraction.
FPN with Linear Attention mechanism attains a linear
time and spatial complexity while effectively segmenting
pulmonary nodules.

The organization of the rest of the paper is as follows. Section
2 discusses the existing work in pulmonary nodule segmentation.
The proposed work with different lung nodule segmentation
models is described in Section 3. Lung nodule segmentation
was performed using a multi-scale UNet, FPN with Linear
Attention Mechanism and UNet with ACB and Channel Attention
Mechanism. Section 4 discusses the conclusion.

2 Related works

Region growing, morphological and energy-based algorithms
were traditionally used to identify lung nodules. Region growing
techniques make use of region homogeneity and local connectivity,
morphological procedures modify pixel structures according to
intensity and shape, energy-based techniques control segmentation
by minimizing contour energy based on gradients and continuity
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constraints. In recent years, machine learning and deep learning
techniques have been employed to identify nodules. The shape,
texture and intensity of nodules are used to extract features
that are used for learning in machine learning methods such as
Random Forests and Support Vector Machines. By directly learning
hierarchical representations from raw image data, deep learning
models, in particular CNNs have proven to perform better, enabling
end-to-end detection processes.

The basic concept of region-growing algorithms is finding
the pixels that most closely match pulmonary nodules and then
combining pixels with identical properties. First, a point in each
area is identified as the seed point and growth begins from this
point. This point is compared to its neighbors, and if they are
comparable, they are joined to create a region. The zone expands
as a result of this operation until no more pixels are identical.
A model that analyzes a region-growing technique based on
contrast and fuzzy connection maps (Dehmeshki et al., 2008) is
proposed. Nodules with varying contrast levels, nodules close to
the lung wall, and nodules connected to blood vessels could all
be effectively segmented by the algorithm. The model detected
84% of the nodules, with the remaining nodules being recognized
using alternative solutions developed by the authors based on
the peripheral contrast vector. A novel toboggan-based automatic
segmentation approach (Song et al., 2015) for detecting lung lesions
that does not require human interaction or training datasets is
proposed. The method has three steps: Automatic Seed Point
Selection, Multi-Constraint 3D Lesion Extraction, and Lesion
Refinement. This work was tested on the LIDC-IDRI and an in-
house clinical dataset and the approach achieved 96.35% detection
sensitivity, with an average processing time of less than 8 seconds
per lesion. The method is particularly effective for ground-glass
opacities, and it outperforms previous algorithms in terms of
segmentation accuracy and time efficiency. It shows promise for
clinical applications and could be used to segment lesions in other
tissues. In future research, the authors suggest to segment lesions in
different organs using this approach.

Using a structuring element on the input image to compute
or extract the shape or attribute of interest is the basic notion
behind morphology-based approaches. A distance map-based
technique for segmenting solid nodules connected to blood vessels
is introduced by the authors (Diciotti et al., 2011). The authors
did not take into account non-solid nodules that were connected
to blood vessels. This approach was able to segment 91.7% of
the nodules in the LIDC-IDRI dataset and 91% of the nodules
from the ITALUNG (Pegna et al., 2009) dataset with some manual
refining. An automated erosion strength calculation approach for
the morphological opening operation is devised by Kuhnigk et al.
(2006), which when combined with the chest wall separation
technique allows for the reliable segmentation of tiny, large and
irregularly shaped nodules.

The segmentation problem is represented as an optimization
problem via energy optimization techniques. The signed distance
function-based pulmonary nodule shape model is mapped to
the image domain by a set of transformations (Farag et al.,
2013). The proposed approach is independent of the type and
location of nodules. Even when nodules are connected to other
anatomical structures such as arteries or the pleural wall, the
alignment and segmentation process is optimized by gradient

descent, guaranteeing precise delineation of nodule boundaries.
The authors identify Ground Glass Nodules (GGNs) in chest CT
images using an asymmetric multi-phase deformable model (Jung
et al., 2018). Initially, intensity-based segmentation with histogram
modeling extracts the solid and GGO regions, which are refined
with a modified energy function and an intensity-constrained
averaging function. Multi-scale shape analysis is performed to
remove pulmonary vessels. The experimental evaluation using a
private dataset and LIDC-IDRI resulted in a DSC of 0.85±0.05
and 0.78±0.07, respectively. The proposed deformable model relies
on iterative optimization of level-set functions through energy
minimization, which requires repeated computations within the
volume of interest. Since it is applied only to small regions and
assumes a single nodule per volume, the method is not easily
scalable to whole-lung analysis. Moreover, it depends on user
input and empirically chosen parameters, introducing variability
and limiting automation–for instance, the need for histogram
modeling to adjust thresholds. In contrast, the proposed FPN
with a linear attention mechanism is trained end-to-end, enabling
fully automatic segmentation without case-specific initialization.
The model adaptively learns features, reducing reliance on hand-
crafted parameters and improving consistency across different CT
protocols. Additionally, it effectively handles large inputs, scaling
linearly with input size.

In machine learning, features obtained from the input
data are used to train a model. Machine learning techniques
encompass a wide range of methods that find patterns in data to
produce predictions without the need for explicit programming.
Support vector machines, fuzzy c-means clustering, and k-means
clustering are a few of the frequently employed machine learning
approaches. In medical imaging, deep learning has emerged as
a potent technique, especially for identifying lung nodules. The
segmentation approach by the authors (Hancock and Magnan,
2019) uses machine learning (specifically regression models) to
learn the velocity function that guides the segmentation boundary
evolution, rather than relying on manually designed functions.
Starting from an initial boundary guess, the method iteratively
refines the segmentation by estimating the velocity function, which
dictates whether the boundary expands (positive velocity inside
the nodule) or contracts (negative outside) to align with the
true nodule boundary. The initialization process involves local
thresholding, connected component analysis, and ray-casting-
based radius trimming, calibrated via grid search. The method
achieves an average Intersection over Union (IoU) of 0.7185
(±0.1114) and a Dice Score Coefficient (DSC) of 0.8362 (±0.0876)
on 112 test nodules of the LIDC-IDRI dataset. However, the
approach was sensitive to initialization, computationally slow
and not suitable for real-time applications. In order to precisely
identify small ground glass opacity pulmonary nodules which are
essential for the early diagnosis of lung cancer, the authors (Zhang
et al., 2020) introduce a novel image segmentation technique that
combines a Bayesian posterior probability difference obtained by
a Gaussian mixture model and EM algorithm to improve border
detection, with a Markov random field (MRF) energy model to
improve contrast and address intensity inhomogeneity utilizing
spatial pixel correlations. The method is used inside a level
set architecture and verified on clinical and LIDC-IDRI dataset,
yielding superior segmentation performance with average IoU
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scores of 0.7503 and 0.7444, respectively. The findings promote
improved medical image analysis by confirming that the suggested
approach is reliable and accurate for segmenting small ground glass
opacity nodules.

Deep learning models can accurately and automatically identify
and categorize lung nodules in chest CT scans by utilizing
CNNs. Complex characteristics that are essential for differentiating
between benign and malignant nodules, like shape, texture, and
location, are learned by these models. By enhancing early lung
cancer detection and lowering human error, this technology helps
radiologists provide more efficient and timely treatment. A system
with two residually connected networks that are incremental and
dense respectively with multiple resolutions, enabling automated
lung nodule segmentation is proposed by Jiang et al. (2018). They
created a multi-scale CNN method for volumetric lung tumor
segmentation that allows for precise, automated identification and
serial measurement. The proposed work achieved a DSC of 68% on
the LIDC-IDRI dataset. A 3D volumetric CNN was designed for
processing full CT image volumes which involved 3D convolutions
and multi-resolution feature handling across depth, leading to
higher memory demands, parameter scaling in practice, and overall
resource usage compared to the 2D encoder-decoder architectures
discussed in this manuscript. A network with VGG16 and an
enhanced Faster R-CNN to identify pulmonary nodules is proposed
by Su Y. et al. (2021), and the model obtained an accuracy of
91.2%. Optimization of parameters such as learning rate, batch size,
dropout, attenuation coefficient, and step size is performed. The
authors (Veronica, 2020) introduce a lung nodule segmentation
method using a neural network in conjunction with fuzzy C-
means clustering, optimized by a nature-inspired optimization
technique and it achieved a sensitivity of 93.3%, specificity of
80%, and accuracy of 86.6% on the ELCAP dataset. The model
proposed by El-Regaily et al. (2020) works especially well for
locating nodules that are connected to the lung wall or arteries.
Without the computational load of full 3D networks, the multi-
view CNN efficiently captures 3D information from several 2D
perspectives by processing axial, coronal, and sagittal views of
each candidate nodule. Lung and nodule segmentation employing
a combination of 2D and 3D region growth, thresholding, and
morphological procedures is the first step in the detection pipeline.
Structures that resemble vessels are removed by examining their
unique forms on a three-dimensional depth map. A rule-based
classifier is used to filter out obvious non-nodules and a multi-
view CNN minimizes false positives. The accuracy achieved by
the system was 89.895% on the LIDC-IDRI dataset. The network
by Tyagi and Talbar (2022) combined squeeze and excitation
modules with a Generative Adversarial Network (GAN) to address
class imbalance and the problem of limited data samples while
avoiding overfitting. The suggested model achieved a DSC of
80.74% and a sensitivity of 85.46% on the LUNA16 dataset.
The proposed network (Bhattacharyya et al., 2023) incorporates
a modified UNet architecture based on a bidirectional feature
network and the Mish activation function. It combines features
from multiple scales and after using the Mish activation function,
the DSC increased to 88.89% from 77.84%. Ali et al. (2022)
proposed a modified UNet with dense connections and atrous
convolution blocks for extracting rich features and the model
achieved a DSC of 81% and IoU of 71.6% on the LIDC-IDRI

dataset. The features were reusable due to the use of dense
connections, and features for various nodule sizes were extracted
using a variety of pooling options and transposed convolutions
performed at various scales. Ilhan et al. (2023) enhanced lung CT
images using a histogram-based non-parametric region localization
and enhancement method to highlight abnormal regions and fed
the enhanced images into a U-Net model for segmentation of
COVID-19-infected lung areas. The model achieved an accuracy,
DSC and IoU of 97.75%, 85% and 74% on the COVID19 dataset
from Italian Society of Medical and Interventional Radiology.
Abiyev and Ismail (2021) presented a methodology employing two
CNNs trained via transfer learning, one for binary classification
distinguishing pneumonia from normal chest X-ray images,
and another for three-class classification identifying COVID-19,
pneumonia, and normal cases. The models achieved an accuracy
of 98.3%, recall of 97.9%, precision of 98.3% and DSC of 98.0%,
indicating effective diagnosis of COVID-19 and pneumonia from
chest X-rays from Kaggle repository. This model is desgined
for classification rather than segmentation. Zhou et al. (2021)
presented a UNet-based approach enhanced with integrated spatial
and channel attention mechanisms and focal Tversky loss for
segmenting COVID-19 lesions in CT scans. The model achieved
a DSC of 83.1% on the dataset from the Italian Society of
Medical and Interventional Radiology. The described attention
mechanism employs global average pooling for channel weighting
and convolutional operations for spatial weighting, enhancing
feature selection and segmentation accuracy. However, these
pooling and convolution-based methods can be computationally
intensive for very high-resolution images. Conversely, linear-
attention mechanisms discussed in this manuscript offer better
scalability with input size, making them more suitable for
processing large-volume CT scans. The proposed work using
enhanced UNet, FPN and attention mechanisms discussed in this
manuscript provides global context, multiscale feature learning,
and computational efficiency. Tang et al. (2025) proposed a
transformer based model that uses a partial convolution module
in conjunction with a multi-scale attention module. Effective cross-
scale feature fusion was accomplished using a channel transformer
module and grouping and shuffling concepts were used to enhance
feature fusion capabilities. The proposed work obtained a DSC
of 91.5% on the LUNA16 dataset and 87.4% on the Tianchi
dataset (Tianchi Medical AI Competition:Intelligent Diagnosis of
Pulmonary Nodules, 2017). Wang et al. (2022) proposed a two-
path model based on enhancing the boundary and a hybrid
transformer setup. Global nodule features were obtained, and
an edge detection operator was used to generate a boundary
enhancement dataset, which improved the boundary precision.
The proposed work achieved an average DSC of 89.86% and
a sensitivity of 90.50% on the LIDC-IDRI dataset. Liu and He
(2024) introduced a parallel fusion model that combined CNNs
and Transformer architectures to detect lung nodules in CT
scans. This model harnessed CNN’s strength in capturing detailed
spatial information at high resolution and Transformer’s ability to
understand global semantic context. It used a pyramid network
design with multi-scale features, integrating modules for deep
feature interaction and fusion, allowing each architecture to retain
its core strengths without adopting the other’s framework. The
study employed the LUNA16 dataset and achieved a top precision
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of 95.81% and a robust sensitivity of 93.38% in lung nodule
detection. Gautam et al. (2024) present a model incorporating
double adaptive attention blocks, which integrate global self-
attention from transformers with local spatial details from CNNs.
The first block captures global feature statistics, while the second
redistributes these features to specific spatial locations, enhancing
both global and local context understanding in lung CT images.
This design achieved a DSC of 96.57% on the LIDC-IDRI dataset.
The approach by Shen et al. (2025) integrates nnU-Net as the
core framework with a Transformer decoder, employing a novel
data augmentation method that leverages GANs to create synthetic
lung nodules. These nodules are dynamically inserted into selected
CT regions to enrich training data. The hybrid decoder combines
multi-scale feature maps from nnU-Net and progressively refines
organ label sets using cross-attention in the Transformer decoder,
enhancing segmentation accuracy achieving a DSC of 90.12% on
LIDC-IDRI. The model by Shi and Zhang (2025) is an advanced
UNet-based model for lung nodule segmentation and it integrates
three innovative modules: a Local Aware Attention module that
combines deep and shallow features to highlight nodule areas, a
Pixel Transformer module that enhances semantic understanding
through long-range dependencies, and a Perceptual Adaptation
Module that flexibly adjusts feature extraction. This model achieved
IoU of 89.6% and DSC of 89.85% on the LIDC-IDRI dataset.

The foundational study by Niknejad Mazandarani et al. (2024)
introduced a novel strategy for mitigating noise in low-dose CT
(LDCT) imaging, which is essential for accurate lung nodule
segmentation. By incorporating a residual multi-scale feature
fusion mechanism within a CNN, the work demonstrated how
adaptive integration of multi-scale local features and channel
dependencies can preserve structural details and high-frequency
information, thereby improving image quality for downstream
tasks such as nodule detection and segmentation. Building on
this foundation, the present work extends the concept of multi-
scale feature fusion into specialized architectures for lung nodule
segmentation. Multi-scale UNet incorporates multi-scale blocks
into the UNet backbone, where convolutional sequences with
varying receptive fields capture diverse semantic information,
addressing the limitations of fixed receptive fields in conventional
UNets. UNet with Asymmetric ACB and Channel Attention further
advances residual multi-scale fusion by introducing ACB modules
and multi-scale skip connections enhanced with channel attention.
This design improves feature representation in high-resolution
CT data, eliminating redundant features and effectively fusing
multi-scale dependencies, which enhances segmentation precision
for small or irregularly shaped nodules. Finally, the FPN with
Linear Attention mechanism pushes the methodology forward
through an attention aggregation module embedded in the FPN.
By adaptively aggregating multi-scale features via attention-guided
fusion, this approach alleviates intrinsic shortcomings in feature
extraction, achieving fine-grained segmentation of lung nodules in
complex CT volumes while maintaining computational efficiency.
A comparative summary of the existing lung nodule segmentation
methods discussed above is presented in Table 1, highlighting their
architectures, datasets, and performance metrics.

Numerous deep learning models have been developed
for pulmonary nodule segmentation; however, many existing
approaches struggle with generalization across different types

TABLE 1 Comparison of methods for lung nodule segmentation.

References Architecture/method Dataset and
metrics

Jiang et al. (2018) Multi-scale CNN with
residual connections

LIDC-IDRI
Average DSC - 68%

Su Y. et al. (2021) Faster R-CNN model with
optimized VGG16

LIDC-IDRI
Accuracy—91.2%

Veronica (2020) Fuzzy C Means with centroid
optimization, ANN with
OALO

ELCAP, LIDC-IDRI,
Marthandam Lung CT
Accuracy—86.6%

El-Regaily et al.
(2020)

Multiview CNN, Region
growing technique

LIDC-IDRI
Accuracy—89.89%

Ali et al. (2022) Dense convolutional blocks,
dilated convolutions, UNet

LIDC-IDRI
IoU—71.6%

Tyagi and Talbar
(2022)

Conditional GAN, Squeeze
and Excitation

LUNA16 DSC - 80.74%,
Sensitivity—85.46%
Local Dataset:
DSC—76.36%,
Sensitivity—82.56%

Bhattacharyya et al.
(2023)

Bi-directional network, UNet,
Mish Activation Function

LUNA16
DSC—88.89%

Ali et al. (2022) Dilated Convolutions at
various rates, UNet, Context
learning

LIDC-IDRI
DSC—81.1%

Suji et al. (2024) Transfer learning, Pretrained
encoders, Encoder-Decoder
network

LIDC-IDRI
IoU—45%

Tang et al. (2025) Transformer based model,
Grouping and Shuffling
concepts

LUNA16
DSC—91.5%
Tianchi
IoU—87.4%

Wang et al. (2022) Hybrid CNN-transformer
architecture, Down-Attention
Sample module

LIDC-IDRI
DSC—89.86%
Sensitivity—90.50%

Liu and He (2024) Hybrid CNN-transformer
architecture

LUNA16
Precision—95.81%
Sensitivity—93.38%

Gautam et al.
(2024)

Hybrid CNN-transformer
architecture, Adaptive
Attention

LIDC-IDRI
DSC—96.57%

Shen et al. (2025) Transformer model, GAN LIDC-IDRI
DSC—90.12%

Shi and Zhang
(2025)

Pixel Transformer, Attention LIDC-IDRI
DSC-89.85%
IoU—89.6%

of nodules and could benefit from improved efficiency.
These limitations highlight the need for a more efficient
and comprehensive neural network-based system capable of
accurately handling the diverse characteristics of pulmonary
nodules. The techniques are computationally intensive, limiting
their scalability and real-time clinical deployment especially
for resource-constrained environments. While Transformers
offer superior accuracy by modeling long-range dependencies,
their computational intensity poses challenges, particularly
with large images where attention calculations become
excessively demanding. In resource-constrained scenarios,
CNN-based approaches like FPN paired with a linear attention
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mechanism as discussed in this manuscript are more advantageous
than transformers.

3 Proposed methodology of the lung
nodule segmentation models

This chapter presents the methodology adopted for
accurate segmentation of lung nodules from CT scans. The
process involves multiple stages, beginning with image pre-
processing to enhance image quality and isolate the region of
interest (ROI), followed by semantic segmentation using deep
learning models as shown in Figure 2. The primary objective is to
improve nodule localization accuracy by leveraging advanced CNN
architectures, such as multi-scale UNet and FPN, integrated with
attention mechanisms.

Lung nodule segmentation refers to the process of outlining
and isolating nodules within the lungs from imaging data
acquired through any modality, such as CT or X-ray. Semantic
segmentation involves labeling each pixel in an image with a class.
In the context of lung nodule analysis, this means identifying
all pixels that belong to a nodule. Semantic segmentation
does not differentiate between individual nodules; it treats all
nodules as part of the same class. Lung nodule segmentation
was performed using three architectures: Multi-scale UNet, FPN
with Linear Attention Mechanism and UNet with ACB and
Channel Attention Mechanism. The Multi-scale UNet enhances
the conventional UNet framework through the integration of
multi-scale convolutional layers, thereby refining feature extraction
and elevating segmentation precision. In contrast, the UNet
incorporating ACB and Channel Attention Mechanism leverages a
cross-shaped receptive field to mitigate the influence of superfluous
data, facilitating the capture of more discriminative features.
Meanwhile, the FPN augmented with Linear Attention Mechanism
exploits a multi-scale feature pyramid to detect nodules across
varying dimensions, supplemented by a linear attention module
for superior feature refinement. This FPN variant achieves linear
computational complexity in both time and space, enabling efficient
and accurate segmentation of pulmonary nodules.

3.1 Pre-processing

Extraneous objects outside of the ROI are commonly found
in medical imaging datasets. Pre-processing of data is typically
required to improve its quality and make it more appropriate for
further processing. The search space of the model is reduced by
extracting a specific ROI, such as lungs from the complete CT scan
image. The pre-processing methods used in this study are shown in
Figure 3 and are discussed in detail below.

1. Standardization operation—To guarantee faster convergence,
the original image’s average and standard deviation were
computed, and the average was subtracted from the image,
which was then divided by the standard deviation.

2. Filtering—To refine an image and remove noise, the median
filter (Pitas and Venetsanopoulos, 1990) and the anisotropic
filter (Perona and Malik, 1990) are used. In median filtering, a
window is moved across the image, and the window’s median

values replace the window’s center. Median filters minimize
noise while preserving edges and are resistant to outliers.
This is followed by an anisotropic filter, a technique based
on partial differentiation equations that removes noise while
preserving edges. The anisotropic diffusion filter makes the
homogeneous areas smooth while effectively preserving edges.
Anisotropic filters reduce noise, ensure preservation of edges,
enable adaptive filtering, and improve structures. The median
and anisotropic filters work together to provide a cleaner and
more defined image, which leads to improved lung nodule
segmentation results.

3. Clustering—K-means clustering approach followed by
thresholding to separate the lungs from the other entities in the
CT scan. Initially, the cluster centroid is chosen at random, and
the data points are assigned to the closest cluster. The K-means
clustering algorithm is an unsupervised algorithm that classifies
data points into groups based on their proximity to the centroid
of each cluster, where K denotes the number of clusters. The
length of separation between the locations is calculated using
the Euclidean distance.

4. Morphological Processes—The binary image acquired in
the preceding stage is refined with nonlinear morphological
procedures such as erosion and dilation. Morphological
operations are used to remove distortions from images by
utilizing various structuring elements. The structuring element
is a matrix that goes over the image and its size determines how
many pixels are added or removed. Dilation is a technique for
adding pixels to an object’s boundary, while erosion is used to
reduce the number of pixels on the boundary. Erosion operation
is followed by a dilation operation, which is known as opening
an image, as illustrated in Equation 1. The symbols θ and ⊕
represent erosion and dilation, respectively. I represents the
image, while k is the structural element that moves across it.

Iok = (Iθk) ⊕ k (1)

5. Segmentation of the lungs and Nodule Mask Generation—
The pixels are designated according to their intensity. If a pixel’s
value is identical to that of its neighbor, it indicates that they
are related, and therefore assigned the same value, and belong to
the same region. Bounding boxes are used to define the pixels of
a region. The lung mask is extracted using the bounding box’s
properties. To increase the image size, a dilation operation is
used. Finally, multiplying the lung mask by the CT slice results in
the lung ROI segmentation. The nodule masks are created using
the annotations provided in the dataset.

The pre-processing pipeline enhances segmentation reliability
by mitigating noise, intensity variations, and irrelevant background
structures in CT images. Intensity normalization standardizes input
data, while median and anisotropic diffusion filters reduce scanner
noise while preserving key boundaries. K-means clustering,
followed by morphological refinements, effectively separates lung
parenchyma from adjacent tissues, and region selection eliminates
non-lung elements. The resulting lung mask focuses the input
on lung fields, minimizing false positives and optimizing model
performance on relevant areas. This pre-processing improves
tissue boundary contrast and enhances generalization across scans,
leading to more precise segmentation.
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FIGURE 2

Proposed system design using enhanced UNet and FPN architectures.

FIGURE 3

Pre-processing of the CT Scans to segment lungs.
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3.2 Lung nodule segmentation methods

After pre-processing, lung nodule segmentation is performed
using deep learning architectures based on UNet and FPN
frameworks, with enhancements through multi-scale feature
extraction and attention mechanisms.

3.2.1 Multi-scale UNet
UNet is a CNN architecture designed primarily for image

segmentation, Ronneberger et al. (2015) especially in biomedical
and remote sensing applications. It is one of the most widely
used models for segmentation tasks. Medical image segmentation
has made extensive use of UNet, an encoder-decoder architecture
that has achieved notable results. FPN is used to enhance object
detection and segmentation, particularly for identifying objects
at various scales. It combines high-resolution, spatially rich
features from shallow layers with low-resolution, semantically rich
features from deep layers to create a multi-scale feature pyramid.
The attention mechanism is a concept that enables models to
concentrate on the most pertinent aspects of the input data
during learning. In this study, segmentation of lung nodules using
segmentation models employing enhanced UNet and FPN are
analyzed.

Multi-scale UNet improves upon traditional UNet by
incorporating multi-scale convolutional operations, allowing
better feature extraction. It aims to overcome the limitations of
the convolution kernel with a limited receptive field. Semantic
characteristics are extracted from the images using a convolution
sequence achieving diversity in the features. When the convolution
kernel’s receptive field is too small, redundant features will be
retrieved, whereas when the convolution kernel’s receptive field is
large, smaller targets are ignored. For instance, in the pulmonary
nodule segmentation challenge, the small receptor field makes
it difficult to see the structure of the nodule, while the large
receptor field makes it difficult to see the edge detail of the smaller
nodule. Consequently, it is crucial to process the image using a
convolution kernel with various receptive fields. An architecture
that combines convolutions of various receptive fields is proposed
(Su R. et al., 2021) to obtain good results in the image processing
challenge, the network captures a variety of spatial information
by integrating multi-scale kernels composed of a 7 × 7 kernel
and a 3 × 3 kernel. While the 7 × 7 records more general
contextual patterns like structure boundaries, the 3 × 3 kernel
retains finer details like edges or textures. The choice of 3 × 3 and
7 × 7 convolutional kernels in our network was guided by the
need to balance fine-grained local feature extraction with broader
contextual understanding, which is crucial for accurate lung nodule
segmentation (Dinh et al., 2023). The 3 × 3 kernels, widely used
in CNN architectures such as UNet and ResNet, are efficient at
capturing local features like edges, textures, and precise boundaries
of small nodules, all while maintaining a low parameter count. In
contrast, the 7 × 7 kernels provide a larger receptive field, enabling
the network to incorporate wider anatomical context—such as
surrounding lung tissue and vascular structures—which is essential
for recognizing nodules of various sizes and reducing false positives
through contextual awareness. While dilated convolutions can

also enlarge the receptive field without increasing the number
of parameters, they may introduce gridding artifacts that impair
accurate boundary delineation. Our use of explicit 7 × 7 kernels
avoids these artifacts, ensuring smoother and more reliable feature
representations. Although architectures like Inception blocks
combine multiple kernel sizes to capture features at different scales,
they come with increased model complexity and computational
cost. Similarly, residual multi-scale fusion networks support better
gradient flow and feature reuse but require deeper, more complex
structures. In contrast, our simplified two-branch design—utilizing
both 3 × 3 and 7 × 7 kernels—achieves comparable multi-
scale feature integration with significantly lower computational
overhead, maintaining a lightweight and efficient architecture.
The architecture of the proposed Multi-scale UNet is illustrated in
Figure 4. It follows an encoder-decoder design where each encoder
block captures contextual features using multi-scale convolutional
kernels of 3 × 3 and 7 × 7 sizes. These parallel convolutional paths
extract both fine-grained boundary details and broader anatomical
context, whose outputs are fused before down-sampling. Skip
connections between corresponding encoder and decoder layers
facilitate feature reuse, while the decoder progressively upsamples
and refines the segmented regions. This multi-scale fusion enables
better detection of small and irregular lung nodules compared to
the conventional UNet.

3.2.2 UNet with ACB and channel attention
mechanism

UNet with ACB and Channel Attention Mechanism
incorporates a multi-scale skip connected architecture using
UNet and an ACB along with channel attention mechanism (Li
et al., 2022a), to aggregate the multi-scale features and adaptively
realign channel-wise features. The information flow between the
encoder and decoder layers are improved and channel attention
blocks are employed to adaptively reweigh features from different
levels. The multi-scale features were produced by various UNet
layers and the semantic features from both low-level and high-level
feature maps with various sizes were combined and realigned
via the multi-scale skip connections. This helps address the
underutilization of features while lowering computational costs.
The multi-scale features are integrated by the re-designed skip
connections as shown in Figure 5. ACB combines the convolution
outputs from the branches of the square, horizontal, and vertical
kernels to capture finer details without increasing computing
complexity (Ding et al., 2019). Positions on a square convolution
kernel’s central skeleton are more significant than those on
its corners. Therefore, by increasing the weight of the central
crisscross sections, asymmetric convolution block improves
the representation capability of convolution layers as shown in
Figure 6.

3.2.3 ACB
An ACB is a type of CNN module that replaces traditional

square convolution filters (e.g., 3 × 3, 5 × 5) with asymmetrical
ones, such as 1 × 3 followed by 3 × 1(or vice versa). This technique
helps improve model efficiency by reducing computational cost
while maintaining performance. To create a cross-like receptive
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FIGURE 4

Multi-scale UNet.

FIGURE 5

UNet with ACB and channel attention mechanism.

field, three branches are employed: a 3 × 3 convolution, a 1 × 3
convolution (horizontal kernel), and a 3 × 1 convolution (vertical
kernel). While the horizontal and vertical kernels ensure the
importance of features on the skeleton and increase the network’s
width, the 3 × 3 convolution identifies features by using a
comparatively broad receptive field. The final combined results

are obtained by adding the feature maps produced by the three
branches. The output is then activated in a nonlinear fashion and
the numerical stability is increased by using batch normalization
and an activation function.The points in the corners of the kernel
provide less information for feature extraction than the weights
on the central crisscross places, or the kernel’s skeleton, which
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FIGURE 6

Asynchronous convolution block.

have larger magnitudes. So, the cross-like receptive field can lessen
the impact of redundant information in obtaining representative
characteristics. An ACB is created by employing the asymmetric
convolutions (Li et al., 2022a) to obtain activation maps from
various receptive fields. A cross-like kernel is different from a
conventional kernel since it prioritizes the middle crisscross places
and de-emphasizes the corners. This results in better management
of redundant information, less noise, and more focused feature
extraction.

Asymmetric Convolution Block can be formulated as shown in
Equations 2 and 3.

īj = F3×3(ij − 1) + F1×3(ij − 1) + F3×1(ij − 1) (2)

ij = σ
γj(īj − Ex(īj)√

Va(īj) + εj

+ βj (3)

The ACB’s input is denoted by ij − 1 and its output by ij.
The variance function and input expectation are represented by
Va(·) and Ex(·). To provide numerical stability, ε is a tiny constant.
The normalized result can be scaled by γ and shifted by β ,
two trainable parameters of the Batch Normalization layer. The
activation function is indicated by σ (·). In order to prevent the
checkerboard pattern and produce a smooth image, ACB is used
to capture and enhance the features in each encoder layer and

it is added after each transposed convolution of the decoder. In
CNNs, the checkerboard pattern is an artifact that shows up in
the output of some architectures, particularly when upsampling
is done using deconvolution (transposed convolution) layers. This
pattern affects the quality of the output and appears as a grid
or checkerboard.

3.2.4 Multi-scale skip connections
Multi-scale skip connections are employed to capture the

interaction between the encoder and decoder, which extracts both
fine-grained technical information and coarse-grained semantic
information, because the simple connections of UNet do not
completely leverage the information at various scales. Figure 7
shows feature maps creation using I3

D as an example. First,
the feature maps of the same-level encoder layer (i.e., I3

E) are
connected directly, secondly, the fine-grained detailed information
contained in lower-level encoder layers (i.e.I4

D and I5
D) are delivered

by transposed convolutions and asymmetric convolution blocks.
Finally, the coarse-grained semantic information contained in
higher-level encoder layers (i.e. I1

E and I3
E) are transmitted by

the maxpooling layers and asymmetric convolution blocks. The
aforementioned process is expressed in Equation 4.
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FIGURE 7

Creation of a multi-scale aggregated activation map I3D.

Ij
D =
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⎛
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⎡
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E)

⎞
⎠

︸ ︷︷ ︸
Scales: 1th∼jth

, Ac

⎛
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Ug(Ik
D)

⎞
⎠
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Scales: (j+1)th∼Mth

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠ , for j = 1, . . . , M − 1

(4)
ChAB is the channel attention block which realigns channel-

wise features. Asymmetric convolution block is indicated by Ac(·).
[·] denotes the concatenation operation, Dg (·) and Ug (·) stand for
down-sampling using max-pooling layers and up-sampling using
transposed convolution, respectively. ChAB4, ChAB2, and ChAB1
as shown in Figure 7 have a similar connection.

3.2.5 Channel attention block
A Channel attention block (ChAB) is constructed to reweight

channel-wise features, and it is based on the Convolutional Block
Attention Module (Woo et al., 2018) as shown in Figure 7. The
ChAB aims to learn a 1-D weight Wch ∈ RCh×1×1 that realigns
the channels of the input feature map F ∈ RCh×H×W , where Ch, W,
and H are the three variables that indicate the channel count, height
and width of the activation map. ChAB improves informative
channels while limiting indiscriminative ones by multiplying Wch
and F. For I3

D, we use a 1 × 1 convolution with 128 filters to
reduce the number of channels at first. Using I3

D as an example,
the number of channels are reduced by using a 1 × 1 convolution
with 128 filters. The average-pooling and max-pooling processes
are then used to compress the spatial dimension. The channels of

the squeezed feature maps are reduced to one-sixteenth of their
initial size by two convolution layers with eight filters and activation
functions. Then, two convolution layers with 128 filters are used
to restore the number of channels. Lastly, the sigmoid function
activates the sum of the two layers, which is then multiplied by
the output of the first convolution. Similarly, the other ChABs
yield I4

D, I2
D, and I1

D. The integration of ACB with channel attention
was chosen due to their complementary strengths in segmentation
tasks. ACB boosts feature representation by emphasizing the
central skeleton of convolutional kernels using 3×3, 1×3, and 3×1
branches, enhancing boundary and shape detection without added
computational expense. The channel attention block drawing
inspiration from CBAM but streamlined, adaptively adjusts
channel weights to filter out irrelevant features while effectively
merging multi-scale skip connections. Compared to SE, which
focuses solely on channel relationships, and CBAM, which adds
spatial attention and extra computational load overlapping with
multi-scale fusion, our approach optimizes accuracy and efficiency.

3.2.6 FPN and linear attention
A deep learning architecture called FPN is employed in

computer vision applications such as segmentation and object
detection. By creating a multi-scale feature pyramid, FPN improves
feature extraction and makes it possible for a model to recognize
objects of various sizes. In order to take advantage of the pyramidal
feature hierarchy, the FPN was first created for object detection
(Lin et al., 2017). As seen in Figure 8, the FPN’s constituent
parts are a top-down pathway, a bottom-up pathway, and lateral
connections. ResNet is typically used as the backbone of the
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FIGURE 8

Structure of a feature pyramid network.

bottom-up pathway (He et al., 2016), where feature maps created at
various scales are used to compute the feature hierarchy. Although
they have high-level meanings, the feature maps at the upper
pyramid levels are coarse. Up-sampling from high-level feature
maps allows the top-down pathway to interpolate fine-resolution
features, which are subsequently combined and improved with
features of the same spatial scale from the bottom-up pathway
through lateral connections. In this study, an architecture that
employs FPN enhanced with a linear attention module and an
attention aggregation module is used to segment nodules with a
linear time and space complexity. As a single end-to-end network,
the main constituents of FPN with Linear Attention Mechanism
are depicted in Figure 9 as the Attention Aggregation Module, the
lateral connections (i.e. the 1 × 1 convolutional layer between the
first and second columns), the feature pyramid (i.e. the second and
third columns), the bottom-up pathway (i.e. the first column), and
the top-down pathway (i.e. the second column) (Li et al., 2022b).

3.2.7 Pathway from the bottom up
ResNet-34 is chosen to create a straightforward and effective

framework. The bottom-up pathway creates the feature hierarchy
and performs feed forward learning using the ResNet backbone.
With a scaling step of two, the feature maps are produced at various
spatial resolutions. Large spatial context with coarse resolution
is presented at the top levels of feature maps, whereas context
information with fine resolution is presented at the bottom levels.
The output feature map of each residual block in ResNets is denoted
by F2, F3, F4, and F5. The spatial sizes of F2, F3, F4, and F5 are 1/4,

1/8, 1/16, and 1/32 of the input size, respectively. F1 is excluded
from the pyramid because of its substantial memory footprint.

3.2.8 Lateral connections and the top-down
pathway

In order to produce fine resolution features, the top-down
pathway up-samples semantically rich but spatially coarse feature
maps from the top pyramid levels. These characteristics are then
combined and enhanced with corresponding features from the
bottom-up pathway through lateral connections. A feature pyramid
is made up of a top-down layer and a lateral connection, as seen
in Figure 10, and M2, M3, M4, and M5 are the feature maps
produced. The spatial resolution of a coarse-resolution feature
map such as M4 in Figure 10 are upsampled by a factor of 2,
with the nearest neighbor up-sampling method. The up-sampled
feature map is fused with the corresponding map from the bottom-
up pathway through element-wise addition, followed by a 1 ×
1 convolutional layer to reduce the channel dimensions. The
aforementioned process is repeated until the finest resolution map
is produced. To begin the iteration, a 1 × 1 convolutional layer
on F5 directly creates the coarsest resolution map (such as M5
in Figure 9). To lessen the aliasing impact brought on by the up-
sampling procedure, a 3 × 3 convolution is applied to the merged
map created by the associated feature pyramid to create the final
feature map. The feature pyramid enhances the representation
by including low-level contextual information into spatial feature
maps. Since the deep convolution layers have bigger receptive fields
than the shallow ones, the high-level features have a large spatial
context. Therefore, the low-level features combine with high-level
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FIGURE 9

Framework of feature pyramid network with attention aggregation.

FIGURE 10

Feature pyramid.

features to learn the multi-scale context information and enhance
segmentation accuracy.

3.2.9 Linear attention mechanism
The attention mechanism helps to focus on the significant

parts of the input and capture global context. The dot product
attention mechanism weighs the input values and generates an
output by calculating attention scores that represent the relevance
between elements of the input. These scores are then used to
calculate a weighted sum of the input values, which forms the
output. M represents the length of the input data, calculated as
the product of the input data’s height (Ht) and width (Wt). The
input feature I is represented as [i1, . . . , iM] ∈ R

M×Ch. Ch denotes
the number of input channels.Di is the number of channels in the

input, Dk is the number of columns in query and key matrices and
Dv is the number of columns in the value matrix. The projected
matrixes,Wq ∈ RDi×Dk , Wk ∈ RDi×Dk and Wv ∈ RDi×Dv are used
to produce the query, key and value matrices Q, K and V as shown
in Equation 5. The query, key and value vectors are denoted by qx,
ky and vy respectively.

Q = IWq ∈ RM×Dk , K = IWk ∈ RM×Dk , V = IWv ∈ RM×Dv

(5)
The key matrices and the query must have the same

dimensions. Softmax is often employed as the normalization
function, and the values are normalized using the normalization
function ρ. The similarity between the x-th query feature qT

x ∈
RDk and the y-th key feature ky ∈ RDk can be represented as
ρ(qT

x ky) ∈ R1. Since the key feature and query feature are generated
by different layers, the similarity between ρ(qT

x ky) and ρ(qT
y kx)
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TABLE 2 Comparison of precision, recall, DSC and IoU metrics using
multi-scale UNet.

Activation
function

Precision
(%)

Recall
(%)

DSC (%) IoU (%)

SELU 60.15 65.61 62.71 49.59

ELU 59.49 66.43 62.74 50.24

GELU 60.54 65.96 63.19 50.52

Mish 64.05 67.37 65.64 52.32

Swish 61.48 66.63 63.90 51.59

ReLU 60.78 65.72 63.16 50.72

Leaky ReLU 62.49 71.02 66.41 53.92

TABLE 3 Comparison of precision, recall, DSC and IoU metrics using
UNet with ACB and channel attention mechanism.

Activation
function

Precision
(%)

Recall
(%)

DSC (%) IoU (%)

SELU 62.13 66.08 64.03 51.52

ELU 64.42 66.55 65.47 52.56

GELU 59.07 61.37 60.19 48.21

Mish 58.38 61.13 59.79 45.80

Swish 62.74 65.84 64.29 51.39

ReLU 63.28 66.78 64.85 52.01

Leaky ReLU 44.09 53.18 48.20 35.44

is asymmetric. The dot product attention mechanism is given in
Equation 6.

Att(Q, K, V) = ρ(QKT)V (6)

ρ is the softmax function used for normalization. Equation 7
illustrates how the x-th row of the resulting matrix based
on Equation 6 can be expressed using softmax normalization.
Equation 8 displays the first-order approximation of Taylor
expansion. Equation 9 illustrates how Equation 7 can be expressed
linearly using the first order approximation of Taylor expansion (Li
et al., 2020) and L2 norm. qx and ky are normalized by L2 norm to
ensure that qT

x ky ≥ −1. When the attention is based on the first-
order approximation of Taylor expansion, the time and memory
complexity becomes linear. To simplify, we replace the softmax
function with the first-order approximation of the L2 norm and
Taylor expansion (Li et al., 2020).

Att(Q, K, V)x =
∑M

y=1 eqT
x ky vy∑M

y=1 eqT
x ky

(7)

eqT
x ky ≈ 1 + qT

x ky (8)

Att(Q, K, V)x =
∑M

y=1

(
vy +

(
qx

‖qx‖2

)T ∑M
y=1

(
ky

‖ky‖2

)
vT

y

)
M +

(
qx

‖qx‖2

)T ∑M
y=1

(
ky

‖ky‖2

) (9)

TABLE 4 Comparison of precision, recall, DSC and IoU metrics using FPN
with linear attention.

Activation
function

Precision
(%)

Recall
(%)

DSC (%) IoU (%)

SELU 66.30 71.85 68.89 55.69

ELU 63.10 77.74 69.22 55.81

GELU 67.50 76.56 71.59 58.57

Mish 64.18 78.92 70.92 57.74

Swish 67.03 72.08 69.60 56.81

ReLU 66.27 72.20 69.96 56.51

Leaky ReLU 67.13 74.56 70.41 57.45

FIGURE 11

(a) Training and validation metrics for FPN with linear attention. (b)
Training and validation loss for FPN with linear attention.

The time and memory complexity utilizing the linear attention
mechanism is O(M) since

∑M
y=1

(
ky

‖ky‖2
vT

y

)
and

∑M
y=1

(
ky

‖ky‖2

)
from

Equation 9 can be computed once and the same can be used for
every query. Therefore, the amount of time and space needed would
grow linearly with the size of the input image.

3.2.10 Aggregating the attention modules
While global context information is crucial for semantic

segmentation, CNN’s ability to capture it is severely limited by its
local-aware characteristic. The context problem is addressed to an
extent using techniques like pyramid pooling. Nevertheless, the
contextual dependencies for entire input regions are uniform and
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TABLE 5 Comparison of DSC metrics.

Author DSC (%)

Mukherjee et al. (2017) 69 ± 14 (solid nodules)

65 ± 13 (part solid nodules)

Jiang et al. (2018) 68 ± 23

Wang et al. (2022)—Transformer based 89.86

Gautam et al. (2024)—Transformer based 96.57

Shen et al. (2025)—Transformer based 90.12

Shi and Zhang (2025)—Transformer based 89.85

FPN with Linear Attention (2025) 71.59

TABLE 6 Comparison of IoU metrics.

Author IoU (%)

Lassen et al. (2015) 52 ± 7 (subsolid
nodules)

Aresta et al. (2019) 55 ± 14

Suji et al. (2024) 45

Suji et al. (2021) 45.39

Shi and Zhang (2025)—Transformer based 89.6

FPN with Linear Attention (2025) 58.57

non-adaptive, disregarding the differences in local representation
of various categories and contextual dependencies. Furthermore,
the long-range dependencies of feature maps are not adequately
used by those algorithms that are often only used in one layer. FPN
is a useful framework for dealing with the problem of multi-scale
processing. However, feature maps lack context information due to
FPN’s designs. Here, a module that combines the attention module
is employed to improve long-range interdependence on multi-level
in order to collect the global context information as shown in
Figure 9 (Li et al., 2022b). In particular, the 1×1 convolutional layer
receives the four feature maps (P2, P3, P4, and P5) produced by the
corresponding feature pyramid after they have been concatenated.
The global context information is then captured and the fused
feature maps are further refined using the linear attention process.
Lastly, the original concatenated features are added together with
the refined features.

FPN with Linear Attention mechanism integrates a single
custom attention mechanism within a module that integrates
attention to refine multi-scale features extracted from the encoder-
decoder pathway and does not incorporate stacked Transformer
encoder-decoder layers. The effective embedding dimension of this
attention block corresponds to the concatenated pyramid features,
yielding 256 channels, and the mechanism operates in a single-
head configuration, where query, key, and value representations
are obtained using 1 × 1 convolutions. Thus, the model can
be described as a hybrid CNN with single-head attention an
embedding size of 256, and 1 attention head without transformer
layers. This design choice ensures a lightweight yet effective
framework, making it suitable for medical image segmentation
tasks where data availability and computational resources are often

limited. On CT scans, lung nodules can be small or large and
have a variety of shapes. Both fine-grained information (like the
borders of tiny nodules) and global context (like bigger nodule
structures) must be captured for accurate segmentation. It can be
challenging to precisely define boundaries since nodules frequently
exhibit low contrast to the surrounding tissues (such as arteries
and lung parenchyma) and CT images can be noisy. By integrating
semantically rich, low-resolution features (from deeper layers)
with high-resolution, low-level features (from shallow layers)
through top-down and lateral connections, FPN improves multi-
scale feature extraction. Due to its ability to capture both small
and larger nodules, this is suitable for lung nodule segmentation.
While standard softmax-based self-attention effectively captures
long-range dependencies in 2D CT slices, its quadratic time and
memory demands render it unsuitable for clinical applications,
especially with hundreds of slices per scan. To overcome this,
our linear attention module approximates the softmax function,
reducing complexity to O(M). This significantly decreases GPU
memory usage and speeds up inference. Although its performance
is slightly below that of full self-attention or transformer-based
segmentation networks, the linear attention approach is better
suited for resource-limited environments, enabling faster and more
efficient deployment for 2D lung nodule segmentation tasks. The
activation function on input i is represented by f(i), In the Gaussian
error linear unit (GELU) activation function, the input is weighted
according to its probability under a Gaussian distribution as shown
in Equations 10 and 11.

f (i) = 0.5 ∗ i ∗ (1 + erf
i√
2

) (10)

erf
(

i√
2

)
≈ tanh

(√
2
π

(
i + 0.044715 · i3)) (11)

Segmenting lung nodules necessitates separating low-contrast
nodules from related structures, such as arteries. The minute
intensity fluctuations that are essential for precise border
delineation are preserved by GeLU’s capacity to sustain small
negative activations. The FPN with linear attention mechanism
architecture avoids problems like dying neurons due to GeLU’s
smooth, Gaussian-based weighting, which guarantees constant
gradient flow. By acting as a soft dropout, GeLU’s probabilistic
weighting improves generalization and lessens overfitting.
The intensity distributions in CT scans, where pixel values
frequently follow complex, almost Gaussian patterns as a result
of tissue density fluctuations, may be better modeled by GeLU’s
Gaussian-based methodology. Due to its balance of regularization,
smoothness, and sparsity, GeLU has done better than other
activations in this study. This makes it a good fit for FPN with
a linear attention mechanism in lung nodule segmentation. To
enhance semantic segmentation of small or subtle structures, such
as lung nodules, and capture long-range dependencies, the FPN
with linear attention architecture aggregates the attention blocks
and employs linear attention. The time and space complexity
increases linearly, linear attention mechanism is significantly
faster than dot-product attention and is therefore useful for
high-resolution CT slices. It preserves global context awareness,
which is essential for comprehending the surrounding tissues.
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FIGURE 12

Segmentation results of a patient with nodule 1 using FPN with linear attention (original image, mask image, predicted mask image).

4 Experimental evaluation and
performance analysis

4.1 Setup for experimentation

Python was used to implement the segmentation models on a
system with a GPU and 64 GB of RAM. The models were trained
and tested using an NVIDIA GeForce RTX 12 GB GPU. The system
was trained for 200 epochs with a batch size of 8 using the Adam
optimizer, configured with a learning rate of 1e-5 and a weight
decay of 1e-4. Ten percent of the data was used for testing, ten
percent for validation, and eighty percent for training. The BCE-
Dice Loss function was used and it combined Binary Cross Entropy
(BCE) and dice loss (Rajput, 2022). The similarity between the
model’s prediction and the actual segmentation of an image can be
calculated using the dice loss. By penalizing incorrect predictions
and guaranteeing stability, the Binary Cross Entropy loss function
aids in model training by calculating the discrepancy between the
actual value and the model’s predicted value.

4.2 Dataset

The LIDC-IDRI dataset was developed in collaboration with
eight medical imaging organizations and seven academic institutes
(Armato et al., 2011). This publicly available dataset has 1018
DICOM-formatted CT scans. Four radiologists annotate the CT
scans in two stages, and the annotations are stored in an XML
file. After marking the nodules in the first phase, the radiologists

were given access to the other radiologists’ anonymized markings in
the second phase, after which they provided their final assessment.
Because nodules larger than or equal to 3 mm are more likely to be
malignant (Armato et al., 2011), radiologists label their contours,
and these nodules are taken into account in the experiment.

4.3 Metrics of performance

Precision quantifies the fraction of correctly predicted positive
cases out of all cases the model labeled as positive and is depicted in
Equation 12. Recall also known as sensitivity calculates the fraction
of actual positive cases that the model accurately identified and is
depicted in Equation 13 The segmentation task’s performance is
gauged by the IoU and DSC. The ground truth (G) and predicted
(P) mask images are used to compute DSC and IoU. DSC is equal to
two times the area of intersection of G and P divided by the sum of
the areas of G and P as shown in Equation 15. IoU is the common
area of G and P divided by the combined area of G and P, as shown
in Equation 16.

Precision = TP
TP + FP

(12)

Recall = TP
TP + FN

(13)

Accuracy = TP + TN
TP + TN + FP + FN

(14)

DSC = 2|G ∩ P|
|G| + |P| (15)
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FIGURE 13

Segmentation results of a patient with nodule 2 using FPN with linear attention (original image, mask image, predicted mask image).

IoU = |G ∩ P|
|G ∪ P| (16)

Precision and recall, while effective for evaluating detection
and classification tasks, are less appropriate for medical image
segmentation, where the goal is to accurately assess spatial overlap
between predicted and ground truth regions. Precision focuses

solely on false positives and recall on false negatives, making
them sensitive to class imbalance and inadequate for capturing
overall segmentation quality. In contrast, the DSC and IoU are
preferred in segmentation studies as they directly measure overlap
between predicted and reference masks. The DSC, calculated as
the harmonic mean of precision and recall, balances false positives
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FIGURE 14

Segmentation results of a patient with nodule 3 using FPN with linear attention (original image, mask image, predicted mask image).

and false negatives, while IoU computes the ratio of intersection to
the union of the two regions, offering a more stringent evaluation.
These metrics are less affected by large background areas common
in medical images and provide a single, interpretable score that
better reflects segmentation performance. In image segmentation,
accuracy as depicted in Equation 14 is not a reliable performance

metric due to the significant imbalance between background and
object pixels. Since background pixels often dominate an image,
a model can achieve high accuracy by predominantly predicting
background, even if it misses the objects of interest entirely. This
renders accuracy misleading, as it fails to capture the quality
of segmentation. Instead, metrics like precision and recall are
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FIGURE 15

Segmentation results of a patient with nodule 4 using FPN with linear attention (original image, mask image, predicted mask image).

more effective, as they focus on object pixels–precision evaluates
the correctness of predicted regions, while recall assesses how
much of the actual region is detected. Overlap-based metrics, such

as Dice and IoU, are particularly well-suited for segmentation,
as they directly measure the overlap between predicted and
ground truth masks, providing a more accurate assessment of
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performance. If missing nodules poses a greater risk than over-
segmenting, recall becomes the most critical metric to prioritize.
Emphasizing high recall ensures that the majority of true nodules
are identified, thereby reducing the likelihood of overlooking
important clinical findings.

4.4 Quantitative results and comparisons

A comprehensive quantitative evaluation was conducted to
assess the segmentation performance of the three proposed
methods: Multi-Scale UNet, UNet with Asynchronous
Convolution Blocks (ACB) and Channel Attention Mechanism,
and FPN with Linear Attention Mechanism. The evaluation was
carried out using the LIDC-IDRI dataset, with the DSC and IoU
serving as the primary performance metrics.

The Multi-Scale UNet was first evaluated with various
activation functions to determine the optimal configuration. The
Leaky ReLU activation yielded the best performance, achieving a
DSC of 66.41% and an IoU of 53.92% on the LIDC-IDRI dataset.
These results underscore the importance of both network design
and choice of activation in improving segmentation outcomes,
particularly in handling the heterogeneous appearance and varying
sizes of pulmonary nodules. A detailed comparison of activation
functions for Multi-Scale UNet is presented in Table 2. Among the
tested activations, Leaky ReLU provided superior gradient flow for
negative inputs, contributing to improved boundary adherence and
overall segmentation accuracy.

Next, the UNet variant incorporating asynchronous
convolution and channel attention was evaluated. Here, the
ELU (Exponential Linear Unit) activation function provided the
highest segmentation accuracy, with a DSC of 65.47% and IoU of
52.56%. This marginal improvement over standard UNet reflects
the efficacy of combining skip connections with adaptive channel-
wise feature recalibration, which helps address the underutilization
of multi-scale features. Table 3 details the results across various
activation functions. The improvement with ELU can be attributed
to its zero-centered output and smooth non-linear behavior,
which enhance learning stability and facilitate better feature
integration, especially for images exhibiting diverse or non-linear
intensity patterns.

The most significant performance gains were observed with
the FPN enhanced by a linear attention module. Using the GELU
(Gaussian Error Linear Unit) activation function, this method
achieved the best results of all tested networks, with a DSC of
71.59% and an IoU of 58.57%. Notably, the probabilistic nature
of GELU complements the attention mechanism by enabling
smooth and non-binary weighting of features, which is especially
beneficial for segmenting structures with complex shapes and
subtle contrast differences. Table 4 compares the results for
different activation functions, showing consistent improvements
with advanced activations like GELU and Mish. The benefit of
linear attention lies in its efficient modeling of global context
with linear time and space complexity, making it well-suited for
processing high-resolution CT slices.

Figure 11 depict the training and validation metrics and
loss respectively using FPN with Linear Attention and GELU
activation function. The model’s training and validation curves
indicate convergence, with training IoU and DSC scores plateauing
at 0.85 and 0.9, respectively, and validation scores stabilizing
at 0.6 and 0.7, showing reasonable generalization to unseen
data. Loss curves reveal a sharp initial drop, with validation
loss leveling off at 0.35-0.4, while training loss continues
to decrease. This suggests the model has learned meaningful
patterns, and further training is unlikely to yield significant gains.
To contextualize the obtained results, the performance of the
proposed models was compared with those reported in prior
studies (Tables 5, 6). The proposed FPN with Linear Attention
mechanism surpassed the DSC and IoU scores achieved by
most existing methods on the LIDC-IDRI dataset, including
Mukherjee et al. (2017), Jiang et al. (2018), and Aresta et al.
(2019). For example, Mukherjee et al. reported DSCs of 69% for
solid nodules and 65% for part-solid nodules, while the highest
DSC in this work was 71.59%. This improvement demonstrates
that integrating both multi-scale feature extraction and attention-
based global context modeling can effectively address persistent
challenges in lung nodule segmentation, such as handling nodules
that vary in size, shape, and contrast. Visual assessment of
the segmentation masks (as shown in Figures 12–15) further
highlights the capability of the best performing network to precisely
delineate nodule boundaries, even in challenging cases with low
contrast or attachment to surrounding tissues. The predicted
masks closely match the ground-truth annotations, affirming the
model’s reliability.

Although standard softmax-based self-attention is effective for
modeling long-range dependencies in 2D CT slices, its quadratic
time and memory complexity makes it impractical for clinical
use, particularly when handling hundreds of slices per scan. To
address this, our linear attention module approximates the softmax
operation, reducing the complexity to O(M). This substantially
lowers GPU memory requirements and accelerates inference.
While its performance is somewhat lower than full self-attention
or transformer-based segmentation networks, the linear attention
design is far more suitable for resource-constrained settings, as the
significant computational savings enable faster and more efficient
deployment for 2D lung nodule segmentation tasks.

Although Transformers excel in accuracy by capturing
long-range dependencies, their high computational demands
create challenges, especially for large images where attention
computations become resource-intensive. In scenarios with limited
resources, CNN-based methods like FPN combined with a linear
attention mechanism, as described in the manuscript, provide a
more efficient alternative to Transformers.

In summary, the experimental results indicate the following:

• Feature integration at multiple scales, as performed by the
Multi-Scale UNet and FPN methods, is crucial for addressing
variability in nodule size and appearance.

• Attention mechanisms further enhance model focus, enabling
more accurate segmentation, particularly in complex
clinical images.
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• Advanced activation functions like GELU contribute to
stability and generalization, especially when paired with
attention modules.

• The proposed FPN with Linear Attention mechanism
achieved the highest reported performance on the LIDC-IDRI
dataset to date for the evaluated metrics.

Although FPN with linear attention may not match the
accuracy of more complex models like full transformers or
GANs, its efficiency makes it a practical solution for resource-
constrained environments. It facilitates accessible, deployable AI
for pulmonary nodule segmentation, potentially boosting early
lung cancer detection in areas with limited infrastructure. Future
versions could further improve its utility by integrating lightweight
quantization methods, such as 8-bit inference. Overall, these
findings validate the effectiveness of the proposed methodologies
and provide a robust foundation for future improvements and
real-world deployment in automated lung nodule analysis.

5 Conclusion

Lung nodule segmentation was performed using a multi-scale
UNet, UNet with Asynchronous Convolution Blocks and Channel
Attention Mechanism and FPN with Linear Attention Mechanism.
Multi-scale UNet improves upon the traditional UNet architecture
by incorporating multi-scale convolutional operations, which
enhance feature extraction and boosts segmentation accuracy.
UNet with Asynchronous Convolution Blocks and Channel
Attention Mechanism incorporates multi-scale skip connections
with adaptive recalibration of channel-wise feature responses
by the channel attention mechanisms and employs ACB which
comprise square, horizontal, and vertical kernels, enhancing the
representational capability of conventional convolutional layers by
emphasizing the essential structural components of the receptive
field. Despite its success in multi-scale feature representation, the
traditional FPN has problems with feature extraction and fusion,
especially when it comes to the loss of contextual information
during upsampling and merging. So, in FPN with Linear Attention
Mechanism, a linear attention system that records global contextual
information and enables effective multi-scale feature learning is
employed. Through global context modeling, this change enhances
the network’s ability to extract discriminative representations
and makes it possible for the network to encode semantic
characteristics across different scales more successfully. The highest
DSC and IoU scores was achieved using the FPN with Linear
Attention Mechanism in the experiments. It achieved a DSC of
71.59% and IoU of 58.57%. on the LIDC-IDRI dataset using the
GELU activation function. Due to its balance of regularization,
smoothness, and sparsity, GeLU has done better than other
activations in this study. Future work can be done using real
time datasets.
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