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Recent advances in large vision-language models (LVLMs) have transformed visual 
recognition research by enabling multimodal integration of images, text, and videos. 
This fusion supports a deeper and more context-aware understanding of visual 
environments. However, the application of LVLMs to multitask visual recognition in 
real-world construction scenarios remains underexplored. In this study, we present 
a resource-efficient framework for fine-tuning LVLMs tailored to autonomous 
excavator operations, with a focus on robust detection of humans and obstacles, 
as well as classification of weather conditions on consumer-grade hardware. By 
leveraging Quantized Low-Rank Adaptation (QLoRA) in conjunction with the Unsloth 
framework, our method substantially reduces memory consumption and accelerates 
fine-tuning compared with conventional approaches. We comprehensively evaluate 
a domain-specific excavator-vision dataset using five open-source LVLMs. These 
include Llama-3.2-Vision, Qwen2-VL, Qwen2.5-VL, LLaVA-1.6, and Gemma 3. 
Each model is fine-tuned on 1,000 annotated frames and tested on 2000 images. 
Experimental results demonstrate significant improvements in both object detection 
and weather classification, with Qwen2-VL-7B achieving an mAP@50 of 88.03%, 
mAP@[0.50:0.95] of 74.20%, accuracy of 84.54%, and F1 score of 78.83%. Our fine-
tuned Qwen2-VL-7B model not only detects humans and obstacles robustly but 
also classifies weather accurately. These results illustrate the feasibility of deploying 
LVLM-based multimodal AI agents for safety monitoring, pose estimation, activity 
tracking, and strategic planning in autonomous excavator operations.
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1 Introduction

The widespread adoption of robotics powered by artificial intelligence (AI) is anticipated 
to profoundly transform the landscape of the Architecture, Engineering, and Construction 
(AEC) sector (Baduge et al., 2022). The deployment of robotic technologies within construction 
processes yields multiple advantages, including the reduction of workplace injuries, the 
automation of routine or labor-intensive activities, and the ability to operate efficiently in 
hazardous or inaccessible environments, such as in disaster-response operations or off-Earth 
construction scenarios (Melenbrink et al., 2020). Significant investments from academic and 
industrial stakeholders have facilitated the advancement of autonomous robotics, equipping 
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these systems to perform numerous construction-related activities, 
ranging from assembling structures and conducting additive 
manufacturing to executing finishing tasks (Melenbrink et al., 2020).

Advanced computer vision is a core component of intelligent 
robotic platforms, supporting accurate interpretation and navigation 
of complex site environments. Within construction contexts, on-site 
items can be  categorized into permanent structural elements and 
temporary resources (Teizer, 2015). Unlike structural components, 
temporary objects—such as construction materials, equipment, and 
tools—are frequently repositioned or removed by personnel to 
accommodate evolving project requirements over short timeframes. 
Accurate visual identification and contextual understanding of these 
temporary resources are essential for enabling automated workflows 
and optimizing operational control. For instance, material handling 
robots equipped with automated pick-and-place functions must 
reliably distinguish and locate specific materials among visually 
cluttered and dynamic site conditions. This perceptual capability, 
particularly regarding temporary construction assets, directly 
influences safety, operational quality, productivity, and overall project 
profitability. Notably, the capacity to detect and analyze human 
interactions with construction resources enables real-time tracking of 
work progress and proactive identification of safety risks on active 
sites (Paneru and Jeelani, 2021).

Visual recognition of temporary objects by robots involves 
systematically classifying items captured through digital imaging 
technologies. At the core of this procedure lies object detection—a 
primary function within computer vision—which classifies items into 
predetermined categories by analyzing attributes such as spectral 
characteristics, geometric configurations, textural patterns, and spatial 
correlations among pixels (Wu et al., 2020). Over the past few years, 
deep learning-based models have consistently demonstrated superior 
performance in image classification and various associated computer 
vision tasks (Luo et  al., 2023). However, despite their strong 
performance on standard benchmark datasets, conventional computer 
vision approaches necessitate extensive annotated image collections 
to achieve effective neural network training. Constructing 
comprehensive and high-fidelity annotated datasets constitutes a 
primary limitation to the widespread deployment of deep learning-
based computer vision technologies in real-world settings (Paneru and 
Jeelani, 2021). Furthermore, most existing research applying 
traditional deep learning frameworks to construction environments 
focuses on single-task applications. While single-task computer vision 
methods can offer valuable insights, they often fall short in capturing 
the intricate, rapidly evolving nature of construction sites. In contrast, 
multitask visual approaches hold the potential to deliver a more 
comprehensive and adaptive understanding of the complex dynamics 
inherent to construction operations.

Deploying data-driven methodologies for identifying temporary 
objects within construction environments introduces several 
prominent challenges. Firstly, datasets specific to the construction 
domain are frequently constrained in size and availability, with data 
sharing often restricted by privacy and proprietary concerns. This 
scarcity of comprehensive datasets impedes the development of 
models that can generalize across diverse temporary object types and 
site conditions. Secondly, the manual effort and cost required to 
annotate data from construction sites are substantial, complicating the 
creation of large-scale datasets tailored to unique project environments 
and thereby hindering smooth workflow integration (Teizer, 2015). 

Thirdly, construction sites are characterized by constantly changing 
object locations and frequent spatial–temporal variability (Paneru and 
Jeelani, 2021). Given the limited generalization capacity of most 
neural network models, reliably identifying novel or previously 
unseen objects across all phases of construction projects remains a 
significant hurdle. Consequently, there is a growing preference for 
computer vision methods that require fewer labeled samples and 
reduced training time, particularly in the context of 
construction automation.

Addressing the shortcomings of traditional deep learning 
frameworks, the recent advances in large vision-language models 
(LVLMs) represent a significant advancement in visual recognition 
research. Unlike earlier models that rely solely on visual input, 
multimodal LVLMs process and integrate information from images, 
textual descriptions, and videos, leading to a deeper and more context-
aware understanding of visual content (Jiao et al., 2024; Rouhi et al., 
2025). These advanced models are designed to connect visual analysis 
with linguistic comprehension. As a result, they not only identify 
objects but also generate descriptive narratives and respond to 
context-based queries. This multitask capability enables LVLMs to 
assess objects based on both their visual properties and their 
contextual relationships (Sapkota et al., 2025b, 2025c). Importantly, 
LVLMs enable zero-shot learning and few-shot learning, allowing 
them to identify unseen object classes (Luo et al., 2023; Tang et al., 
2024; Sapkota et al., 2025a). Additionally, LVLMs are notable for their 
operational efficiency, often achieving real-time inference and high 
accuracy with lower computational demands, making them well-
suited for time-sensitive applications (Rouhi et al., 2025; Zang et al., 
2025). Despite these significant advantages, practical applications of 
LVLMs for visual recognition in construction settings remain 
relatively unexplored.

To address this research gap, the present study focuses on adapting 
and optimizing LVLMs for multitask visual recognition in autonomous 
excavator operations. A primary objective is to identify models that 
can be efficiently deployed on hardware limited to 24 GB of VRAM, 
preferably on consumer-grade GPUs, to minimize both computational 
costs and data privacy risks. We employed the Unsloth framework 
(Unsloth, 2025a, 2025b) to fine-tune several advanced open-source 
LVLMs—including Llama-3.2-Vision (Meta, 2024b), Qwen2.5-VL 
(Bai et al., 2025), Qwen2-VL (Wang et al., 2024), LLaVA-1.6 (Liu, 
2025), and Gemma-3 (Team et al., 2025)—using a single NVIDIA 
RTX 4090 GPU. The Unsloth approach offers substantial performance 
gains, enabling fine-tuning at twice the speed of the standard 
Transformers library, while reducing memory usage by 70% without 
loss of predictive accuracy.

For fine-tuning, we extracted a subset of 3,000 images from an 
open-access dataset on AI-Hub (2024), containing annotated 
object detection data from excavator perspectives. Owing to the 
comprehensive pre-training of LVLMs on diverse object 
categories, 1,000 images were used for fine-tuning, with the 
remaining 2000 images reserved for evaluation. Notably, the 
dataset includes both bounding box annotations and 
supplementary metadata, such as weather conditions and ground 
type. Exploiting the multimodal capabilities of LVLMs, we jointly 
fine-tuned the models to classify weather conditions alongside 
performing object detection. The best-performing model was 
selected based on its accuracy in automated detection of obstacles 
and humans, as well as real-time weather classification. The 
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outcomes of this research underscore the considerable potential 
of LVLMs for object detection and classification in autonomous 
construction machinery, such as excavators. This work thus 
establishes a pathway toward multimodal AI agents that support 
essential operational domains, including safety monitoring, pose 
estimation, activity tracking, and strategic planning in 
autonomous excavation contexts.

The essential contributions of this investigation are 
enumerated below:

	•	 This work is one of the first systematic efforts to adapt advanced 
open-source LVLMs—including Llama-3.2-Vision, Qwen2-VL, 
Qwen2.5-VL, LLaVA-1.6, and Gemma 3—for multitask visual 
recognition in autonomous excavator operations.

	•	 Utilizing the Unsloth framework, our approach enabled full fine-
tuning of LVLMs on hardware limited to 24 GB GPU, reducing 
GPU memory consumption and training time without 
compromising accuracy.

	•	 By leveraging rich annotation metadata of the dataset and 
extensive pre-training of LVLMs, we  jointly fine-tuned the 
LVLMs to perform both object detection and weather 
classification on a training set of 1,000 images, demonstrating 
LVLMs’ robust multimodal capability.

	•	 The resulting model achieved reliable detection of humans and 
obstacle objects, along with accurate weather classification, 
illustrating the feasibility of deploying LVLM-based multimodal 
AI agents for a variety of functions such as safety monitoring, 
pose estimation, activity tracking, and strategic planning for 
autonomous excavation contexts.

The subsequent sections of this paper are organized as follows. 
Section 2 surveys prior work on LVLM applications in construction. 
Section 3 details the proposed methodological framework, 
encompassing the data preprocessing approach, LVLM architecture, 
strategies for prompt engineering, fine-tuning procedures, and the 
evaluation metrics. In section 4, we  report and analyze the 
experimental outcomes, with particular attention to ablation 
experiments. Section 5 reviews the shortcomings of the proposed 
framework and delineates future research directions.

2 Literature review

The construction sector has rapidly emerged as a compelling 
domain for the application of LVLMs (Jung et al., 2024; Wang et al., 
2025). These models are uniquely positioned to process unstructured 
textual and multimodal data, including both visual and semantic 
inputs (Huang et  al., 2024). They generate context-aware outputs 
(Zhou et al., 2025) and learn from large, heterogeneous datasets (Gil 
and Lee, 2024). As a result, LVLMs offer transformative potential for 
augmenting human decision-making (Zheng and Fischer, 2023; Gao 
et al., 2025; Qian and Shi, 2025), automating information-intensive 
tasks (Zheng and Fischer, 2023; Jung et al., 2024; Xu et al., 2024), and 
driving innovation across all stages of the construction lifecycle 
(Preuss et al., 2024). Since their introduction, the adoption of LVLMs 
has accelerated across diverse construction domains, including safety 
monitoring (Chen et al., 2024; Estêvão, 2024; Gil and Lee, 2024; Yong 
et al., 2024; Cai et al., 2025; Tsai et al., 2025), legal and compliance 

oversight, as well as construction planning and control (Chen et al., 
2023; Hsu et al., 2024; Jung et al., 2024; Xiao et al., 2024).

LVLM-based approaches are increasingly employed for visual 
safety monitoring tasks. These include personal protective equipment 
(PPE) detection (Gil and Lee, 2024), identification of safety violations 
such as falls or explosions (Tsai et al., 2025), ergonomic risk assessment 
through explainable image captioning (Yong et al., 2024), and post-
earthquake structural damage classification (Estêvão, 2024). Advanced 
techniques such as open-set object detection (Cai et al., 2025) and 
real-time image captioning integrated with augmented reality (Chen 
et al., 2024) further enhance the ability to derive actionable safety 
insights on-site.

In the realm of legal and compliance management, LVLMs have 
facilitated visual regulatory processes such as automated inspection 
data collection and reporting (Pu et al., 2024a, 2024b; Wen and Chen, 
2024), as well as visual question answering for bridge inspection 
(Kunlamai et  al., 2024). Additional applications include defect 
detection using image-based models (Yong et al., 2023) and flood 
compliance assessment through Lowest Floor Elevation (LFE) 
estimation (Ho et al., 2025). These examples further illustrate how 
vision-language models support data-driven regulatory oversight in 
visually intensive construction contexts.

LVLMs have also demonstrated considerable utility in 
construction planning and control (Aramali et al., 2024), streamlining 
critical project management tasks. Multiple studies have shown that 
these models can automate the generation of daily construction 
reports by integrating multimodal data sources, such as site videos and 
vision–language models (Jung et al., 2024; Xiao et al., 2024). They have 
also been applied to classify construction activities via zero-shot 
learning (Chen et al., 2023) and to interpret visual construction scenes 
according to standardized classification systems such as UniFormat 
(Hsu et  al., 2024). Collectively, these innovations enable more 
intelligent, efficient, and data-driven construction planning and 
progress reporting. A summary of prior studies applying LVLMs in 
the construction sector is provided in Table 1.

Despite their promise, the effective application of LVLMs in 
construction remains challenged by several key limitations. Most 
pre-trained models are developed using general-purpose datasets, 
which often constrain their performance in domain-specific tasks 
(Wong et al., 2024; Jeon and Lee, 2025; Liu and Chou, 2025; Wu et al., 
2025). Consequently, adaptation strategies such as fine-tuning (Yao 
and de García Soto, 2024), prompt engineering (Yong et al., 2023), and 
retrieval-augmented approaches (Wu et al., 2025) are required to align 
these models with the specific requirements of construction-related 
tasks. This need is further exacerbated by the scarcity and 
fragmentation of high-quality, construction-specific datasets (Chen 
et al., 2023), which makes domain adaptation particularly challenging. 
Moreover, data privacy concerns add complexity, as the use of sensitive 
and proprietary project information can conflict with the opaque data 
handling practices of many commercial large language model (LLM) 
platforms (Jeon and Lee, 2025).

To address these challenges, the present study investigates the 
deployment and fine-tuning of LVLMs for a novel, domain-specific 
application: autonomous excavator vision. In contrast to prior work 
that has primarily focused on general-purpose benchmarks or 
non-specialized construction tasks, our research targets the 
simultaneous detection of dynamic, temporary objects such as 
humans, dump trucks, and excavators, along with classification of 
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environmental conditions directly from the excavator’s visual field. 
The principal objective is to identify LVLM architectures that can 
be efficiently trained and deployed on resource-constrained hardware, 
thereby enhancing both cost efficiency and data sovereignty. Utilizing 
an open dataset tailored for autonomous construction equipment, 
we  systematically fine-tuned several state-of-the-art, open-source 
LVLMs, including Llama-3.2-Vision, Qwen2.5-VL, Qwen2-VL, 
LLaVA-1.6, and Gemma 3, and rigorously benchmarked their 
performance on multitask perception. The findings of this study are 
expected to advance the integration of LVLMs into construction 
robotics. This provides a foundation for the development of robust, 
privacy-preserving, and cost-effective AI agents in autonomous 
excavators, capable of operating in real-world, safety-
critical environments.

3 Proposed framework

In this paper, we  propose and evaluate a comprehensive 
framework for the deployment and fine-tuning of advanced open-
source LVLMs for object detection of humans and obstacles. Our 
approach additionally enables accurate weather classification using 
images captured from excavator-mounted cameras operating on active 
construction sites. As illustrated in Figure 1, the proposed framework 
consists of four systematic stages: data preprocessing, prompt 
engineering, model fine-tuning, and performance evaluation. These 
stages collectively serve to identify the optimal LVLM for the target 
application. The selected model must not only achieve high accuracy 
in detection and classification tasks but also be deployable and fine-
tunable on hardware with a maximum of 24 GB of GPU memory. This 
approach ensures both cost-effective computation and enhanced data 
privacy. Our framework represents the first demonstration of 
multimodal LVLM deployment in autonomous excavator vision under 

GPU memory constraints, thereby advancing the practical application 
of AI in autonomous construction machinery.

3.1 Dataset and data preprocessing

3.1.1 Data source
This study utilized the open-access dataset titled “Unmanned 

Operation Data in Construction Machinery,” provided by AI-Hub 
(2024). The dataset was specifically curated to support research and 
development efforts related to AI-based autonomous construction 
machinery, including excavators and rollers, with the aim of enabling 
such equipment to independently plan and execute work processes. 
Data acquisition was accomplished through a combination of 
internally and externally mounted cameras, operational information 
obtained via the Telematics System (TMS) terminal, and posture 
information recorded by Machine Guidance (MG) and Machine 
Control (MC) systems. All data streams were synchronized using the 
Robot Operating System (ROS) framework. The entire dataset 
comprises approximately 1,200,000 raw and annotated data, which are 
categorized into four primary groups: (1) construction equipment 
work-zone image data, (2) construction equipment posture sensor 
data, (3) construction equipment TMS data, and (4) expert work order 
labeling, which includes both upper and lower task hierarchies. The 
data distribution for the entire dataset is summarized in Table 2.

For the purposes of this study, our research focused on the visual 
recognition task utilizing the visual data captured from excavator 
operations in construction environments. Accordingly, the excavator 
obstacle-detection subset was selected, which consists of 50,000 
images and the corresponding annotation files. Within this subset, two 
primary object classes are annotated: “Human” and “Obstacle.” The 
“Human” class encompasses all individuals present in the scene, 
including both field workers and equipment operators. The “Obstacle” 
class is defined as any excavator or dump truck present within the 
camera’s field of view, excluding the self-vehicle itself (the camera-
equipped excavator). In terms of weather state, there are 3 conditions 
including sunny, cloudy, and rainy.

To leverage the extensive pre-training of LVLMs on diverse object 
categories, we  only used a subset of 3,000 images, which were 
randomly extracted from the 50,000 images of obstacle detection data. 
Of these, 1,000 images were utilized for model training, and 2000 
images were reserved for test set. Due to the strong foundational 
capabilities of LVLMs gained from large-scale multimodal pretraining, 
we hypothesized that only a small, targeted dataset (1,000 annotated 
frames) would be  sufficient for effective domain adaptation in 
construction scenarios. This choice also reflects real-world constraints, 
where large-scale manual annotation is often impractical in 
field robotics.

All images have a width of 1,280 pixels and a height of 720 pixels. 
The associated annotation data are formatted according to the COCO 
annotation style (Lin et al., 2014). The distribution of objects and 
weather conditions in each training and validation dataset is described 
in Table 3.

3.1.2 Data preprocessing
The open-source LVLMs utilized in this study require specific 

input image resolutions. For example, the Llama-3.2-Vision model 
supports a maximum input size of 1,120 × 1,120 pixels, while the 

TABLE 1  Applications of LVLMs in the construction sector.

LVLM applied 
task

Purpose Studies

Safety monitoring Safety violations (e.g., 

falls, PPE non-

compliance, explosions) 

monitoring; ergonomic 

risk detection; and 

deliver accurate and 

context-aware safety-

critical guidance; 

Building damage analysis

Chen et al. (2024), 

Estêvão (2024), Gil and 

Lee (2024), Yong et al. 

(2024), Cai et al. 

(2025), and Tsai et al. 

(2025)

Legal and compliance 

oversight

Automated inspection 

data collection and 

report generation; 

Classifying and detecting 

building defects

Yong et al. (2023), 

Kunlamai et al. (2024), 

Pu et al. (2024a, 

2024b), Wen and Chen 

(2024), and Ho et al. 

(2025)

Construction planning 

and control

Automated generation of 

daily construction 

reports; Automatic 

construction activities

Chen et al. (2023), Hsu 

et al. (2024), Jung et al. 

(2024), and Xiao et al. 

(2024)
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LLaVA-1.6 model accepts three distinct input sizes: 672 × 672, 
336 × 1,344, and 1,344 × 336 pixels. To ensure consistency and 
comparability across models, all images were uniformly resized to 
640 × 360 pixels prior to model input.

The original images, which have a native resolution of 1,280 × 720 
pixels, are annotated using the COCO format. In this format, each 
bounding box is defined by [ , , , ]x y width height . However, all LVLMs 
selected for this study output bounding boxes in the 

min min max max[ , , , ]x y x y  format (see Section 3.2, Prompt 
Engineering). To ensure compatibility with the LVLMs’ requirements, 
the original COCO annotations were converted to the corner 
coordinates format, where =minx x , =miny y, = +maxx x width, and 

= +miny y width . To maintain consistency regardless of image size, 
the bounding box coordinates were normalized to the range [0, 1] by 
dividing the x-coordinates by the original image width (1280) and the 
y-coordinates by the original image height (720). Given bounding box 
coordinates [ min min max max, , , ]x y x y  and image dimensions ( ),W H , 
normalization is performed as shown in Equations 1–4:

	
′ = min
min

xx
W 	

(1)

	
′ = min
min

yy
H 	

(2)

	
′ = max
max

xx
W 	

(3)

	
′ = max
max

yy
H 	

(4)

FIGURE 1

Overview of the proposed framework.

TABLE 2  Data distribution for the entire dataset.

Machine type Data category Number of 
records

Excavator Obstacle detection data 50,000

Work-zone image data 150,000

Task sequence data 

(internal)

150,000

Task sequence data 

(external)

150,000

Posture information data 150,000

Operational information 

data

150,000

Roller Work-zone image data 100,000

Task sequence data 

(internal)

100,000

Task sequence data 

(external)

100,000

Posture information data 100,000

Operational information 

data

100,000

Total 1,200,000

TABLE 3  Object and weather statistics of the training and validation sets.

Dataset Human Obstacle Sunny Cloudy Rainy

Training 345 1,100 150 599 251

Validation 1,323 2,431 35 1,398 567
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This scales all coordinates into the range [0,1]. This normalization 
was performed before image resizing to preserve the relative 
proportions of the bounding boxes independent of the final input 
resolution (640 × 360).

For the purposes of this study, annotation data were processed 
as follows:

	•	 First, each bounding box was converted from COCO format 
[ , , , ]x y width height  to corner coordinates [ min min max max, , , ]x y x y  
using the relationships defined above.

	•	 Second, the corner coordinates were normalized to the range [0, 
1] by dividing the x values by 1,280 and the y values by 720. This 
step was carried out prior to resizing the images.

	•	 Third, each annotation record was filtered to retain only the 
information relevant for downstream tasks: (i) the object class 
label (i.e., “Human” or “Obstacle”), (ii) the normalized bounding 
box coordinates [ ′ ′ ′ ′

min min max max, , , ]x y x y , and (iii) the weather 
condition associated with each image. All other fields, such as 
crowd indicators and low-level sensor data, were excluded from 
the processed dataset.

An illustrative example of the processed annotation data is 
provided in Figure 2.

3.2 Large vision-language models

3.2.1 Llama-3.2-Vision
Llama-3.2-Vision represents a significant advancement in 

multimodal LLM, building upon the robust foundation of Llama-3.1 
text-only models through a sophisticated architectural integration 
approach (Meta, 2024b). The model employs an auto-regressive 
language model architecture based on an optimized transformer 
framework, with the vision-enabled variants available in 11B and 90B 
parameter configurations. Rather than developing a multimodal 
system from scratch, Meta adopted a strategic approach of extending 
the proven Llama-3.1 architecture with specialized vision capabilities, 
ensuring compatibility while leveraging existing linguistic 
competencies (Meta, 2024a, 2024b).

The architectural design philosophy centers on maintaining the 
integrity of the pre-trained language model while introducing vision 
processing capabilities through a separately trained vision adapter 
system. This approach enables drop-in compatibility with existing 
Llama-3.1 deployments while providing comprehensive multimodal 
functionality. The models support a context length of up to 128,000 

tokens and incorporate Grouped Query Attention (GQA) mechanisms 
for enhanced inference efficiency (Grattafiori et  al., 2024; Meta, 
2024a, 2024b).

	(a)	 Vision encoder architecture

The vision processing pipeline in Llama-3.2-Vision is 
implemented through a sophisticated encoder system that combines 
established computer vision techniques with novel integration 
mechanisms. The vision encoder architecture incorporates a CLIP-
based image model as its foundation, augmented with additional 
projection head fusion modules for optimal feature extraction. The 
system processes images through spatial positional encodings and 
employs a multi-stage feature extraction approach that converts visual 
input into token representations compatible with the language model.

The encoder supports image inputs up to 1,120 × 1,120 pixels and 
handles multiple image formats including GIF, JPEG, PNG, and 
WEBP. For images exceeding maximum resolution, the system 
implements automatic scaling to maintain processing efficiency while 
preserving visual information quality. The architecture incorporates 
tile-based processing for high-resolution images, with support for up 
to four tiles per image to capture detailed visual information.

	(b)	 Cross-attention integration mechanism

The core innovation of Llama-3.2-Vision lies in its cross-attention 
mechanism that enables seamless integration between visual and textual 
modalities. The vision adapter consists of a series of cross-attention layers 
specifically designed to feed image encoder representations into the core 
language model architecture. This cross-attention system allows 
bidirectional information flow between visual features and textual 
representations, enabling sophisticated multimodal reasoning capabilities.

The cross-attention layers employ a key-value (KV) cache 
structure where image tokens are processed through cross-attention 
computations alongside text tokens. However, research (Lee et al., 
2025) has identified that the KV cache size for image tokens in cross-
attention layers significantly exceeds that of text tokens in self-
attention layers, creating computational bottlenecks during inference. 
To address this challenge, Llama-3.2-Vision’s architecture incorporates 
sparse attention patterns that can be  leveraged for efficient visual 
token reduction while maintaining performance.

3.2.2 Qwen large vision-language models
The Qwen vision-language model series represents a significant 

advancement in multimodal artificial intelligence, with Qwen2-VL 

FIGURE 2

An example of annotation data after processing.
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and Qwen2.5-VL demonstrating substantial architectural 
improvements over their predecessors (Wang et al., 2024; Bai et al., 
2025). The foundational architecture employs a transformer-based 
framework that integrates vision encoding capabilities with LLM 
functionality, enabling sophisticated multimodal reasoning and 
understanding. The architectural design philosophy centers on 
maintaining the robustness of pre-trained language models while 
introducing specialized vision processing components through 
carefully engineered integration mechanisms (Qwen, 2024).

The core architectural paradigm follows a modular approach 
consisting of three primary components: a vision encoder based on 
Vision Transformer (ViT) architecture, a multimodal language model 
decoder, and sophisticated projection mechanisms that facilitate 
cross-modal alignment (Wang et  al., 2024). This design enables 
seamless processing of both static images and dynamic video content 
within a unified framework, supporting diverse visual understanding 
tasks including object detection, visual reasoning, and 
document analysis.

3.2.2.1 Qwen2-VL architecture

	(a)	 Vision encoder architecture

Qwen2-VL implements sophisticated vision encoder architecture 
utilizing a ViT with approximately 600 million parameters, designed 
to handle both image and video inputs seamlessly. The encoder 
incorporates a revolutionary Naive Dynamic Resolution mechanism 
that processes images of arbitrary resolutions by dynamically mapping 
them into variable numbers of visual tokens (Wang et al., 2024). This 
approach eliminates the traditional constraint of predetermined input 
resolutions, allowing the model to preserve fine-grained visual 
information that would otherwise be  lost through conventional 
resizing operations.

The vision encoder processes images through a patch-based 
tokenization scheme, where images are divided into patches and 
converted into visual tokens that can be processed alongside textual 
tokens in the unified transformer architecture. The dynamic resolution 
capability enables the model to generate between 4 and 16,384 visual 
tokens per image, depending on the input resolution and content 
complexity. This flexibility is particularly advantageous for object 
detection applications, where preserving spatial detail and object 
boundaries is crucial for accurate localization performance.

	(b)	 Multimodal rotary position embedding (M-RoPE)

A critical architectural innovation in Qwen2-VL is the 
implementation of Multimodal Rotary Position Embedding 
(M-RoPE), which extends traditional rotary position embedding to 
accommodate multimodal inputs (Qwen, 2024; Wang et al., 2024). 
M-RoPE decomposes positional information into three distinct 
components: temporal, spatial height, and spatial width dimensions, 
enabling the model to capture 1D textual, 2D visual, and 3D video 
positional relationships simultaneously. This enhanced positional 
encoding mechanism facilitates improved spatial reasoning 
capabilities essential for object detection tasks, where precise spatial 
relationships between visual elements must be maintained.

The M-RoPE implementation allows the language model to 
concurrently process and integrate positional information across 

different modalities without losing the inherent spatial and temporal 
relationships present in the input data. For fine-tuning applications in 
object detection, this capability ensures that spatial coordinates and 
object boundaries are accurately preserved throughout the 
processing pipeline.

3.2.2.2 Qwen2.5-VL architecture

	(a)	 Enhanced vision encoder with window attention

Qwen2.5-VL introduces significant architectural refinements over 
its predecessor, most notably through the implementation of a 
redesigned ViT that incorporates window attention mechanisms (Bai 
et al., 2025; Qwen, 2025). The enhanced vision encoder utilizes a 
native dynamic-resolution ViT trained from scratch, featuring 
strategic implementation of window attention to achieve linear 
computational scaling with respect to the number of image patches. 
This optimization addresses the quadratic complexity limitations of 
traditional self-attention mechanisms while maintaining native 
resolution processing capabilities (Bai et al., 2025).

The vision encoder architecture employs window attention in 
most transformer layers, with only four layers utilizing full self-
attention mechanisms. The window attention implementation uses a 
maximum window size of 112 × 112 pixels, corresponding to 8 × 8 
patches, which optimizes the balance between computational 
efficiency and receptive field coverage (Bai et al., 2025). This design 
choice is particularly beneficial for object detection applications, 
where computational efficiency during inference is critical for real-
time performance.

	(b)	 Advanced positional encoding and temporal processing

Qwen2.5-VL extends the multimodal positional encoding 
framework through enhanced M-RoPE alignment to absolute time, 
enabling sophisticated temporal sequence learning for video 
understanding (Bai et al., 2025). The upgraded M-RoPE mechanism 
aligns positional embeddings with absolute timestamps, facilitating 
consistent temporal alignment across videos with varying frame rates. 
This temporal encoding capability supports dynamic FPS sampling, 
allowing the model to comprehend video content at various sampling 
rates while maintaining temporal coherence.

The architectural enhancement includes native support for 
processing images with varying heights and widths, where input 
dimensions are resized to multiples of 28 pixels and subsequently 
divided into patches with a stride of 14 pixels. The sophisticated 
temporal processing capabilities enable the model to handle extended 
video sequences lasting multiple hours while providing second-level 
event localization accuracy.

	(c)	 Vision-language integration architecture

The Qwen2.5-VL architecture incorporates a multi-layer 
perceptron (MLP)-based vision-language merger that addresses 
efficiency challenges associated with long visual feature sequences (Bai 
et al., 2025). This merger employs a two-layer MLP to compress visual 
features by grouping spatially adjacent patch features, concatenating 
them, and projecting the result into dimensions aligned with the 
language model’s text embeddings. The compression mechanism 
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reduces computational overhead while preserving essential visual 
information required for downstream tasks.

The language model component is initialized with pre-trained 
weights from Qwen2.5 LLM, with the traditional 1D RoPE replaced 
by M-RoPE aligned to absolute time. The ViT architecture 
incorporates SwiGLU activation functions and RMSNorm 
normalization, aligning the vision encoder structure with the Qwen2.5 
LLM architecture for improved integration.

3.2.3 LLaVA-1.6
LLaVA-1.6, also known as LLaVA-NeXT, represents a significant 

architectural advancement in large multimodal models, building upon 
the established foundation of LLaVA-1.5 while introducing critical 
enhancements for improved visual understanding and reasoning 
capabilities (Liu, 2025). The architecture maintains the core design 
philosophy of connecting pre-trained vision encoders with large 
language models through a simple yet effective projection mechanism, 
while introducing sophisticated improvements to handle higher 
resolution inputs and enhanced multimodal reasoning. The model 
employs an auto-regressive language model architecture based on the 
transformer framework, with vision-enabled variants available in 7B, 
13B, and 34B parameter configurations that support various base 
language models including Vicuna, Mistral-7B, and Nous-Hermes-2-
Yi-34B (LLaVa-NeXT - a llava-hf Collection, 2025).

	(a)	 Vision encoder architecture and dynamic resolution processing

LLaVA-1.6 implements a sophisticated vision encoder architecture 
utilizing the pre-trained CLIP visual encoder ViT-L/14-336px as its 
foundation, which provides robust visual feature extraction 
capabilities (LinChen, 2025). The vision encoder incorporates 
approximately 303.5 million parameters across all model variants, 
maintaining consistency in visual processing capacity while scaling 
the language model components. The encoder processes visual inputs 
through a patch-based tokenization scheme that converts images into 
visual tokens compatible with the unified transformer architecture 
(Liu, 2025).

The most significant architectural innovation in LLaVA-1.6 is the 
implementation of the Any Resolution (AnyRes) technique, which 
enables dynamic processing of high-resolution images up to 4 times 
more pixels than previous versions (Liu, 2025). The AnyRes technique 
supports three aspect ratios with resolutions up to 672 × 672, 
336 × 1,344, and 1,344 × 336 pixels, allowing the model to grasp 
significantly more visual details. This dynamic resolution capability 
employs a grid configuration of {2 × 2, 1 × {2,3,4}, {2,3,4} × 1}, 
balancing performance efficiency with operational costs while 
preserving fine-grained visual information.

The AnyRes implementation naturally represents high-resolution 
images into multiple smaller images that the pre-trained ViT can 
process effectively, forming them into a concatenated sequence. This 
technique addresses the traditional constraint of predetermined input 
resolutions by dynamically mapping images of arbitrary resolutions 
into variable numbers of visual tokens. The approach eliminates the 
need for image preprocessing and resizing, preserving original spatial 
relationships crucial for accurate object localization and 
detection tasks.

	(b)	 MLP-based vision-language connector

LLaVA-1.6 utilizes a sophisticated MLP vision-language connector 
that enhances the integration between visual and textual modalities 
(LinChen, 2025; Liu, 2025). The connector employs a two-layer MLP 
with GELU activation functions, replacing the simpler linear 
projection used in earlier versions. The connector parameters vary 
across model sizes, with 21 M parameters for the 7B model, 31.5 M 
for the 13B model, and 58.7 M for the 34B model. This MLP-based 
approach significantly enhances the model’s multimodal capabilities 
by enabling deeper integration of visual features with 
language embeddings.

3.2.4 Gemma 3
Gemma 3 represents a significant advancement in Google’s family 

of lightweight open models, ranging in scale from 1 to 27 billion 
parameters (Team et  al., 2025). The architecture builds upon the 
established foundation of previous Gemma iterations while 
introducing critical enhancements for multimodal capabilities, 
extended context length, and improved multilingual support. At its 
core, Gemma 3 maintains the decoder-only transformer architecture 
with Grouped-Query Attention (GQA), but replaces the soft-capping 
mechanism of Gemma 2 with QK-norm for improved accuracy and 
processing speed (Team et al., 2025; Google, 2025).

	(a)	 Interleaved local–global attention mechanism

A defining feature of Gemma 3’s architecture is its innovative 
interleaved attention mechanism, which alternates between local 
sliding window self-attention and global self-attention layers (Team 
et al., 2025). Unlike previous models that relied heavily on global 
attention, Gemma 3 implements a 5:1 ratio of local to global attention 
layers, starting with a local layer as the first layer of the model. This 
approach significantly reduces the Key-Value (KV) cache memory 
requirements that typically explode with long context processing.

The local attention layers employ a sliding window of 1,024 
tokens, focusing only on nearby tokens, while global layers attend to 
the entire context. This hybrid approach enables the model to capture 
both short-range dependencies through local attention and long-
range relationships through global attention, while maintaining 
computational efficiency. The interleaved attention mechanism 
provides substantial memory savings, reducing the overhead from 
approximately 60% with global-only attention to under 15% with the 
interleaved approach for 32 K token contexts.

	(b)	 Vision encoder and multimodal integration

Gemma 3 introduces robust multimodal capabilities through the 
integration of a sophisticated vision encoder based on Sigmoid loss 
for Language-Image Pre-training (SigLIP) (Team et al., 2025). The 
vision encoder, which contains approximately 400 M parameters, is 
implemented in the 4B, 12B, and 27B models, enabling them to 
process both text and images within a unified framework. This 
encoder operates on fixed 896 × 896 square images and remains 
frozen during training to preserve its pre-trained representation power.

To handle images with different aspect ratios or high resolutions, 
Gemma 3 employs an adaptive “Pan and Scan” algorithm during 
inference. This technique involves adaptively cropping the image, 
resizing each crop to 896 × 896, and then encoding it, allowing the 
model to effectively “zoom in” on smaller details in the image. The 
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vision encoder processes images through a patch-based tokenization 
scheme, converting visual inputs into token representations 
compatible with the language model architecture.

A notable aspect of Gemma 3’s multimodal processing is its 
differential attention handling for text and image inputs. While text is 
processed with one-way (causal) attention where the model focuses 
only on previous tokens in a sequence, images receive bidirectional 
attention with no masks, allowing the model to examine every part of 
the image simultaneously. This approach enables more comprehensive 
visual understanding while maintaining the autoregressive nature of 
text generation.

	(c)	 Extended context window and memory optimization

Gemma 3 supports an impressive context length of 128 K tokens 
for the 4B, 12B, and 27B models, with the 1B model supporting 32 K 
tokens (Google, 2025). This extended context capability is achieved 
through several architectural optimizations designed to manage the 
computational and memory requirements associated with long 
sequences. The architecture increases the Rotary Position Embedding 
(RoPE) base frequency from 10 K to 1 M on global self-attention 
layers while maintaining the frequency of local layers at 10 K, enabling 
effective positional encoding across long sequences (Team et al., 2025).

The interleaved attention mechanism plays a crucial role in 
memory optimization, as it significantly reduces the KV-cache size 
that typically grows quadratically with context length. By employing 
local attention with a limited window size for most layers, Gemma 3 
achieves linear computational scaling with respect to sequence length 
rather than quadratic scaling. This optimization enables the processing 

of extremely long documents, conversations, and multimodal inputs 
without prohibitive memory requirements.

3.3 Prompt engineering

The initial prompt (Figure 3) was designed to elicit structured 
outputs from each LVLM and to evaluate its effectiveness for 
instruction tuning and fine-tuning. The responses generated by each 
model for an example image are summarized in Table  4. When 
compared with the ground truth COCO bounding-box coordinates, 
all models produced bounding-box coordinates in the corner-
coordinate format [x_min, y_min, x_max, y_max]. Notably, Llama-
3.2-Vision generated additional output beyond the prompt’s 
specifications, including both the required JSON annotation and an 
explanatory commentary, whereas the other models adhered strictly 
to the JSON format. Additionally, both Llama-3.2-Vision and LLaVA-
1.6 provided normalized coordinates with values in the range [0, 1], 
while the remaining models returned absolute pixel coordinates.

We subsequently refined the prompt (Figure 4) by appending the 
instruction: “Make sure to normalize the bounding box coordinates to 
the range [0, 1] based on the image dimensions. The coordinates should 
be  in the format [x_min, y_min, x_max, y_max]. If no objects are 
detected, return an empty ‘objects’ list.” The model responses to this 
enhanced prompt are presented in Table  5. Under these revised 
instructions, all models except Qwen2.5-VL returned normalized 
corner coordinates. As before, Llama-3.2-Vision supplemented its JSON 
output with explanatory commentary, consistent with its behavior in 
response to the original prompt. Giv to the effectiveness of this prompt 

FIGURE 3

Initial prompt for detecting humans, obstacles, and classifying weather from excavator vision.
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structure in guiding nearly all LVLMs evaluated in this study, 
we adopted the enhanced prompt for the downstream fine-tuning task.

3.4 Fine-tuning methodology

3.4.1 Quantized Low-Rank Adaptation
Quantized Low-Rank Adaptation (QLoRA) is an advanced 

parameter-efficient fine-tuning (PEFT) methodology that enables the 
adaptation of LLMs and LVLMs on standard hardware with limited 
memory resources. By integrating Low-Rank Adaptation (LoRA) with 
aggressive model quantization, QLoRA allows practitioners to fine-
tune multi-billion-parameter models for specialized downstream 
tasks, such as object detection, while significantly reducing both 
memory consumption and computational requirements (Dettmers 
et al., 2023).

QLoRA is built upon three fundamental principles. First, LoRA 
introduces a small set of trainable low-rank matrices, known as 
adapters, into each layer of a pre-trained model. During fine-tuning, 
only these adapters are updated, while the original model weights 
remain frozen. Formally, the adapted weight matrix can be expressed 
as in Equation 5:

	 = +′ × TW W A B 	 (5)

where W represents the frozen pre-trained weights, and 
×∈, d rA B   are trainable low-rank matrices with rank r d. This 

substantially decreases the number of trainable parameters, reduces 
memory usage, and mitigates the risk of catastrophic forgetting, 
thereby preserving the model’s pre-trained knowledge. Second, 
quantization is employed to further lower resource requirements. 
Specifically, the pre-trained model’s weights are quantized to a lower-
precision format, most commonly 4-bit NormalFloat (NF4), which is 
theoretically optimal for representing normally distributed weights. 
Quantization is applied exclusively to the frozen backbone, whereas 
the LoRA adapters are maintained in higher precision (for example, 
16- or 32-bit) to ensure flexibility and fine-tuning efficacy. Third, 
during backpropagation and training, gradients are computed and 
propagated exclusively through the LoRA adapters, with the quantized 
backbone remaining static. This strategy ensures minimal training 
overhead, as only a small subset of parameters is updated.

Several technical innovations distinguish QLoRA and further 
enhance its efficiency (Dettmers et al., 2023):

	•	 4-bit NormalFloat (NF4) Quantization: This custom data type is 
optimized to represent normally distributed model weights, 
minimizing quantization error.

	•	 Double Quantization: Quantization is applied not only to model 
weights but also to quantization constants, which further reduces 
memory requirements.

	•	 Paged Optimizers: Optimizer states are managed using a paged 
approach, which prevents memory spikes during training and 
enables the fine-tuning of extremely large models on hardware 
with restricted memory capacity.

Through these mechanisms, QLoRA makes the fine-tuning of 
LVLMs feasible on consumer-grade GPUs without compromising 
model accuracy or generalization capability, thus facilitating practical 
deployment in resource-constrained environments.

3.4.2 Unsloth framework for QLoRA fine-tuning
The Unsloth framework represents a significant advancement in 

the efficient fine-tuning of LLMs and LVLMs, particularly in 
environments with limited computational resources (Unsloth, 2025a, 
2025b). Developed to address the memory and processing bottlenecks 
commonly associated with adapting large-scale models, Unsloth 
integrates a series of architectural and algorithmic optimizations that 
make parameter-efficient fine-tuning both feasible and highly effective 
for downstream tasks such as object detection. The framework 
achieves substantial performance improvements, enabling fine-tuning 
at twice the speed of the standard Transformers library and reducing 
memory usage by up to 70% without any measurable loss in 
predictive accuracy.

TABLE 4  Example responses from each LVLM to the initial prompt.

Model Response

Llama-3.2-Vision Based on the image, here is the output in the requested 

format:

{“objects”: [

{“label”: “Human,” “bbox”: [0.335, 0.043, 0.435, 0.283]},

{“label”: “Obstacle,” “bbox”: [0.843, 0.055, 0.923, 0.225]}

],

“weather”: “Rainy”

}

This output indicates that there is one person and one 

obstacle (likely a dump truck) visible in the image, with 

their bounding box coordinates provided. The current 

weather condition is also reported as “Rainy” based on 

the wet ground and puddles in the image.

Qwen2-VL {“objects”: [

{“label”: “Human,” “bbox”: [270, 0, 330, 200]}

],

“weather”: “Cloudy”

}

Qwen2.5-VL {“objects”: [

{“label”: “Human,” “bbox”: [354, 0, 437, 151]}

],

“weather”: “Rainy”

}

LLaVA-1.6 {“objects”: [

{“label”: “Human,” “bbox”: [0.250, 0, 0.338, 0.241]},

{“label”: “Obstacle,”"bbox”: [0.650, 0, 0.850, 0.205]}

],

“weather”: “Rainy”

}

Gemma 3 {“objects”: [

{“label”: “Human,” “bbox”: [150, 200, 250, 350]}

],

“weather”: “Rainy”

}

Llama-3.2-Vision (Llama-3.2-11B-Vision), Qwen2-VL (Qwen2-VL-2B, Qwen2-VL-7B), 
Qwen2.5-VL (Qwen2.5-VL-3B, Qwen2-VL-7B), LLaVA-1.6, Gemma 3 (Gemma3-4B, 
Gemma3-12B).
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At its core, Unsloth offers robust and scalable implementation 
of QLoRA, allowing multi-billion-parameter models to be  fine-
tuned on consumer-grade GPUs with restricted VRAM. Notably, 
Unsloth employs an adaptive quantization approach known as 
Dynamic 4-bit Quantization (Unsloth, 2024), which applies higher 
precision to critical model components while aggressively 
quantizing less sensitive parameters. This selective quantization is 
especially critical for LVLMs, where indiscriminate quantization 
can degrade visual understanding. For example, in the case of 
Qwen2-VL-2B, Unsloth’s dynamic quantization achieves a memory 
footprint of 1.81 GB with preserved accuracy, compared to 4.11 GB 
for standard models and 1.36 GB for naively quantized models, the 
latter of which experience a loss in functionality (Unsloth, 2024).

A distinctive feature of Unsloth is its provision of pre-quantized 
LVLMs that are specifically optimized for efficient fine-tuning. These 
models utilize architecture-aware quantization strategies that maintain 
high performance in visual understanding while significantly lowering 
memory requirements. In this study, we employed several Unsloth-
optimized models for fine-tuning, including:

	•	 Llama-3.2-11B-Vision: Llama-3.2-11B-Vision-Instruct (unsloth/
Llama-3.2-11B-Vision-Instruct-unsloth-bnb-4bits)

	•	 Qwen2-VL-2B: Qwen2-VL-2B-Instruct (unsloth/
Qwen2-VL-2B-Instruct-unsloth-bnb-4bit)

	•	 Qwen2-VL-7B: Qwen2-VL-7B-Instruct (unsloth/
Qwen2-VL-7B-Instruct-unsloth-bnb-4bit)

	•	 Qwen2.5-VL-3B: Qwen2.5-VL-3B-Instruct (unsloth/
Qwen2.5-VL-3B-Instruct-unsloth-bnb-4bit)

	•	 Qwen2.5-VL-7B: Qwen2.5-VL-7B-Instruct (unsloth/
Qwen2.5-VL-7B-Instruct-unsloth-bnb-4bit)

	•	 LLaVA-1.6: llava-v1.6-mistral-7b-hf (unsloth/
llava-v1.6-mistral-7b-hf-bnb-4bit)

	•	 Gemma3-4B: gemma-3-4b-it (unsloth/
gemma-3-4b-it-unsloth-bnb-4bit)

	•	 Gemma3-12B: gemma-3-12b-it (unsloth/
gemma-3-12b-it-unsloth-bnb-4bit)

Through these optimizations, the Unsloth framework enables the 
practical and efficient deployment of advanced LVLMs for vision-
based tasks in resource-constrained environments. Table 6 presents 
the Unsloth-optimized QLoRA configuration settings for the 
supervised fine-tuning of all LVLMs employed in this work.

3.4.3 Performance evaluation metrics
To rigorously assess the effectiveness of the proposed LVLM-

based framework for simultaneous object detection and weather 
classification from excavator vision, we  employed a suite of 
performance metrics widely recognized in the computer vision 
and classification literature. The evaluation protocol is structured 
around two principal tasks: object detection and 
weather classification.

FIGURE 4

Enhanced prompt for detecting humans, obstacles, and classifying weather from excavator vision.
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For object detection, we reported two primary metrics:

	•	 Mean Average Precision at intersection-over-union (IoU) = 0.50 
(mAP@50): This metric is calculated as the mean of the per-class 
average precision (AP) values, where a detection is considered 
correct if its IoU with the ground truth is greater than or equal to 
0.50. The mAP@50 thus provides a relatively lenient assessment 
of the model’s ability to accurately localize objects.

	•	 Mean Average Precision averaged over IoU thresholds [0.50:0.95] 
[mAP@(0.50:0.95)]: This metric computes the average of 

per-class AP values across 10 IoU thresholds ranging from 0.50 
to 0.95  in increments of 0.05. This approach offers a 
comprehensive evaluation of localization accuracy under both 
lenient and stringent overlap criteria.

For the weather classification task, we  utilized two 
standard metrics:

	•	 Accuracy: Defined as the ratio of correctly predicted weather 
labels to the total number of test samples, accuracy provides an 
overall measure of predictive performance.

	•	 F1: The F1 score is calculated as the harmonic mean of precision 
and recall for each weather class. This metric is particularly useful 
in accounting for class imbalance (e.g., “Sunny,” “Cloudy,” 
“Rainy”) and reflects the model’s ability to balance false positives 
and false negatives.

By reporting mAP@50 and mAP@[0.50:0.95] for object 
detection, along with accuracy and F1 score for weather 
classification, we provided a concise yet comprehensive evaluation 
of the localization and classification capabilities of our 
proposed framework.

4 Experimental results and discussion

4.1 Experimental setup

All experiments were conducted on a workstation equipped with 
an AMD Ryzen 97,950X CPU, an NVIDIA RTX 4090 GPU (24 GB of 
VRAM), and 96 GB of DDR5 RAM. All LVLMs were fine-tuned using 
the Unsloth framework (Unsloth, 2025a, 2025b).

TABLE 5  Example responses from each LVLM to the enhanced prompt.

Model Response

Llama-3.2-Vision The image shows a construction site with 

a person walking in the background and 

a yellow dump truck or excavator in the 

distance. The weather appears to be rainy.

Here is the JSON annotation:

{“objects”: [{“label”: “Human,” “bbox”: 

[0.35, 0.25, 0.45, 0.45]}, {“label”: 

“Obstacle,” “bbox”: [0.75, 0.25, 0.85, 

0.35]}], “weather”: “Rainy”}

The bounding box coordinates are 

normalized to the range [0, 1] based on 

the image dimensions. The coordinates 

are in the format [x_min, y_min, x_max, 

y_max]

Qwen2-VL {“objects”: [

{“label”: “Human,” “bbox”: [0.28, 0.13, 

0.34, 0.25]}

],

“weather”: “Cloudy”

}

Qwen2.5-VL {“objects”: [

{“label”: “Human,” “bbox”: [356, 8, 437, 

151]}

],

“weather”: “Rainy”

}

LLaVA-1.6 {“objects”: [

{“label”: “Human,” “bbox”: [0.250, 0, 

0.338, 0.241]},

{“label”: “Obstacle,” “bbox”: [0.650, 0, 

0.850, 0.205]}

],

“weather”: “Rainy”

}

Gemma 3 {“objects”: [

{“label”: “Human,” “bbox”: [150, 200, 

250, 350]}

],

“weather”: “Rainy”

}

Llama-3.2-Vision (Llama-3.2-11B-Vision), Qwen2-VL (Qwen2-VL-2B, Qwen2-VL-7B), 
Qwen2.5-VL (Qwen2.5-VL-3B, Qwen2-VL-7B), LLaVA-1.6, Gemma 3 (Gemma3-4B, 
Gemma3-12B).

TABLE 6  Unsloth-optimized QLoRA configuration parameters.

Category Parameter Value

Model

(“FastVisionModel” called 

from Unsloth)

load_in_4bit True

finetune_vision_layers True

finetune_language_

layers

True

finetune_attention_

modules

True

finetune_mlp_modules True

r 32

lora_alpha 32

Training (SFTConfig from 

trl library)

per_device_train_

batch_size

2

gradient_accumulation_

steps

4

num_train_epochs 2

learning_rate 5 × 10−5

optim “adamw_8bit”

r, LoRA Rank, lora_alpha: LoRA Alpha.
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4.2 Fine-tuning process evaluation

All models were fine-tuned for exactly two epochs. Under our 
training configuration, this corresponds to 250 gradient-update steps 
per model; the horizontal axes in Figures 5–9 thus represent these 250 
steps. We first examine the resulting training-loss curves. All models 
display a steep initial decrease in loss, indicative of rapid adaptation 

by the LoRA adapters, followed by a plateau phase characterized by 
minor fluctuations around a model-specific minimum. Key 
observations are summarized as follows:

	•	 Llama-3.2-Vision (Figure 5): The training loss decreases from 
approximately 3.6 at step 0 to about 0.4 by step 15, then oscillates 
between 0.25 and 0.35 for the remainder of the training process. 

FIGURE 5

Training-loss curve for the Llama-3.2-Vision model under QLoRA-Unsloth fine-tuning.

FIGURE 6

Training-loss curve for the Qwen2-VL series under QLoRA-Unsloth fine-tuning.
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This rapid convergence and consistently low final loss suggest 
that the 11B-parameter model adapts efficiently under QLoRA, 
exhibiting stable fine-tuning dynamics.

	•	 Qwen2-VL series (Figure 6): Both the 2B and 7B variants 
achieve quick convergence within the first 10 steps. The 2B 
model plateaus at around 0.12, while the 7B model achieves 
a lower plateau near 0.05. The deeper architecture of the 7B 
variant consistently results in lower training loss, indicating 
greater representational capacity under identical 
PEFT settings.

	•	 Qwen2.5-VL series (Figure 7): The 3B and 7B versions exhibit 
similar two-phase behavior: an initial loss drop to approximately 
0.3 (3B version) and 0.2 (7B version) by step 20, followed by 
stabilization around 0.5 (3B) and 0.15 (7B). Once again, the 
larger model achieves a notably lower loss, underscoring the 
benefits of increased parameter count even under 
4-bit quantization.

	•	 LLaVA-1.6 (Figure 8): LLaVA-1.6 starts with a higher initial loss, 
approximately 6.9, and converges more gradually relative to the 
other models. After an early plateau at around 1.4 until step 100, 

FIGURE 7

Training-loss curve for the Qwen2.5-VL series under QLoRA-Unsloth fine-tuning.

FIGURE 8

Training-loss curve for the LLaVA-1.6 model under QLoRA-Unsloth fine-tuning.
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the loss decreases further to approximately 0.8 by the end of 
training. This two-stage decline may reflect more complex 
adapter dynamics or heightened sensitivity to quantization in the 
Mistral-based backbone.

	•	 Gemma 3 series (Figure 9): Both the 4B and 12B variants show 
rapid loss reduction to about 0.6 by step  15, followed by 
stabilization between 0.50 and 0.62. The 12B variant consistently 
maintains a slight advantage over the 4B model, indicating that 
the larger configuration yields modest gains under the same fine-
tuning regimen.

Across all architectures, QLoRA implemented via Unsloth yields 
fast initial convergence, with LVLMs attaining lower plateau losses. 
The observed variation in loss trajectories—in terms of both absolute 
value and convergence speed—reflects differences in architecture, 
parameter count, and sensitivity to 4-bit quantization. Notably, among 
all models evaluated, the Qwen2-VL-7B achieves the lowest training-
loss plateau (approximately 0.05), followed by the Qwen2.5-VL-7B 

FIGURE 9

Training-loss curve for the Gemma 3 series under QLoRA-Unsloth fine-tuning.

TABLE 7  Performance evaluation on the test set before fine-tuning.

Model Object detection Weather 
classification

mAP@50 
(%)

mAP@
[0.50:0.95] 

(%)

Accuracy 
(%)

F1 (%)

Llama-3.2-

11B-Vision

68.52 56.20 53.61 43.60

Qwen2-VL-

2B

64.16 53.43 41.38 24.80

Qwen2-VL-

7B

65.07 53.52 44.54 38.79

Qwen2.5-

VL-3B

66.52 54.73 43.21 28.17

Qwen2.5-

VL-7B

69.13 56.53 43.59 35.56

LLaVA-1.6 59.32 50.29 41.13 32.20

Gemma3-

4B

61.74 50.47 44.11 36.54

Gemma3-

12B

67.83 56.33 44.14 37.03

TABLE 8  Performance evaluation on the test set after fine-tuning.

Model Object detection Weather 
classification

mAP@50 
(%)

mAP@
[0.50:0.95] 

(%)

Accuracy 
(%)

F1 (%)

Llama-3.2-

11B-Vision-

Instruct

82.57 68.56 83.61 73.58

Qwen2-VL-

2B-Instruct

79.13 65.47 81.38 74.81

Qwen2-VL-

7B-Instruct

88.03 74.20 84.54 78.83

Qwen2.5-

VL-3B-

Instruct

74.60 63.77 83.21 73.16

Qwen2.5-

VL-7B-

Instruct

82.06 70.56 83.59 75.50

LLaVA-1.6 73.56 60.20 81.13 72.20

Gemma3-4B 78.78 63.57 84.11 76.64

Gemma3-

12B

82.80 71.03 84.14 77.33

Bold values indicate the best performance in each evaluation metric.
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(approximately 0.15). These findings indicate that, under a consistent 
QLoRA fine-tuning regimen, the 7B variants of the Qwen2 family 
exhibit superior adaptation efficiency compared to both smaller 
models and alternative architectures.

4.3 Performance analysis on the test set

We assessed the capabilities of the LVLMs in both zero-shot mode 
and following QLoRA fine-tuning on the test set, reporting object 
detection and weather classification results in Tables 7, 8, respectively. 
Prior to fine-tuning, all models demonstrated only modest 
performance on both tasks. For object detection, mAP@50 ranged 
from 59.32% (LLaVA-1.6) to 69.13% (Qwen2.5-VL-7B), while the 
more stringent mAP@[0.50:0.95] metric ranged from 50.29 to 56.53% 
for the same models. Weather classification accuracy varied from 
41.13 to 44.54%, with F1 scores peaking at 38.79% for Qwen2-
VL-7B. These results indicate limited zero-shot proficiency in precise 
localization and weather inference, even though all models displayed 
a baseline ability to detect humans and heavy equipment—an 
artifactof their large-scale pre-training on generic object categories.

After two epochs of QLoRA fine-tuning (250 steps), all models 
showed substantial improvements. Object detection mAP@50 
increased by 13 to 23 percentage points, yielding a post-training range 
of 73.56% (LLaVA-1.6) to 88.03% (Qwen2-VL-7B). Similarly, mAP@
[0.50:0.95] rose performance, reaching values between 50.20 and 
74.20%. Weather classification metrics also improved by 30 to 43 
percentage points, with accuracy rising to between 81.13 and 84.54%, 
and F1 scores reaching 72.20 to 78.83% across models.

Among all configurations, Qwen2-VL-7B achieved the highest 
performance across both tasks, with mAP@50 = 88.03%, mAP@
[0.50:0.95] = 74.20%, accuracy = 84.54%, and F1 = 78.83%. The next 

best object detector was Gemma3-12B (mAP@50 = 82.87%/mAP@
[0.50:0.95] = 71.03%), while Qwen2-VL-7B also led in weather 
classification by a narrow margin. These findings indicate that, under 
identical low-VRAM fine-tuning conditions, the 7-billion-parameter 
Qwen2-VL architecture offers the most favorable balance of object 
detection and classification robustness.

The consistent improvements in both detection and classification 
metrics across all models validate QLoRA fine-tuning via Unsloth 
framework as a powerful and scalable fine-tuning approach for 
LVLMs in resource-constrained settings. The particularly strong 
adaptation of the Qwen2-VL-7B model suggests its suitability as a 
foundation for real-time, on-device multimodal perception in 
autonomous construction machinery.

4.4 Evaluation of the optimized Qwen2-VL-
7B in a challenging rainy construction 
scenario

Figure 10 presents a particularly challenging rainy-weather frame 
containing six pedestrians and three obstacles: an excavator arm on 
the left, a dump truck in the center, and another dump truck on the 
far right. In this example, poor image quality—characterized by 
motion blur, low resolution, and complex raindrop-induced lens 
artifacts—poses a severe challenge even for a finely tuned LVLM. The 
fine-tuned Qwen2-VL-7B model correctly detects five out of six 
pedestrians and two out of three obstacles. The one missed pedestrian 
stands immediately behind the center dump truck, where heavy 
occlusion and raindrop-induced blur render the silhouette nearly 
indistinguishable from the wet ground. Similarly, the far-right dump 
truck is not detected, as its reflective metal surfaces and lens-rain 
artifacts produce low contrast against the overcast sky. Despite these 

FIGURE 10

Prediction of the optimized Qwen2-VL-7B for a complex scene in small rainy condition.
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omissions, the model’s weather classification remains robust, correctly 
labeling the scene as “Rainy” and demonstrating reliable multimodal 
inference under severe visibility degradation.

These image quality issues highlight important directions for 
improvement. Preprocessing techniques, such as deblurring filters or 
rain-removal networks, could help restore critical edges prior to 
inference. Adaptive confidence thresholds that consider weather 
severity may enable the system to flag low-quality frames for human 
review or sensor fusion (for example, thermal or LiDAR) when visual 
input is significantly degraded. By explicitly addressing lens and 
visibility artifacts, future multimodal LVLM deployments can 
maintain both high precision and recall even under the most adverse 
real-world conditions.

To demonstrate the practical deployment of our approach, 
we have deployed a web-based demo application that utilizes the fine-
tuned Qwen2-VL-7B model for object detection and weather 
classification in construction site imagery captured from excavator 
vision. Additional example images and detection results can 
be explored at https://feline-quality-separately.ngrok-free.app/.

4.5 Comparison of the optimized 
Qwen2-VL-7B with traditional object 
detection models

To further validate the superiority of the optimized Qwen2-VL-7B 
model for object detection in excavator vision, several advanced target 
detection models were selected for comparative experiments. These 
included recent models from the YOLO series—specifically, 
YOLOv11s, YOLOv11m, YOLOv12s, and YOLOv12m—as well as the 
RT-DETR series, including RT-DETR-L and RT-DETR-X. All models 
were implemented using the Ultralytics framework. For consistency, 
input images were resized to 640 × 640 pixels, with a batch size of 16. 
The initial learning rate and weight decay coefficient were both set to 
0.0001, and the AdamW optimizer was employed. Each model was 
trained for 100 epochs using the same training set of 1,000 images. The 
performance comparison results between these traditional object 
detection models and the optimized Qwen2-VL-7B model are 
summarized in Table 9.

Among the traditional models, YOLOv12m achieved the 
highest performance, with mAP@50 of 59.70% and mAP@

[0.50:0.95] of 40.6%. These results are substantially lower than 
those of the optimized Qwen2-VL-7B model, which achieved 
mAP@50 of 88.03% and mAP@[0.50:0.95] of 74.20%. The large 
performance gap underscores the advantage of leveraging LVLM 
pretraining on massive multimodal datasets, which enables 
generalization even when fine-tuned on limited domain-specific 
data. In contrast, traditional detectors trained only on the 1,000 
construction images lacked sufficient data diversity to achieve 
comparable robustness.

While the optimized Qwen2-VL-7B demonstrates superior 
accuracy, its inference speed is considerably slower, largely due to its 
substantial parameter size of 7 billion parameters. On the 2000-image 
test set, traditional detectors—whose parameter counts range from 
9.1 million (YOLOv12s) to 86 million (RT-DETR-X)—completed 
inference in under 21 s, with YOLOv11s being the fastest at just 9 s. 
By contrast, Qwen2-VL-7B required approximately 360 s, 
corresponding to an inference throughput of about 5 frames per 
second (FPS) when deployed via the vLLM (Kwon et  al., 2023) 
engine. This discrepancy underscores a fundamental trade-off 
between model capacity and operational efficiency. While large-scale 
LVLMs benefit from expansive pretraining that enables richer feature 
representations and higher downstream accuracy, their massive 
parameter size incurs heavier computational costs and slower 
inference latency. In safety-critical domains such as autonomous 
excavation, this trade-off raises an important deployment 
consideration: striking a balance between the robustness afforded by 
LVLM-scale pretraining and the real-time responsiveness required in 
dynamic construction environments.

However, by integrating motion sensor data, the limitation of the 
Qwen2-VL-7B model in real-time tracking of moving objects can 
potentially be mitigated. This multimodal LVLM could thus serve as 
a supervisory AI agent for autonomous excavator control. As 
described in Table  2, the original dataset  also includes posture 
information and task sequence data, providing avenues for further 
research. Future work could explore fine-tuning the optimized 
Qwen2-VL-7B model for additional tasks such as pose estimation, 
activity planning, or automated reporting. In summary, the 
multimodal capabilities of this LVLM position it as a versatile AI agent 
with significant potential for a wide range of applications in 
construction site automation.

4.6 Ablation study

4.6.1 Multitask versus single-task performance
For the ablation study, we evaluated the multitask performance of 

our fine-tuned Qwen2-VL-7B model in comparison to its single-task 
performance, specifically for object detection and weather 
classification tasks. To instruct the model to perform each individual 
task, we revised the prompts accordingly:

	•	 Object detection prompt: You  are an autonomous excavator 
operating on a live construction site. Please output the location 
of any person (label as Human) and any dump truck or excavator 
(label as Obstacle, except yourself) in your vision by providing 
their bounding box coordinates. Reply only in JSON format 
using the following structure: {“label”: “<label>“, “bbox”: 

TABLE 9  Benchmarking recent advanced traditional detectors against 
the optimized Qwen2-VL-7B.

Model mAP@50 
(%)

mAP@
[0.50:0.95] 

(%)

Inference 
speed on 

the test set 
(seconds)

YOLOv11s 54.90 38.70 9

YOLOv11m 51.15 34.40 13.4

YOLOv12s 61.12 39.40 11

YOLOv12m 59.70 40.60 15.9

RT-DETR-L 45.01 28.60 15.6

RT-DETR-X 44.30 30.20 21

Qwen2-VL-7B 88.03 74.20 360

Bold values indicate the best performance in each evaluation metric.
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[<x_min>, <y_min>, <x_max>, <y_max>]}. Make sure to 
normalize the bounding box coordinates to the range [0, 1] based 
on the image dimensions. The coordinates should be  in the 
format [x_min, y_min, x_max, y_max].

	•	 Weather classification prompt: You are an autonomous excavator 
operating on a live construction site. Please determine the 
current weather condition from these options: “Sunny,” “Cloudy,” 
or “Rainy.” Reply solely with the chosen label (no additional text).

We evaluated our multitask fine-tuned Qwen2-VL-7B model 
using single-task prompts to instruct the model to perform either 
object detection or weather classification in isolation. The results of 
this comparative analysis are summarized in Table 10.

When the model was prompted exclusively for object detection, it 
achieved an mAP@50 of 88.12% and an mAP@[0.50:0.95] of 74.21%. 
These values are nearly identical to those obtained with the multitask 
prompt (mAP@50: 88.03%, mAP@[0.50:0.95]: 74.20%), indicating 
that the addition of concurrent weather classification instructions 
does not diminish object detection performance. This finding suggests 
that the shared feature representations learned during multitask fine-
tuning are sufficiently robust to maintain high-precision object 
detection, without interference from the auxiliary weather 
classification task.

For weather classification, the model achieved an accuracy of 
84.50% and an F1 score of 78.82% when instructed with the 
weather-only prompt. These results are likewise essentially 
equivalent to the multitask case (accuracy: 84.54%, F1: 78.83%), 
further confirming that the model retains its capacity to accurately 
discriminate weather conditions even when simultaneously 
performing object detection.

These results demonstrate that our QLoRA fine-tuning produces 
a truly multimodal Qwen2-VL-7B capable of simultaneously 
addressing object detection and weather classification without 
sacrificing per-task accuracy. The negligible performance delta 
between single-task and multitask prompts confirms that the model’s 
adaptations are robust and free from cross-task degradation, validating 
the efficacy of our unified fine-tuning strategy in resource-
constrained settings.

4.6.2 Hyperparameter sensitivity analysis
According to the Unsloth documentation (Unsloth, 2025a), the 

primary fine-tuning hyperparameters are the learning rate and the 

number of training epochs. Unsloth recommends a learning rate in 
the range of 5 × 10−5 to 1 × 10−4 and 1 to 3 epochs, as extended 
schedules typically yield diminishing returns. In addition, two 
advanced hyperparameters of particular importance in this study are 
the LoRA rank (“r”) and LoRA Alpha (“lora_alpha”). Recommended 
values for r range from 4 to 128, with lora_alpha commonly set equal 
to r or 2·r.

In our default configuration, we fine-tuned each model using a 
learning rate of 5 × 10−5, 2 epochs, and r = lora_alpha = 32. For the 
ablation study, we systematically varied each parameter while keeping 
the others fixed at their default values. Specifically, the hyperparameter 
settings explored were as follows:

	•	 Learning rates: {5 × 10−5, 6 × 10−5, 7 × 10−5, 8 × 10−5, 9 × 10−5, 
1 × 10−4}

	•	 Epochs: {1, 2, 3}
	•	 LoRA rank and LoRA Alpha (set equal): {8, 16, 32, 64}

To assess the individual impact of each hyperparameter, 
we  conducted a series of controlled experiments, varying one 
parameter at a time while maintaining the others at their default 
settings (learning_rate = 5 × 10−5, num_train_epochs = 2, r = 32, 
lora_alpha = 32). Figures 11–13 present the results for mAP@50 
and F1 as each hyperparameter is swept through its 
recommended range.

First, we evaluated the effect of training for one, two, and three 
epochs. Across all eight LVLMs, a two-epoch schedule consistently 
maximized both object detection and weather classification F1 scores. 
For instance, Qwen2-VL-7B achieved its highest mAP@50 of 87.95% 
and F1 of 78.84% at two epochs, with slight decreases observed at 
three epochs. Smaller models, such as Qwen2-VL-2B and LLaVA-1.6, 
showed diminishing or plateauing returns beyond two epochs. These 
results support Unsloth’s guidance that one to three epochs are 
optimal, with two epochs providing the best trade-off between model 
adaptation and overfitting.

Next, we varied the LoRA adapter rank r (with r = lora_alpha) 
across {8, 16, 32, 64}. The performance of most models exhibited a 
clear maximum at r = 32, beyond which both mAP@50 and F1 scores 
declined. For example, Qwen2-VL-7B reached its highest mAP@50 of 
88.03% and F1 of 78.83% at r = 32, while lower ranks under-
parameterized the adapter and higher ranks introduced unnecessary 
capacity. These findings reinforce Unsloth’s recommendation that 
moderate adapter sizes (r between 4 and 128) are generally sufficient 
and highlight r = 32 as a robust default across a variety of 
LVLM architectures.

Finally, we  investigated the effect of varying the learning rate 
across {5 × 10−5, 6 × 10−5, 7 × 10−5, 8 × 10−5, 9 × 10−5, 1 × 10−4}. Most 
models achieved peak or near-peak performance at the lower end of 
this range. Qwen2-VL-7B attained its highest mAP@50 of 88.08% and 
F1 of 78.93% with a learning rate of 5 × 10−5, with performance 
gradually declining as the learning rate increased. Other architectures 
displayed similar trends, suggesting that conservative learning rates 
are crucial for stable adapter training in quantized settings. These 
observations validate the recommended learning rate of 5 × 10−5 and 
caution against more aggressive schedules.

Collectively, these results confirm that the default configuration 
(learning_rate = 5 × 10−5, num_train_epochs = 2, r = lora_alpha = 32) 
is near-optimal within Unsloth’s recommended hyperparameter 

TABLE 10  Performance of optimized Qwen2-VL-7B under multitask and 
single-task prompts.

Prompt 
type

mAP@50 
(%)

mAP@
[0.50:0.95] 

(%)

Accuracy 
(%)

F1 
(%)

Multitask 

prompt

88.03 74.20 84.54 78.83

Object 

detection 

prompt

88.12 74.21 – –

Weather 

classification 

prompt

– – 84.50 78.82

Bold values indicate the best performance in each evaluation metric.
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ranges, underscoring the stability and robustness of QLoRA fine-
tuning across diverse model backbones.

4.6.3 Enhancing inference speed through 
quantization methods

To mitigate the inference latency of the optimized Qwen2-VL-7B 
model, we investigated several quantization techniques, including FP8 
W8A8, GPTQ-Int8, GPTQ-Int4, and AWQ. The comparative results 
are reported in Table 11, which demonstrate that quantization can 
substantially accelerate inference while introducing only minimal 
accuracy degradation.

For example, GPTQ-Int4 reduced inference time from 360 s 
(non-quantized, ≈ 5 FPS) to 215 s (≈ 9 FPS), while maintaining strong 
detection accuracy (mAP@50 = 86.91%, mAP@[0.50:0.95] = 72.89%). 
Similarly, the AWQ method further improved efficiency, achieving 
212 s (≈ 9.4 FPS), albeit with a marginal decline in detection and 
classification performance. Both FP8 W8A8 and GPTQ-Int8 also 
offered balanced trade-offs between speed and accuracy, achieving 
notable speedups while preserving near-baseline accuracy levels.

Although quantization successfully narrows the performance gap, 
even the fastest quantized models remain considerably slower than 
traditional detectors such as YOLO and RT-DETR, which complete 

FIGURE 11

Effect of training epochs.
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inference on the same test set in under 21 s. This disparity underscores 
a persistent trade-off between model scale, latency and operational 
efficiency: while large-scale LVLMs such as Qwen2-VL-7B deliver 
superior multimodal accuracy, their parameter size inherently 
constrains real-time responsiveness.

Despite the slower inference speed, Qwen2-VL-7B offers 
multimodal and multitask capabilities unavailable to traditional 
detectors. Whereas YOLO and RT-DETR models are restricted to 
single-task object detection, the optimized Qwen2-VL-7B performs 
both object detection and weather classification simultaneously. For 
construction safety, this dual capability is critical: the model not only 
detects humans and heavy machinery but also classifies adverse 

weather conditions, allowing an autonomous excavator to halt 
operations under unsafe conditions.

4.7 Limitations and future scope

This study proposed a resource-efficient framework for fine-
tuning LVLMs to perform multitask visual recognition (object 
detection and weather classification) using excavator-mounted 
cameras, optimized for deployment on consumer-grade GPUs. 
We  systematically fine-tuned advanced open-source LVLMs—
including Llama-3.2-Vision, Qwen2-VL, Qwen2.5-VL, LLaVA-1.6, 

FIGURE 12

Effect of LoRA rank and LoRA alpha.
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FIGURE 13

Effect of learning rate.

TABLE 11  Performance evaluation of the quantization models.

Quantization 
method

Inference speed 
on the test set 

(seconds)

Object detection Weather classification

mAP@50 (%) mAP@[0.50:0.95] 
(%)

Accuracy (%) F1 (%)

Non quantization 360 88.03 74.20 84.54 78.83

FP8 W8A8 274 87.97 74.15 84.50 78.82

GPTQ-Int8 273 87.97 74.13 84.50 78.81

GPTQ-Int4 215 86.91 72.89 82.85 76.77

AWQ 212 86.88 72.87 82.84 76.79

Bold values indicate the best performance in each evaluation metric.
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and Gemma 3—for multitask visual recognition in autonomous 
excavator operations. By employing QLoRA through the Unsloth 
framework, our approach enabled complete fine-tuning of LVLMs on 
hardware constrained to 24 GB of GPU memory, significantly 
reducing both memory consumption and training time without 
compromising accuracy. The optimized Qwen2-VL-7B model 
demonstrated mAP@50 = 88.03% and F1 = 78.83% for object 
detection and weather classification, outperforming other LVLMs and 
state-of-the-art detectors (YOLOv11, YOLOv12, and RT-DETR). 
Furthermore, ablation studies confirmed the robustness of multitask 
performance and identified optimal hyperparameter configurations 
for low-VRAM fine-tuning. To our knowledge, this is among the first 
demonstrations of efficient LVLM-based multimodal perception for 
autonomous excavators, paving the way for real-time safety 
monitoring, pose estimation, activity tracking, and strategic planning 
on standard hardware.

Despite these contributions, several limitations remain. Firstly, 
this study relied on a single open-access dataset (Unmanned 
Operation Data in Construction Machinery dataset). Although it 
captures diverse viewpoints and weather conditions, it does not fully 
represent real-world construction environments. In particular, it lacks 
scenarios involving off-hour illumination, uncommon machinery 
types, and complex site clutter beyond dump trucks and excavators. 
Future work should expand to multi-site and multi-season datasets, 
as well as explore multi-view fusion and 3D localization, to enhance 
robustness and generalization.

Secondly, our weather taxonomy is limited to three categories: 
sunny, cloudy, and rainy. This choice was driven by the availability of 
consistent bounding-box annotations and metadata in the selected 
dataset, which supports reproducibility and direct comparison. 
Nevertheless, real-world operations often encounter a wider range of 
environmental conditions, including fog, snow, dust storms, and 
night-time scenarios. Although extensive pretraining of LVLMs on 
large-scale internet corpora may confer some generalization to these 
unseen weather scenarios, empirical validation is required. Future 
efforts should incorporate datasets that cover diverse weather types, 
apply generative augmentation techniques to simulate adverse 
conditions, and investigate complementary sensing modalities such as 
thermal imaging or LiDAR to enhance robustness in 
low-visibility settings.

Thirdly, the optimized Qwen2-VL-7B model exhibits degraded 
performance under severe imaging artifacts such as heavy occlusion, 
motion blur, and raindrop-induced lens distortions. As illustrated in 
Figure  10, pedestrians occluded by vehicles and objects with low 
contrast against overcast skies can be missed. These failure cases are 
safety critical when visibility is poorest. Mitigating such limitations 
will require dedicated preprocessing methods (for example, deblurring 
or rain-removal networks), adaptive confidence thresholds that 
account for environmental degradation, and multimodal sensor 
fusion to maintain detection reliability. Systematic benchmarking of 
these failure modes should guide the design of more resilient 
perception pipelines for deployment.

Fourthly, inference speed remains a critical bottleneck. The 
optimized Qwen2-VL-7B achieved ~5 FPS, which improved to ~9.4 
FPS after quantization. While this represents a 1.7 times acceleration, 
it remains slower than traditional detectors such as YOLO or 
RT-DETR (<21 s for the entire test set). This limitation can be partially 
mitigated by sensor fusion with motion data, but broader 

strategies—including pruning, knowledge distillation, and hardware-
aware optimization—are needed to meet the stringent latency 
demands of real-time safety-critical applications.

Fifthly, to ensure fair comparison under low-data conditions, all 
baseline detectors (YOLOv11/12 and RT-DETR) were trained on the 
same 1,000-image subset used to fine-tune the LVLMs. This controlled 
setup highlights the data efficiency of LVLMs and their ability to adapt 
with minimal task-specific data. However, it may underrepresent the 
absolute capabilities of traditional detectors, which are typically optimized 
on substantially larger datasets. Retraining these detectors on the full 
50,000-image obstacle-detection dataset (for example, using 40,000 
images for training and 10,000 for testing) would likely yield higher 
absolute accuracy. Therefore, future evaluations should compare models 
under both low-data and full-data regimes to more comprehensively 
characterize trade-offs between data efficiency and peak performance.

Finally, the current framework is limited to 2D bounding-box 
localization. More granular perception outputs, such as instance 
segmentation, 3D pose estimation, and dense depth prediction, are 
essential for fine-grained safety monitoring and closed-loop robotic 
control. Integrating depth sensors or stereo camera systems would 
enable 3D localization and segmentation, which in turn support safer 
and more precise control strategies. Additionally, the dataset contains 
posture and task sequence metadata that could be leveraged to fine-
tune LVLMs for extended tasks such as pose estimation, activity 
planning, and automated reporting. Exploring how LVLMs can 
support real-time reasoning for activity forecasting and human–
machine collaboration is another promising direction.

Beyond autonomous excavation, the proposed framework and 
methodology possess broader applicability across multiple industrial and 
safety-critical domains that require multimodal situational awareness. The 
resource-efficient fine-tuning pipeline demonstrated here—combining 
QLoRA-based adaptation, quantized deployment, and multitask 
prompting—can be extended to other fields such as autonomous driving, 
warehouse robotics, manufacturing inspection, mining operations, and 
maritime logistics. In these environments, similar challenges arise: 
heterogeneous sensor inputs, adverse lighting and weather conditions, 
limited on-edge computational resources, and the need for reliable 
perception under uncertainty. The ability to fine-tune LVLMs on 
constrained hardware while retaining high task accuracy enables scalable 
deployment in settings where traditional heavy-compute models are 
impractical. Furthermore, the multitask architecture that jointly performs 
detection and environmental classification can be generalized to other 
compound perception tasks—such as traffic-scene understanding (object 
and road-condition recognition), industrial inspection (defect and 
surface-quality assessment), or disaster response (victim and hazard 
detection). This generalization underscores that the proposed framework 
is not confined to excavator operations but contributes a transferable 
foundation for cost-efficient multimodal AI in diverse domains requiring 
robust perception, reasoning, and real-time decision-making.

5 Conclusion

In this study, we systematically fine-tuned advanced open-source 
LVLMs—including Llama-3.2-Vision, Qwen2-VL, Qwen2.5-VL, 
LLaVA-1.6, and Gemma 3—for multitask visual recognition in 
autonomous excavator operations. By employing QLoRA through the 
Unsloth framework, our approach enabled complete fine-tuning of 
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LVLMs on hardware constrained to 24 GB of GPU memory, 
significantly reducing both memory consumption and training time 
without compromising accuracy. The optimized Qwen2-VL-7B model 
achieved superior performance over other LVLMs in both object 
detection and weather classification tasks, with mAP@50 of 88.03%, 
mAP@[0.50:0.95] of 74.20%, accuracy of 84.54%, and F1 score of 
78.83%. Additionally, this model outperformed recent advanced 
traditional object detection models—including YOLOv11s, 
YOLOv11m, YOLOv12s, YOLOv12m, RT-DETR-L, and 
RT-DETR-X—in object detection accuracy. Our fine-tuned Qwen2-
VL-7B illustrates the feasibility of deploying LVLM-based multimodal 
AI agent in consumer-grade hardware for a wide range of applications 
in construction site automation.
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