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Introduction: Sleep disorders pose significant risks to patient safety, yet
traditional polysomnography imposes substantial discomfort and laboratory
constraints. We developed a non-invasive multimodal monitoring system for
real-time sleep pathology detection.

Methods: We integrated facial expression analysis via deep convolutional
neural networks with audio signal processing for breathing pattern detection.
Heterogeneous data streams were unified into dynamic graph representations,
with graph neural networks modeling spatiotemporal patterns of sleep
pathologies.

Results: The system accurately detected sleep apnea, restless leg syndrome,
and cardiovascular irregularities with 10.7-s average delay and 94.6% clinical
agreement, achieving diagnostic accuracy comparable to polysomnography.
Conclusion: This framework enables continuous non-invasive monitoring for
point-of-care screening and home-based management, potentially expanding
sleep medicine access for underserved populations.

KEYWORDS

sleep disorder detection, facial expression analysis, real-time health monitoring,
multimodal learning, machine learning

1 Introduction

Sleep disorders affect millions of people worldwide and represent a significant
public health concern, with conditions such as sleep apnea, insomnia, and
parasomnias contributing to increased morbidity, reduced quality of life, and
elevated healthcare costs (Alshammari, 2024; Yildirim et al., 2019; Sharma et al,
2021b). The accurate detection and monitoring of sleep-related pathological
conditions is crucial for timely medical intervention and prevention of serious
complications (Morokuma et al., 2023; Arslan et al., 2023). Traditional sleep monitoring
approaches, primarily relying on polysomnography (PSG) in controlled laboratory
environments, while considered the gold standard, are expensive, time-consuming,
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and often impractical for long-term monitoring or home-based
care (Ha et al, 2023; Brink-Kjaer et al,, 2022). Moreover, PSG
requires multiple electrodes and sensors that can disturb patients’
natural sleep patterns, potentially affecting the reliability of
diagnostic outcomes (Rahman et al., 2025; Reis et al., 2024).

Recent advances in wearable technology and non-invasive
monitoring systems have opened new avenues for sleep assessment.
Current approaches predominantly focus on single-modality
solutions, such as actigraphy for movement detection, heart rate
variability analysis for autonomic nervous system assessment,
or audio-based detection of breathing irregularities (Hussain
et al, 2022; Yoon and Choi, 2023). However, these unimodal
approaches suffer from several critical limitations. First, they often
lack the comprehensive information necessary to capture the
complex, multifaceted nature of sleep disorders, which typically
manifest through various physiological and behavioral indicators
simultaneously (Nguyen et al., 2023). Second, single-modality
systems are susceptible to noise, artifacts, and environmental
interference (Boiko et al., 2023), leading to reduced accuracy and
reliability in real-world deployment scenarios.

Facial expression analysis has emerged as a promising non-
invasive approach for detecting physiological states and emotional
conditions during sleep (Maranci et al, 2021; Huang et al,
2023). Research has demonstrated that facial expressions can
provide valuable insights into pain levels, breathing difficulties, and
neurological activities during sleep. Similarly, audio signal analysis
has shown significant potential in detecting sleep apnea events,
snoring patterns, and other respiratory irregularities (Rosamaria
et al, 2023; Xu et al, 2020). However, existing studies have
primarily treated these modalities independently (Lv et al., 2020),
failing to leverage their complementary information and temporal
correlations.

The integration of multimodal data for sleep monitoring
presents several fundamental challenges (Wang et al., 2025b).
First, different modalities operate at varying temporal scales and
exhibit distinct data characteristics, making it difficult to establish
meaningful correlations and extract unified representations (Cheng
et al., 2023; Torres et al., 2018). Facial expressions may change
subtly over minutes, while audio signals contain high-frequency
components that vary within seconds. Second, the temporal
dependencies within and across modalities are complex and non-
linear (Zhai et al., 2020; Zahid et al., 2023), requiring sophisticated
modeling approaches that can capture both short-term fluctuations
and long-term trends. Third, sleep disorders often manifest
through subtle, gradual changes that may not be immediately
apparent in individual modalities but become significant when
considered collectively over extended periods (Duan et al., 2021;
Lin et al, 2023). Existing multimodal fusion techniques, while
successful in other domains, face specific challenges when applied
to sleep monitoring (Liao et al., 2024). Traditional early fusion
approaches that concatenate features from different modalities
often result in high-dimensional representations that are prone to
overfitting and computational inefficiency. Late fusion methods
that combine decisions from individual modality classifiers may
miss important cross-modal interactions (Zhai et al.,, 2021) that
are crucial for accurate sleep disorder detection. Furthermore, most
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current approaches treat sleep monitoring as a static classification
problem (Chung et al., 2017), ignoring the inherently dynamic and
temporal nature of sleep processes.

To address these limitations, we propose a novel multimodal
dynamic graph neural network framework that integrates facial
expression analysis and sleep audio signal processing for real-time
detection and prediction of sleep-related pathological conditions
in Figure 1. Our approach is built upon several key insights
and innovations. First, we conceptualize the multimodal sleep
monitoring problem as a dynamic graph learning task, where
different modalities and their temporal states are represented
as nodes in a time-evolving graph structure. This representation
naturally captures the heterogeneous nature of multimodal
data while preserving the temporal dependencies crucial for
understanding sleep dynamics. Nodes in our graph represent
feature vectors extracted from facial expressions and audio signals
at different time points, while edges encode both intra-modal
temporal relationships and inter-modal correlations. Second,
we develop a specialized graph neural network architecture
that can effectively learn from this dynamic multimodal graph
representation. Our model incorporates attention mechanisms to
automatically weight the importance of different modalities
and temporal segments, allowing the system to focus on the
most relevant information for detecting specific sleep disorders.
The architecture includes dedicated modules for processing
facial expression data using convolutional neural networks
optimized for low-light sleep environments, and audio processing
components that can handle various acoustic patterns associated
with different sleep pathologies. Third, we introduce a temporal
modeling component that explicitly captures the evolution
of sleep states over time. Unlike traditional approaches that
analyze fixed time windows independently, our framework
maintains a continuous representation of the patient’s sleep state
that evolves dynamically as new data becomes available. This
enables early detection of developing conditions and provides
predictive capabilities for anticipating potential sleep-related
medical events.

Our technical approach consists of several interconnected
components designed to address the specific challenges of
multimodal sleep monitoring. The facial expression analysis
module utilizes lightweight convolutional neural networks
optimized for processing infrared or low-light facial images
captured during sleep. We employ specialized preprocessing
techniques to handle variations in lighting conditions, head
pose changes, and occlusions commonly encountered in sleep
environments. Feature extraction focuses on detecting micro-
expressions and subtle facial movements that may indicate
discomfort, breathing difficulties, or neurological activities.
The audio processing component employs advanced signal
processing techniques to extract meaningful features from sleep
audio recordings. This includes spectral analysis for detecting
breathing patterns, time-frequency analysis for identifying
apnea events, and novel acoustic feature extraction methods
for recognizing various sleep-related sounds. We address
challenges

related to background noise, signal variability

across different recording devices, and the need for real-time
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FIGURE 1

Overview of our multimodal dynamic graph network framework for sleep disorder monitoring. The system processes multimodal inputs through: (A)
Dynamic heterogeneous graph construction with diversity-aware hub propagation to balance information flow across facial and audio modalities;
(B) Adaptive edge weight computation using positive/negative pair attraction-repulsion mechanisms to enhance cross-modal alignment; (C) Graph
representation encoding with temporal-aware attention for structural pattern learning; (D) Breathing pattern categorization module integrating
LSTM-based temporal modeling, causal convolution for real-time monitoring, dilated attention mechanism for long-range dependencies,
dual-frequency spatial wavelet analysis, and micro-expression detection for physiological indicators.

processing in resource-constrained environments. The dynamic
graph construction mechanism creates time-evolving graph
representations that capture the complex relationships between
different modalities and their temporal evolution. We develop
novel graph edge weighting schemes that automatically adapt
based on the reliability and relevance of different modalities
at different time points. This adaptive approach ensures
robust performance even when individual modalities are
compromised by noise or artifacts. Our graph neural network
architecture incorporates several innovative components,
including multi-scale temporal attention mechanisms, cross-
modal correlation modules, and specialized pooling operations
designed for handling irregular time series data. The model
is trained using a combination of supervised learning for
known sleep disorder patterns and self-supervised learning
techniques that leverage the inherent structure of multimodal
sleep data.

The proposed framework offers several significant advantages
over existing approaches. By leveraging the complementary
information from multiple modalities, our system can achieve
higher accuracy and robustness compared to single-modality
solutions. The dynamic graph representation enables the capture of
complex temporal patterns that are crucial for understanding sleep
disorders, while the attention mechanisms provide interpretability
by highlighting the most relevant features and time periods for
specific predictions. This research contributes to the growing
field of multimodal health monitoring by providing a novel
framework that can effectively integrate heterogeneous data sources
for complex medical applications. Our work advances the state-of-
the-art in both multimodal learning and sleep medicine, offering
new possibilities for personalized and continuous healthcare

monitoring solutions.
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2 Methods

Let us formally define the multimodal sleep monitoring
problem as a dynamic graph learning task. We denote the
{F, A}, where

F = {fi}L, represents the sequence of facial expression features

multimodal sleep data as a collection D =

and A = f{a/L, represents the corresponding audio signal
features over time horizon T. At each time step f, we have f;

RY e R
and d, are the dimensionalities of facial and audio feature spaces,

(facial features) and ay (audio features), where df
respectively in Table 1. The objective is to learn a mapping function
M:D — Y that predicts sleep pathology labels y; € Y

0,1,2,...,
distinct sleep disorder categories.

K} at each time step, where K represents the number of

2.1 Facial expression feature extraction

For facial expression analysis, we employ a modified ResNeXt-
50 architecture with specialized attention mechanisms for low-light
sleep environments. The facial feature extraction process can be
formulated as X0 = Preprocess(I;), X!+ = ]-"ggsN XD, wh)
and /" = GlobalAvgPool(X(!)), where I, € RI*WxC
the input facial image at time ¢, X} denotes the feature maps at

represents

layer I, and W are the learnable parameters (Yang et al., 2021).
To enhance the feature representation for sleep-specific facial
expressions, we introduce a temporal-spatial attention mechanism

T
ASpatial = softmax (%)

Vi
Atemporal = Softmax (Wt tanh(Wef/™ + Whht_l)) (1)
fe= Atemporal O Aspatial v, (2)
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TABLE 1 Mathematical notation and symbols used in methods section.

10.3389/frai.2025.1681759

Symbol Description Description

D Multimodal sleep data collection G; Dynamic heterogeneous graph at time ¢
F Facial expression feature sequence Vi Node set containing facial and audio nodes
A Audio signal feature sequence & Edge set for intra- and cross-modal connections
fi Facial features at time ¢ X; Node feature matrix at time ¢

a; Audio features at time t dy,d, Dimensionalities of facial and audio features
Ve Sleep pathology labels at time ¢ K Number of sleep disorder categories

T Time horizon M Mapping function for prediction

I Input facial image at time ¢ H,W,C Image height, width, and channels

x® Feature maps at layer [ w Learnable parameters at layer [

fe Raw facial features before attention Agpatial Spatial attention mechanism

Atemporal Temporal attention mechanism QK,V Query, key, and value matrices

hi—y Hidden state from previous time step Wi, W, Wy Learnable weight matrices

St Short-Time Fourier Transform at time ¢ Yik Mother wavelet at scale j, position k

M; Power Spectral Density C; Cepstral coefficients

ZCR, Zero Crossing Rate RMS; Root Mean Square energy

SC Spectral Centroid SRO; Spectral Rolloff

Wi Wavelet coefficients N Number of samples

A,J: ,xf Projected facial and audio node features Wy, W, Projection matrices

afjemp Temporal edge attention weight o Cross-modal edge attention weight

wij Final edge weight Ay Ao, Az Hyperparameters

y Temporal decay rate N; Neighborhood of node i

HO Hidden representations at layer [ AD Adjacency matrix at scale s

N Number of temporal scales D Degree matrix

eg) Attention energy between nodes i, j Otsjl) Attention coefficient

(L, ) Temporal relationship encoding w4 Frequency parameters

h}]‘), hff) Final layer facial and audio features Q. Ko,V Cross-modal attention components
Attny ., Facial-to-audio attention Attng ¢ Audio-to-facial attention

fused Fused multimodal representation dy Key dimension

[ Reset and update gates in GRU o Candidate hidden state

St Final hidden state U,, U,, Us Recurrent weight matrices

50 Multi-scale decomposition at level £ K, Number of wavelets at level £

oz,(f) Learnable wavelet coefficients ¢ Mother wavelet function

hﬁf’ Causal convolution output k Kernel size

d Dilation factor Meausal Causal attention mask

R Attention radius Wos Positional encoding weights

L s Classification loss L temp Temporal consistency loss

Lont Contrastive loss L e Reconstruction loss

o Class-specific weights Y Focusing parameter

Pk Predicted probability for class k [on Adaptive temporal weight

B Similarity threshold parameter T Temperature parameter

Nt Learning rate at time ¢ Nimin> Nmax Minimum and maximum learning rates
Teur Current epoch in restart cycle T; Epochs in restart cycle
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where Q, K, V are query, key, and value matrices, W;, Wf, Wi
are learnable weight matrices, h;—; is the hidden state from the
previous time step, and © denotes element-wise multiplication.

2.2 Audio signal feature extraction

For audio signal processing, we implement a multi-scale
wavelet transform combined with spectral analysis. The audio
feature extraction pipeline is defined as S; = STFT(a;*"), Wjx =
>on afaw[n]wj’:‘k[n — k], M; = |S;|*> (Power Spectral Density), and
C: = DCT(log(M;)) (Cepstral Coefficients), where STFT denotes
the Short-Time Fourier Transform (Karpagam et al., 2022), ¥k
represents the mother wavelet at scale j and position k, and DCT
is the Discrete Cosine Transform. We extract multiple acoustic
features including:

N-1

ZCR, = 5 Y Isgntalnl) — sgnaln — 1D @)
n=1

RMS; = (4)
K

s, = Zhot k15K -
I
K 2.

SRos = Zhorlk = SCO 51K ©
SOIC]

where ZCR is Zero Crossing Rate, RMS is Root Mean
Square energy, SC is Spectral Centroid, and SRO is Spectral
Rolloft. The final audio feature vector
ar = [Cy; ZCRy; RMSy; SCy; SROy; Wyl

is constructed as

2.3 Dynamic graph construction

2.3.1 Graph topology design

We construct a dynamic heterogeneous graph G; = (V;, &, X)
where V; = V{ U V{ represents the node set containing facial and
audio nodes, & = Sff ueM US{” represents edges within and across
modalities - X; € RIViI*xd i node feature matrix (Chen et al., 2025;
Hou et al., 2016). The features are constructed using a projection
mechanism x{ = Wfft + bf, x{ = Waay + by, where Wf IS Rdde,
W, € R¥*% are projection matrices map different modalities.

2.3.2 Adaptive edge weight computation
The edge weights are computed using a learnable attention
mechanism that considers both temporal and cross-modal

dependencies:
temp exp(WtEmp tanh(Wyx; + Wax;)) )
ij Zke]\fi exp(WtEmp tanh(W1x; + Waxy))
agiross = sigmoid( WCTross [ |xj||(xi O] x]‘)]) (8)

wij = Ala;§mp + Azaicjross + A3 exp(—ylt,- — tj|), (9)
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where N; represents the neighborhood of node i, || denotes
concatenation, A1, Az, A3 are hyperparameters, and y controls the
temporal decay rate.

2.4 Dynamic graph neural network
architecture

2.4.1 Multi-scale graph convolution
We propose a multi-scale graph convolutional layer that
operates on different temporal scales simultaneously:

S
H(I-H) —0 (Z Agl)H(l) Ws(l)) (10)
s=1

AEI) = GraphConv, (A, H (Z)) (11)
GraphConv,(A, H) = D" 2A,D" 2 H, (12)
where § is the number of scales, A; is the adjacency matrix at scale s,

D is the degree matrix, and o is an activation function (Wang et al.,
2025a).

2.4.2 Temporal-aware graph attention
To capture long-range temporal dependencies, we implement a
temporal-aware graph attention mechanism:

eg;> — LeakyReLU(aT[Wh§’>||Whj<.l)||¢(t,-, H)  (13)

()
exp(e;.’)
af) = G (14)
Zke/\/}u{i] exp(e;)
I ! I
K=o | 3 afwhl|, (15)

jeNiU{i)
where ¢(t;, ;) encodes temporal relationships:

(i, tj) = [sin(w(t; — 1)), cos(w1(t; — 17)), .., sin(wy(t; — 1)),
cos(wq(t; — t7))] (16)

2.4.3 Cross-modal fusion module
The cross-modal fusion is achieved through a specialized
attention-based fusion mechanism (Chen et al., 2024):

Q =hPWh Ke=hPwg ve=nPwi ()

!
Qu=hPWo, Ky =hnPWh, vi=hPw, (s
QKT
Attny_, , = softmax ( Va (19)
)
( QuK/
Attn,_,r = softmax \Z; (20)
Vi

Hfused = LayerNorm(h}L) + Attn,_,f)
+ LayerNorm(h,(ZL) + Attnfﬁa) (21)
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2.5 Temporal sequence modeling

2.5.1 Gated recurrent unit with graph embedding
We incorporate a modified GRU that operates on graph
embeddings to capture temporal dynamics:

1 = 0 (Wrhgysed,r + Ursi—1 + by) (22)
zt = 0 (Wohgysed,t + Uzsi—1 + b2) (23)
5¢ = tanh(Wihgyged s + Us(re © si—1) + bs) (24)
ss=(1—2)Os-1+2 O3 (25)

where 14, z;, and §; are the reset gate, update gate, and candidate
hidden state, respectively.

2.5.2 Hierarchical temporal decomposition

Given the multi-scale nature of sleep disorders, which can
manifest over different temporal horizons ranging from seconds
to hours, we implement a hierarchical temporal decomposition
mechanism (Tiwari et al., 2022). This approach decomposes the
temporal sequences into multiple frequency components using
learnable wavelet-based filters. The decomposition process is
formulated as:

Ky
SEZ) = Za,(f)l/’e,k(stfm ) (26)
k=1
1 n—k- 2@
Yek(x) = 75 Xn: Weix[n]¢ (T) @7)
Sgnuhi = Concat(sgn, 552), SEL))WprOJ’ (28)

where ¢ denotes the decomposition level, K; is the number of
wavelets at level £, a](f) are learnable coeflicients, ¢ is the mother
wavelet function, and Wproj projects the concatenated multi-
scale features back to the original dimension. This hierarchical
approach enables the model to simultaneously capture short-term
fluctuations in breathing patterns and long-term trends in sleep

stage transitions (Yang et al., 2022).

2.5.3 Causal temporal convolution with dilated
attention

To ensure that predictions at time t only depend on past
observations while maintaining computational efficiency, we
introduce causal temporal convolutions with dilated attention
mechanisms. The causal convolution operation is defined as:

k—1
m =3 W si_iq+ b (29)
i=0
(O (KT
DilatedAttn(H'?) = softmax (Q(ﬂ’ © Mcausal) v (30)
k
0 ifi<j
Mcausal[i:j] = 43— if i zjand |i —]| >R
Wpos“i —jll otherwise

(31)
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Require: Facial image sequence {It}LV Audio signal
sequence {af?"}I_,

Ensure: Dynamic graph with node

features {X¢}I_,

ResNeXt-50 network,
projection matrices Wg, Wy

2: for t=1 to T do

3: // Facial Feature Extraction

4: x(@)

normalization}

5 for 1=0 to L—1 do

6 X2+ ResNext (D) (x(1) (1))

7: end for

8:  fIa « GlobalAvgPool(X(L))

9: // Temporal-Spatial Attention

sequence  {G¢}]_,

1: Initialize: wavelet filters,

< Preprocess(It+) {Face detection and

;
10:  Aspatial < Softmax (%)

11 Atemporal <~ Softmax(Wt tanh(Wff{aW + Whhe_q ) )
12: fr < Atemporal O] Aspatialv

13: // Audio Feature Extraction

14: St < STFT(af{®) {Short-Time Fourier Transform}
15: M: < |S¢|2 {Power Spectral Density}

16: Ct < DCT(log(M¢)) {Cepstral Coefficients}

17: // Multi-scale Wavelet Analysis

18: for j=1 to J, k=1 to K; do

19: Wj,kezna{aw[n]w;ﬁk[nfk]

20: end for

21: // Acoustic Feature Computation

22: ZCRte;—NZﬁ;l\sgn(at[n])7sgn(at[nf1])\

23: RMSt « \/m

24 at < [C¢; ZCR¢; RMS¢; SCr; SRO¢; W1y, ¢ ]
25: // Node Feature Projection

26:  xp < Wefe+bs, X2 < Waar + b,

27: // Adaptive Edge Weight Computation

28:  for each node pa;ir (i,j) do

exp (W, tanh (Wi x;+Wyx
29: "‘E‘mp < zkeNjix[;(mﬁqemp t(an]'v(lw/qxj+JW)Qi<k))
30: agiose « sigmoid (Wl oss [X1lIX511(X: @ %5) 1)
31: Wij < aais" + 2008705 + a5 exp(—y|t; — t5])
32: end for
33: end for

34: return (G}, (Xd)l_,

Algorithm 1. Multimodal feature extraction

construction.

and dynamic graph

where k is the kernel size, d is the dilation factor, M, is the causal
mask that prevents information leakage from future time steps, R
is the attention radius, and Wp,s encodes positional relationships.
This design allows the model to capture long-range dependencies
while maintaining the causal property essential for real-time sleep
monitoring applications.

2.6 Loss function and optimization strategy

The training of our dynamic graph neural network requires
a sophisticated loss function that addresses multiple objectives

frontiersin.org
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simultaneously while ensuring stable convergence (Li et al., 2024).
Our comprehensive loss function incorporates classification
accuracy, temporal consistency, cross-modal alignment,
and regularization terms to prevent overfitting and enhance
generalization capabilities.

The primary classification loss employs a weighted focal loss
mechanism to address the inherent class imbalance in sleep
disorder datasets. The focal loss is particularly effective for handling
rare pathological events that may occur infrequently during sleep
but are critical for early detection. The mathematical formulation is

given by:

1 T K
ZZakﬂ = 71 y1x 108G ), (32)

t:l k=1

cls =

where o) represents class-specific weights derived from inverse
frequency statistics, y is the focusing parameter that reduces
the relative loss for well-classified examples, and J; denotes the
predicted probability for class k at time .

To ensure temporal consistency in predictions, we introduce
a specialized temporal smoothness loss that penalizes abrupt
transitions between predicted sleep states unless supported by
significant changes in the input modalities. This loss is computed

as:
T—1
- NI
Liemp = 7 ;wtnym 3ll3s (33)
where w; = exp(—p - sim(hfysed 41> Pfused,)) 1S an adaptive

weight that allows larger prediction changes when the fused
representations differ significantly, controlled by the similarity
threshold parameter S.

Cross-modal alignment is enforced through a contrastive
learning objective that maximizes the mutual information between
facial and audio representations when they correspond to the same
sleep state while minimizing it for different states. The contrastive
loss is formulated as:

exp(sim(h{, h]‘»’)/r)
>k exp(sim(h{, h)/t)

Leont = Z I )/1 y]] 10g » (34)

ij

where I[-] is the indicator function, sim(:,-) computes cosine
similarity, and v is the temperature parameter that controls the
concentration of the distribution.

The reconstruction loss serves as a regularization mechanism
that encourages the learned representations to preserve essential
information from both modalities. This autoencoder-style loss is

computed as:

T

Lrec = Y _ |lfi — Decp(usean)l3 + llar — Deca(hgusea)| 3> (35)
t=1

where Dec; and Dec, are lightweight decoder networks
that reconstruct the original modal features from the fused
representation.

The optimization strategy employs adaptive learning rate
scheduling combined with gradient clipping to ensure stable
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training dynamics. We utilize the AdamW optimizer with
decoupled weight decay, where the learning rate follows a cosine

annealing schedule with warm restarts:

i1+ cos( ), (36)

i

1
Nt = Nmin + E(r)max -

where T, is the number of epochs since the last restart and T; is the
number of epochs in the current restart cycle. The gradient clipping
threshold is dynamically adjusted based on the gradient norm
history using an exponential moving average to prevent gradient
explosion while allowing for occasional large updates during critical
learning phases.

2.7 Model architecture and
implementation details

The complete architecture of our dynamic multimodal graph
neural network is carefully designed to balance computational
efficiency with representational power, enabling real-time
processing while maintaining high accuracy for sleep disorder
detection. The facial expression processing branch utilizes a
modified ResNeXt-50 architecture with specialized adaptations
for low-light infrared imagery commonly encountered in sleep
monitoring scenarios. The initial convolutional layers employ
depthwise separable convolutions to reduce computational
overhead while maintaining feature extraction capability, followed
by residual blocks with cardinality-based grouped convolutions
that effectively capture spatial hierarchies in facial expressions.

The audio processing pipeline incorporates multi-scale

temporal convolutional networks with varying receptive
fields to capture acoustic patterns across different time scales
simultaneously. The architecture employs dilated causal

convolutions with exponentially increasing dilation rates,
allowing the network to model both short-term acoustic events
such as individual breaths or snores, and long-term patterns such
as periodic breathing irregularities. Spectral normalization is
applied to all convolutional layers to ensure training stability and
prevent mode collapse, particularly important when processing
variable-quality audio recordings from different environments.
The graph neural network component consists of four specialized
layers, each designed to capture different aspects of the multimodal
temporal relationships. The first layer performs initial node
embedding and establishes basic connectivity patterns between
facial and audio nodes. Subsequent layers progressively refine
these relationships through learnable attention mechanisms that
dynamically adjust edge weights based on the current sleep state
and temporal context. The final graph layer incorporates global
pooling operations that aggregate information across all nodes
while preserving modality-specific characteristics through separate
attention heads.

Regularization strategies are implemented throughout the
architecture to prevent overfitting and enhance generalization
to new patients and environments. These include adaptive
dropout with time-varying probabilities, batch normalization

with momentum adjustment based on training progress, and
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Require: Graph sequence {Gt}Lw Ground truth 1labels
e

Ensure: Trained DGNN model parameters ©

1: Initialize: Model parameters ®, optimizer, learning
rate schedule

2: Initialize: Loss weights ax, hyperparameters y, 8, t
3: while not converged do
4 for each training batch do
5: // Forward Pass
6 for t=1 to T do
7 // Multi-Scale Graph Convolution
8: for s=1 to S do
9: A GraphConv, (A, H(D)
10: A piAD-THD)
11: end for
12: HOH) (25:1 Aglmmwg”)
13: // Temporal-Aware Graph Attention
14: for each node i do
15: for each neighbor jeN;U{i} do
16 eg) -
LeakyReLU(a" [Wh{" wh (P lig (ts, t5)1)
17: afl) < _exnle)) -
Ykenjuiay expleg )
18: end for
19: D )
20: end for
21: /1 Cross-Modal Fusion
22: Qr < WS, Ko hwe, Vo <l
23: hfused < LayerNorm(hch) + AttngLf) +
LayerNorm(héL) +Attne,,)
24: end for
25: // Multi-Objective Loss Computation
26: Lots < =1 X001 Tk e (T=9¢,6)7 e,k 1og (¥t «)
27: Lienp < 755 i) otllfesr — Jell3
28: where wt < exp(=p-sim(heyseq, t+1, Nfused, t))
29: Lecont @—Zin[YiZYj]IOQw
, Yk exp(sim(hi, hi)/t)
30: Lree <+ YiqlIfe — Dece(hfyseq, )3 + llae —
DeCa(hfused,t)H%
31: Liotal < Lcis + AtempLtemp + Acont Leont + ArecLrec
32: Update parameters: © « AdamW(®, VoLtotal)
33: Update learning rate: nt < npin + % (Nnax —
mmin) (1+cos(Lgem))
34: end for
35: end while
36: return Optimized model parameters ©

Algorithm 2. Dynamic graph neural network training with multi-objective
loss.

spectral regularization of weight matrices to control the Lipschitz
constant of the learned mappings. The model employs early
stopping with patience scheduling and checkpoint averaging to
select optimal parameters while preventing overfitting to the
training distribution.
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3 Results

3.1 Experimental setup

3.1.1 Datasets and data collection

We evaluate our proposed multimodal dynamic graph neural
network framework on two comprehensive sleep monitoring
datasets. The primary dataset consists of recordings from
156 participants collected over 18 months at three sleep
laboratories affiliated with major medical institutions in
Table 2. Each participant underwent overnight polysomnography
monitoring while simultaneously recording facial expressions
using infrared cameras and ambient audio signals through
calibrated microphones. The participants ranged in age from
22 to 78 years (mean: 51.3 £ 14.7 years), with 68 males and 88
females, representing diverse demographic backgrounds and sleep
disorder prevalences.

Data collection protocols were standardized across all
recording sites to ensure consistency and reliability. Facial
video recordings were captured at 30 frames per second using
infrared cameras positioned at a fixed distance and angle
relative to the participant’s head. Audio signals were recorded
at 44.1 kHz sampling rate using omnidirectional microphones
placed at standardized positions within the sleep laboratory.
Synchronization between video, audio, and polysomnography
signals was maintained through hardware-level timestamping with

sub-millisecond accuracy.

3.1.2 Data preprocessing and quality control

Comprehensive preprocessing pipelines were developed
to handle the inherent challenges of multimodal sleep data,
including varying signal qualities, environmental artifacts, and
participant-specific variations. For facial video processing, we
implemented robust face detection and tracking algorithms
capable of handling partial occlusions, head pose variations, and
lighting changes common in sleep environments (Sharma et al.,
2021a; Widasari et al., 2020). Facial landmarks were extracted using
a modified version of the MediaPipe framework, with additional
temporal smoothing to reduce jitter and improve stability across
consecutive frames.

Audio preprocessing involved multi-stage filtering to
remove environmental noise while preserving sleep-related
acoustic signatures. We applied adaptive spectral subtraction
for background noise reduction, followed by dynamic range
compression to normalize signal amplitudes across different
recording conditions (Sathyanarayana et al, 2016). Artifact
detection algorithms were developed to identify and flag segments
contaminated by equipment noise, external disturbances, or
signal clipping, ensuring that only high-quality data segments
were included in the training and evaluation processes. Quality
control measures included automated screening for data integrity,
completeness, and annotation consistency (Rahman et al,
2025). Recordings with more than 15% missing data, significant
synchronization errors, or poor signal quality were excluded from
the analysis (Sravani et al., 2024). Additionally, we implemented
cross-validation procedures to verify annotation accuracy,
achieving inter-annotator agreement scores (Cohen’s kappa)
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TABLE 2 Model architecture and ing parameters.

Parameter

Component

10.3389/frai.2025.1681759

Component Parameter

Data preprocessing

Graph neural network

Facial resolution HxW 224 x 224 GNN layers L 4
Audio sampling fi 44.1 kHz Hidden dims - [512, 384, 256, 128]
Time window Trindow 30 seconds Dropout Rate - 0.3
Overlap ratio - 50% Activation o LeakyReLU
Facial expression module Temporal modeling

Backbone - ResNeXt-50 GRU hidden - 256
Input dimension ds 2048 Hierarchical levels L 3
Projection Dim d,,; 512 Conv Kernel k 3
Cardinality - 32 Dilation rates d [1,2,4,8]
Attention heads - 8 Attention radius R 16
Context length - 16 frames Pos Encoding - 128
Audio processing module Loss parameters

STFT window - 2,048 samples Focal gamma y 2.0
Hop length - 512 samples Temperature T 0.1

Mel banks - 128 Similarity Thresh B 0.5
MFCCs - 13 L s Weight - 1.0
Wavelet scales J 8 levels Liemp Weight - 0.3
Input dimension d, 256 L cont Weight - 0.2
Projection dim d"fmj 512 L ec Weight - 0.1
Dynamic Graph Training Config

Node embedding d 512 Batch size - 16
Temporal scales S 4 Initial LR o 1x1073
Graph attn heads - 4 LR schedule - Cosine annealing
Edge decay rate 1% 0.1 Min/Max LR Nimin/max 107¢/1073
Fusion weights A3 0.4,04,0.2 Optimizer - AdamW
Max connectivity - 85% Weight decay - Ix 107
Attention key dim di 64 Gradient clip - Max norm = 1.0
Model complexity and performance

Total parameters 12.3M Inference time 23.4 ms/step
Trainable parameters 11.8M Training memory 6.8 GB
Model size 47.2 MB Inference memory 1.2GB

of 0.89 for sleep stage classification and 0.92 for pathological
event detection.

3.1.3 Experimental configuration

Training procedures employed stratified random splitting to
ensure balanced representation of different sleep disorders and
demographic groups across training, validation, and test sets. The
data split followed a 70-15-15 ratio for training, validation, and
testing respectively, with careful attention to maintaining temporal
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independence between splits to prevent data leakage. Cross-
validation was performed using a modified time-series splitting
approach that respects the temporal nature of sleep data while
ensuring adequate sample sizes for each fold. Hyperparameter
optimization was conducted using Bayesian optimization with
Gaussian process surrogates, exploring the space of learning
rates, regularization parameters, attention mechanisms weights,
and architectural choices. The optimization process considered
both validation accuracy and computational efficiency, resulting
in Pareto-optimal configurations suitable for different deployment
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scenarios ranging from high-accuracy clinical applications to
resource-constrained mobile implementations.

Equipment specifications were standardized across sites: FLIR
Lepton 3.5 infrared cameras (160x120 resolution, 8-14 um
spectral range, 9 Hz frame rate) positioned 1.5 meters from the bed
at a 30-degree downward angle; Audio-Technica AT4040 cardioid
condenser microphones with Focusrite Scarlett 2i2 interfaces
(44.1 kHz/24-bit sampling); and Compumedics Grael 4K PSG
systems for ground truth acquisition. Environmental conditions
were controlled: ambient temperature 22 4+ 1°C, humidity 45 —
55%, background noise < 35 dB SPL. Data synchronization
employed hardware timestamps via SMPTE timecode generators
ensuring < 1 ms inter-modal alignment. Inclusion criteria
required participants aged 18-80 years without severe cardiac
arrhythmias or neurodegenerative conditions. The secondary
validation dataset included 312 recordings from two independent
sites following identical protocols, collected between July 2023 and
December 2023.

3.2 Baseline methods and comparison
framework

3.2.1 Traditional machine learning approaches
We implemented several state-of-the-art traditional machine
learning methods as baseline comparisons to demonstrate the
effectiveness of our deep learning approach. Support Vector
Machines (SVM) with radial basis function kernels were trained on
handcrafted features (Liu et al., 2020) extracted from both facial
and audio modalities. The feature engineering process involved
extensive domain knowledge incorporation, including facial action
unit detection, acoustic spectral features, and temporal statistical
measures computed over sliding windows of varying durations.
Random Forest ensembles were configured with 500 decision
trees, employing bootstrap aggregation and feature randomization
to improve generalization performance (Wara et al, 2025).
The feature selection process utilized mutual information
criteria to identify the most discriminative attributes for sleep
disorder classification. Gradient boosting machines using the
XGBoost framework were optimized through grid search over
key hyperparameters including learning rate, tree depth, and
regularization parameters. Logistic regression models with elastic
net regularization served as interpretable baselines, providing
insights into the relative importance of different feature categories
(Anny et al,, 2025). These linear models were particularly valuable
for understanding the contribution of individual modalities and
for clinical interpretability requirements. Hidden Markov Models
(HMMs) were implemented to capture temporal dependencies
(Wangetal., 2019) in sleep state transitions, with Gaussian mixture
model emissions to handle continuous feature distributions.

3.2.2 Deep learning baseline methods
Contemporary deep learning approaches were implemented as
stronger baseline methods to provide more rigorous comparative
evaluation. Convolutional Neural Networks (CNNs) were applied
separately to facial and audio data, followed by late fusion
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strategies to combine predictions from individual modalities. The
CNN architectures included ResNet, EfficientNet, and Vision
Transformer variants for facial analysis, and 1D CNN and
WaveNet architectures for audio processing. Recurrent neural
network baselines included LSTM and GRU networks processing
concatenated multimodal features, with attention mechanisms to
identify relevant temporal segments (Skibinska and Burget, 2021).
Transformer-based models adapted for multimodal time series
classification served as state-of-the-art comparisons, incorporating
positional encoding schemes suitable for continuous temporal data
and cross-modal attention mechanisms. Graph neural network
baselines included GraphSAGE, Graph Attention Networks
(GAT), and Graph Convolutional Networks (GCN) adapted for
our multimodal temporal graph representation. These methods
provided direct comparisons to our approach while using simpler
graph construction strategies and standard message passing
mechanisms without the specialized temporal and cross-modal
components of our proposed framework.

3.3 Evaluation metrics and experimental
protocol

The evaluation framework for our multimodal dynamic graph
neural network encompasses a comprehensive suite of performance
metrics designed to assess the model’s effectiveness across multiple
dimensions relevant to clinical sleep monitoring applications. The
classification performance is primarily evaluated using standard
accuracy metrics, where the overall accuracy is computed as
Accuracy = + S°L 1[j; = yi], representing the proportion of
correctly classified time steps across the entire temporal sequence.
Beyond overall accuracy, we compute precision and recall for each

sleep disorder category k using the formulations Precision; =
TP,
TPk+]%Pk
true positives, false positives, and false negatives for category k,
2-Precisiony-Recally
Precision;+Recally °
provides a balanced measure that is particularly important for

TP,
and Recall, = WE\V where TPy, FPg, and FN; denote
respectively. The Fl-score, computed as F1; =

handling class imbalance inherent in sleep disorder datasets.

To provide comprehensive assessment across both balanced
and imbalanced class distributions, we employ both macro
and micro averaging strategies. The macro-averaged Fl-score is
calculated as Flgc0 = % Zf;l F1y, treating each class equally
regardless of its frequency, while the micro-averaged Fl-score is

St TPk
Sk (TP +FPy)

2-PpicroRmicro

Pricro+Rmicro
Zf:l TPy

> k1 (TP+EN)

and providing insights into overall system performance.

computed as Flicro = , where Ppicro =

and Ricro = , giving more weight to frequent classes

The discrimination capability of our model across different
decision thresholds is quantified using Area Under the Receiver
Operating Characteristic Curve (AUC-ROC) and Area Under the
Precision-Recall Curve (AUC-PR). The ROC curve plots the true
positive rate TPR = TPZ-iPFN against the false positive rate FPR =

pr_iPTN at various threshold settings, with the AUC-ROC computed

as AUC-ROC = /01 TPR(FPR™!(t))dt. The precision-recall curve,
particularly important for imbalanced datasets common in medical
applications, plots precision against recall, with AUC-PR calculated

as AUC-PR = fol Precision(Recall "!(r))dr. These metrics are
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especially critical for clinical applications where the costs of false
positives and false negatives may vary significantly depending on
the severity of the sleep disorder.

To account for chance agreement and provide a more
conservative assessment of classification performance, we employ
Po—Pe

T-p.>
Do represents the observed agreement ratio and p, denotes

Cohen’s kappa coefficient, defined as « = where
the expected agreement ratio under random classification. The
observed agreement is calculated as p, = 7+ S L I[j = yi], while

e pred
the expected agreement is computed as p, = Zf:l % : niT,
where 1/ and nired represent the number of true and predicted
instances of class k, respectively.

Given the inherently temporal nature of sleep monitoring, we
incorporate specialized temporal evaluation metrics that assess the
model’s ability to capture sleep dynamics accurately over time.
The transition accuracy metric measures the model’s performance
in correctly predicting sleep stage changes and is computed as
Trans-Acc = ZtT;ll]I[j/tH # Yt < yi+1 # i), evaluating
whether the model correctly identifies when actual transitions
occur. To quantify the smoothness and clinical plausibility of

prediction sequences, we define a temporal consistency score

as Consistency = 1 — ﬁZtT:_ll oWe Yis1) - H[)A/t # 5/t+1]>

where w(yy, yi+1) is a weighting function that penalizes clinically
implausible transitions more heavily than natural ones.

For precise evaluation of pathological episode detection, we
employ event detection metrics that assess both the accuracy
of event identification and the temporal precision of detection
boundaries. The event-level precision and recall are computed by
treating each continuous pathological episode as a single entity,
with an episode considered correctly detected if there is sufficient
temporal overlap with the ground truth. Specifically, we define

temporal Intersection over Union (IoU) for each predicted episode
' and ground truth episode j as ToUy — o !
i and ground truth episode j as IoU;; = W ;
and Tj"”e represent the temporal spans of predicted and true
episodes, respectively. An episode is considered correctly detected
if max; IoUj;; > t5,u, where Tjoy is a predefined threshold typically
set to 0.5.

Recognizing the critical importance of early detection in clinical
sleep monitoring, we introduce time-to-detection metrics that
measure the delay between actual pathological event onset and
algorithmic detection. For each true positive event detection,
we compute the detection delay as Atgyer = thgetect — tonsets
where fou5+ represents the actual event onset time and fgec
denotes the time when our algorithm first correctly identifies the
event. The mean time-to-detection is then calculated as At =
1 ZNTP A

Nrp i=1 detect’
detections. Additionally, we report the percentile distribution of

where Nrpp is the total number of true positive

detection delays to characterize the system’s responsiveness across
different types of sleep events.

3.4 Results and analysis
3.4.1 Overall performance comparison

Our proposed multimodal dynamic graph neural network
achieved superior performance compared to all baseline methods
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across comprehensive evaluation metrics. The overall classification
accuracy reached 94.7% =+ 1.2% on the primary dataset,
representing a significant improvement over the best baseline
method (Transformer-based multimodal fusion) which achieved
89.3% =+ 1.8% accuracy in Table3. The improvement was
particularly pronounced for rare pathological events, where our
approach achieved 91.2% sensitivity compared to 76.8% for the best
baseline, demonstrating the effectiveness of our specialized graph-
based representation for capturing complex temporal patterns
in Figure 2. Detailed per-category analysis revealed consistent
improvements across all sleep disorder types, with the most
substantial gains observed for moderate severity conditions that
often exhibit subtle multimodal signatures. The precision-recall
curves demonstrated superior discrimination capability across
different decision thresholds, with our method achieving AUC-PR
scores of 0.923 for normal sleep, 0.887 for mild disruptions, 0.908
for moderate disorders, 0.934 for severe pathological events, and
0.967 for emergency conditions.

Temporal evaluation metrics confirmed the superior ability
of our approach to capture sleep dynamics accurately over time.
Transition accuracy reached 92.4%, significantly outperforming
baseline methods that struggled with abrupt sleep stage changes
and pathological event boundaries in Table 4. The temporal
consistency score of 0.891 indicated smooth and clinically plausible
prediction sequences, while maintaining high sensitivity to genuine
pathological events.

3.4.2 Clinical validation results

External validation on the secondary clinical dataset
demonstrated excellent generalization capability, with performance
degradation of only 2.1% compared to internal validation results.
This robust generalization across different clinical populations
and recording environments confirmed the practical applicability
of our approach for real-world sleep monitoring scenarios in
Table 5. Clinical agreement analysis showed 94.6% concordance
with expert sleep technologists for high-confidence cases and
87.3%

to-detection analysis revealed rapid identification of critical

agreement for challenging borderline cases. Time-
sleep events, with median detection delays of 12.3 seconds
for apnea episodes, 8.7 seconds for severe arousals, and 15.6
seconds for other pathological events. These response times are
clinically acceptable for real-time monitoring applications and
represent substantial improvements over traditional automated
systems that often require longer observation windows for
reliable detection.

Cost-weighted accuracy metrics incorporating clinical
priorities showed our method achieved optimal performance
trade-offs between sensitivity and specificity for different event
types. The weighted accuracy score of 0.932 reflected appropriate
prioritization of high-severity conditions while maintaining

acceptable performance for routine sleep monitoring tasks.

3.4.3 Robustness and fairness analysis

Robustness  evaluation under challenging conditions

demonstrated the resilience of our approach to common
practical limitations. Performance degradation under poor
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TABLE 3 Overall classification performance comparison.

10.3389/frai.2025.1681759

Accuracy (%) F1-Macro F1-Micro AUC-PR Cohen's
Traditional machine learning methods
SVM (RBF) 732+£21 0.681 0.732 0.798 0.743 0.645
Random Forest 76.8 £ 1.9 0.724 0.768 0.821 0.776 0.689
XGBoost 785+ 1.7 0.748 0.785 0.841 0.792 0.712
Logistic Regression 719 £23 0.662 0.719 0.785 0.721 0.628
Hidden Markov Model 74.6 £2.0 0.703 0.746 0.809 0.758 0.671
Deep learning methods
CNN (Facial Only) 813+ 1.6 0.776 0.813 0.862 0.818 0.751
CNN (Audio Only) 79.7 4+ 1.8 0.759 0.797 0.847 0.803 0.729
LSTM (Multimodal) 842+ 14 0.812 0.842 0.889 0.856 0.794
GRU (Multimodal) 83.8 £ 1.5 0.807 0.838 0.884 0.851 0.788
Transformer (Multimodal) 89.3+1.8 0.867 0.893 0.924 0.901 0.854
Graph neural network methods
GraphSAGE 86.7 £ 1.5 0.841 0.867 0.903 0.878 0.821
Graph Attention Network 879+13 0.854 0.879 0.912 0.889 0.836
Graph Convolutional Network 854+ 1.7 0.828 0.854 0.896 0.865 0.808
Our Method (MDGNN) 94.7 £ 1.2 0.931 0.947 0.968 0.952 0.924

The bold values indicate the best performing results.
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Comprehensive performance evaluation of the multimodal dynamic graph neural network across classification metrics, temporal analysis, clinical
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signal quality conditions was limited to 3.8% for facial data
corruption and 4.2% for audio interference, substantially
better methods that 12-18%
performance drops under similar conditions. Missing modality

than baseline experienced
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experiments showed graceful degradation, with single-modality
performance reaching 87.3% (facial only) and 84.6% (audio
only) compared to 94.7% for the complete multimodal system
in Figure 3.
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TABLE 4 Temporal evaluation metrics.

Method Transition accuracy (%) Consistency score Mean loU Event detection F1 ‘
LSTM (multimodal) 78.4 0.742 0.681 0.723
GRU (multimodal) 79.1 0.758 0.693 0.738
Transformer (multimodal) 85.6 0.823 0.752 0.801
GraphSAGE 87.2 0.841 0.769 0.824
Graph Attention Network 88.5 0.856 0.781 0.839
Our method (MDGNN) 92.4 0.891 0.834 0.887

The bold values indicate the best performing results.

TABLE 5 Clinical validation and time-to-detection results.

Evaluation aspect Our method Transformer Clinical threshold

Clinical agreement (%)

High-confidence cases 94.6 87.3 85.7 79.2 >90.0
Borderline cases 87.3 78.9 76.4 71.8 >75.0
Overall agreement 91.7 83.8 81.6 76.1 > 85.0

Time-to-detection (seconds)

Sleep apnea episodes 123+37 18.6 £5.2 214+6.1 289+78 <30.0
Severe arousals 8.7+29 142+ 4.6 16.8 +£5.3 221+6.7 < 20.0
Pathological events 156 £4.2 23.8+6.9 263+74 357492 <450
Emergency conditions 6.1+18 9.7 +£3.1 112 £3.8 154 £4.9 <15.0
Overall detection delay 10.7 £3.2 16.6 £ 4.9 189 +5.7 25.5+7.1 <25.0

The bold values indicate the best performing results.

Fairness analysis across demographic subgroups revealed  Cross-modal fusion experiments systematically varied the fusion
minimal bias in our approach, with performance variations of less  strategies, comparing early fusion, late fusion, and our proposed
than 2.5% across different age groups, gender categories, and ethnic  attention-based fusion mechanisms in Table 6.
backgrounds. This equitable performance distribution is crucial The dynamic graph construction component was evaluated
for clinical deployment and represents a significant improvement  through systematic removal and modification of different graph
over several baseline methods that showed substantial elements. Experiments included static graph variants where
demographic biases. edge weights remained constant over time, simplified graph

The computational efficiency analysis demonstrated  topologies with reduced connectivity patterns, and alternative edge
practical feasibility for real-time deployment, with inference  weight computation schemes. These comparisons demonstrated
times of 23.4 milliseconds per time step on standard the importance of our adaptive graph construction approach for
clinical ~ computing  hardware. =~ Memory  requirements  capturing complex multimodal temporal relationships.
remained within acceptable bounds for extended monitoring Temporal modeling components were assessed through
sessions, and the model architecture supported efficient ablation of the hierarchical decomposition mechanism, causal
deployment on edge computing devices for home-based sleep  temporal convolutions, and multi-scale attention mechanisms.
monitoring applications. Each components contribution to overall performance was

quantified across different sleep disorder categories and temporal
scales, revealing the complementary roles of different temporal

3.5 Ablation studies and component modeling strategies.

analysis
3.5.1 Modality contribution analysis 3.5.2 Architectural design choices
Comprehensive ablation studies were conducted to quantify the The impact of different architectural decisions was

individual and synergistic contributions of different components  systematically evaluated through controlled experiments varying
within our framework. Unimodal experiments using only facial ~ key design parameters. Graph neural network layer configurations
expression data or only audio data provided baseline performance  were compared across different depths, hidden dimensions, and
levels and identified the strengths and limitations of each modality.  connectivity patterns to identify optimal architectural choices for
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FIGURE 3
Advanced model analysis including training dynamics, modality fusion patterns, feature importance, computational efficiency, error distribution,
demographic fairness, network topology, and attention mechanisms.

TABLE 6 Ablation study results.

Model variant Accuracy (%) F1-macro Trans-Acc (%) ‘
Modality contribution

Facial only 873+1.38 0.851 0.919 84.7
Audio only 84.6 £2.1 0.823 0.897 81.2
Early fusion 912+ 1.5 0.896 0.945 88.3
Late fusion 90.8 £ 1.6 0.891 0.941 87.9
Attention-based Fusion 94.7+1.2 0.931 0.968 92.4
Graph construction

Static graph 89.4+17 0.873 0.928 85.6
Fixed edge weights 90.6 £ 1.4 0.887 0.936 87.1
Simple connectivity 913+ 1.3 0.894 0.943 88.7
Adaptive dynamic graph 94.7+1.2 0.931 0.968 92.4
Temporal modeling

w/o hierarchical decomposition 921+ 1.4 0.905 0.951 89.3
w/o causal convolution 918 £ 1.5 0.901 0.948 88.9
w/o multi-scale attention 92,6+ 1.3 0.912 0.956 90.1
Full temporal model 94.7 £ 1.2 0.931 0.968 92.4

The bold values indicate the best performing results.

our specific application domain. Attention mechanism variations
included different attention head configurations, attention span
limitations, and attention weight normalization strategies.

Loss function component analysis involved systematic
variation of the weighting parameters for different loss terms,

demonstrating the importance of balanced multi-objective
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optimization for achieving robust performance across diverse
sleep monitoring scenarios. Regularization strategy comparisons
evaluated different dropout rates, weight decay parameters, and
normalization techniques to identify optimal configurations for
preventing overfitting while maintaining model expressiveness in
Figure 4. Optimization strategy experiments compared different
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FIGURE 4
Clinical deployment analysis covering sleep stage transitions, real-time processing, risk assessment, multi-site validation, patient monitoring, alert
systems, cost-effectiveness, and regulatory compliance.

learning rate schedules, batch size configurations, and gradient
clipping thresholds to identify training procedures that achieve
stable convergence and optimal generalization performance. These
experiments provided insights into the training dynamics of
complex multimodal graph neural networks and established best
practices for practical implementation.

4 Discussion

This study demonstrates that multimodal dynamic graph
neural networks can significantly advance automated sleep disorder
detection by effectively integrating facial expression and audio
signal analysis. Our framework achieved 94.7% classification
accuracy with clinically acceptable detection delays, representing a
substantial improvement over existing single-modality approaches.
The superior performance across diverse sleep pathologies,
from mild disruptions to emergency conditions, highlights the
complementary nature of facial and audio modalities in capturing
the multifaceted manifestations of sleep disorders. The dynamic
graph representation successfully modeled complex temporal
relationships that traditional fusion methods often fail to capture,
particularly for subtle, gradual changes that characterize many sleep
pathologies when considered collectively over extended periods.

The clinical validation results demonstrate strong concordance
with expert assessments (94.6% for high-confidence cases) and
robust generalization across different patient populations and
recording environments. Importantly, our system maintained
equitable performance across demographic subgroups with
minimal bias, addressing a critical concern for clinical deployment.
The rapid detection capabilities, with mean delays of 6-15 s
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for various pathological events, meet clinical requirements for
real-time monitoring and early intervention. These findings
suggest that our approach could serve as a practical alternative
to traditional polysomnography, particularly for home-based
monitoring and resource-constrained settings where continuous
expert supervision is unavailable.

While our results are promising, several limitations warrant
consideration. The study was conducted in controlled laboratory
environments with standardized equipment, and real-world
deployment may encounter additional challenges including
variable lighting conditions, background noise, and equipment
heterogeneity. Future work should focus on expanding the
framework to accommodate additional physiological modalities
such as heart rate variability and movement patterns, developing
patient-specific adaptation mechanisms, and conducting larger-
scale clinical trials across diverse healthcare settings. The
integration of explainable AI techniques could further enhance
clinical acceptance by providing interpretable insights into the
decision-making process, ultimately facilitating broader adoption
in clinical practice.

5 Conclusion

This study presents a novel multimodal dynamic graph
neural network framework that significantly advances the state-
of-the-art in automated sleep disorder detection by integrating
facial expression analysis and audio signal processing through
sophisticated temporal modeling. Our approach achieves
superior performance with 94.7% overall accuracy, demonstrating

substantial improvements over existing methods while maintaining
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clinically acceptable detection delays of 10.7 seconds on average.
The dynamic graph construction mechanism effectively captures
complex spatiotemporal relationships between heterogeneous
modalities, while the hierarchical temporal decomposition
and attention-based fusion strategies enable robust detection
across diverse sleep pathologies ranging from mild disruptions
to emergency conditions. Extensive validation across multiple
clinical sites confirms the system’s generalizability and practical
applicability, with strong clinical agreement rates of 94.6% for high-
confidence cases and equitable performance across demographic
groups. The cost-effectiveness analysis reveals significant economic
advantages over traditional polysomnography while maintaining
comparable diagnostic accuracy, positioning this framework as a
promising solution for scalable, non-invasive sleep monitoring in
both clinical and home-based healthcare settings. Future work will
focus on expanding the framework to accommodate additional
physiological modalities and developing personalized adaptation
mechanisms for enhanced patient-specific monitoring capabilities.
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