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Recent advances in large vision-language models (LVLMs) have transformed visual
recognition research by enabling multimodal integration of images, text, and videos.
This fusion supports a deeper and more context-aware understanding of visual
environments. However, the application of LVLMs to multitask visual recognition in
real-world construction scenarios remains underexplored. In this study, we present
a resource-efficient framework for fine-tuning LVLMs tailored to autonomous
excavator operations, with a focus on robust detection of humans and obstacles,
as well as classification of weather conditions on consumer-grade hardware. By
leveraging Quantized Low-Rank Adaptation (QLoRA) in conjunction with the Unsloth
framework, our method substantially reduces memory consumption and accelerates
fine-tuning compared with conventional approaches. We comprehensively evaluate
a domain-specific excavator-vision dataset using five open-source LVLMs. These
include Llama-3.2-Vision, Qwen2-VL, Qwen2.5-VL, LLaVA-1.6, and Gemma 3.
Each model is fine-tuned on 1,000 annotated frames and tested on 2000 images.
Experimental results demonstrate significant improvements in both object detection
and weather classification, with Qwen2-VL-7B achieving an mAP@50 of 88.03%,
mAP@[0.50:0.95] of 74.20%, accuracy of 84.54%, and F1 score of 78.83%. Our fine-
tuned Qwen2-VL-7B model not only detects humans and obstacles robustly but
also classifies weather accurately. These results illustrate the feasibility of deploying
LVLM-based multimodal Al agents for safety monitoring, pose estimation, activity
tracking, and strategic planning in autonomous excavator operations.

KEYWORDS

autonomous construction equipment, large vision-language model, multimodal
learning, object detection, Quantized Low-Rank Adaptation

1 Introduction

The widespread adoption of robotics powered by artificial intelligence (AI) is anticipated
to profoundly transform the landscape of the Architecture, Engineering, and Construction
(AEC) sector (Baduge et al., 2022). The deployment of robotic technologies within construction
processes yields multiple advantages, including the reduction of workplace injuries, the
automation of routine or labor-intensive activities, and the ability to operate efficiently in
hazardous or inaccessible environments, such as in disaster-response operations or off-Earth
construction scenarios (Melenbrink et al., 2020). Significant investments from academic and
industrial stakeholders have facilitated the advancement of autonomous robotics, equipping
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these systems to perform numerous construction-related activities,
ranging from assembling structures and conducting additive
manufacturing to executing finishing tasks (Melenbrink et al., 2020).

Advanced computer vision is a core component of intelligent
robotic platforms, supporting accurate interpretation and navigation
of complex site environments. Within construction contexts, on-site
items can be categorized into permanent structural elements and
temporary resources (Teizer, 2015). Unlike structural components,
temporary objects—such as construction materials, equipment, and
tools—are frequently repositioned or removed by personnel to
accommodate evolving project requirements over short timeframes.
Accurate visual identification and contextual understanding of these
temporary resources are essential for enabling automated workflows
and optimizing operational control. For instance, material handling
robots equipped with automated pick-and-place functions must
reliably distinguish and locate specific materials among visually
cluttered and dynamic site conditions. This perceptual capability,
particularly regarding temporary construction assets, directly
influences safety, operational quality, productivity, and overall project
profitability. Notably, the capacity to detect and analyze human
interactions with construction resources enables real-time tracking of
work progress and proactive identification of safety risks on active
sites (Paneru and Jeelani, 2021).

Visual recognition of temporary objects by robots involves
systematically classifying items captured through digital imaging
technologies. At the core of this procedure lies object detection—a
primary function within computer vision—which classifies items into
predetermined categories by analyzing attributes such as spectral
characteristics, geometric configurations, textural patterns, and spatial
correlations among pixels (Wu et al., 2020). Over the past few years,
deep learning-based models have consistently demonstrated superior
performance in image classification and various associated computer
vision tasks (Luo et al, 2023). However, despite their strong
performance on standard benchmark datasets, conventional computer
vision approaches necessitate extensive annotated image collections
to achieve effective neural network training. Constructing
comprehensive and high-fidelity annotated datasets constitutes a
primary limitation to the widespread deployment of deep learning-
based computer vision technologies in real-world settings (Paneru and
Jeelani, 2021). Furthermore, most existing research applying
traditional deep learning frameworks to construction environments
focuses on single-task applications. While single-task computer vision
methods can offer valuable insights, they often fall short in capturing
the intricate, rapidly evolving nature of construction sites. In contrast,
multitask visual approaches hold the potential to deliver a more
comprehensive and adaptive understanding of the complex dynamics
inherent to construction operations.

Deploying data-driven methodologies for identifying temporary
objects within construction environments introduces several
prominent challenges. Firstly, datasets specific to the construction
domain are frequently constrained in size and availability, with data
sharing often restricted by privacy and proprietary concerns. This
scarcity of comprehensive datasets impedes the development of
models that can generalize across diverse temporary object types and
site conditions. Secondly, the manual effort and cost required to
annotate data from construction sites are substantial, complicating the
creation of large-scale datasets tailored to unique project environments
and thereby hindering smooth workflow integration (Teizer, 2015).
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Thirdly, construction sites are characterized by constantly changing
object locations and frequent spatial-temporal variability (Paneru and
Jeelani, 2021). Given the limited generalization capacity of most
neural network models, reliably identifying novel or previously
unseen objects across all phases of construction projects remains a
significant hurdle. Consequently, there is a growing preference for
computer vision methods that require fewer labeled samples and
reduced training time, particularly in the context of
construction automation.

Addressing the shortcomings of traditional deep learning
frameworks, the recent advances in large vision-language models
(LVLMs) represent a significant advancement in visual recognition
research. Unlike earlier models that rely solely on visual input,
multimodal LVLMs process and integrate information from images,
textual descriptions, and videos, leading to a deeper and more context-
aware understanding of visual content (Jiao et al., 2024; Rouhi et al.,
2025). These advanced models are designed to connect visual analysis
with linguistic comprehension. As a result, they not only identify
objects but also generate descriptive narratives and respond to
context-based queries. This multitask capability enables LVLMs to
assess objects based on both their visual properties and their
contextual relationships (Sapkota et al., 2025b, 2025¢). Importantly,
LVLMs enable zero-shot learning and few-shot learning, allowing
them to identify unseen object classes (Luo et al., 2023; Tang et al.,
2024; Sapkota et al., 2025a). Additionally, LVLMs are notable for their
operational efficiency, often achieving real-time inference and high
accuracy with lower computational demands, making them well-
suited for time-sensitive applications (Rouhi et al., 2025; Zang et al.,
2025). Despite these significant advantages, practical applications of
LVLMs for visual recognition in construction settings remain
relatively unexplored.

To address this research gap, the present study focuses on adapting
and optimizing LVLMs for multitask visual recognition in autonomous
excavator operations. A primary objective is to identify models that
can be efficiently deployed on hardware limited to 24 GB of VRAM,
preferably on consumer-grade GPUs, to minimize both computational
costs and data privacy risks. We employed the Unsloth framework
(Unsloth, 2025a, 2025b) to fine-tune several advanced open-source
LVLMs—including Llama-3.2-Vision (Meta, 2024b), Qwen2.5-VL
(Bai et al,, 2025), Qwen2-VL (Wang et al., 2024), LLaVA-1.6 (Liu,
2025), and Gemma-3 (Team et al., 2025)—using a single NVIDIA
RTX 4090 GPU. The Unsloth approach offers substantial performance
gains, enabling fine-tuning at twice the speed of the standard
Transformers library, while reducing memory usage by 70% without
loss of predictive accuracy.

For fine-tuning, we extracted a subset of 3,000 images from an
open-access dataset on AI-Hub (2024), containing annotated
object detection data from excavator perspectives. Owing to the
comprehensive pre-training of LVLMs on diverse object
categories, 1,000 images were used for fine-tuning, with the
remaining 2000 images reserved for evaluation. Notably, the
dataset includes both bounding box annotations and
supplementary metadata, such as weather conditions and ground
type. Exploiting the multimodal capabilities of LVLMs, we jointly
fine-tuned the models to classify weather conditions alongside
performing object detection. The best-performing model was
selected based on its accuracy in automated detection of obstacles
and humans, as well as real-time weather classification. The
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outcomes of this research underscore the considerable potential
of LVLMs for object detection and classification in autonomous
construction machinery, such as excavators. This work thus
establishes a pathway toward multimodal AI agents that support
essential operational domains, including safety monitoring, pose
estimation, activity tracking, and strategic planning in
autonomous excavation contexts.
contributions of this

The essential investigation are

enumerated below:

o This work is one of the first systematic efforts to adapt advanced
open-source LVLMs—including Llama-3.2-Vision, Qwen2-VL,
Qwen2.5-VL, LLaVA-1.6, and Gemma 3—for multitask visual
recognition in autonomous excavator operations.

Utilizing the Unsloth framework, our approach enabled full fine-
tuning of LVLMs on hardware limited to 24 GB GPU], reducing
GPU memory consumption and training time without
compromising accuracy.

o By leveraging rich annotation metadata of the dataset and
extensive pre-training of LVLMs, we jointly fine-tuned the
LVLMs to perform both object detection and weather
classification on a training set of 1,000 images, demonstrating
LVLMS’ robust multimodal capability.

The resulting model achieved reliable detection of humans and

obstacle objects, along with accurate weather classification,
illustrating the feasibility of deploying LVLM-based multimodal
AT agents for a variety of functions such as safety monitoring,
pose estimation, activity tracking, and strategic planning for
autonomous excavation contexts.

The subsequent sections of this paper are organized as follows.
Section 2 surveys prior work on LVLM applications in construction.
Section 3 details the proposed methodological framework,
encompassing the data preprocessing approach, LVLM architecture,
strategies for prompt engineering, fine-tuning procedures, and the
evaluation metrics. In section 4, we report and analyze the
experimental outcomes, with particular attention to ablation
experiments. Section 5 reviews the shortcomings of the proposed
framework and delineates future research directions.

2 Literature review

The construction sector has rapidly emerged as a compelling
domain for the application of LVLMs (Jung et al., 2024; Wang et al.,
2025). These models are uniquely positioned to process unstructured
textual and multimodal data, including both visual and semantic
inputs (Huang et al., 2024). They generate context-aware outputs
(Zhou et al., 2025) and learn from large, heterogeneous datasets (Gil
and Lee, 2024). As a result, LVLMs offer transformative potential for
augmenting human decision-making (Zheng and Fischer, 2023; Gao
et al,, 2025; Qian and Shi, 2025), automating information-intensive
tasks (Zheng and Fischer, 2023; Jung et al., 2024; Xu et al., 2024), and
driving innovation across all stages of the construction lifecycle
(Preuss et al., 2024). Since their introduction, the adoption of LVLMs
has accelerated across diverse construction domains, including safety
monitoring (Chen et al., 2024; Estévao, 2024; Gil and Lee, 2024; Yong
et al., 2024; Cai et al., 2025; Tsai et al., 2025), legal and compliance
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oversight, as well as construction planning and control (Chen et al.,
2023; Hsu et al., 2024; Jung et al., 2024; Xiao et al., 2024).

LVLM-based approaches are increasingly employed for visual
safety monitoring tasks. These include personal protective equipment
(PPE) detection (Gil and Lee, 2024), identification of safety violations
such as falls or explosions (Tsai et al., 2025), ergonomic risk assessment
through explainable image captioning (Yong et al., 2024), and post-
earthquake structural damage classification (Estévao, 2024). Advanced
techniques such as open-set object detection (Cai et al., 2025) and
real-time image captioning integrated with augmented reality (Chen
et al., 2024) further enhance the ability to derive actionable safety
insights on-site.

In the realm of legal and compliance management, LVLMs have
facilitated visual regulatory processes such as automated inspection
data collection and reporting (Pu et al., 2024a, 2024b; Wen and Chen,
2024), as well as visual question answering for bridge inspection
(Kunlamai et al., 2024). Additional applications include defect
detection using image-based models (Yong et al., 2023) and flood
compliance assessment through Lowest Floor Elevation (LFE)
estimation (Ho et al., 2025). These examples further illustrate how
vision-language models support data-driven regulatory oversight in
visually intensive construction contexts.

LVLMs have also demonstrated considerable utility in
construction planning and control (Aramali et al., 2024), streamlining
critical project management tasks. Multiple studies have shown that
these models can automate the generation of daily construction
reports by integrating multimodal data sources, such as site videos and
vision-language models (Jung et al., 2024; Xiao et al., 2024). They have
also been applied to classify construction activities via zero-shot
learning (Chen et al., 2023) and to interpret visual construction scenes
according to standardized classification systems such as UniFormat
(Hsu et al, 2024). Collectively, these innovations enable more
intelligent, efficient, and data-driven construction planning and
progress reporting. A summary of prior studies applying LVLMs in
the construction sector is provided in Table 1.

Despite their promise, the effective application of LVLMs in
construction remains challenged by several key limitations. Most
pre-trained models are developed using general-purpose datasets,
which often constrain their performance in domain-specific tasks
(Wong et al., 2024; Jeon and Lee, 2025; Liu and Chou, 2025; Wu et al.,
2025). Consequently, adaptation strategies such as fine-tuning (Yao
and de Garcia Soto, 2024), prompt engineering (Yong et al., 2023), and
retrieval-augmented approaches (Wu et al., 2025) are required to align
these models with the specific requirements of construction-related
tasks. This need is further exacerbated by the scarcity and
fragmentation of high-quality, construction-specific datasets (Chen
etal., 2023), which makes domain adaptation particularly challenging.
Moreover, data privacy concerns add complexity, as the use of sensitive
and proprietary project information can conflict with the opaque data
handling practices of many commercial large language model (LLM)
platforms (Jeon and Lee, 2025).

To address these challenges, the present study investigates the
deployment and fine-tuning of LVLMs for a novel, domain-specific
application: autonomous excavator vision. In contrast to prior work
that has primarily focused on general-purpose benchmarks or
non-specialized construction tasks, our research targets the
simultaneous detection of dynamic, temporary objects such as
humans, dump trucks, and excavators, along with classification of
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TABLE 1 Applications of LVLMs in the construction sector.

LVLM applied
task

Safety monitoring

Purpose

Safety violations (e.g.,
falls, PPE non-
compliance, explosions)
monitoring; ergonomic
risk detection; and
deliver accurate and
context-aware safety-
critical guidance;

Building damage analysis

Studies

Chen et al. (2024),
Estévao (2024), Gil and
Lee (2024), Yong et al.
(2024), Cai et al.
(2025), and Tsai et al.

(2025)

Legal and compliance

oversight

Automated inspection
data collection and
report generation;
Classifying and detecting
building defects

Yong et al. (2023),
Kunlamai et al. (2024),
Pu et al. (2024a,
2024b), Wen and Chen
(2024), and Ho et al.
(2025)

Construction planning

and control

Automated generation of
daily construction
reports; Automatic

construction activities

Chen et al. (2023), Hsu
etal. (2024), Jung et al.
(2024), and Xiao et al.
(2024)

environmental conditions directly from the excavator’s visual field.
The principal objective is to identify LVLM architectures that can
be efficiently trained and deployed on resource-constrained hardware,
thereby enhancing both cost efficiency and data sovereignty. Utilizing
an open dataset tailored for autonomous construction equipment,
we systematically fine-tuned several state-of-the-art, open-source
LVLMs, including Llama-3.2-Vision, Qwen2.5-VL, Qwen2-VL,
LLaVA-1.6, and Gemma 3, and rigorously benchmarked their
performance on multitask perception. The findings of this study are
expected to advance the integration of LVLMs into construction
robotics. This provides a foundation for the development of robust,
privacy-preserving, and cost-effective Al agents in autonomous
excavators, capable real-world,

of operating in safety-

critical environments.

3 Proposed framework

In this paper, we propose and evaluate a comprehensive
framework for the deployment and fine-tuning of advanced open-
source LVLMs for object detection of humans and obstacles. Our
approach additionally enables accurate weather classification using
images captured from excavator-mounted cameras operating on active
construction sites. As illustrated in Figure 1, the proposed framework
consists of four systematic stages: data preprocessing, prompt
engineering, model fine-tuning, and performance evaluation. These
stages collectively serve to identify the optimal LVLM for the target
application. The selected model must not only achieve high accuracy
in detection and classification tasks but also be deployable and fine-
tunable on hardware with a maximum of 24 GB of GPU memory. This
approach ensures both cost-effective computation and enhanced data
privacy. Our framework represents the first demonstration of
multimodal LVLM deployment in autonomous excavator vision under
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GPU memory constraints, thereby advancing the practical application
of Al in autonomous construction machinery.

3.1 Dataset and data preprocessing

3.1.1 Data source

This study utilized the open-access dataset titled “Unmanned
Operation Data in Construction Machinery,” provided by Al-Hub
(2024). The dataset was specifically curated to support research and
development efforts related to Al-based autonomous construction
machinery, including excavators and rollers, with the aim of enabling
such equipment to independently plan and execute work processes.
Data acquisition was accomplished through a combination of
internally and externally mounted cameras, operational information
obtained via the Telematics System (TMS) terminal, and posture
information recorded by Machine Guidance (MG) and Machine
Control (MC) systems. All data streams were synchronized using the
Robot Operating System (ROS) framework. The entire dataset
comprises approximately 1,200,000 raw and annotated data, which are
categorized into four primary groups: (1) construction equipment
work-zone image data, (2) construction equipment posture sensor
data, (3) construction equipment TMS data, and (4) expert work order
labeling, which includes both upper and lower task hierarchies. The
data distribution for the entire dataset is summarized in Table 2.

For the purposes of this study, our research focused on the visual
recognition task utilizing the visual data captured from excavator
operations in construction environments. Accordingly, the excavator
obstacle-detection subset was selected, which consists of 50,000
images and the corresponding annotation files. Within this subset, two
primary object classes are annotated: “Human” and “Obstacle” The
“Human” class encompasses all individuals present in the scene,
including both field workers and equipment operators. The “Obstacle”
class is defined as any excavator or dump truck present within the
cameras field of view, excluding the self-vehicle itself (the camera-
equipped excavator). In terms of weather state, there are 3 conditions
including sunny, cloudy, and rainy.

To leverage the extensive pre-training of LVLMs on diverse object
categories, we only used a subset of 3,000 images, which were
randomly extracted from the 50,000 images of obstacle detection data.
Of these, 1,000 images were utilized for model training, and 2000
images were reserved for test set. Due to the strong foundational
capabilities of LVLMs gained from large-scale multimodal pretraining,
we hypothesized that only a small, targeted dataset (1,000 annotated
frames) would be sufficient for effective domain adaptation in
construction scenarios. This choice also reflects real-world constraints,
where large-scale manual annotation is often impractical in
field robotics.

All images have a width of 1,280 pixels and a height of 720 pixels.
The associated annotation data are formatted according to the COCO
annotation style (Lin et al., 2014). The distribution of objects and
weather conditions in each training and validation dataset is described
in Table 3.

3.1.2 Data preprocessing

The open-source LVLMs utilized in this study require specific
input image resolutions. For example, the Llama-3.2-Vision model
supports a maximum input size of 1,120 x 1,120 pixels, while the
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Step 2: Prompt engineering

You are an autonomous excavator operating on a live construction
site. Please output the location of any person (label as Human) and
any dump truck or excavator (label as Obstacle, except yourself) in
your vision by giving their bounding box coordinates. In addition,
determine the current weather condition from these options:
"Sunny", "Cloudy", or "Rainy". Reply only in JSON annotation
format as the following structure:

JSON Output:

"objects": [

"label": "<label>",
"bbox": [<x_min>, <y_min>,
<x_max>, <y_max>]

b

"objects": [

"weather": "<current weather
condition>"

¥

"label": "<label>", —
"bbox": [<x_min>, <y_min>, <x_max>, <y_max>]

b

N
"weather": "<current weather condition>"

}

Make sure to normalize the bounding box coordinates to the range

(l]based on the image dimensions. The coordinates should be in Step 3: QLoRA Fine-tuning

Step 4: Evaluation
* F1

* Accuracy
* MAP@IOU

the format [x_min, y_min, X_max, y_max]. If there are no objects
detected, return an empty ‘objects’ list.

Optimal
- model

Step1: Data preprocessing

FIGURE 1
Overview of the proposed framework.

TABLE 2 Data distribution for the entire dataset. LLaVA-1.6 model accepts three distinct input sizes: 672 x 672,
] 336 x 1,344, and 1,344 x 336 pixels. To ensure consistency and
Machine type Data category Number of bil del ﬁ . forml ,Y J
e comparability across models, all images were uniformly resized to
640 x 360 pixels prior to model input.
Excavat Obstacle detection dat 50,000 S . . .
xcavator stacie detection dafa The original images, which have a native resolution of 1,280 x 720
Work-zone image data 150,000 pixels, are annotated using the COCO format. In this format, each
Task sequence data 150,000 bounding box is defined by [x,y,width,height] . However, all LVLMs
(internal) selected for this study output bounding boxes in the
Task sequence data 150,000 [Xmin> Ymin>¥max> Ymax] ~ format (see Section 3.2, Prompt
(external) Engineering). To ensure compatibility with the LVLMs’ requirements,
the original COCO annotations were converted to the corner
Posture information data 150,000 . .
coordinates format, where Xnin =X, Ymin = ¥> Xmax = X + width, and
Operational information 150,000 Ymin = ¥ +width. To maintain consistency regardless of image size,
data the bounding box coordinates were normalized to the range [0, 1] by
Roller Work-zone image data 100,000 dividing the x-coordinates by the original image width (1280) and the
Task sequence data 100,000 y-coordinates by the original image height (720). Given bounding box
(internal) coordinates [Xmin> ¥min>¥max> Ymax] and image dimensions (W,H ),
Task sequence data 100,000 normalization is performed as shown in Equations 1-4:
(external)
Posture information data 100,000 x' R Xmin (1)
min W
Operational information 100,000
data
Total 1,200,000 y;nin = 2min 2)
H
sy = Xmax (3)
TABLE 3 Object and weather statistics of the training and validation sets. max — W
Dataset Human Obstacle Sunny Cloudy Rainy
Training 345 1,100 150 599 251 ‘
! _ )’ max ( 4)
Validation 1,323 2,431 35 1,398 567 ‘ Ymax = H
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This scales all coordinates into the range [0,1]. This normalization
was performed before image resizing to preserve the relative
proportions of the bounding boxes independent of the final input
resolution (640 x 360).

For the purposes of this study, annotation data were processed
as follows:

« First, each bounding box was converted from COCO format

[2,y,width,height] to corner coordinates [Xmin > Ymin>Xmax> Ymax ]

using the relationships defined above.

Second, the corner coordinates were normalized to the range [0,

1] by dividing the x values by 1,280 and the y values by 720. This

step was carried out prior to resizing the images.

o Third, each annotation record was filtered to retain only the
information relevant for downstream tasks: (i) the object class
label (i.e., “Human” or “Obstacle”), (ii) the normalized bounding
box coordinates [x;nin, y;nin,x;nax, y;nax] , and (iii) the weather
condition associated with each image. All other fields, such as
crowd indicators and low-level sensor data, were excluded from
the processed dataset.

An illustrative example of the processed annotation data is
provided in Figure 2.

3.2 Large vision-language models

3.2.1 Llama-3.2-Vision

Llama-3.2-Vision represents a significant advancement in
multimodal LLM, building upon the robust foundation of Llama-3.1
text-only models through a sophisticated architectural integration
approach (Meta, 2024b). The model employs an auto-regressive
language model architecture based on an optimized transformer
framework, with the vision-enabled variants available in 11B and 90B
parameter configurations. Rather than developing a multimodal
system from scratch, Meta adopted a strategic approach of extending
the proven Llama-3.1 architecture with specialized vision capabilities,
ensuring compatibility while leveraging
competencies (Meta, 2024a, 2024b).

The architectural design philosophy centers on maintaining the

existing linguistic

integrity of the pre-trained language model while introducing vision
processing capabilities through a separately trained vision adapter
system. This approach enables drop-in compatibility with existing
Llama-3.1 deployments while providing comprehensive multimodal
functionality. The models support a context length of up to 128,000

10.3389/frai.2025.1681277

tokens and incorporate Grouped Query Attention (GQA) mechanisms
for enhanced inference efficiency (Grattafiori et al., 2024; Meta,
2024a, 2024b).

(a) Vision encoder architecture

The vision processing pipeline in Llama-3.2-Vision is
implemented through a sophisticated encoder system that combines
established computer vision techniques with novel integration
mechanisms. The vision encoder architecture incorporates a CLIP-
based image model as its foundation, augmented with additional
projection head fusion modules for optimal feature extraction. The
system processes images through spatial positional encodings and
employs a multi-stage feature extraction approach that converts visual
input into token representations compatible with the language model.

The encoder supports image inputs up to 1,120 x 1,120 pixels and
handles multiple image formats including GIF, JPEG, PNG, and
WEBP. For images exceeding maximum resolution, the system
implements automatic scaling to maintain processing efficiency while
preserving visual information quality. The architecture incorporates
tile-based processing for high-resolution images, with support for up
to four tiles per image to capture detailed visual information.

(b) Cross-attention integration mechanism

The core innovation of Llama-3.2-Vision lies in its cross-attention
mechanism that enables seamless integration between visual and textual
modalities. The vision adapter consists of a series of cross-attention layers
specifically designed to feed image encoder representations into the core
language model architecture. This cross-attention system allows
bidirectional information flow between visual features and textual
representations, enabling sophisticated multimodal reasoning capabilities.

The cross-attention layers employ a key-value (KV) cache
structure where image tokens are processed through cross-attention
computations alongside text tokens. However, research (Lee et al.,
2025) has identified that the KV cache size for image tokens in cross-
attention layers significantly exceeds that of text tokens in self-
attention layers, creating computational bottlenecks during inference.
To address this challenge, Llama-3.2-Vision’s architecture incorporates
sparse attention patterns that can be leveraged for efficient visual
token reduction while maintaining performance.

3.2.2 Qwen large vision-language models
The Qwen vision-language model series represents a significant
advancement in multimodal artificial intelligence, with Qwen2-VL

{
"objects": [
{ "label":
{ "label":
1,

"weather": "Sunny"

"Human",

}

FIGURE 2
An example of annotation data after processing.

"Obstacle", "bbox": [0.13, .00, 0.4501, 0.1581] },
"bbox": [0.2282, 0.00, 0.2620, 0.1640] }
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and Qwen2.5-VL demonstrating substantial architectural
improvements over their predecessors (Wang et al., 2024; Bai et al.,
2025). The foundational architecture employs a transformer-based
framework that integrates vision encoding capabilities with LLM
functionality, enabling sophisticated multimodal reasoning and
understanding. The architectural design philosophy centers on
maintaining the robustness of pre-trained language models while
introducing specialized vision processing components through
carefully engineered integration mechanisms (Qwen, 2024).

The core architectural paradigm follows a modular approach
consisting of three primary components: a vision encoder based on
Vision Transformer (ViT) architecture, a multimodal language model
decoder, and sophisticated projection mechanisms that facilitate
cross-modal alignment (Wang et al.,, 2024). This design enables
seamless processing of both static images and dynamic video content
within a unified framework, supporting diverse visual understanding
tasks

document analysis.

including object detection, visual reasoning, and

3.2.2.1 Qwen2-VL architecture
(a) Vision encoder architecture

Qwen2-VL implements sophisticated vision encoder architecture
utilizing a ViT with approximately 600 million parameters, designed
to handle both image and video inputs seamlessly. The encoder
incorporates a revolutionary Naive Dynamic Resolution mechanism
that processes images of arbitrary resolutions by dynamically mapping
them into variable numbers of visual tokens (Wang et al., 2024). This
approach eliminates the traditional constraint of predetermined input
resolutions, allowing the model to preserve fine-grained visual
information that would otherwise be lost through conventional
resizing operations.

The vision encoder processes images through a patch-based
tokenization scheme, where images are divided into patches and
converted into visual tokens that can be processed alongside textual
tokens in the unified transformer architecture. The dynamic resolution
capability enables the model to generate between 4 and 16,384 visual
tokens per image, depending on the input resolution and content
complexity. This flexibility is particularly advantageous for object
detection applications, where preserving spatial detail and object
boundaries is crucial for accurate localization performance.

(b) Multimodal rotary position embedding (M-RoPE)

A critical architectural innovation in Qwen2-VL is the
implementation of Multimodal Rotary Position Embedding
(M-RoPE), which extends traditional rotary position embedding to
accommodate multimodal inputs (Qwen, 2024; Wang et al., 2024).
M-RoPE decomposes positional information into three distinct
components: temporal, spatial height, and spatial width dimensions,
enabling the model to capture 1D textual, 2D visual, and 3D video
positional relationships simultaneously. This enhanced positional
encoding mechanism facilitates improved spatial reasoning
capabilities essential for object detection tasks, where precise spatial
relationships between visual elements must be maintained.

The M-RoPE implementation allows the language model to
concurrently process and integrate positional information across
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different modalities without losing the inherent spatial and temporal
relationships present in the input data. For fine-tuning applications in
object detection, this capability ensures that spatial coordinates and
object boundaries are accurately preserved throughout the
processing pipeline.

3.2.2.2 Qwen2.5-VL architecture
(a) Enhanced vision encoder with window attention

Qwen2.5-VL introduces significant architectural refinements over
its predecessor, most notably through the implementation of a
redesigned ViT that incorporates window attention mechanisms (Bai
et al., 2025; Qwen, 2025). The enhanced vision encoder utilizes a
native dynamic-resolution ViT trained from scratch, featuring
strategic implementation of window attention to achieve linear
computational scaling with respect to the number of image patches.
This optimization addresses the quadratic complexity limitations of
traditional self-attention mechanisms while maintaining native
resolution processing capabilities (Bai et al., 2025).

The vision encoder architecture employs window attention in
most transformer layers, with only four layers utilizing full self-
attention mechanisms. The window attention implementation uses a
maximum window size of 112 x 112 pixels, corresponding to 8 x 8
patches, which optimizes the balance between computational
efficiency and receptive field coverage (Bai et al., 2025). This design
choice is particularly beneficial for object detection applications,
where computational efficiency during inference is critical for real-
time performance.

(b) Advanced positional encoding and temporal processing

Qwen2.5-VL extends the multimodal positional encoding
framework through enhanced M-RoPE alignment to absolute time,
enabling sophisticated temporal sequence learning for video
understanding (Bai et al., 2025). The upgraded M-RoPE mechanism
aligns positional embeddings with absolute timestamps, facilitating
consistent temporal alignment across videos with varying frame rates.
This temporal encoding capability supports dynamic FPS sampling,
allowing the model to comprehend video content at various sampling
rates while maintaining temporal coherence.

The architectural enhancement includes native support for
processing images with varying heights and widths, where input
dimensions are resized to multiples of 28 pixels and subsequently
divided into patches with a stride of 14 pixels. The sophisticated
temporal processing capabilities enable the model to handle extended
video sequences lasting multiple hours while providing second-level
event localization accuracy.

(c) Vision-language integration architecture

The Qwen2.5-VL architecture incorporates a multi-layer
perceptron (MLP)-based vision-language merger that addresses
efficiency challenges associated with long visual feature sequences (Bai
etal., 2025). This merger employs a two-layer MLP to compress visual
features by grouping spatially adjacent patch features, concatenating
them, and projecting the result into dimensions aligned with the
language model’s text embeddings. The compression mechanism
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reduces computational overhead while preserving essential visual
information required for downstream tasks.

The language model component is initialized with pre-trained
weights from Qwen2.5 LLM, with the traditional 1D RoPE replaced
by M-RoPE aligned to absolute time. The ViT architecture
and RMSNorm
normalization, aligning the vision encoder structure with the Qwen2.5

incorporates SwiGLU activation functions

LLM architecture for improved integration.

3.2.3 LLaVA-1.6

LLaVA-1.6, also known as LLaVA-NeXT, represents a significant
architectural advancement in large multimodal models, building upon
the established foundation of LLaVA-1.5 while introducing critical
enhancements for improved visual understanding and reasoning
capabilities (Liu, 2025). The architecture maintains the core design
philosophy of connecting pre-trained vision encoders with large
language models through a simple yet effective projection mechanism,
while introducing sophisticated improvements to handle higher
resolution inputs and enhanced multimodal reasoning. The model
employs an auto-regressive language model architecture based on the
transformer framework, with vision-enabled variants available in 7B,
13B, and 34B parameter configurations that support various base
language models including Vicuna, Mistral-7B, and Nous-Hermes-2-
Yi-34B (LLaVa-NeXT - a llava-hf Collection, 2025).

(a) Vision encoder architecture and dynamic resolution processing

LLaVA-1.6 implements a sophisticated vision encoder architecture
utilizing the pre-trained CLIP visual encoder ViT-L/14-336px as its
foundation, which provides robust visual feature extraction
capabilities (LinChen, 2025). The vision encoder incorporates
approximately 303.5 million parameters across all model variants,
maintaining consistency in visual processing capacity while scaling
the language model components. The encoder processes visual inputs
through a patch-based tokenization scheme that converts images into
visual tokens compatible with the unified transformer architecture
(Liu, 2025).

The most significant architectural innovation in LLaVA-1.6 is the
implementation of the Any Resolution (AnyRes) technique, which
enables dynamic processing of high-resolution images up to 4 times
more pixels than previous versions (Liu, 2025). The AnyRes technique
supports three aspect ratios with resolutions up to 672 x 672,
336 x 1,344, and 1,344 x 336 pixels, allowing the model to grasp
significantly more visual details. This dynamic resolution capability
employs a grid configuration of {2x2, 1x{2,3,4}, {2,3,4} x 1},
balancing performance efficiency with operational costs while
preserving fine-grained visual information.

The AnyRes implementation naturally represents high-resolution
images into multiple smaller images that the pre-trained ViT can
process effectively, forming them into a concatenated sequence. This
technique addresses the traditional constraint of predetermined input
resolutions by dynamically mapping images of arbitrary resolutions
into variable numbers of visual tokens. The approach eliminates the
need for image preprocessing and resizing, preserving original spatial
crucial for accurate localization and

relationships object

detection tasks.

(b) MLP-based vision-language connector
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LLaVA-1.6 utilizes a sophisticated MLP vision-language connector
that enhances the integration between visual and textual modalities
(LinChen, 2025; Liu, 2025). The connector employs a two-layer MLP
with GELU activation functions, replacing the simpler linear
projection used in earlier versions. The connector parameters vary
across model sizes, with 21 M parameters for the 7B model, 31.5 M
for the 13B model, and 58.7 M for the 34B model. This MLP-based
approach significantly enhances the model’s multimodal capabilities
of visual features with

by enabling deeper integration

language embeddings.

3.2.4 Gemma 3

Gemma 3 represents a significant advancement in Google’s family
of lightweight open models, ranging in scale from 1 to 27 billion
parameters (Team et al., 2025). The architecture builds upon the
established foundation of previous Gemma iterations while
introducing critical enhancements for multimodal capabilities,
extended context length, and improved multilingual support. At its
core, Gemma 3 maintains the decoder-only transformer architecture
with Grouped-Query Attention (GQA), but replaces the soft-capping
mechanism of Gemma 2 with QK-norm for improved accuracy and
processing speed (Team et al., 2025; Google, 2025).

(a) Interleaved local-global attention mechanism

A defining feature of Gemma 3’s architecture is its innovative
interleaved attention mechanism, which alternates between local
sliding window self-attention and global self-attention layers (Team
et al., 2025). Unlike previous models that relied heavily on global
attention, Gemma 3 implements a 5:1 ratio of local to global attention
layers, starting with a local layer as the first layer of the model. This
approach significantly reduces the Key-Value (KV) cache memory
requirements that typically explode with long context processing.

The local attention layers employ a sliding window of 1,024
tokens, focusing only on nearby tokens, while global layers attend to
the entire context. This hybrid approach enables the model to capture
both short-range dependencies through local attention and long-
range relationships through global attention, while maintaining
computational efficiency. The interleaved attention mechanism
provides substantial memory savings, reducing the overhead from
approximately 60% with global-only attention to under 15% with the
interleaved approach for 32 K token contexts.

(b) Vision encoder and multimodal integration

Gemma 3 introduces robust multimodal capabilities through the
integration of a sophisticated vision encoder based on Sigmoid loss
for Language-Image Pre-training (SigLIP) (Team et al., 2025). The
vision encoder, which contains approximately 400 M parameters, is
implemented in the 4B, 12B, and 27B models, enabling them to
process both text and images within a unified framework. This
encoder operates on fixed 896 x 896 square images and remains
frozen during training to preserve its pre-trained representation power.

To handle images with different aspect ratios or high resolutions,
Gemma 3 employs an adaptive “Pan and Scan” algorithm during
inference. This technique involves adaptively cropping the image,
resizing each crop to 896 x 896, and then encoding it, allowing the
model to effectively “zoom in” on smaller details in the image. The
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vision encoder processes images through a patch-based tokenization
scheme, converting visual inputs into token representations
compatible with the language model architecture.

A notable aspect of Gemma 3’s multimodal processing is its
differential attention handling for text and image inputs. While text is
processed with one-way (causal) attention where the model focuses
only on previous tokens in a sequence, images receive bidirectional
attention with no masks, allowing the model to examine every part of
the image simultaneously. This approach enables more comprehensive
visual understanding while maintaining the autoregressive nature of
text generation.

(c) Extended context window and memory optimization

Gemma 3 supports an impressive context length of 128 K tokens
for the 4B, 12B, and 27B models, with the 1B model supporting 32 K
tokens (Google, 2025). This extended context capability is achieved
through several architectural optimizations designed to manage the
computational and memory requirements associated with long
sequences. The architecture increases the Rotary Position Embedding
(RoPE) base frequency from 10K to 1 M on global self-attention
layers while maintaining the frequency of local layers at 10 K, enabling
effective positional encoding across long sequences (Team et al., 2025).

The interleaved attention mechanism plays a crucial role in
memory optimization, as it significantly reduces the KV-cache size
that typically grows quadratically with context length. By employing
local attention with a limited window size for most layers, Gemma 3
achieves linear computational scaling with respect to sequence length
rather than quadratic scaling. This optimization enables the processing

10.3389/frai.2025.1681277

of extremely long documents, conversations, and multimodal inputs
without prohibitive memory requirements.

3.3 Prompt engineering

The initial prompt (Figure 3) was designed to elicit structured
outputs from each LVLM and to evaluate its effectiveness for
instruction tuning and fine-tuning. The responses generated by each
model for an example image are summarized in Table 4. When
compared with the ground truth COCO bounding-box coordinates,
all models produced bounding-box coordinates in the corner-
coordinate format [x_min, y_min, x_max, y_max]. Notably, Llama-
3.2-Vision generated additional output beyond the prompts
specifications, including both the required JSON annotation and an
explanatory commentary, whereas the other models adhered strictly
to the JSON format. Additionally, both Llama-3.2-Vision and LLaVA-
1.6 provided normalized coordinates with values in the range [0, 1],
while the remaining models returned absolute pixel coordinates.

We subsequently refined the prompt (Figure 4) by appending the
instruction: “Make sure to normalize the bounding box coordinates to
the range [0, 1] based on the image dimensions. The coordinates should
be in the format [x_min, y_min, x_max, y_max]. If no objects are
detected, return an empty ‘objects’ list” The model responses to this
enhanced prompt are presented in Table 5. Under these revised
instructions, all models except Qwen2.5-VL returned normalized
corner coordinates. As before, Llama-3.2-Vision supplemented its J[SON
output with explanatory commentary, consistent with its behavior in
response to the original prompt. Giv to the effectiveness of this prompt

FIGURE 3

You are an autonomous excavator operating on a live construction
site. Please output the location of any person (label as Human) and
any dump truck or excavator (label as Obstacle, except yourself) in
your vision by giving their bounding box coordinates. In addition,
determine the current weather condition from these options: "Sunny",
"Cloudy", or "Rainy". Reply only in JSON annotation format as the
following structure:
{
"objects": [
{
"label": "<label>",
"bbox": [<x_min>, <y _min>, <x_max>, <y_max>]

3
o

"weather": "<current weather condition>"

Initial prompt for detecting humans, obstacles, and classifying weather from excavator vision.
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TABLE 4 Example responses from each LVLM to the initial prompt.

Model ‘ Response

Llama-3.2-Vision Based on the image, here is the output in the requested
format:

{“objects”: [

{“label”: “Human,” “bbox”: [0.335, 0.043, 0.435, 0.283]},
{“label”: “Obstacle;” “bbox”: [0.843, 0.055, 0.923, 0.225]}
I8

“weather”: “Rainy”

}

This output indicates that there is one person and one
obstacle (likely a dump truck) visible in the image, with
their bounding box coordinates provided. The current
weather condition is also reported as “Rainy” based on

the wet ground and puddles in the image.

Qwen2-VL {“objects™: [
{“label”: “Human,” “bbox”: [270, 0, 330, 200]}
I8
“weather”: “Cloudy”
}
Qwen2.5-VL {“objects™: [
{“label”: “Human,” “bbox™: [354, 0, 437, 151]}
1,
“weather”: “Rainy”
}
LLaVA-1.6 {“objects™: [
{“label”: “Human;” “bbox”: [0.250, 0, 0.338, 0.241]},
{“label”: “Obstacle;"bbox”: [0.650, 0, 0.850, 0.205]}
I8
“weather”: “Rainy”
}
Gemma 3 {“objects™: [

{“label”: “Human,” “bbox”: [150, 200, 250, 350]}
1
“weather”: “Rainy”

}

Llama-3.2-Vision (Llama-3.2-11B-Vision), Qwen2-VL (Qwen2-VL-2B, Qwen2-VL-7B),
Qwen2.5-VL (Qwen2.5-VL-3B, Qwen2-VL-7B), LLaVA-1.6, Gemma 3 (Gemma3-4B,
Gemma3-12B).

structure in guiding nearly all LVLMs evaluated in this study,
we adopted the enhanced prompt for the downstream fine-tuning task.

3.4 Fine-tuning methodology

3.4.1 Quantized Low-Rank Adaptation

Quantized Low-Rank Adaptation (QLoRA) is an advanced
parameter-efficient fine-tuning (PEFT) methodology that enables the
adaptation of LLMs and LVLMs on standard hardware with limited
memory resources. By integrating Low-Rank Adaptation (LoRA) with
aggressive model quantization, QLoRA allows practitioners to fine-
tune multi-billion-parameter models for specialized downstream
tasks, such as object detection, while significantly reducing both
memory consumption and computational requirements (Dettmers
etal., 2023).
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QLoRA is built upon three fundamental principles. First, LoORA
introduces a small set of trainable low-rank matrices, known as
adapters, into each layer of a pre-trained model. During fine-tuning,
only these adapters are updated, while the original model weights
remain frozen. Formally, the adapted weight matrix can be expressed
as in Equation 5:

W =W+AxB" (5)

where W represents the frozen pre-trained weights, and
A,Be R™" are trainable low-rank matrices with rank r < d. This
substantially decreases the number of trainable parameters, reduces
memory usage, and mitigates the risk of catastrophic forgetting,
thereby preserving the model’s pre-trained knowledge. Second,
quantization is employed to further lower resource requirements.
Specifically, the pre-trained model’s weights are quantized to a lower-
precision format, most commonly 4-bit NormalFloat (NF4), which is
theoretically optimal for representing normally distributed weights.
Quantization is applied exclusively to the frozen backbone, whereas
the LoRA adapters are maintained in higher precision (for example,
16- or 32-bit) to ensure flexibility and fine-tuning efficacy. Third,
during backpropagation and training, gradients are computed and
propagated exclusively through the LoRA adapters, with the quantized
backbone remaining static. This strategy ensures minimal training
overhead, as only a small subset of parameters is updated.

Several technical innovations distinguish QLoRA and further
enhance its efficiency (Dettmers et al., 2023):

o 4-bit NormalFloat (NF4) Quantization: This custom data type is
optimized to represent normally distributed model weights,
minimizing quantization error.

 Double Quantization: Quantization is applied not only to model
weights but also to quantization constants, which further reduces
memory requirements.

o Paged Optimizers: Optimizer states are managed using a paged
approach, which prevents memory spikes during training and
enables the fine-tuning of extremely large models on hardware
with restricted memory capacity.

Through these mechanisms, QLoRA makes the fine-tuning of
LVLMs feasible on consumer-grade GPUs without compromising
model accuracy or generalization capability, thus facilitating practical
deployment in resource-constrained environments.

3.4.2 Unsloth framework for QLoRA fine-tuning

The Unsloth framework represents a significant advancement in
the efficient fine-tuning of LLMs and LVLMs, particularly in
environments with limited computational resources (Unsloth, 2025a,
2025b). Developed to address the memory and processing bottlenecks
commonly associated with adapting large-scale models, Unsloth
integrates a series of architectural and algorithmic optimizations that
make parameter-efficient fine-tuning both feasible and highly effective
for downstream tasks such as object detection. The framework
achieves substantial performance improvements, enabling fine-tuning
at twice the speed of the standard Transformers library and reducing
memory usage by up to 70% without any measurable loss in
predictive accuracy.
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You are an autonomous excavator operating on a live construction
site. Please output the location of any person (label as Human) and
any dump truck or excavator (label as Obstacle, except yourself) in
your vision by giving their bounding box coordinates. In addition,
determine the current weather condition from these options:
"Sunny", "Cloudy", or "Rainy". Reply only in JSON annotation
format as the following structure:
{
"objects": [
{
"label": "<label>",
"bbox": [<X_min>, <y _min>, <X _max>, <y _max>]

5
.

"weather": "<current weather condition>"
}
Make sure to normalize the bounding box coordinates to the range
[0, 1] based on the image dimensions. The coordinates should be in
the format [X_min, y min, X _max, y max]. If there are no objects

detected, return an empty ‘objects’ list.

FIGURE 4

Enhanced prompt for detecting humans, obstacles, and classifying weather from excavator vision

At its core, Unsloth offers robust and scalable implementation
of QLoRA, allowing multi-billion-parameter models to be fine-
tuned on consumer-grade GPUs with restricted VRAM. Notably,
Unsloth employs an adaptive quantization approach known as
Dynamic 4-bit Quantization (Unsloth, 2024), which applies higher
precision to critical model components while aggressively
quantizing less sensitive parameters. This selective quantization is
especially critical for LVLMs, where indiscriminate quantization
can degrade visual understanding. For example, in the case of
Qwen2-VL-2B, Unsloth’s dynamic quantization achieves a memory
footprint of 1.81 GB with preserved accuracy, compared to 4.11 GB
for standard models and 1.36 GB for naively quantized models, the
latter of which experience a loss in functionality (Unsloth, 2024).

A distinctive feature of Unsloth is its provision of pre-quantized
LVLMs that are specifically optimized for efficient fine-tuning. These
models utilize architecture-aware quantization strategies that maintain
high performance in visual understanding while significantly lowering
memory requirements. In this study, we employed several Unsloth-
optimized models for fine-tuning, including:

« Llama-3.2-11B-Vision: Llama-3.2-11B-Vision-Instruct (unsloth/
Llama-3.2-11B-Vision-Instruct-unsloth-bnb-4bits)

« Qwen2.5-VL-3B: Qwen2.5-VL-3B-Instruct (unsloth/
Qwen2.5-VL-3B-Instruct-unsloth-bnb-4bit)

« Qwen2.5-VL-7B: Qwen2.5-VL-7B-Instruct (unsloth/
Qwen2.5-VL-7B-Instruct-unsloth-bnb-4bit)

o LLaVA-1.6: llava-v1.6-mistral-7b-hf (unsloth/
llava-v1.6-mistral-7b-hf-bnb-4bit)

o Gemma3-4B: gemma-3-4b-it (unsloth/
gemma-3-4b-it-unsloth-bnb-4bit)

o Gemma3-12B: gemma-3-12b-it (unsloth/

gemma-3-12b-it-unsloth-bnb-4bit)

Through these optimizations, the Unsloth framework enables the
practical and efficient deployment of advanced LVLMs for vision-
based tasks in resource-constrained environments. Table 6 presents
the Unsloth-optimized QLoRA configuration settings for the
supervised fine-tuning of all LVLMs employed in this work.

3.4.3 Performance evaluation metrics

To rigorously assess the effectiveness of the proposed LVLM-
based framework for simultaneous object detection and weather
classification from excavator vision, we employed a suite of

o Qwen2-VL-2B: Qwen2-VL-2B-Instruct (unsloth/  performance metrics widely recognized in the computer vision

Qwen2-VL-2B-Instruct-unsloth-bnb-4bit) and classification literature. The evaluation protocol is structured

o Qwen2-VL-7B: Qwen2-VL-7B-Instruct (unsloth/  around two principal tasks: object detection and
Qwen2-VL-7B-Instruct-unsloth-bnb-4bit) weather classification.
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TABLE 5 Example responses from each LVLM to the enhanced prompt.

Model Response

Llama-3.2-Vision The image shows a construction site with
a person walking in the background and
a yellow dump truck or excavator in the
distance. The weather appears to be rainy.
Here is the JSON annotation:

{“objects”: [{“label”: “Human,” “bbox”:
[0.35, 0.25, 0.45, 0.45]}, {“label”:
“Obstacle,” “bbox™: [0.75, 0.25, 0.85,
0.35]}], “weather”: “Rainy”}

The bounding box coordinates are
normalized to the range [0, 1] based on
the image dimensions. The coordinates
are in the format [x_min, y_min, x_max,

y_max]

Qwen2-VL {“objects”: [

{“label”: “Human,” “bbox”: [0.28, 0.13,
0.34,0.25]}

I8

“weather”: “Cloudy”

}

{“objects™:

{“label”: “Human,” “bbox”: [356, 8, 437,
151]}

1,

“weather”: “Rainy”

}

{“objects”:

{“label”: “Human,” “bbox”: [0.250, 0,
0.338,0.241]},

{“label”: “Obstacle,” “bbox”: [0.650, 0,
0.850, 0.205]}

I8

“weather”: “Rainy”

}

{“objects”™: [

{“label”: “Human,” “bbox”: [150, 200,
250, 350]}

I8

“weather”: “Rainy”

}

Llama-3.2-Vision (Llama-3.2-11B-Vision), Qwen2-VL (Qwen2-VL-2B, Qwen2-VL-7B),
Qwen2.5-VL (Qwen2.5-VL-3B, Qwen2-VL-7B), LLaVA-1.6, Gemma 3 (Gemma3-4B,
Gemma3-12B).

Qwen2.5-VL

LLaVA-1.6

Gemma 3

For object detection, we reported two primary metrics:

o Mean Average Precision at intersection-over-union (IoU) = 0.50
(mAP@50): This metric is calculated as the mean of the per-class
average precision (AP) values, where a detection is considered
correct if its IoU with the ground truth is greater than or equal to
0.50. The mAP@50 thus provides a relatively lenient assessment
of the model’s ability to accurately localize objects.

« Mean Average Precision averaged over IoU thresholds [0.50:0.95]
[mAP@(0.50:0.95)]: This metric computes the average of
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TABLE 6 Unsloth-optimized QLoRA configuration parameters.

Category Parameter Value
Model load_in_4bit True
(“FastVisionModel” called finetune_vision_layers True
from Unsloth)
finetune_language_ True
layers
finetune_attention_ True
modules

finetune_mlp_modules | True

r 32

lora_alpha 32
Training (SFTConfig from per_device_train_ 2
trl library) batch_size

gradient_accumulation_ | 4

steps

num_train_epochs 2
learning_rate 5x107°
optim “adamw_8bit”

1, LoRA Rank, lora_alpha: LoRA Alpha.

per-class AP values across 10 IoU thresholds ranging from 0.50
to 0.95 in increments of 0.05. This approach offers a
comprehensive evaluation of localization accuracy under both
lenient and stringent overlap criteria.
classification utilized two

For the weather task, we

standard metrics:

o Accuracy: Defined as the ratio of correctly predicted weather
labels to the total number of test samples, accuracy provides an
overall measure of predictive performance.

o F1: The F1 score is calculated as the harmonic mean of precision
and recall for each weather class. This metric is particularly useful
in accounting for class imbalance (e.g., “Sunny; “Cloudy,
“Rainy”) and reflects the model’s ability to balance false positives
and false negatives.

By reporting mAP@50 and mAP@[0.50:0.95] for object
detection, along with accuracy and F1 score for weather
classification, we provided a concise yet comprehensive evaluation
of our

of the localization and classification capabilities

proposed framework.

4 Experimental results and discussion
4.1 Experimental setup

All experiments were conducted on a workstation equipped with
an AMD Ryzen 97,950X CPU, an NVIDIA RTX 4090 GPU (24 GB of

VRAM), and 96 GB of DDR5 RAM. All LVLMs were fine-tuned using
the Unsloth framework (Unsloth, 2025a, 2025b).
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FIGURE 5

Training-loss curve for the Llama-3.2-Vision model under QLoRA-Unsloth fine-tuning.
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4.2 Fine-tuning process evaluation

All models were fine-tuned for exactly two epochs. Under our
training configuration, this corresponds to 250 gradient-update steps
per model; the horizontal axes in Figures 5-9 thus represent these 250
steps. We first examine the resulting training-loss curves. All models
display a steep initial decrease in loss, indicative of rapid adaptation

Frontiers in Artificial Intelligence

by the LoRA adapters, followed by a plateau phase characterized by
minor fluctuations around a model-specific minimum. Key
observations are summarized as follows:

o Llama-3.2-Vision (Figure 5): The training loss decreases from

approximately 3.6 at step 0 to about 0.4 by step 15, then oscillates
between 0.25 and 0.35 for the remainder of the training process.
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FIGURE 8
Training-loss curve for the LLaVA-1.6 model under QLoRA-Unsloth fine-tuning.

This rapid convergence and consistently low final loss suggest
that the 11B-parameter model adapts efficiently under QLoRA,
exhibiting stable fine-tuning dynamics.

o Qwen2-VL series (Figure 6): Both the 2B and 7B variants
achieve quick convergence within the first 10 steps. The 2B
model plateaus at around 0.12, while the 7B model achieves
a lower plateau near 0.05. The deeper architecture of the 7B
variant consistently results in lower training loss, indicating
greater  representational capacity under identical
PEFT settings.

Frontiers in Artificial Intelligence 14

Qwen2.5-VL series (Figure 7): The 3B and 7B versions exhibit
similar two-phase behavior: an initial loss drop to approximately
0.3 (3B version) and 0.2 (7B version) by step 20, followed by
stabilization around 0.5 (3B) and 0.15 (7B). Once again, the
larger model achieves a notably lower loss, underscoring the
benefits of increased parameter count even under
4-bit quantization.

LLaVA-1.6 (Figure 8): LLaVA-1.6 starts with a higher initial loss,
approximately 6.9, and converges more gradually relative to the
other models. After an early plateau at around 1.4 until step 100,
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TABLE 7 Performance evaluation on the test set before fine-tuning.

Model Object detection Weather
classification
mAP@50 mAP@ Accuracy F1 (%)
(%) [0.50:0.95] (%)
(%)
Llama-3.2- 68.52 56.20 53.61 43.60
11B-Vision
Qwen2-VL- 64.16 53.43 4138 24.80
2B
Qwen2-VL- 65.07 53.52 44.54 38.79
7B
Qwen2.5- 66.52 54.73 4321 28.17
VL-3B
Qwen2.5- 69.13 56.53 43.59 35.56
VL-7B
LLaVA-1.6 59.32 50.29 41.13 32.20
Gemmas3- 61.74 50.47 44.11 36.54
4B
Gemmas3- 67.83 56.33 44.14 37.03
12B

the loss decreases further to approximately 0.8 by the end of
training. This two-stage decline may reflect more complex
adapter dynamics or heightened sensitivity to quantization in the
Mistral-based backbone.

o Gemma 3 series (Figure 9): Both the 4B and 12B variants show
rapid loss reduction to about 0.6 by step 15, followed by
stabilization between 0.50 and 0.62. The 12B variant consistently
maintains a slight advantage over the 4B model, indicating that
the larger configuration yields modest gains under the same fine-
tuning regimen.

Frontiers in Artificial Intelligence

TABLE 8 Performance evaluation on the test set after fine-tuning.

Object detection Weather
classification
mAP@50 mAP@ Accuracy F1 (%)
(VA [0.50:0.95] (VA
(%)
Llama-3.2- 82.57 68.56 83.61 73.58
11B-Vision-
Instruct
Qwen2-VL- 79.13 65.47 81.38 74.81
2B-Instruct
Qwen2-VL- 88.03 74.20 84.54 78.83
7B-Instruct
Qwen2.5- 74.60 63.77 83.21 73.16
VL-3B-
Instruct
Qwen2.5- 82.06 70.56 83.59 75.50
VL-7B-
Instruct
LLaVA-1.6 73.56 60.20 81.13 72.20
Gemma3-4B 78.78 63.57 84.11 76.64
Gemma3- 82.80 71.03 84.14 77.33
12B

Bold values indicate the best performance in each evaluation metric.

Across all architectures, QLoRA implemented via Unsloth yields
fast initial convergence, with LVLMs attaining lower plateau losses.
The observed variation in loss trajectories—in terms of both absolute
value and convergence speed—reflects differences in architecture,
parameter count, and sensitivity to 4-bit quantization. Notably, among
all models evaluated, the Qwen2-VL-7B achieves the lowest training-
loss plateau (approximately 0.05), followed by the Qwen2.5-VL-7B
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(approximately 0.15). These findings indicate that, under a consistent
QLoRA fine-tuning regimen, the 7B variants of the Qwen2 family
exhibit superior adaptation efficiency compared to both smaller
models and alternative architectures.

4.3 Performance analysis on the test set

We assessed the capabilities of the LVLMs in both zero-shot mode
and following QLoRA fine-tuning on the test set, reporting object
detection and weather classification results in Tables 7, 8, respectively.
Prior to fine-tuning, all models demonstrated only modest
performance on both tasks. For object detection, mAP@50 ranged
from 59.32% (LLaVA-1.6) to 69.13% (Qwen2.5-VL-7B), while the
more stringent mAP@[0.50:0.95] metric ranged from 50.29 to 56.53%
for the same models. Weather classification accuracy varied from
41.13 to 44.54%, with F1 scores peaking at 38.79% for Qwen2-
VL-7B. These results indicate limited zero-shot proficiency in precise
localization and weather inference, even though all models displayed
a baseline ability to detect humans and heavy equipment—an
artifactof their large-scale pre-training on generic object categories.

After two epochs of QLoRA fine-tuning (250 steps), all models
showed substantial improvements. Object detection mAP@50
increased by 13 to 23 percentage points, yielding a post-training range
0f 73.56% (LLaVA-1.6) to 88.03% (Qwen2-VL-7B). Similarly, nAP@
[0.50:0.95] rose performance, reaching values between 50.20 and
74.20%. Weather classification metrics also improved by 30 to 43
percentage points, with accuracy rising to between 81.13 and 84.54%,
and F1 scores reaching 72.20 to 78.83% across models.

Among all configurations, Qwen2-VL-7B achieved the highest
performance across both tasks, with mAP@50 = 88.03%, mAP@
[0.50:0.95] = 74.20%, accuracy = 84.54%, and F1 = 78.83%. The next

10.3389/frai.2025.1681277

best object detector was Gemma3-12B (mAP@50 = 82.87%/mAP@
[0.50:0.95] = 71.03%), while Qwen2-VL-7B also led in weather
classification by a narrow margin. These findings indicate that, under
identical low-VRAM fine-tuning conditions, the 7-billion-parameter
Qwen2-VL architecture offers the most favorable balance of object
detection and classification robustness.

The consistent improvements in both detection and classification
metrics across all models validate QLoRA fine-tuning via Unsloth
framework as a powerful and scalable fine-tuning approach for
LVLMs in resource-constrained settings. The particularly strong
adaptation of the Qwen2-VL-7B model suggests its suitability as a
foundation for real-time, on-device multimodal perception in
autonomous construction machinery.

4.4 Evaluation of the optimized Qwen2-VL-
7B in a challenging rainy construction
scenario

Figure 10 presents a particularly challenging rainy-weather frame
containing six pedestrians and three obstacles: an excavator arm on
the left, a dump truck in the center, and another dump truck on the
far right. In this example, poor image quality—characterized by
motion blur, low resolution, and complex raindrop-induced lens
artifacts—poses a severe challenge even for a finely tuned LVLM. The
fine-tuned Qwen2-VL-7B model correctly detects five out of six
pedestrians and two out of three obstacles. The one missed pedestrian
stands immediately behind the center dump truck, where heavy
occlusion and raindrop-induced blur render the silhouette nearly
indistinguishable from the wet ground. Similarly, the far-right dump
truck is not detected, as its reflective metal surfaces and lens-rain
artifacts produce low contrast against the overcast sky. Despite these
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Prediction of the optimized Qwen2-VL-7B for a complex scene in small rainy condition.
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omissions, the model’s weather classification remains robust, correctly
labeling the scene as “Rainy” and demonstrating reliable multimodal
inference under severe visibility degradation.

These image quality issues highlight important directions for
improvement. Preprocessing techniques, such as deblurring filters or
rain-removal networks, could help restore critical edges prior to
inference. Adaptive confidence thresholds that consider weather
severity may enable the system to flag low-quality frames for human
review or sensor fusion (for example, thermal or LiIDAR) when visual
input is significantly degraded. By explicitly addressing lens and
visibility artifacts, future multimodal LVLM deployments can
maintain both high precision and recall even under the most adverse
real-world conditions.

To demonstrate the practical deployment of our approach,
we have deployed a web-based demo application that utilizes the fine-
tuned Qwen2-VL-7B model for object detection and weather
classification in construction site imagery captured from excavator
vision. Additional example images and detection results can
be explored at https://feline-quality-separately.ngrok-free.app/.

4.5 Comparison of the optimized
Qwen2-VL-7B with traditional object
detection models

To further validate the superiority of the optimized Qwen2-VL-7B
model for object detection in excavator vision, several advanced target
detection models were selected for comparative experiments. These
included recent models from the YOLO series—specifically,
YOLOvl11s, YOLOv11lm, YOLOvV12s, and YOLOv12m—as well as the
RT-DETR series, including RT-DETR-L and RT-DETR-X. All models
were implemented using the Ultralytics framework. For consistency,
input images were resized to 640 x 640 pixels, with a batch size of 16.
The initial learning rate and weight decay coefficient were both set to
0.0001, and the AdamW optimizer was employed. Each model was
trained for 100 epochs using the same training set of 1,000 images. The
performance comparison results between these traditional object
detection models and the optimized Qwen2-VL-7B model are
summarized in Table 9.

Among the traditional models, YOLOv12m achieved the
highest performance, with mAP@50 of 59.70% and mAP@

TABLE 9 Benchmarking recent advanced traditional detectors against
the optimized Qwen2-VL-7B.

mAP@50 mAP@ Inference
(VA [0.50:0.95] speed on
(VA the test set

(seconds)
YOLOvl1s 54.90 38.70 9
YOLOvlIm 51.15 34.40 13.4
YOLOv12s 61.12 39.40 11
YOLOvI2m 59.70 40.60 15.9
RT-DETR-L 45.01 28.60 15.6
RT-DETR-X 4430 30.20 21
Qwen2-VL-7B 88.03 74.20 360

Bold values indicate the best performance in each evaluation metric.
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[0.50:0.95] of 40.6%. These results are substantially lower than
those of the optimized Qwen2-VL-7B model, which achieved
mAP@50 of 88.03% and mAP@[0.50:0.95] of 74.20%. The large
performance gap underscores the advantage of leveraging LVLM
pretraining on massive multimodal datasets, which enables
generalization even when fine-tuned on limited domain-specific
data. In contrast, traditional detectors trained only on the 1,000
construction images lacked sufficient data diversity to achieve
comparable robustness.

While the optimized Qwen2-VL-7B demonstrates superior
accuracy, its inference speed is considerably slower, largely due to its
substantial parameter size of 7 billion parameters. On the 2000-image
test set, traditional detectors—whose parameter counts range from
9.1 million (YOLOvV12s) to 86 million (RT-DETR-X)—completed
inference in under 21 s, with YOLOv11s being the fastest at just 9 s.
Qwen2-VL-7B
corresponding to an inference throughput of about 5 frames per
second (FPS) when deployed via the VLLM (Kwon et al., 2023)
engine. This discrepancy underscores a fundamental trade-off

By contrast, required approximately 360 s,

between model capacity and operational efficiency. While large-scale
LVLMs benefit from expansive pretraining that enables richer feature
representations and higher downstream accuracy, their massive
parameter size incurs heavier computational costs and slower
inference latency. In safety-critical domains such as autonomous
excavation, this trade-off raises an important deployment
consideration: striking a balance between the robustness afforded by
LVLM-scale pretraining and the real-time responsiveness required in
dynamic construction environments.

However, by integrating motion sensor data, the limitation of the
Qwen2-VL-7B model in real-time tracking of moving objects can
potentially be mitigated. This multimodal LVLM could thus serve as
a supervisory Al agent for autonomous excavator control. As
described in Table 2, the original dataset also includes posture
information and task sequence data, providing avenues for further
research. Future work could explore fine-tuning the optimized
Qwen2-VL-7B model for additional tasks such as pose estimation,
activity planning, or automated reporting. In summary, the
multimodal capabilities of this LVLM position it as a versatile Al agent
with significant potential for a wide range of applications in
construction site automation.

4.6 Ablation study

4.6.1 Multitask versus single-task performance

For the ablation study, we evaluated the multitask performance of
our fine-tuned Qwen2-VL-7B model in comparison to its single-task
performance, specifically for object detection and weather
classification tasks. To instruct the model to perform each individual
task, we revised the prompts accordingly:

» Object detection prompt: You are an autonomous excavator
operating on a live construction site. Please output the location
of any person (label as Human) and any dump truck or excavator
(label as Obstacle, except yourself) in your vision by providing
their bounding box coordinates. Reply only in JSON format
using the following structure: {“label”: “<label>“ “bbox™:
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TABLE 10 Performance of optimized Qwen2-VL-7B under multitask and
single-task prompts.

Prompt mAP@50 mAP@ Accuracy F1

type (%) [0.50:0.95] (%) (%)
(%)

Multitask 88.03 74.20 84.54 78.83

prompt

Object 88.12 74.21 - -

detection

prompt

Weather - - 84.50 78.82

classification

prompt

Bold values indicate the best performance in each evaluation metric.

[<x_min>, <y_min>, <x_max>, <y_max>]}. Make sure to
normalize the bounding box coordinates to the range [0, 1] based
on the image dimensions. The coordinates should be in the
format [x_min, y_min, X_max, y_max].

o Weather classification prompt: You are an autonomous excavator
operating on a live construction site. Please determine the
current weather condition from these options: “Sunny;” “Cloudy;’
or “Rainy”” Reply solely with the chosen label (no additional text).

We evaluated our multitask fine-tuned Qwen2-VL-7B model
using single-task prompts to instruct the model to perform either
object detection or weather classification in isolation. The results of
this comparative analysis are summarized in Table 10.

When the model was prompted exclusively for object detection, it
achieved an mAP@50 of 88.12% and an mAP@[0.50:0.95] of 74.21%.
These values are nearly identical to those obtained with the multitask
prompt (mAP@50: 88.03%, mAP@[0.50:0.95]: 74.20%), indicating
that the addition of concurrent weather classification instructions
does not diminish object detection performance. This finding suggests
that the shared feature representations learned during multitask fine-
tuning are sufficiently robust to maintain high-precision object
detection, without interference from the auxiliary weather
classification task.

For weather classification, the model achieved an accuracy of
84.50% and an F1 score of 78.82% when instructed with the
weather-only prompt. These results are likewise essentially
equivalent to the multitask case (accuracy: 84.54%, F1: 78.83%),
further confirming that the model retains its capacity to accurately
discriminate weather conditions even when simultaneously
performing object detection.

These results demonstrate that our QLoRA fine-tuning produces
a truly multimodal Qwen2-VL-7B capable of simultaneously
addressing object detection and weather classification without
sacrificing per-task accuracy. The negligible performance delta
between single-task and multitask prompts confirms that the model’s
adaptations are robust and free from cross-task degradation, validating
the efficacy of our unified fine-tuning strategy in resource-
constrained settings.

4.6.2 Hyperparameter sensitivity analysis

According to the Unsloth documentation (Unsloth, 2025a), the
primary fine-tuning hyperparameters are the learning rate and the
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number of training epochs. Unsloth recommends a learning rate in
the range of 5x107° to 1 x 10~ and 1 to 3 epochs, as extended
schedules typically yield diminishing returns. In addition, two
advanced hyperparameters of particular importance in this study are
the LoRA rank (“r”) and LoRA Alpha (“lora_alpha”). Recommended
values for r range from 4 to 128, with lora_alpha commonly set equal
toror2r.

In our default configuration, we fine-tuned each model using a
learning rate of 5 x 107°, 2 epochs, and r = lora_alpha = 32. For the
ablation study, we systematically varied each parameter while keeping
the others fixed at their default values. Specifically, the hyperparameter
settings explored were as follows:

o Learning rates: {5x 107, 6x 107, 7x 107, 8 x 107, 9 x 1073,
1x107%

 Epochs: {1, 2, 3}

o LoRA rank and LoRA Alpha (set equal): {8, 16, 32, 64}

To assess the individual impact of each hyperparameter,
we conducted a series of controlled experiments, varying one
parameter at a time while maintaining the others at their default
settings (learning_rate = 5 X 107, num_train_epochs = 2, r = 32,
lora_alpha = 32). Figures 11-13 present the results for mAP@50
and F1 as
recommended range.

each hyperparameter is swept through its

First, we evaluated the effect of training for one, two, and three
epochs. Across all eight LVLMs, a two-epoch schedule consistently
maximized both object detection and weather classification F1 scores.
For instance, Qwen2-VL-7B achieved its highest mAP@50 of 87.95%
and F1 of 78.84% at two epochs, with slight decreases observed at
three epochs. Smaller models, such as Qwen2-VL-2B and LLaVA-1.6,
showed diminishing or plateauing returns beyond two epochs. These
results support Unsloth’s guidance that one to three epochs are
optimal, with two epochs providing the best trade-off between model
adaptation and overfitting.

Next, we varied the LoRA adapter rank r (with r = lora_alpha)
across {8, 16, 32, 64}. The performance of most models exhibited a
clear maximum at r = 32, beyond which both mAP@50 and F1 scores
declined. For example, Qwen2-VL-7B reached its highest mAP@50 of
88.03% and F1 of 78.83% at r =32, while lower ranks under-
parameterized the adapter and higher ranks introduced unnecessary
capacity. These findings reinforce Unsloth’s recommendation that
moderate adapter sizes (r between 4 and 128) are generally sufficient
and highlight r=32 as a robust default across a variety of
LVLM architectures.

Finally, we investigated the effect of varying the learning rate
across {5x 107°,6 x 10™°,7x 107, 8 x 107%,9 x 1075, 1 x 10™*}. Most
models achieved peak or near-peak performance at the lower end of
this range. Qwen2-VL-7B attained its highest mAP@50 of 88.08% and
F1 of 78.93% with a learning rate of 5 x 107°, with performance
gradually declining as the learning rate increased. Other architectures
displayed similar trends, suggesting that conservative learning rates
are crucial for stable adapter training in quantized settings. These
observations validate the recommended learning rate of 5 x 10~ and
caution against more aggressive schedules.

Collectively, these results confirm that the default configuration
(learning_rate = 5 x 107, num_train_epochs = 2, r = lora_alpha = 32)
is near-optimal within Unsloth’s recommended hyperparameter
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Effect of training epochs.

ranges, underscoring the stability and robustness of QLoRA fine-
tuning across diverse model backbones.

4.6.3 Enhancing inference speed through
quantization methods

To mitigate the inference latency of the optimized Qwen2-VL-7B
model, we investigated several quantization techniques, including FP8
W8AS8, GPTQ-Int8, GPTQ-Int4, and AWQ. The comparative results
are reported in Table 11, which demonstrate that quantization can
substantially accelerate inference while introducing only minimal
accuracy degradation.

Frontiers in Artificial Intelligence

For example, GPTQ-Int4 reduced inference time from 360 s
(non-quantized, = 5 FPS) to 215 s (~ 9 FPS), while maintaining strong
detection accuracy (mAP@50 = 86.91%, mAP@[0.50:0.95] = 72.89%).
Similarly, the AWQ method further improved efficiency, achieving
212's (~ 9.4 FPS), albeit with a marginal decline in detection and
classification performance. Both FP8 W8A8 and GPTQ-Int8 also
offered balanced trade-offs between speed and accuracy, achieving
notable speedups while preserving near-baseline accuracy levels.

Although quantization successfully narrows the performance gap,
even the fastest quantized models remain considerably slower than
traditional detectors such as YOLO and RT-DETR, which complete
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Effect of LoRA rank and LoRA alpha.

inference on the same test set in under 21 s. This disparity underscores
a persistent trade-off between model scale, latency and operational
efficiency: while large-scale LVLMs such as Qwen2-VL-7B deliver
superior multimodal accuracy, their parameter size inherently
constrains real-time responsiveness.

Despite the slower inference speed, Qwen2-VL-7B offers
multimodal and multitask capabilities unavailable to traditional
detectors. Whereas YOLO and RT-DETR models are restricted to
single-task object detection, the optimized Qwen2-VL-7B performs
both object detection and weather classification simultaneously. For
construction safety, this dual capability is critical: the model not only
detects humans and heavy machinery but also classifies adverse
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weather conditions, allowing an autonomous excavator to halt
operations under unsafe conditions.

4.7 Limitations and future scope

This study proposed a resource-efficient framework for fine-
tuning LVLMs to perform multitask visual recognition (object
detection and weather classification) using excavator-mounted
cameras, optimized for deployment on consumer-grade GPUs.
We systematically fine-tuned advanced open-source LVLMs—
including Llama-3.2-Vision, Qwen2-VL, Qwen2.5-VL, LLaVA-1.6,
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TABLE 11 Performance evaluation of the quantization models.

Quantization Inference speed Object detection Weather classification
Methos O ™ mAP@SO (%)  mAP@I0.50:0.95]  Accuracy (%) F1 (%)
(%)

Non quantization 360 88.03 74.20 84.54 78.83
FP8 W8AS 274 87.97 74.15 84.50 78.82
GPTQ-Int8 273 87.97 74.13 84.50 78.81
GPTQ-Int4 215 86.91 72.89 82.85 76.77
AWQ 212 86.88 72.87 82.84 76.79

Bold values indicate the best performance in each evaluation metric.
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and Gemma 3—for multitask visual recognition in autonomous
excavator operations. By employing QLoRA through the Unsloth
framework, our approach enabled complete fine-tuning of LVLMs on
hardware constrained to 24 GB of GPU memory, significantly
reducing both memory consumption and training time without
compromising accuracy. The optimized Qwen2-VL-7B model
demonstrated mAP@50 = 88.03% and F1=78.83% for object
detection and weather classification, outperforming other LVLMs and
state-of-the-art detectors (YOLOv11, YOLOv12, and RT-DETR).
Furthermore, ablation studies confirmed the robustness of multitask
performance and identified optimal hyperparameter configurations
for low-VRAM fine-tuning. To our knowledge, this is among the first
demonstrations of efficient LVLM-based multimodal perception for
autonomous excavators, paving the way for real-time safety
monitoring, pose estimation, activity tracking, and strategic planning
on standard hardware.

Despite these contributions, several limitations remain. Firstly,
this study relied on a single open-access dataset (Unmanned
Operation Data in Construction Machinery dataset). Although it
captures diverse viewpoints and weather conditions, it does not fully
represent real-world construction environments. In particular, it lacks
scenarios involving off-hour illumination, uncommon machinery
types, and complex site clutter beyond dump trucks and excavators.
Future work should expand to multi-site and multi-season datasets,
as well as explore multi-view fusion and 3D localization, to enhance
robustness and generalization.

Secondly, our weather taxonomy is limited to three categories:
sunny, cloudy, and rainy. This choice was driven by the availability of
consistent bounding-box annotations and metadata in the selected
dataset, which supports reproducibility and direct comparison.
Nevertheless, real-world operations often encounter a wider range of
environmental conditions, including fog, snow, dust storms, and
night-time scenarios. Although extensive pretraining of LVLMs on
large-scale internet corpora may confer some generalization to these
unseen weather scenarios, empirical validation is required. Future
efforts should incorporate datasets that cover diverse weather types,
apply generative augmentation techniques to simulate adverse
conditions, and investigate complementary sensing modalities such as
thermal imaging or LiDAR to enhance robustness in
low-visibility settings.

Thirdly, the optimized Qwen2-VL-7B model exhibits degraded
performance under severe imaging artifacts such as heavy occlusion,
motion blur, and raindrop-induced lens distortions. As illustrated in
Figure 10, pedestrians occluded by vehicles and objects with low
contrast against overcast skies can be missed. These failure cases are
safety critical when visibility is poorest. Mitigating such limitations
will require dedicated preprocessing methods (for example, deblurring
or rain-removal networks), adaptive confidence thresholds that
account for environmental degradation, and multimodal sensor
fusion to maintain detection reliability. Systematic benchmarking of
these failure modes should guide the design of more resilient
perception pipelines for deployment.

Fourthly, inference speed remains a critical bottleneck. The
optimized Qwen2-VL-7B achieved ~5 FPS, which improved to ~9.4
FPS after quantization. While this represents a 1.7 times acceleration,
it remains slower than traditional detectors such as YOLO or
RT-DETR (<21 s for the entire test set). This limitation can be partially
mitigated by sensor fusion with motion data, but broader
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strategies—including pruning, knowledge distillation, and hardware-
aware optimization—are needed to meet the stringent latency
demands of real-time safety-critical applications.

Fifthly, to ensure fair comparison under low-data conditions, all
baseline detectors (YOLOv11/12 and RT-DETR) were trained on the
same 1,000-image subset used to fine-tune the LVLMs. This controlled
setup highlights the data efficiency of LVLMs and their ability to adapt
with minimal task-specific data. However, it may underrepresent the
absolute capabilities of traditional detectors, which are typically optimized
on substantially larger datasets. Retraining these detectors on the full
50,000-image obstacle-detection dataset (for example, using 40,000
images for training and 10,000 for testing) would likely yield higher
absolute accuracy. Therefore, future evaluations should compare models
under both low-data and full-data regimes to more comprehensively
characterize trade-offs between data efficiency and peak performance.

Finally, the current framework is limited to 2D bounding-box
localization. More granular perception outputs, such as instance
segmentation, 3D pose estimation, and dense depth prediction, are
essential for fine-grained safety monitoring and closed-loop robotic
control. Integrating depth sensors or stereo camera systems would
enable 3D localization and segmentation, which in turn support safer
and more precise control strategies. Additionally, the dataset contains
posture and task sequence metadata that could be leveraged to fine-
tune LVLMs for extended tasks such as pose estimation, activity
planning, and automated reporting. Exploring how LVLMs can
support real-time reasoning for activity forecasting and human-
machine collaboration is another promising direction.

Beyond autonomous excavation, the proposed framework and
methodology possess broader applicability across multiple industrial and
safety-critical domains that require multimodal situational awareness. The
resource-efficient fine-tuning pipeline demonstrated here—combining
QLoRA-based adaptation, quantized deployment, and multitask
prompting—can be extended to other fields such as autonomous driving,
warehouse robotics, manufacturing inspection, mining operations, and
maritime logistics. In these environments, similar challenges arise:
heterogeneous sensor inputs, adverse lighting and weather conditions,
limited on-edge computational resources, and the need for reliable
perception under uncertainty. The ability to fine-tune LVLMs on
constrained hardware while retaining high task accuracy enables scalable
deployment in settings where traditional heavy-compute models are
impractical. Furthermore, the multitask architecture that jointly performs
detection and environmental classification can be generalized to other
compound perception tasks—such as traffic-scene understanding (object
and road-condition recognition), industrial inspection (defect and
surface-quality assessment), or disaster response (victim and hazard
detection). This generalization underscores that the proposed framework
is not confined to excavator operations but contributes a transferable
foundation for cost-efficient multimodal Al in diverse domains requiring
robust perception, reasoning, and real-time decision-making.

5 Conclusion

In this study, we systematically fine-tuned advanced open-source
LVLMs—including Llama-3.2-Vision, Qwen2-VL, Qwen2.5-VL,
LLaVA-1.6, and Gemma 3—for multitask visual recognition in
autonomous excavator operations. By employing QLoRA through the
Unsloth framework, our approach enabled complete fine-tuning of
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LVLMs on hardware constrained to 24 GB of GPU memory,
significantly reducing both memory consumption and training time
without compromising accuracy. The optimized Qwen2-VL-7B model
achieved superior performance over other LVLMs in both object
detection and weather classification tasks, with mAP@50 of 88.03%,
mAP@[0.50:0.95] of 74.20%, accuracy of 84.54%, and F1 score of
78.83%. Additionally, this model outperformed recent advanced
traditional object detection models—including YOLOvlls,
YOLOvllm, YOLOv12s, YOLOv12m, RT-DETR-L, and
RT-DETR-X—in object detection accuracy. Our fine-tuned Qwen2-
VL-7B illustrates the feasibility of deploying LVLM-based multimodal
Al agent in consumer-grade hardware for a wide range of applications
in construction site automation.
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