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Introduction: Sleep disorders pose significant risks to patient safety, yet

traditional polysomnography imposes substantial discomfort and laboratory

constraints. We developed a non-invasive multimodal monitoring system for

real-time sleep pathology detection.

Methods: We integrated facial expression analysis via deep convolutional

neural networks with audio signal processing for breathing pattern detection.

Heterogeneous data streams were unified into dynamic graph representations,

with graph neural networks modeling spatiotemporal patterns of sleep

pathologies.

Results: The system accurately detected sleep apnea, restless leg syndrome,

and cardiovascular irregularities with 10.7-s average delay and 94.6% clinical

agreement, achieving diagnostic accuracy comparable to polysomnography.

Conclusion: This framework enables continuous non-invasive monitoring for

point-of-care screening and home-based management, potentially expanding

sleep medicine access for underserved populations.

KEYWORDS

sleep disorder detection, facial expression analysis, real-time health monitoring,

multimodal learning, machine learning

1 Introduction

Sleep disorders affect millions of people worldwide and represent a significant

public health concern, with conditions such as sleep apnea, insomnia, and

parasomnias contributing to increased morbidity, reduced quality of life, and

elevated healthcare costs (Alshammari, 2024; Yildirim et al., 2019; Sharma et al.,

2021b). The accurate detection and monitoring of sleep-related pathological

conditions is crucial for timely medical intervention and prevention of serious

complications (Morokuma et al., 2023; Arslan et al., 2023). Traditional sleep monitoring

approaches, primarily relying on polysomnography (PSG) in controlled laboratory

environments, while considered the gold standard, are expensive, time-consuming,
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and often impractical for long-term monitoring or home-based

care (Ha et al., 2023; Brink-Kjaer et al., 2022). Moreover, PSG

requires multiple electrodes and sensors that can disturb patients’

natural sleep patterns, potentially affecting the reliability of

diagnostic outcomes (Rahman et al., 2025; Reis et al., 2024).

Recent advances in wearable technology and non-invasive

monitoring systems have opened new avenues for sleep assessment.

Current approaches predominantly focus on single-modality

solutions, such as actigraphy for movement detection, heart rate

variability analysis for autonomic nervous system assessment,

or audio-based detection of breathing irregularities (Hussain

et al., 2022; Yoon and Choi, 2023). However, these unimodal

approaches suffer from several critical limitations. First, they often

lack the comprehensive information necessary to capture the

complex, multifaceted nature of sleep disorders, which typically

manifest through various physiological and behavioral indicators

simultaneously (Nguyen et al., 2023). Second, single-modality

systems are susceptible to noise, artifacts, and environmental

interference (Boiko et al., 2023), leading to reduced accuracy and

reliability in real-world deployment scenarios.

Facial expression analysis has emerged as a promising non-

invasive approach for detecting physiological states and emotional

conditions during sleep (Maranci et al., 2021; Huang et al.,

2023). Research has demonstrated that facial expressions can

provide valuable insights into pain levels, breathing difficulties, and

neurological activities during sleep. Similarly, audio signal analysis

has shown significant potential in detecting sleep apnea events,

snoring patterns, and other respiratory irregularities (Rosamaria

et al., 2023; Xu et al., 2020). However, existing studies have

primarily treated these modalities independently (Lv et al., 2020),

failing to leverage their complementary information and temporal

correlations.

The integration of multimodal data for sleep monitoring

presents several fundamental challenges (Wang et al., 2025b).

First, different modalities operate at varying temporal scales and

exhibit distinct data characteristics, making it difficult to establish

meaningful correlations and extract unified representations (Cheng

et al., 2023; Torres et al., 2018). Facial expressions may change

subtly over minutes, while audio signals contain high-frequency

components that vary within seconds. Second, the temporal

dependencies within and across modalities are complex and non-

linear (Zhai et al., 2020; Zahid et al., 2023), requiring sophisticated

modeling approaches that can capture both short-term fluctuations

and long-term trends. Third, sleep disorders often manifest

through subtle, gradual changes that may not be immediately

apparent in individual modalities but become significant when

considered collectively over extended periods (Duan et al., 2021;

Lin et al., 2023). Existing multimodal fusion techniques, while

successful in other domains, face specific challenges when applied

to sleep monitoring (Liao et al., 2024). Traditional early fusion

approaches that concatenate features from different modalities

often result in high-dimensional representations that are prone to

overfitting and computational inefficiency. Late fusion methods

that combine decisions from individual modality classifiers may

miss important cross-modal interactions (Zhai et al., 2021) that

are crucial for accurate sleep disorder detection. Furthermore, most

current approaches treat sleep monitoring as a static classification

problem (Chung et al., 2017), ignoring the inherently dynamic and

temporal nature of sleep processes.

To address these limitations, we propose a novel multimodal

dynamic graph neural network framework that integrates facial

expression analysis and sleep audio signal processing for real-time

detection and prediction of sleep-related pathological conditions

in Figure 1. Our approach is built upon several key insights

and innovations. First, we conceptualize the multimodal sleep

monitoring problem as a dynamic graph learning task, where

different modalities and their temporal states are represented

as nodes in a time-evolving graph structure. This representation

naturally captures the heterogeneous nature of multimodal

data while preserving the temporal dependencies crucial for

understanding sleep dynamics. Nodes in our graph represent

feature vectors extracted from facial expressions and audio signals

at different time points, while edges encode both intra-modal

temporal relationships and inter-modal correlations. Second,

we develop a specialized graph neural network architecture

that can effectively learn from this dynamic multimodal graph

representation. Our model incorporates attention mechanisms to

automatically weight the importance of different modalities

and temporal segments, allowing the system to focus on the

most relevant information for detecting specific sleep disorders.

The architecture includes dedicated modules for processing

facial expression data using convolutional neural networks

optimized for low-light sleep environments, and audio processing

components that can handle various acoustic patterns associated

with different sleep pathologies. Third, we introduce a temporal

modeling component that explicitly captures the evolution

of sleep states over time. Unlike traditional approaches that

analyze fixed time windows independently, our framework

maintains a continuous representation of the patient’s sleep state

that evolves dynamically as new data becomes available. This

enables early detection of developing conditions and provides

predictive capabilities for anticipating potential sleep-related

medical events.

Our technical approach consists of several interconnected

components designed to address the specific challenges of

multimodal sleep monitoring. The facial expression analysis

module utilizes lightweight convolutional neural networks

optimized for processing infrared or low-light facial images

captured during sleep. We employ specialized preprocessing

techniques to handle variations in lighting conditions, head

pose changes, and occlusions commonly encountered in sleep

environments. Feature extraction focuses on detecting micro-

expressions and subtle facial movements that may indicate

discomfort, breathing difficulties, or neurological activities.

The audio processing component employs advanced signal

processing techniques to extract meaningful features from sleep

audio recordings. This includes spectral analysis for detecting

breathing patterns, time-frequency analysis for identifying

apnea events, and novel acoustic feature extraction methods

for recognizing various sleep-related sounds. We address

challenges related to background noise, signal variability

across different recording devices, and the need for real-time
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FIGURE 1

Overview of our multimodal dynamic graph network framework for sleep disorder monitoring. The system processes multimodal inputs through: (A)

Dynamic heterogeneous graph construction with diversity-aware hub propagation to balance information flow across facial and audio modalities;

(B) Adaptive edge weight computation using positive/negative pair attraction-repulsion mechanisms to enhance cross-modal alignment; (C) Graph

representation encoding with temporal-aware attention for structural pattern learning; (D) Breathing pattern categorization module integrating

LSTM-based temporal modeling, causal convolution for real-time monitoring, dilated attention mechanism for long-range dependencies,

dual-frequency spatial wavelet analysis, and micro-expression detection for physiological indicators.

processing in resource-constrained environments. The dynamic

graph construction mechanism creates time-evolving graph

representations that capture the complex relationships between

different modalities and their temporal evolution. We develop

novel graph edge weighting schemes that automatically adapt

based on the reliability and relevance of different modalities

at different time points. This adaptive approach ensures

robust performance even when individual modalities are

compromised by noise or artifacts. Our graph neural network

architecture incorporates several innovative components,

including multi-scale temporal attention mechanisms, cross-

modal correlation modules, and specialized pooling operations

designed for handling irregular time series data. The model

is trained using a combination of supervised learning for

known sleep disorder patterns and self-supervised learning

techniques that leverage the inherent structure of multimodal

sleep data.

The proposed framework offers several significant advantages

over existing approaches. By leveraging the complementary

information from multiple modalities, our system can achieve

higher accuracy and robustness compared to single-modality

solutions. The dynamic graph representation enables the capture of

complex temporal patterns that are crucial for understanding sleep

disorders, while the attention mechanisms provide interpretability

by highlighting the most relevant features and time periods for

specific predictions. This research contributes to the growing

field of multimodal health monitoring by providing a novel

framework that can effectively integrate heterogeneous data sources

for complex medical applications. Our work advances the state-of-

the-art in both multimodal learning and sleep medicine, offering

new possibilities for personalized and continuous healthcare

monitoring solutions.

2 Methods

Let us formally define the multimodal sleep monitoring

problem as a dynamic graph learning task. We denote the

multimodal sleep data as a collection D = {F ,A}, where

F = {ft}Tt=1 represents the sequence of facial expression features

and A = {at}Tt=1 represents the corresponding audio signal

features over time horizon T. At each time step t, we have ft ∈
R
df (facial features) and at ∈ R

da (audio features), where df
and da are the dimensionalities of facial and audio feature spaces,

respectively in Table 1. The objective is to learn a mapping function

M :D → Y that predicts sleep pathology labels yt ∈ Y =
{0, 1, 2, ...,K} at each time step, where K represents the number of

distinct sleep disorder categories.

2.1 Facial expression feature extraction

For facial expression analysis, we employ a modified ResNeXt-

50 architecture with specialized attention mechanisms for low-light

sleep environments. The facial feature extraction process can be

formulated as X(0) = Preprocess(It), X
(l+1) = F

(l)
ResNeXt(X

(l),W(l))

and f rawt = GlobalAvgPool(X(L)), where It ∈ R
H×W×C represents

the input facial image at time t, X(l) denotes the feature maps at

layer l, and W(l) are the learnable parameters (Yang et al., 2021).

To enhance the feature representation for sleep-specific facial

expressions, we introduce a temporal-spatial attention mechanism

Aspatial = softmax

(

QKT√
dk

)

:

Atemporal = softmax
(

Wt tanh(Wf f
raw
t +Whht−1)

)

(1)

ft = Atemporal ⊙ AspatialV , (2)
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TABLE 1 Mathematical notation and symbols used in methods section.

Symbol Description Symbol Description

D Multimodal sleep data collection Gt Dynamic heterogeneous graph at time t

F Facial expression feature sequence Vt Node set containing facial and audio nodes

A Audio signal feature sequence Et Edge set for intra- and cross-modal connections

ft Facial features at time t Xt Node feature matrix at time t

at Audio features at time t df , da Dimensionalities of facial and audio features

yt Sleep pathology labels at time t K Number of sleep disorder categories

T Time horizon M Mapping function for prediction

It Input facial image at time t H,W,C Image height, width, and channels

X(l) Feature maps at layer l W(l) Learnable parameters at layer l

f rawt Raw facial features before attention Aspatial Spatial attention mechanism

Atemporal Temporal attention mechanism Q,K,V Query, key, and value matrices

ht−1 Hidden state from previous time step Wt ,Wf ,Wh Learnable weight matrices

St Short-Time Fourier Transform at time t ψj,k Mother wavelet at scale j, position k

Mt Power Spectral Density Ct Cepstral coefficients

ZCRt Zero Crossing Rate RMSt Root Mean Square energy

SCt Spectral Centroid SROt Spectral Rolloff

W1 : J,t Wavelet coefficients N Number of samples

x
f
t , x

a
t Projected facial and audio node features Wf ,Wa Projection matrices

α
temp
ij Temporal edge attention weight αcrossij Cross-modal edge attention weight

wij Final edge weight λ1 , λ2 , λ3 Hyperparameters

γ Temporal decay rate Ni Neighborhood of node i

H(l) Hidden representations at layer l A(l)
s Adjacency matrix at scale s

S Number of temporal scales D Degree matrix

e
(l)
ij Attention energy between nodes i, j α

(l)
ij Attention coefficient

φ(ti , tj) Temporal relationship encoding ωd Frequency parameters

h
(L)
f , h(L)a Final layer facial and audio features Qf ,Ka ,Va Cross-modal attention components

Attnf→a Facial-to-audio attention Attna→f Audio-to-facial attention

hfused Fused multimodal representation dk Key dimension

rt , zt Reset and update gates in GRU s̃t Candidate hidden state

st Final hidden state Ur ,Uz ,Us Recurrent weight matrices

s
(ℓ)
t Multi-scale decomposition at level ℓ Kℓ Number of wavelets at level ℓ

α
(ℓ)
k Learnable wavelet coefficients φ Mother wavelet function

h
(c)
t Causal convolution output k Kernel size

d Dilation factor Mcausal Causal attention mask

R Attention radius Wpos Positional encoding weights

Lcls Classification loss Ltemp Temporal consistency loss

Lcont Contrastive loss Lrec Reconstruction loss

αk Class-specific weights γ Focusing parameter

ŷt,k Predicted probability for class k ωt Adaptive temporal weight

β Similarity threshold parameter τ Temperature parameter

ηt Learning rate at time t ηmin , ηmax Minimum and maximum learning rates

Tcur Current epoch in restart cycle Ti Epochs in restart cycle
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where Q, K, V are query, key, and value matrices, Wt , Wf , Wh

are learnable weight matrices, ht−1 is the hidden state from the

previous time step, and⊙ denotes element-wise multiplication.

2.2 Audio signal feature extraction

For audio signal processing, we implement a multi-scale

wavelet transform combined with spectral analysis. The audio

feature extraction pipeline is defined as St = STFT(arawt ), Wj,k =
∑

n a
raw
t [n]ψ∗

j,k
[n− k],Mt = |St|2 (Power Spectral Density), and

Ct = DCT(log(Mt)) (Cepstral Coefficients), where STFT denotes

the Short-Time Fourier Transform (Karpagam et al., 2022), ψj,k

represents the mother wavelet at scale j and position k, and DCT

is the Discrete Cosine Transform. We extract multiple acoustic

features including:

ZCRt =
1

2N

N−1
∑

n=1
|sgn(at[n])− sgn(at[n− 1])| (3)

RMSt =

√

√

√

√

1

N

N
∑

n=1
at[n]2 (4)

SCt =
∑K

k=1 k · |St[k]|
∑K

k=1 |St[k]|
(5)

SROt =
∑K

k=1(k− SCt)
2 · |St[k]|

∑K
k=1 |St[k]|

, (6)

where ZCR is Zero Crossing Rate, RMS is Root Mean

Square energy, SC is Spectral Centroid, and SRO is Spectral

Rolloff. The final audio feature vector is constructed as

at = [Ct;ZCRt;RMSt; SCt; SROt;W1 : J,t].

2.3 Dynamic graph construction

2.3.1 Graph topology design
We construct a dynamic heterogeneous graph Gt = (Vt , Et ,Xt)

where Vt = V
f
t ∪ Va

t represents the node set containing facial and

audio nodes, Et = E
ff
t ∪Eaa

t ∪E
fa
t represents edges within and across

modalities - Xt ∈ R
|Vt |×d is node feature matrix (Chen et al., 2025;

Hou et al., 2016). The features are constructed using a projection

mechanism x
f
t = Wf ft + bf , x

a
t = Waat + ba, whereWf ∈ R

d×df ,
Wa ∈ R

d×da are projection matrices map different modalities.

2.3.2 Adaptive edge weight computation
The edge weights are computed using a learnable attention

mechanism that considers both temporal and cross-modal

dependencies:

α
temp
ij =

exp(WT
temp tanh(W1xi +W2xj))

∑

k∈Ni
exp(WT

temp tanh(W1xi +W2xk))
(7)

αcrossij = sigmoid(WT
cross[xi||xj||(xi ⊙ xj)]) (8)

wij = λ1αtemp
ij + λ2αcrossij + λ3 exp(−γ |ti − tj|), (9)

where Ni represents the neighborhood of node i, || denotes
concatenation, λ1, λ2, λ3 are hyperparameters, and γ controls the

temporal decay rate.

2.4 Dynamic graph neural network
architecture

2.4.1 Multi-scale graph convolution
We propose a multi-scale graph convolutional layer that

operates on different temporal scales simultaneously:

H(l+1) = σ
(

S
∑

s=1
A(l)
s H(l)W(l)

s

)

(10)

A(l)
s = GraphConvs(At ,H

(l)) (11)

GraphConvs(A,H) = D−
1
2AsD

− 1
2H, (12)

where S is the number of scales,As is the adjacency matrix at scale s,

D is the degree matrix, and σ is an activation function (Wang et al.,

2025a).

2.4.2 Temporal-aware graph attention
To capture long-range temporal dependencies, we implement a

temporal-aware graph attention mechanism:

e
(l)
ij = LeakyReLU(aT[Wh

(l)
i ||Wh

(l)
j ||φ(ti, tj)]) (13)

α
(l)
ij =

exp(e
(l)
ij )

∑

k∈Ni∪{i} exp(e
(l)
ik
)

(14)

h
(l+1)
i = σ





∑

j∈Ni∪{i}
α
(l)
ij Wh

(l)
j



 , (15)

where φ(ti, tj) encodes temporal relationships:

φ(ti, tj) = [sin(ω1(ti − tj)), cos(ω1(ti − tj)), ..., sin(ωd(ti − tj)),

cos(ωd(ti − tj))] (16)

2.4.3 Cross-modal fusion module
The cross-modal fusion is achieved through a specialized

attention-based fusion mechanism (Chen et al., 2024):

Qf = h
(L)
f
W

f
Q, Ka = h(L)a Wa

K , Va = h(L)a Wa
V (17)

Qa = h(L)a Wa
Q, Kf = h

(L)
f
W

f
K , Vf = h

(L)
f
W

f
V (18)

Attnf→a = softmax

(

QfK
T
a

√

dk

)

Va (19)

Attna→f = softmax

(

QaK
T
f

√

dk

)

Vf (20)

hfused = LayerNorm(h
(L)
f
+ Attna→f )

+ LayerNorm(h(L)a + Attnf→a) (21)
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2.5 Temporal sequence modeling

2.5.1 Gated recurrent unit with graph embedding
We incorporate a modified GRU that operates on graph

embeddings to capture temporal dynamics:

rt = σ (Wrhfused,t + Urst−1 + br) (22)

zt = σ (Wzhfused,t + Uzst−1 + bz) (23)

s̃t = tanh(Wshfused,t + Us(rt ⊙ st−1)+ bs) (24)

st = (1− zt)⊙ st−1 + zt ⊙ s̃t , (25)

where rt , zt , and s̃t are the reset gate, update gate, and candidate

hidden state, respectively.

2.5.2 Hierarchical temporal decomposition
Given the multi-scale nature of sleep disorders, which can

manifest over different temporal horizons ranging from seconds

to hours, we implement a hierarchical temporal decomposition

mechanism (Tiwari et al., 2022). This approach decomposes the

temporal sequences into multiple frequency components using

learnable wavelet-based filters. The decomposition process is

formulated as:

s
(ℓ)
t =

Kℓ
∑

k=1
α
(ℓ)
k
ψℓ,k(st−1ℓ : t) (26)

ψℓ,k(x) =
1√
2ℓ

∑

n

Wℓ,kx[n]φ

(

n− k · 2ℓ
2ℓ

)

(27)

smulti
t = Concat(s

(1)
t , s

(2)
t , ..., s

(L)
t )Wproj, (28)

where ℓ denotes the decomposition level, Kℓ is the number of

wavelets at level ℓ, α
(ℓ)
k

are learnable coefficients, φ is the mother

wavelet function, and Wproj projects the concatenated multi-

scale features back to the original dimension. This hierarchical

approach enables the model to simultaneously capture short-term

fluctuations in breathing patterns and long-term trends in sleep

stage transitions (Yang et al., 2022).

2.5.3 Causal temporal convolution with dilated
attention

To ensure that predictions at time t only depend on past

observations while maintaining computational efficiency, we

introduce causal temporal convolutions with dilated attention

mechanisms. The causal convolution operation is defined as:

h
(c)
t =

k−1
∑

i=0
W

(c)
i st−i·d + b(c) (29)

DilatedAttn(H(c)) = softmax

(

Q(c)(K(c))T
√

dk
⊙Mcausal

)

V(c) (30)

Mcausal[i, j] =















0 if i < j

−∞ if i ≥ j and |i− j| > R

Wpos[|i− j|] otherwise

(31)

Require: Facial image sequence {It}Tt=1, Audio signal

sequence {arawt }Tt=1
Ensure: Dynamic graph sequence {Gt}Tt=1 with node

features {Xt}Tt=1
1: Initialize: ResNeXt-50 network, wavelet filters,

projection matrices Wf,Wa

2: for t = 1 to T do

3: // Facial Feature Extraction

4: X(0) ← Preprocess(It) {Face detection and

normalization}

5: for l = 0 to L− 1 do

6: X(l+1) ← ResNeXt(l)(X(l),W(l))

7: end for

8: frawt ← GlobalAvgPool(X(L))

9: // Temporal-Spatial Attention

10: Aspatial ← softmax

(

QKT√
dk

)

11: Atemporal ← softmax(Wt tanh(Wff
raw
t + Whht−1))

12: ft ← Atemporal ⊙ AspatialV

13: // Audio Feature Extraction

14: St ← STFT(arawt ) {Short-Time Fourier Transform}

15: Mt ← |St|2 {Power Spectral Density}

16: Ct ← DCT(log(Mt)) {Cepstral Coefficients}

17: // Multi-scale Wavelet Analysis

18: for j = 1 to J, k = 1 to Kj do

19: Wj,k ←
∑

n a
raw
t [n]ψ∗

j,k[n− k]
20: end for

21: // Acoustic Feature Computation

22: ZCRt ← 1
2N

∑N−1
n=1 |sgn(at[n])− sgn(at[n− 1])|

23: RMSt ←
√

1
N

∑N
n=1 at[n]

2

24: at ← [Ct;ZCRt;RMSt;SCt;SROt;W1 :J,t]
25: // Node Feature Projection

26: xft ← Wfft + bf, xat ← Waat + ba
27: // Adaptive Edge Weight Computation

28: for each node pair (i,j) do

29: α
temp
ij ← exp(WTtemp tanh(W1xi+W2xj))

∑

k∈Ni
exp(WTtemp tanh(W1xi+W2xk))

30: αcrossij ← sigmoid(WTcross[xi||xj||(xi ⊙ xj)])

31: wij ← λ1α
temp
ij + λ2αcrossij + λ3 exp(−γ |ti − tj|)

32: end for

33: end for

34: return {Gt}Tt=1, {Xt}Tt=1

Algorithm 1. Multimodal feature extraction and dynamic graph

construction.

where k is the kernel size, d is the dilation factor,Mcausal is the causal

mask that prevents information leakage from future time steps, R

is the attention radius, and Wpos encodes positional relationships.

This design allows the model to capture long-range dependencies

while maintaining the causal property essential for real-time sleep

monitoring applications.

2.6 Loss function and optimization strategy

The training of our dynamic graph neural network requires

a sophisticated loss function that addresses multiple objectives
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simultaneously while ensuring stable convergence (Li et al., 2024).

Our comprehensive loss function incorporates classification

accuracy, temporal consistency, cross-modal alignment,

and regularization terms to prevent overfitting and enhance

generalization capabilities.

The primary classification loss employs a weighted focal loss

mechanism to address the inherent class imbalance in sleep

disorder datasets. The focal loss is particularly effective for handling

rare pathological events that may occur infrequently during sleep

but are critical for early detection. The mathematical formulation is

given by:

Lcls = −
1

T

T
∑

t=1

K
∑

k=1
αk(1− ŷt,k)

γ yt,k log(ŷt,k), (32)

where αk represents class-specific weights derived from inverse

frequency statistics, γ is the focusing parameter that reduces

the relative loss for well-classified examples, and ŷt,k denotes the

predicted probability for class k at time t.

To ensure temporal consistency in predictions, we introduce

a specialized temporal smoothness loss that penalizes abrupt

transitions between predicted sleep states unless supported by

significant changes in the input modalities. This loss is computed

as:

Ltemp =
1

T − 1

T−1
∑

t=1
ωt||ŷt+1 − ŷt||22, (33)

where ωt = exp(−β · sim(hfused,t+1, hfused,t)) is an adaptive

weight that allows larger prediction changes when the fused

representations differ significantly, controlled by the similarity

threshold parameter β .

Cross-modal alignment is enforced through a contrastive

learning objective that maximizes the mutual information between

facial and audio representations when they correspond to the same

sleep state while minimizing it for different states. The contrastive

loss is formulated as:

Lcont = −
∑

i,j

I[yi = yj] log
exp(sim(h

f
i , h

a
j )/τ )

∑

k exp(sim(h
f
i , h

a
k
)/τ )

, (34)

where I[·] is the indicator function, sim(·, ·) computes cosine

similarity, and τ is the temperature parameter that controls the

concentration of the distribution.

The reconstruction loss serves as a regularization mechanism

that encourages the learned representations to preserve essential

information from both modalities. This autoencoder-style loss is

computed as:

Lrec =
T
∑

t=1
||ft − Decf (hfused,t)||22 + ||at − Deca(hfused,t)||22, (35)

where Decf and Deca are lightweight decoder networks

that reconstruct the original modal features from the fused

representation.

The optimization strategy employs adaptive learning rate

scheduling combined with gradient clipping to ensure stable

training dynamics. We utilize the AdamW optimizer with

decoupled weight decay, where the learning rate follows a cosine

annealing schedule with warm restarts:

ηt = ηmin +
1

2
(ηmax − ηmin)(1+ cos(

Tcur

Ti
π)), (36)

whereTcur is the number of epochs since the last restart andTi is the

number of epochs in the current restart cycle. The gradient clipping

threshold is dynamically adjusted based on the gradient norm

history using an exponential moving average to prevent gradient

explosion while allowing for occasional large updates during critical

learning phases.

2.7 Model architecture and
implementation details

The complete architecture of our dynamic multimodal graph

neural network is carefully designed to balance computational

efficiency with representational power, enabling real-time

processing while maintaining high accuracy for sleep disorder

detection. The facial expression processing branch utilizes a

modified ResNeXt-50 architecture with specialized adaptations

for low-light infrared imagery commonly encountered in sleep

monitoring scenarios. The initial convolutional layers employ

depthwise separable convolutions to reduce computational

overhead while maintaining feature extraction capability, followed

by residual blocks with cardinality-based grouped convolutions

that effectively capture spatial hierarchies in facial expressions.

The audio processing pipeline incorporates multi-scale

temporal convolutional networks with varying receptive

fields to capture acoustic patterns across different time scales

simultaneously. The architecture employs dilated causal

convolutions with exponentially increasing dilation rates,

allowing the network to model both short-term acoustic events

such as individual breaths or snores, and long-term patterns such

as periodic breathing irregularities. Spectral normalization is

applied to all convolutional layers to ensure training stability and

prevent mode collapse, particularly important when processing

variable-quality audio recordings from different environments.

The graph neural network component consists of four specialized

layers, each designed to capture different aspects of the multimodal

temporal relationships. The first layer performs initial node

embedding and establishes basic connectivity patterns between

facial and audio nodes. Subsequent layers progressively refine

these relationships through learnable attention mechanisms that

dynamically adjust edge weights based on the current sleep state

and temporal context. The final graph layer incorporates global

pooling operations that aggregate information across all nodes

while preserving modality-specific characteristics through separate

attention heads.

Regularization strategies are implemented throughout the

architecture to prevent overfitting and enhance generalization

to new patients and environments. These include adaptive

dropout with time-varying probabilities, batch normalization

with momentum adjustment based on training progress, and
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Require: Graph sequence {Gt}Tt=1, Ground truth labels

{yt}Tt=1
Ensure: Trained DGNN model parameters 2

1: Initialize: Model parameters 2, optimizer, learning

rate schedule

2: Initialize: Loss weights αk, hyperparameters γ,β, τ

3: while not converged do

4: for each training batch do

5: // Forward Pass

6: for t = 1 to T do

7: // Multi-Scale Graph Convolution

8: for s = 1 to S do

9: A
(l)
s ← GraphConvs(At,H

(l))

10: A
(l)
s ← D−

1
2 AsD

− 1
2 H(l)

11: end for

12: H(l+1) ← σ

(

∑S
s=1 A

(l)
s H(l)W

(l)
s

)

13: // Temporal-Aware Graph Attention

14: for each node i do

15: for each neighbor j ∈ Ni ∪ {i} do
16: e

(l)
ij ←

LeakyReLU(aT[Wh
(l)
i ||Wh

(l)
j ||φ(ti,tj)])

17: α
(l)
ij ←

exp(e
(l)
ij )

∑

k∈Ni∪{i} exp(e
(l)
ik

)

18: end for

19: h
(l+1)
i ← σ

(

∑

j∈Ni∪{i} α
(l)
ij Wh

(l)
j

)

20: end for

21: // Cross-Modal Fusion

22: Qf ← h
(L)
f

WfQ, Ka ← h
(L)
a WaK, Va ← h

(L)
a WaV

23: hfused ← LayerNorm(h
(L)
f
+ Attna→f) +

LayerNorm(h
(L)
a + Attnf→a)

24: end for

25: // Multi-Objective Loss Computation

26: Lcls ←− 1
T

∑T
t=1

∑K
k=1 αk(1− ŷt,k)γ yt,k log(ŷt,k)

27: Ltemp ← 1
T−1

∑T−1
t=1 ωt||ŷt+1 − ŷt||22

28: where ωt ← exp(−β · sim(hfused,t+1,hfused,t))

29: Lcont ←−
∑

i,j I[yi = yj]log
exp(sim(hfi,h

a
j)/τ)

∑

k exp(sim(h
f
i,h

a
k
)/τ)

30: Lrec ←
∑T

t=1 ||ft − Decf(hfused,t)||22 + ||at −
Deca(hfused,t)||22

31: Ltotal ← Lcls + λtempLtemp + λcontLcont + λrecLrec

32: Update parameters: 2← AdamW(2,∇2Ltotal)

33: Update learning rate: ηt ← ηmin + 1
2(ηmax −

ηmin)(1+ cos( Tcur
Ti
π))

34: end for

35: end while

36: return Optimized model parameters 2

Algorithm 2. Dynamic graph neural network training with multi-objective

loss.

spectral regularization of weight matrices to control the Lipschitz

constant of the learned mappings. The model employs early

stopping with patience scheduling and checkpoint averaging to

select optimal parameters while preventing overfitting to the

training distribution.

3 Results

3.1 Experimental setup

3.1.1 Datasets and data collection
We evaluate our proposed multimodal dynamic graph neural

network framework on two comprehensive sleep monitoring

datasets. The primary dataset consists of recordings from

156 participants collected over 18 months at three sleep

laboratories affiliated with major medical institutions in

Table 2. Each participant underwent overnight polysomnography

monitoring while simultaneously recording facial expressions

using infrared cameras and ambient audio signals through

calibrated microphones. The participants ranged in age from

22 to 78 years (mean: 51.3 ± 14.7 years), with 68 males and 88

females, representing diverse demographic backgrounds and sleep

disorder prevalences.

Data collection protocols were standardized across all

recording sites to ensure consistency and reliability. Facial

video recordings were captured at 30 frames per second using

infrared cameras positioned at a fixed distance and angle

relative to the participant’s head. Audio signals were recorded

at 44.1 kHz sampling rate using omnidirectional microphones

placed at standardized positions within the sleep laboratory.

Synchronization between video, audio, and polysomnography

signals was maintained through hardware-level timestamping with

sub-millisecond accuracy.

3.1.2 Data preprocessing and quality control
Comprehensive preprocessing pipelines were developed

to handle the inherent challenges of multimodal sleep data,

including varying signal qualities, environmental artifacts, and

participant-specific variations. For facial video processing, we

implemented robust face detection and tracking algorithms

capable of handling partial occlusions, head pose variations, and

lighting changes common in sleep environments (Sharma et al.,

2021a; Widasari et al., 2020). Facial landmarks were extracted using

a modified version of the MediaPipe framework, with additional

temporal smoothing to reduce jitter and improve stability across

consecutive frames.

Audio preprocessing involved multi-stage filtering to

remove environmental noise while preserving sleep-related

acoustic signatures. We applied adaptive spectral subtraction

for background noise reduction, followed by dynamic range

compression to normalize signal amplitudes across different

recording conditions (Sathyanarayana et al., 2016). Artifact

detection algorithms were developed to identify and flag segments

contaminated by equipment noise, external disturbances, or

signal clipping, ensuring that only high-quality data segments

were included in the training and evaluation processes. Quality

control measures included automated screening for data integrity,

completeness, and annotation consistency (Rahman et al.,

2025). Recordings with more than 15% missing data, significant

synchronization errors, or poor signal quality were excluded from

the analysis (Sravani et al., 2024). Additionally, we implemented

cross-validation procedures to verify annotation accuracy,

achieving inter-annotator agreement scores (Cohen’s kappa)
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TABLE 2 Model architecture and ing parameters.

Component Parameter Value Component Parameter Value

Data preprocessing Graph neural network

Facial resolution H ×W 224× 224 GNN layers L 4

Audio sampling fs 44.1 kHz Hidden dims - [512, 384, 256, 128]

Time window Twindow 30 seconds Dropout Rate - 0.3

Overlap ratio - 50% Activation σ LeakyReLU

Facial expression module Temporal modeling

Backbone - ResNeXt-50 GRU hidden - 256

Input dimension df 2048 Hierarchical levels L 3

Projection Dim d
f
proj 512 Conv Kernel k 3

Cardinality - 32 Dilation rates d [1, 2, 4, 8]

Attention heads - 8 Attention radius R 16

Context length - 16 frames Pos Encoding - 128

Audio processing module Loss parameters

STFT window - 2,048 samples Focal gamma γ 2.0

Hop length - 512 samples Temperature τ 0.1

Mel banks - 128 Similarity Thresh β 0.5

MFCCs - 13 Lcls Weight - 1.0

Wavelet scales J 8 levels Ltemp Weight - 0.3

Input dimension da 256 Lcont Weight - 0.2

Projection dim daproj 512 Lrec Weight - 0.1

Dynamic Graph Training Config

Node embedding d 512 Batch size - 16

Temporal scales S 4 Initial LR η0 1× 10−3

Graph attn heads - 4 LR schedule - Cosine annealing

Edge decay rate γ 0.1 Min/Max LR ηmin/max 10−6/10−3

Fusion weights λ1,2,3 0.4, 0.4, 0.2 Optimizer - AdamW

Max connectivity - 85% Weight decay - 1× 10−4

Attention key dim dk 64 Gradient clip - Max norm = 1.0

Model complexity and performance

Total parameters 12.3M Inference time 23.4 ms/step

Trainable parameters 11.8M Training memory 6.8 GB

Model size 47.2 MB Inference memory 1.2 GB

of 0.89 for sleep stage classification and 0.92 for pathological

event detection.

3.1.3 Experimental configuration
Training procedures employed stratified random splitting to

ensure balanced representation of different sleep disorders and

demographic groups across training, validation, and test sets. The

data split followed a 70-15-15 ratio for training, validation, and

testing respectively, with careful attention to maintaining temporal

independence between splits to prevent data leakage. Cross-

validation was performed using a modified time-series splitting

approach that respects the temporal nature of sleep data while

ensuring adequate sample sizes for each fold. Hyperparameter

optimization was conducted using Bayesian optimization with

Gaussian process surrogates, exploring the space of learning

rates, regularization parameters, attention mechanisms weights,

and architectural choices. The optimization process considered

both validation accuracy and computational efficiency, resulting

in Pareto-optimal configurations suitable for different deployment
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scenarios ranging from high-accuracy clinical applications to

resource-constrained mobile implementations.

Equipment specifications were standardized across sites: FLIR

Lepton 3.5 infrared cameras (160×120 resolution, 8–14 µm

spectral range, 9 Hz frame rate) positioned 1.5 meters from the bed

at a 30-degree downward angle; Audio-Technica AT4040 cardioid

condenser microphones with Focusrite Scarlett 2i2 interfaces

(44.1 kHz/24-bit sampling); and Compumedics Grael 4K PSG

systems for ground truth acquisition. Environmental conditions

were controlled: ambient temperature 22 ± 1◦C, humidity 45 −
55%, background noise < 35 dB SPL. Data synchronization

employed hardware timestamps via SMPTE timecode generators

ensuring < 1 ms inter-modal alignment. Inclusion criteria

required participants aged 18-80 years without severe cardiac

arrhythmias or neurodegenerative conditions. The secondary

validation dataset included 312 recordings from two independent

sites following identical protocols, collected between July 2023 and

December 2023.

3.2 Baseline methods and comparison
framework

3.2.1 Traditional machine learning approaches
We implemented several state-of-the-art traditional machine

learning methods as baseline comparisons to demonstrate the

effectiveness of our deep learning approach. Support Vector

Machines (SVM) with radial basis function kernels were trained on

handcrafted features (Liu et al., 2020) extracted from both facial

and audio modalities. The feature engineering process involved

extensive domain knowledge incorporation, including facial action

unit detection, acoustic spectral features, and temporal statistical

measures computed over sliding windows of varying durations.

Random Forest ensembles were configured with 500 decision

trees, employing bootstrap aggregation and feature randomization

to improve generalization performance (Wara et al., 2025).

The feature selection process utilized mutual information

criteria to identify the most discriminative attributes for sleep

disorder classification. Gradient boosting machines using the

XGBoost framework were optimized through grid search over

key hyperparameters including learning rate, tree depth, and

regularization parameters. Logistic regression models with elastic

net regularization served as interpretable baselines, providing

insights into the relative importance of different feature categories

(Anny et al., 2025). These linear models were particularly valuable

for understanding the contribution of individual modalities and

for clinical interpretability requirements. Hidden Markov Models

(HMMs) were implemented to capture temporal dependencies

(Wang et al., 2019) in sleep state transitions, with Gaussian mixture

model emissions to handle continuous feature distributions.

3.2.2 Deep learning baseline methods
Contemporary deep learning approaches were implemented as

stronger baseline methods to provide more rigorous comparative

evaluation. Convolutional Neural Networks (CNNs) were applied

separately to facial and audio data, followed by late fusion

strategies to combine predictions from individual modalities. The

CNN architectures included ResNet, EfficientNet, and Vision

Transformer variants for facial analysis, and 1D CNN and

WaveNet architectures for audio processing. Recurrent neural

network baselines included LSTM and GRU networks processing

concatenated multimodal features, with attention mechanisms to

identify relevant temporal segments (Skibinska and Burget, 2021).

Transformer-based models adapted for multimodal time series

classification served as state-of-the-art comparisons, incorporating

positional encoding schemes suitable for continuous temporal data

and cross-modal attention mechanisms. Graph neural network

baselines included GraphSAGE, Graph Attention Networks

(GAT), and Graph Convolutional Networks (GCN) adapted for

our multimodal temporal graph representation. These methods

provided direct comparisons to our approach while using simpler

graph construction strategies and standard message passing

mechanisms without the specialized temporal and cross-modal

components of our proposed framework.

3.3 Evaluation metrics and experimental
protocol

The evaluation framework for our multimodal dynamic graph

neural network encompasses a comprehensive suite of performance

metrics designed to assess the model’s effectiveness across multiple

dimensions relevant to clinical sleep monitoring applications. The

classification performance is primarily evaluated using standard

accuracy metrics, where the overall accuracy is computed as

Accuracy = 1
T

∑T
t=1 I[ŷt = yt], representing the proportion of

correctly classified time steps across the entire temporal sequence.

Beyond overall accuracy, we compute precision and recall for each

sleep disorder category k using the formulations Precisionk =
TPk

TPk+FPk and Recallk = TPk
TPk+FNk

, where TPk, FPk, and FNk denote

true positives, false positives, and false negatives for category k,

respectively. The F1-score, computed as F1k = 2·Precisionk·Recallk
Precisionk+Recallk ,

provides a balanced measure that is particularly important for

handling class imbalance inherent in sleep disorder datasets.

To provide comprehensive assessment across both balanced

and imbalanced class distributions, we employ both macro

and micro averaging strategies. The macro-averaged F1-score is

calculated as F1macro = 1
K

∑K
k=1 F1k, treating each class equally

regardless of its frequency, while the micro-averaged F1-score is

computed as F1micro = 2·Pmicro·Rmicro
Pmicro+Rmicro

, where Pmicro =
∑K

k=1 TPk
∑K

k=1(TPk+FPk)

and Rmicro =
∑K

k=1 TPk
∑K

k=1(TPk+FNk)
, giving more weight to frequent classes

and providing insights into overall system performance.

The discrimination capability of our model across different

decision thresholds is quantified using Area Under the Receiver

Operating Characteristic Curve (AUC-ROC) and Area Under the

Precision-Recall Curve (AUC-PR). The ROC curve plots the true

positive rate TPR = TP
TP+FN against the false positive rate FPR =

FP
FP+TN at various threshold settings, with the AUC-ROC computed

as AUC-ROC =
∫ 1
0 TPR(FPR−1(t))dt. The precision-recall curve,

particularly important for imbalanced datasets common in medical

applications, plots precision against recall, with AUC-PR calculated

as AUC-PR =
∫ 1
0 Precision(Recall−1(r))dr. These metrics are
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especially critical for clinical applications where the costs of false

positives and false negatives may vary significantly depending on

the severity of the sleep disorder.

To account for chance agreement and provide a more

conservative assessment of classification performance, we employ

Cohen’s kappa coefficient, defined as κ = po−pe
1−pe , where

po represents the observed agreement ratio and pe denotes

the expected agreement ratio under random classification. The

observed agreement is calculated as po = 1
T

∑T
t=1 I[ŷt = yt], while

the expected agreement is computed as pe =
∑K

k=1
ntrue
k
T ·

n
pred

k
T ,

where ntrue
k

and n
pred

k
represent the number of true and predicted

instances of class k, respectively.

Given the inherently temporal nature of sleep monitoring, we

incorporate specialized temporal evaluation metrics that assess the

model’s ability to capture sleep dynamics accurately over time.

The transition accuracy metric measures the model’s performance

in correctly predicting sleep stage changes and is computed as

Trans-Acc = 1
T−1

∑T−1
t=1 I[ŷt+1 6= ŷt ⇔ yt+1 6= yt], evaluating

whether the model correctly identifies when actual transitions

occur. To quantify the smoothness and clinical plausibility of

prediction sequences, we define a temporal consistency score

as Consistency = 1 − 1
T−1

∑T−1
t=1 ω(yt , yt+1) · I[ŷt 6= ŷt+1],

where ω(yt , yt+1) is a weighting function that penalizes clinically

implausible transitions more heavily than natural ones.

For precise evaluation of pathological episode detection, we

employ event detection metrics that assess both the accuracy

of event identification and the temporal precision of detection

boundaries. The event-level precision and recall are computed by

treating each continuous pathological episode as a single entity,

with an episode considered correctly detected if there is sufficient

temporal overlap with the ground truth. Specifically, we define

temporal Intersection over Union (IoU) for each predicted episode

i and ground truth episode j as IoUij =
|Tpred

i ∩Ttrue
j |

|Tpred
i ∪Ttrue

j |
, where T

pred
i

and Ttrue
j represent the temporal spans of predicted and true

episodes, respectively. An episode is considered correctly detected

if maxj IoUij ≥ τIoU , where τIoU is a predefined threshold typically

set to 0.5.

Recognizing the critical importance of early detection in clinical

sleep monitoring, we introduce time-to-detection metrics that

measure the delay between actual pathological event onset and

algorithmic detection. For each true positive event detection,

we compute the detection delay as 1tdetect = tdetect − tonset ,

where tonset represents the actual event onset time and tdetect
denotes the time when our algorithm first correctly identifies the

event. The mean time-to-detection is then calculated as 1t =
1

NTP

∑NTP
i=1 1t

(i)
detect

, where NTP is the total number of true positive

detections. Additionally, we report the percentile distribution of

detection delays to characterize the system’s responsiveness across

different types of sleep events.

3.4 Results and analysis

3.4.1 Overall performance comparison
Our proposed multimodal dynamic graph neural network

achieved superior performance compared to all baseline methods

across comprehensive evaluation metrics. The overall classification

accuracy reached 94.7% ± 1.2% on the primary dataset,

representing a significant improvement over the best baseline

method (Transformer-based multimodal fusion) which achieved

89.3% ± 1.8% accuracy in Table 3. The improvement was

particularly pronounced for rare pathological events, where our

approach achieved 91.2% sensitivity compared to 76.8% for the best

baseline, demonstrating the effectiveness of our specialized graph-

based representation for capturing complex temporal patterns

in Figure 2. Detailed per-category analysis revealed consistent

improvements across all sleep disorder types, with the most

substantial gains observed for moderate severity conditions that

often exhibit subtle multimodal signatures. The precision-recall

curves demonstrated superior discrimination capability across

different decision thresholds, with our method achieving AUC-PR

scores of 0.923 for normal sleep, 0.887 for mild disruptions, 0.908

for moderate disorders, 0.934 for severe pathological events, and

0.967 for emergency conditions.

Temporal evaluation metrics confirmed the superior ability

of our approach to capture sleep dynamics accurately over time.

Transition accuracy reached 92.4%, significantly outperforming

baseline methods that struggled with abrupt sleep stage changes

and pathological event boundaries in Table 4. The temporal

consistency score of 0.891 indicated smooth and clinically plausible

prediction sequences, while maintaining high sensitivity to genuine

pathological events.

3.4.2 Clinical validation results
External validation on the secondary clinical dataset

demonstrated excellent generalization capability, with performance

degradation of only 2.1% compared to internal validation results.

This robust generalization across different clinical populations

and recording environments confirmed the practical applicability

of our approach for real-world sleep monitoring scenarios in

Table 5. Clinical agreement analysis showed 94.6% concordance

with expert sleep technologists for high-confidence cases and

87.3% agreement for challenging borderline cases. Time-

to-detection analysis revealed rapid identification of critical

sleep events, with median detection delays of 12.3 seconds

for apnea episodes, 8.7 seconds for severe arousals, and 15.6

seconds for other pathological events. These response times are

clinically acceptable for real-time monitoring applications and

represent substantial improvements over traditional automated

systems that often require longer observation windows for

reliable detection.

Cost-weighted accuracy metrics incorporating clinical

priorities showed our method achieved optimal performance

trade-offs between sensitivity and specificity for different event

types. The weighted accuracy score of 0.932 reflected appropriate

prioritization of high-severity conditions while maintaining

acceptable performance for routine sleep monitoring tasks.

3.4.3 Robustness and fairness analysis
Robustness evaluation under challenging conditions

demonstrated the resilience of our approach to common

practical limitations. Performance degradation under poor
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TABLE 3 Overall classification performance comparison.

Method Accuracy (%) F1-Macro F1-Micro AUC-ROC AUC-PR Cohen’s κ

Traditional machine learning methods

SVM (RBF) 73.2± 2.1 0.681 0.732 0.798 0.743 0.645

Random Forest 76.8± 1.9 0.724 0.768 0.821 0.776 0.689

XGBoost 78.5± 1.7 0.748 0.785 0.841 0.792 0.712

Logistic Regression 71.9± 2.3 0.662 0.719 0.785 0.721 0.628

Hidden Markov Model 74.6± 2.0 0.703 0.746 0.809 0.758 0.671

Deep learning methods

CNN (Facial Only) 81.3± 1.6 0.776 0.813 0.862 0.818 0.751

CNN (Audio Only) 79.7± 1.8 0.759 0.797 0.847 0.803 0.729

LSTM (Multimodal) 84.2± 1.4 0.812 0.842 0.889 0.856 0.794

GRU (Multimodal) 83.8± 1.5 0.807 0.838 0.884 0.851 0.788

Transformer (Multimodal) 89.3± 1.8 0.867 0.893 0.924 0.901 0.854

Graph neural network methods

GraphSAGE 86.7± 1.5 0.841 0.867 0.903 0.878 0.821

Graph Attention Network 87.9± 1.3 0.854 0.879 0.912 0.889 0.836

Graph Convolutional Network 85.4± 1.7 0.828 0.854 0.896 0.865 0.808

Our Method (MDGNN) 94.7 ± 1.2 0.931 0.947 0.968 0.952 0.924

The bold values indicate the best performing results.

FIGURE 2

Comprehensive performance evaluation of the multimodal dynamic graph neural network across classification metrics, temporal analysis, clinical

validation, and ablation studies.

signal quality conditions was limited to 3.8% for facial data

corruption and 4.2% for audio interference, substantially

better than baseline methods that experienced 12–18%

performance drops under similar conditions. Missing modality

experiments showed graceful degradation, with single-modality

performance reaching 87.3% (facial only) and 84.6% (audio

only) compared to 94.7% for the complete multimodal system

in Figure 3.
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TABLE 4 Temporal evaluation metrics.

Method Transition accuracy (%) Consistency score Mean IoU Event detection F1

LSTM (multimodal) 78.4 0.742 0.681 0.723

GRU (multimodal) 79.1 0.758 0.693 0.738

Transformer (multimodal) 85.6 0.823 0.752 0.801

GraphSAGE 87.2 0.841 0.769 0.824

Graph Attention Network 88.5 0.856 0.781 0.839

Our method (MDGNN) 92.4 0.891 0.834 0.887

The bold values indicate the best performing results.

TABLE 5 Clinical validation and time-to-detection results.

Evaluation aspect Our method Transformer GAT LSTM Clinical threshold

Clinical agreement (%)

High-confidence cases 94.6 87.3 85.7 79.2 ≥ 90.0

Borderline cases 87.3 78.9 76.4 71.8 ≥ 75.0

Overall agreement 91.7 83.8 81.6 76.1 ≥ 85.0

Time-to-detection (seconds)

Sleep apnea episodes 12.3± 3.7 18.6± 5.2 21.4± 6.1 28.9± 7.8 ≤ 30.0

Severe arousals 8.7± 2.9 14.2± 4.6 16.8± 5.3 22.1± 6.7 ≤ 20.0

Pathological events 15.6± 4.2 23.8± 6.9 26.3± 7.4 35.7± 9.2 ≤ 45.0

Emergency conditions 6.1± 1.8 9.7± 3.1 11.2± 3.8 15.4± 4.9 ≤ 15.0

Overall detection delay 10.7 ± 3.2 16.6 ± 4.9 18.9 ± 5.7 25.5 ± 7.1 ≤ 25.0

The bold values indicate the best performing results.

Fairness analysis across demographic subgroups revealed

minimal bias in our approach, with performance variations of less

than 2.5% across different age groups, gender categories, and ethnic

backgrounds. This equitable performance distribution is crucial

for clinical deployment and represents a significant improvement

over several baseline methods that showed substantial

demographic biases.

The computational efficiency analysis demonstrated

practical feasibility for real-time deployment, with inference

times of 23.4 milliseconds per time step on standard

clinical computing hardware. Memory requirements

remained within acceptable bounds for extended monitoring

sessions, and the model architecture supported efficient

deployment on edge computing devices for home-based sleep

monitoring applications.

3.5 Ablation studies and component
analysis

3.5.1 Modality contribution analysis
Comprehensive ablation studies were conducted to quantify the

individual and synergistic contributions of different components

within our framework. Unimodal experiments using only facial

expression data or only audio data provided baseline performance

levels and identified the strengths and limitations of each modality.

Cross-modal fusion experiments systematically varied the fusion

strategies, comparing early fusion, late fusion, and our proposed

attention-based fusion mechanisms in Table 6.

The dynamic graph construction component was evaluated

through systematic removal and modification of different graph

elements. Experiments included static graph variants where

edge weights remained constant over time, simplified graph

topologies with reduced connectivity patterns, and alternative edge

weight computation schemes. These comparisons demonstrated

the importance of our adaptive graph construction approach for

capturing complex multimodal temporal relationships.

Temporal modeling components were assessed through

ablation of the hierarchical decomposition mechanism, causal

temporal convolutions, and multi-scale attention mechanisms.

Each component’s contribution to overall performance was

quantified across different sleep disorder categories and temporal

scales, revealing the complementary roles of different temporal

modeling strategies.

3.5.2 Architectural design choices
The impact of different architectural decisions was

systematically evaluated through controlled experiments varying

key design parameters. Graph neural network layer configurations

were compared across different depths, hidden dimensions, and

connectivity patterns to identify optimal architectural choices for
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FIGURE 3

Advanced model analysis including training dynamics, modality fusion patterns, feature importance, computational e�ciency, error distribution,

demographic fairness, network topology, and attention mechanisms.

TABLE 6 Ablation study results.

Model variant Accuracy (%) F1-macro AUC-ROC Trans-Acc (%)

Modality contribution

Facial only 87.3± 1.8 0.851 0.919 84.7

Audio only 84.6± 2.1 0.823 0.897 81.2

Early fusion 91.2± 1.5 0.896 0.945 88.3

Late fusion 90.8± 1.6 0.891 0.941 87.9

Attention-based Fusion 94.7 ± 1.2 0.931 0.968 92.4

Graph construction

Static graph 89.4± 1.7 0.873 0.928 85.6

Fixed edge weights 90.6± 1.4 0.887 0.936 87.1

Simple connectivity 91.3± 1.3 0.894 0.943 88.7

Adaptive dynamic graph 94.7 ± 1.2 0.931 0.968 92.4

Temporal modeling

w/o hierarchical decomposition 92.1± 1.4 0.905 0.951 89.3

w/o causal convolution 91.8± 1.5 0.901 0.948 88.9

w/o multi-scale attention 92.6± 1.3 0.912 0.956 90.1

Full temporal model 94.7 ± 1.2 0.931 0.968 92.4

The bold values indicate the best performing results.

our specific application domain. Attention mechanism variations

included different attention head configurations, attention span

limitations, and attention weight normalization strategies.

Loss function component analysis involved systematic

variation of the weighting parameters for different loss terms,

demonstrating the importance of balanced multi-objective

optimization for achieving robust performance across diverse

sleep monitoring scenarios. Regularization strategy comparisons

evaluated different dropout rates, weight decay parameters, and

normalization techniques to identify optimal configurations for

preventing overfitting while maintaining model expressiveness in

Figure 4. Optimization strategy experiments compared different
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FIGURE 4

Clinical deployment analysis covering sleep stage transitions, real-time processing, risk assessment, multi-site validation, patient monitoring, alert

systems, cost-e�ectiveness, and regulatory compliance.

learning rate schedules, batch size configurations, and gradient

clipping thresholds to identify training procedures that achieve

stable convergence and optimal generalization performance. These

experiments provided insights into the training dynamics of

complex multimodal graph neural networks and established best

practices for practical implementation.

4 Discussion

This study demonstrates that multimodal dynamic graph

neural networks can significantly advance automated sleep disorder

detection by effectively integrating facial expression and audio

signal analysis. Our framework achieved 94.7% classification

accuracy with clinically acceptable detection delays, representing a

substantial improvement over existing single-modality approaches.

The superior performance across diverse sleep pathologies,

from mild disruptions to emergency conditions, highlights the

complementary nature of facial and audio modalities in capturing

the multifaceted manifestations of sleep disorders. The dynamic

graph representation successfully modeled complex temporal

relationships that traditional fusion methods often fail to capture,

particularly for subtle, gradual changes that characterizemany sleep

pathologies when considered collectively over extended periods.

The clinical validation results demonstrate strong concordance

with expert assessments (94.6% for high-confidence cases) and

robust generalization across different patient populations and

recording environments. Importantly, our system maintained

equitable performance across demographic subgroups with

minimal bias, addressing a critical concern for clinical deployment.

The rapid detection capabilities, with mean delays of 6–15 s

for various pathological events, meet clinical requirements for

real-time monitoring and early intervention. These findings

suggest that our approach could serve as a practical alternative

to traditional polysomnography, particularly for home-based

monitoring and resource-constrained settings where continuous

expert supervision is unavailable.

While our results are promising, several limitations warrant

consideration. The study was conducted in controlled laboratory

environments with standardized equipment, and real-world

deployment may encounter additional challenges including

variable lighting conditions, background noise, and equipment

heterogeneity. Future work should focus on expanding the

framework to accommodate additional physiological modalities

such as heart rate variability and movement patterns, developing

patient-specific adaptation mechanisms, and conducting larger-

scale clinical trials across diverse healthcare settings. The

integration of explainable AI techniques could further enhance

clinical acceptance by providing interpretable insights into the

decision-making process, ultimately facilitating broader adoption

in clinical practice.

5 Conclusion

This study presents a novel multimodal dynamic graph

neural network framework that significantly advances the state-

of-the-art in automated sleep disorder detection by integrating

facial expression analysis and audio signal processing through

sophisticated temporal modeling. Our approach achieves

superior performance with 94.7% overall accuracy, demonstrating

substantial improvements over existingmethods while maintaining
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clinically acceptable detection delays of 10.7 seconds on average.

The dynamic graph construction mechanism effectively captures

complex spatiotemporal relationships between heterogeneous

modalities, while the hierarchical temporal decomposition

and attention-based fusion strategies enable robust detection

across diverse sleep pathologies ranging from mild disruptions

to emergency conditions. Extensive validation across multiple

clinical sites confirms the system’s generalizability and practical

applicability, with strong clinical agreement rates of 94.6% for high-

confidence cases and equitable performance across demographic

groups. The cost-effectiveness analysis reveals significant economic

advantages over traditional polysomnography while maintaining

comparable diagnostic accuracy, positioning this framework as a

promising solution for scalable, non-invasive sleep monitoring in

both clinical and home-based healthcare settings. Future work will

focus on expanding the framework to accommodate additional

physiological modalities and developing personalized adaptation

mechanisms for enhanced patient-specific monitoring capabilities.
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