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Vaccines and immunotherapies against infectious diseases and cancers have been 
a great success of the medical sciences over the last century. Pre-clinical testing 
in animal models has played a crucial role in the development of vaccines and 
immunotherapies, informing subsequent clinical trials. The current practices in pre-
clinical animal model research must be approved by committees with strict policies 
and assessments on animal experiments including the “three Rs”: (1) Replacement, 
which assesses the scientific justification and rationale for using a live animal in 
biomedical research; (2) Reduction, which determines whether the number of 
animals required in an experiment is adequate to achieve scientifically valid results 
while reducing costs; and (3) Refinement, which ascertains that any given animal 
procedure will cause no to minimal pain or distress. The recent initiatives by the 
United States NIH and FDA to reduce or phase out animal testing in biomedical 
research underscore a growing interest in artificial Intelligence (AI), deep learning 
(DL), organoid, and organ-on-chip-powered models to slash the time and cost 
of preclinical animal research. This review highlights the strengths, progress, and 
limitations of these alternative pre-clinical research approaches, with a focus 
on vaccine and immunotherapeutic development. While the implementation of 
AI- and DL-, organoid-, and organ-on-chip-powered models will certainly help 
accelerate pre-clinical discoveries, modeling the safety, immunogenicity, and 
protective efficacy of vaccines and immunotherapeutics as they occur in vivo is 
not yet comprehensive enough to fully replace or replicate the complexity of living 
systems, in both animals and humans. Thus, these models should be viewed as 
powerful complementary tools that combine hybrid human and artificial intelligence 
and must be validated through animal model testing. This review discusses the 
path forward and the scientific challenges that persist in investing in AI- and DL-
human hybrid validation systems, regulatory reforms, and the development of 
interconnected platforms that bridge digital models with biological reality.
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1 Introduction

Animal experimentation has long underpinned advances in 
immunology, vaccine development, and immunotherapeutic 
advancements, providing mechanistic insights into immune processes 
and offering platforms for pre-clinical testing of novel therapeutics 
(Quadiri et al., 2025a; Corleis et al., 2023; Tesfamariam et al., 2022). 
Traditionally, rodent and non-human primate models have been 
central to these efforts, enabling researchers to explore antigen 
processing, immune memory, and vaccine efficacy in controlled 
in vivo systems (Wang et al., 2021). While prior reviews have addressed 
organoids (Wagar, 2023; Kastenschmidt et al., 2023; Chen et al., 2021), 
artificial intelligence (AI) (Elfatimi et al., 2025), and organ-on-a-chip 
models (Jeger-Madiot et al., 2024; Shahabipour et al., 2023) separately, 
few have critically examined how these approaches converge to 
improve animal testing, specifically within the context of vaccine and 
immunotherapeutic development. This review aims to bridge the 
translational gap between pre-clinical animal studies and human 
clinical trials. We discuss the potential, progress, and challenges of 
AI-, organoid-, and organ-on-chip-powered models in improving 
pre-clinical testing of vaccines and immunotherapeutics.

Preclinical testing in animal models has led to major medical 
breakthroughs, including the early development of vaccines against 
smallpox and polio. However, in recent years, questions have intensified 
regarding the translational validity and ethical justification of continued 
reliance on animal testing, particularly when translating findings to 
human clinical outcomes (Rudroff, 2024; Willner, 1986). Lack of 
methodological rigor and statistical quality in preclinical animal 
research can impact the validity, reproducibility, and translational value 
of scientific findings (Deng and Strong, 2025; Han, 2025; Moassefi et al., 
2023). These include (1) a lack of randomization and blinding of 
investigators, which introduces selection and detection biases that can 
distort results (Osborne et  al., 2018); (2) lack of proper power 
calculations and sample size estimations, which can lead to studies that 
are underpowered and produce results with limited statistical confidence 
(Osborne et al., 2018); (3) not considering biological variables including 
gender differences that may reduce the applicability and generalizability 
of findings and may undermine the predictive value of animal models, 
which may contribute to a failure of clinical trials (Osborne et al., 2018; 
Gopel and Burggren, 2022; Gualtierotti, 2025). This calls for standardized 
reporting protocols, the mandatory incorporation of design elements 
such as randomization, blinding, and power calculations, as well as 
improved training to prioritize methodological quality and transparency 
(Osborne et al., 2018; Percie du Sert et al., 2020).

Structural and functional differences in immune cell repertoires, 
cytokine expression profiles, and pathogen recognition pathways 
between species often lead to misleading results. For example, promising 
immunotherapies and vaccines that succeed in murine models frequently 
fail in Phase I or II clinical trials, highlighting the limited fidelity of 
animal models in replicating human immune complexity (Willner, 
1986). Moreover, animal research is associated with significant costs and 
logistical burdens, including the maintenance of specialized facilities, 
breeding colonies, and compliance with strict regulatory frameworks. 

Figure 1 illustrates an AI-enabled pipeline that integrates human-relevant 
biological data, including omics and imaging, into machine learning 
models to support vaccine design, predict immune responses, and assess 
toxicity (Elfatimi et al., 2025; Kleinstreuer and Hartung, 2024; Farzan, 
2024; Sharma et al., 2022). This approach significantly reduces the need 
for animal models while promoting ethical and human-relevant 
biomedical research. Recent developments, such as in silico clinical trials, 
explainable AI, and digital immune twins, further expand the boundaries 
of what can be accomplished using human-based, AI-supported systems.

FIGURE 1

AI-based computational modeling in immunology and vaccine 
development. A conceptual overview of an AI-driven pipeline for 
accelerating immunology research and vaccine development. The 
workflow begins with multimodal biological inputs, including 
genomic, transcriptomic, proteomic, and imaging data derived from 
human-relevant sources. These data are processed using advanced 
artificial intelligence techniques, including machine learning, deep 
learning, and systems biology modeling. The outputs inform key 
applications, including vaccine design, prediction of immune 
responses, and formulation optimization. This process ultimately 
contributes to reduced animal testing, faster and more precise 
vaccine development, and the advancement of ethical biomedical 
research.
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For instance, the AlphaFold 3 model represents a significant 
advancement in biomolecular structure prediction, accurately 
modeling protein monomers, protein multimers, and complex 
biomolecular assemblies that involve proteins, DNA, RNA, ligands, 
ions, and chemical modifications (Desai et al., 2024; Elfmann and 
Stulke, 2025). AlphaFold 3 uses a next-generation DL architecture 
with an improved Evoformer module and a novel diffusion network 
approach (Desai et al., 2024; Elfmann and Stulke, 2025). This diffusion 
process starts with a cloud of atoms. It iteratively refines the structure 
to converge on a highly accurate joint 3D model of the input 
molecules, enabling detailed insight into biomolecular interactions 
and complexes (Desai et al., 2024; Elfmann and Stulke, 2025). Thus, 
AlphaFold 3 represents a significant leap forward for structural 
biology, systems biology, and the discovery of antibody-mediated 
vaccines and immunotherapeutics, enabling accurate predictions of 
complex biomolecular assemblies within a single framework. This 
opens new avenues for biomedical research and therapeutic 
development. However, there are key limitations of AlphaFold 3 
compared to other models, such as ZDOCK, especially in the context 
of protein–protein docking (Harmalkar et al., 2025; Abramson et al., 
2024). Unlike ZDOCK and other similar physics-based docking 
approaches, AlphaFold 3 does not capture the dynamic conformational 
changes that occur during binding (Harmalkar et al., 2025; Abramson 
et  al., 2024). Although AlphaFold 3 produces accurate protein 
structures, its docking orientation predictions for protein-antibody 
complexes can sometimes be  incorrect, leading to flawed binding 
interfaces (Harmalkar et al., 2025; Abramson et al., 2024).

Nonetheless, these emerging platforms are not without 
limitations. AI models are only as good as the data on which they are 
trained, and biases in publicly available immunological datasets can 
skew predictions or mask relevant signals (Yang et  al., 2024). 
Moreover, while organoids and chips can replicate localized 
responses, they do not yet fully model the integrated, systemic 
nature of immune reactions seen in living organisms. Therefore, 
although the long-term vision is to develop fully human-relevant 
pre-clinical pipelines, animal models continue to play a necessary, 

though diminishing, role, particularly in assessing safety, 
immunogenicity, and protective efficacy of vaccine and 
immunotherapeutic candidates by providing predictive 
computational models, identifying patterns of B- and T-cell 
response, and supplementing traditional in vivo animal pre-clinical 
trials (Elfatimi et al., 2025; Reveiz et al., 2025).

Artificial intelligence (AI) is rapidly transforming immunological 
research by enabling the simulation and analysis of complex immune 
responses. Machine learning algorithms trained on large, multimodal 
datasets, including single-cell RNA sequencing and real-world clinical 
outcomes, can now predict immune responses, identify vaccine 
targets, and classify disease subtypes with increasing precision. To 
better understand the trajectory of innovation driving the shift away 
from animal-based immunological research, we highlight key global 
developments in Figure  2. This visual timeline presents a curated 
series of milestones spanning from the foundational ethical framework 
to recent breakthroughs in artificial intelligence (AI)-driven modeling 
and regulatory reform. Events such as the NIH’s Predictive Toxicology 
Roadmap, the invention of organ-on-a-chip platforms, and the rise of 
deep learning tools like NetMHCpan and AlphaFold underscore the 
scientific and political momentum supporting the replacement of 
animal models. More recently, the use of AlphaFold2 and ESMFold 
for de novo vaccine antigen discovery, along with NIH’s funding of 
digital immune twins, marks a decisive turn toward AI-empowered, 
human-relevant platforms for immune modeling and vaccine design 
(Zhang et al., 2024; El Arab et al., 2025; Yang et al., 2023).

This review critically examines the role of AI in transforming 
pre-clinical immunology and vaccine development. We provide an 
overview of the technologies driving this shift, evaluate the scientific 
and regulatory challenges ahead, and argue for a balanced, hybrid 
approach that maximizes the strengths of computational, in vitro, and 
in vivo systems (Elfatimi et al., 2025; Xiao et al., 2025; Riviere et al., 
2025; Alanazi, 2025; Barreto et  al., 2025; Olawade et  al., 2024; 
Omranian et al., 2024; Zhuang et al., 2024). By doing so, we aim to 
map a forward path that aligns scientific innovation with ethical 
responsibility and regulatory evolution.

FIGURE 2

Timeline of key global milestones supporting AI and human-relevant alternatives in immunology (1959–2024). This figure illustrates the major ethical, 
scientific, and regulatory advancements that are accelerating the transition away from animal testing. It includes foundational efforts, the emergence 
of organ-on-a-chip technology, and AI-based immune prediction, as well as recent U.S. and European legislation promoting non-animal technologies 
in immunological research.

https://doi.org/10.3389/frai.2025.1681106
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Elfatimi et al.� 10.3389/frai.2025.1681106

Frontiers in Artificial Intelligence 04 frontiersin.org

In the following sections, we review (1) the scientific limitations 
of traditional animal models in immunology, (2) the role of AI in 
computational modeling and vaccine and immunotherapeutic 
designs, (3) emerging human-relevant alternatives such as organoids 
and organ-on-chip technologies (Sun et al., 2022; Farhang Doost and 
Srivastava, 2024; Alver et al., 2024; Wang et al., 2024; Picollet-D'hahan 
et al., 2021), (4) the economic and practical advantages of AI-driven 
methods, (5) regulatory and ethical frameworks, and (6) future 
directions for fully transitioning to AI-supported research pipelines.

2 Translational limitations of animal 
models in the development of 
vaccines and immunotherapeutics

Animal models have played a pivotal role in uncovering 
foundational concepts in immunology, including antigen recognition, 
immune cell trafficking, and cytokine signaling networks (Elfatimi 
et al., 2025; Reveiz et al., 2025; Chentoufi et al., 2025a; Chentoufi et al., 
2025b; Quadiri et al., 2025b; Quadiri et al., 2025c; Srivastava et al., 
2025; Vahed et al., 2025; Zayou et al., 2025). However, the translational 
reliability of these models in predicting human immune responses has 
become a growing concern within the scientific community. This 
concern arises from the fact that human and animal immune systems 
differ significantly in both structure and function, leading to 
inconsistencies in therapeutic outcomes when findings from 
pre-clinical animal studies are applied to clinical settings (Vunjak-
Novakovic et al., 2021; Bailey, 2017). For example, laboratory mice, 
despite their widespread use in immunological research, exhibit 
distinct immune phenotypes shaped by their genetic homogeneity, 
controlled environments, and limited microbial diversity. These 
differences are manifested in altered immune cell distributions, 
varying cytokine secretion profiles, and divergent T-cell receptor 
repertoires compared to those of humans. As a result, immune 
therapies and vaccine candidates that show efficacy in mice frequently 
fail to reproduce the same effects in humans, particularly in diseases 
where immune modulation plays a central role, such as autoimmune 

disorders or chronic infections. Another challenge is that animal 
models often fail to adequately capture the complexity of human 
immune interactions across different organ systems. Immune 
responses in humans are shaped by a dynamic interplay among 
multiple tissue compartments, genetic backgrounds, environmental 
exposures, and microbiome factors, which are poorly replicated in 
traditional animal models. Additionally, specific immune processes, 
such as class-switch recombination in B cells or the formation of 
memory T cells, may proceed differently across species, further 
limiting the translational value of these models in vaccine development 
and the design of immunotherapies (Bailey, 2017).

These limitations have catalyzed a shift in focus toward more 
predictive and human-relevant systems. Immune organoids, 
developed from human lymphoid tissues, are a promising in vitro 
alternative by enabling the study of antigen-specific responses and 
germinal center dynamics. These 3D models preserve tissue 
architecture and cellular diversity, allowing the researchers to 
investigate vaccine-induced immunity under physiologically relevant 
conditions (Wagar et al., 2021; Wagoner et al., 2025; Prasad et al., 
2021). In parallel, AI-based simulations offer computational models 
that can predict immune responses using patient-derived data, such 
as transcriptomic or single-cell sequencing profiles (Gui et al., 2023; 
Li, 2023; Li et al., 2024; Chambuso and Meena, 2025). These tools can 
simulate animal and human immune networks and forecast the 
outcomes of immunomodulatory interventions with increasing 
accuracy (Xu et al., 2023; Phongpreecha et al., 2025; Elfatimi et al., 
2025). Nonetheless, these alternatives are not without their constraints. 
Human organoid models are often limited to single-organ contexts 
and lack systemic integration, whereas AI algorithms require robust 
and diverse datasets to ensure generalizability and accuracy (Fan et al., 
2025; Kim et al., 2020; Huang et al., 2025; Liu X. et al., 2025). Despite 
their limitations, these emerging models present a compelling case for 
moving beyond traditional animal testing, especially when combined 
within hybrid experimental-computational frameworks that aim to 
preserve biological realism while enhancing predictive power.

To further contextualize the translational gap between animal 
models and human immunology, Table  1 presents a comparative 

TABLE 1  Comparative immunological features of mouse models versus the human immune system.

Feature Mouse models Human immune system

Cytokine expression

Distinct cytokine profiles: some cytokines (e.g., IL-8) 

are not naturally expressed (Du et al., 2017; Chow 

et al., 2024)

Broad, complex cytokine responses; IL-8 plays a key role in 

neutrophil recruitment

T-cell receptor (TCR) repertoire
Limited diversity due to inbred strains (Poltorak 

et al., 2018)

Highly diverse TCRs influenced by genetic and 

environmental factors

Microbiome influence
Lab-raised mice have limited microbial exposure 

(Hanski et al., 2024)

Human microbiota is more varied and shapes immune 

responses extensively

MHC molecules
Murine MHC genes differ significantly from HLA 

genes (Shiina et al., 2017)

The human leukocyte antigen (HLA) system is highly 

polymorphic and affects immunity

Immune cell subsets Differences in NK cells, monocytes, and dendritic cell 

profiles (Parodi et al., 2023)

Broader variety and plasticity in immune cell subsets

Pathogen exposure history Naïve immune systems in SPF conditions (Burger 

et al., 2023)

Humans have complex immune memory shaped by 

lifelong exposures

Highlights the key differences between commonly used mouse models and the human immune system, including cytokine expression, T-cell receptor repertoire, microbiome diversity, MHC 
molecules, immune cell subsets, and pathogen exposure history. These distinctions highlight the translational challenges of extrapolating findings on infection and immunity from animals to 
humans.
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overview of key immunological features distinguishing mouse models 
from the human immune system. These distinctions span cytokine 
expression, T-cell receptor diversity, microbiome complexity, MHC 
molecules, immune cell subsets, and exposure history. Each of these 
features plays a critical role in shaping immune responses, and their 
divergence underscores why findings in murine systems often fail to 
translate effectively to human clinical outcomes. This comparison 
highlights the urgent need for more predictive and human-relevant 
models in immunological research and therapeutic development.

3 Artificial intelligence-powered 
models slash time and cost in vaccine 
and immunotherapeutic development

Artificial Intelligence (AI) is rapidly transforming immunology 
research by enabling advanced computational modeling and 
simulation approaches that reduce reliance on animal testing while 
improving the precision, speed, and scalability of vaccine development 
(Mak et al., 2014; Tang et al., 2019). With the complexity of human 
immune responses often poorly replicated in animal models, AI offers 
human-relevant alternatives by integrating large-scale biological data 
to simulate immune system dynamics, predict vaccine efficacy, and 
design novel immunization strategies (Yang et al., 2021; Ikram et al., 
2023; Ito et al., 2024). AI-based systems use machine learning, deep 
learning, and systems biology approaches to model immune responses 
at the cellular and molecular levels (Sinicrope et  al., 2024). These 
models can process multimodal datasets such as transcriptomics, 
proteomics, and imaging data to simulate antigen presentation, 
cytokine signaling, and immune memory formation in silico (Topol, 
2019). For example, deep learning frameworks have been applied to 
predict B-cell and T-cell epitopes from protein sequences, improving 
the identification of potent antigenic targets for vaccine design without 
the need for animal immunization models (Jespersen et al., 2017). 
Additionally, reinforcement learning algorithms are being developed 
to de-risk vaccines and optimize dose scheduling and adjuvant 
selection based on simulated responses from a population (Shahzadi 
et al., 2024).

Virtual immune system platforms, such as C-ImmSim and agent-
based models, enable detailed simulations of host-pathogen 
interactions, supporting hypothesis testing and comparative analysis 
of vaccine candidates before pre-clinical validation. These simulations 
have demonstrated their utility in evaluating the durability of immune 
protection and estimating population-wide outcomes in pandemic 
preparedness scenarios (Todman et al., 2008; Shinde et al., 2024). AI 
has also contributed to predicting adverse immune events, allowing 
early detection of potential reactogenicity based on immunological 
features, which would otherwise require lengthy and ethically 
concerning animal experiments (Kompa et al., 2022). Furthermore, 
integrating AI with human-relevant experimental platforms such as 
immune organoids, microfluidic systems, and organ-on-chip models 
creates a synergistic feedback loop (Sun et al., 2022; Farhang Doost 
and Srivastava, 2024; Alver et al., 2024; Wang et al., 2024; Picollet-
D'hahan et al., 2021; Fan et al., 2025; Kim et al., 2020; Huang et al., 
2025; Liu X. et al., 2025). These platforms provide high-fidelity data 
that trains and refines AI algorithms, leading to more accurate 
predictions of human immune responses (Gabriel et al., 2022; Ingber, 
2022). Notably, recent studies have highlighted how AI-driven systems 

trained on human immune organoid data can outperform traditional 
models in forecasting vaccine outcomes (Fan et al., 2025; Kim et al., 
2020; Huang et al., 2025; Liu X. et al., 2025; Morrocchi et al., 2024).

Another example of a platform is Vaxi-DL, a web-based deep 
learning server designed to predict potential vaccine and 
immunotherapy candidates using fully connected neural networks. 
Vaxi-DL models were trained on datasets containing antigenic and 
non-antigenic sequences derived from pathogens or cancers, as well as 
databases such as Protegen. The performance metrics reported include 
an average sensitivity of approximately 93%, accuracy, specificity, and 
the area under the ROC curve, demonstrating a good capability in 
correctly identifying protective antigens (or epitopes) across various 
pathogens and cancers. In comparison with other vaccine and 
immunotherapy prediction tools, such as Vaxign-ML and VaxiJen, 
Vaxi-DL performs well, often surpassing them in accuracy and 
efficiency, particularly in predicting positive vaccine and 
immunotherapy candidates. Vaxi-DL’s tool leverages extensive 
biological and physicochemical protein features for predictions, 
helping to prioritize candidates for further preclinical studies. It has 
been validated through performance metrics and benchmarking 
studies to be an effective deep learning tool for predicting vaccine and 
immunotherapy candidates, with high sensitivity and accuracy, thereby 
supporting its utility in accelerating the pre-clinical and clinical 
development of vaccines and immunotherapies. This case study 
presents concrete evidence of how AI can enhance candidate selection, 
minimize unnecessary animal experimentation, and contribute to cost-
effective preclinical pipelines (Chang et al., 2025; Nierengarten, 2025; 
Dlamini et al., 2020; Villanueva-Meyer et al., 2024; Bakas et al., 2024).

Recent advancements in computational immunology have led to 
the development of integrated AI-human hybrid pipelines that combine 
data from omics technologies, imaging, immune organoids, and organ-
on-a-chip systems with machine learning frameworks (Fan et al., 2025; 
Kim et al., 2020; Huang et al., 2025; Liu X. et al., 2025; McGale et al., 
2024). These systems enable in silico modeling of immune responses, 
epitope prediction, optimization of vaccine formulation, and bias-aware 
learning. Such pipelines not only enhance the speed and predictive 
accuracy of vaccine development but also significantly facilitate 
traditional animal testing. This approach supports regulatory readiness 
and ethical compliance by aligning with initiatives from the U.S. NIH 
and FDA to prioritize human-relevant methodologies (Nelson et al., 
2024). As illustrated in Figure 3, this pipeline highlights the synergistic 
integration of multimodal data inputs, fairness-aware AI modules, and 
clinically actionable outputs that collectively transform the pre-clinical 
vaccine research landscape (Elfatimi et al., 2025; El Arab et al., 2025).

Overall, AI is expected to significantly advance pre-clinical 
animal studies in vaccines and immunotherapies by enhancing 
predictive modeling, optimizing experimental designs, and 
potentially reducing or replacing some animal experiments. AI and 
DL create computational models that predict B- and T-cell 
responses to vaccine and immunotherapy candidates more rapidly 
than traditional methods. For instance, NetMHCpan uses DL 
(artificial neural networks) to analyze peptide–MHC binding by 
training on large datasets with advanced encoding strategies for 
peptides and MHC molecules, improving the accuracy and 
generalizability of predictions (Phloyphisut et al., 2019). This helps 
identify optimal antigens or epitopes for improved vaccine and 
immunotherapy safety, efficacy, and durability. AI integrates multi-
omics data and systems biology to phenotype and differentiate 
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animal models B- and T-cell responses, allowing in silico testing of 
the safety, immunogenicity, and protective efficacy of vaccine and 
immunotherapy candidates without the need for extensive initial 
animal testing. AI enhances preclinical in  vivo studies by 
optimizing study design and improving the translation of animal 
data to the clinic, increasing relevance and reproducibility (Deng 
and Strong, 2025; Han, 2025; Moassefi et  al., 2023). AI-driven 
advanced modeling, combined with safety and efficacy simulations 
using digital twins and organ-on-chip platforms, simulates vaccine 
and immunotherapy safety in biological contexts, thereby further 
decreasing reliance on animal models (Sun et al., 2022; Farhang 
Doost and Srivastava, 2024; Alver et al., 2024; Wang et al., 2024; 
Picollet-D'hahan et  al., 2021). These applications collectively 
enable faster, more ethical, and data-driven vaccine and 
immunotherapy development during preclinical phases by 
reducing or partly replacing animal experiments with AI-enhanced 
approaches (Imani et  al., 2024). However, these computational 
predictions require validation against experimental data to ensure 
biological relevance and avoid overfitting or false positives.

Collectively, these innovations offer a paradigm shift toward 
ethical, efficient, and precise vaccine development pipelines. As 
computational power and biological data availability continue to 
expand, AI models in immunology are expected to become even more 
predictive and clinically actionable. Their ability to simulate 
personalized immune responses, forecast long-term protection, and 
guide next-generation vaccine strategies signals a future where AI 
replaces many functions previously performed through animal testing, 
ultimately leading to safer, faster, and more human-relevant biomedical 
research (Imani et al., 2024; Greener et al., 2022; Kumar et al., 2024).

4 Economic and practical benefits of 
AI in immunotherapy and vaccine 
research

In addition to scientific and ethical advances, artificial intelligence 
(AI) offers significant economic and logistical advantages over 
traditional animal models in immunology and vaccine development. 
Animal studies often require extensive financial and human resources, 
including specialized facilities, long-term animal care, and regulatory 
compliance infrastructure (Elfatimi et al., 2025; Rudroff, 2024; El Arab 
et al., 2025; Fu and Chen, 2025; Niu et al., 2025). The cumulative cost 
of these efforts contributes to the high price tag of drug and vaccine 
development, often exceeding $1 billion, with animal testing 
accounting for a substantial portion of pre-clinical R&D budgets (Fu 
and Chen, 2025; Van Norman, 2020; Van Norman, 2019; Acosta et al., 
2011; Hasselgren and Oprea, 2024).

AI-based approaches provide a cost-effective alternative by 
enabling in silico simulations, drug screening, and immune modeling 
without the need for animal testing (Hasselgren and Oprea, 2024; 
Diogo Goncalves et al., 2025). Once foundational infrastructure, such 
as computational frameworks, data pipelines, and trained personnel, 
is established, AI tools can be rapidly reused and scaled at minimal 
marginal cost (Prathaban and Hande, 2024; Serrano et al., 2024). As 
illustrated in Table  2, AI is transforming every stage of the 
immunological research pipeline from early target identification to 
disease modeling by offering efficient, reproducible, and scalable 
alternatives to animal-based protocols (Deng and Strong, 2025; Han, 
2025; Moassefi et al., 2023; Diogo Goncalves et al., 2025; Prathaban 
and Hande, 2024; Serrano et al., 2024; Lollini et al., 2006).

FIGURE 3

AI-human hybrid pipeline for ethical and predictive vaccine development. A conceptual workflow integrating omics, imaging, and experimental data 
with machine learning frameworks for simulating immune responses, optimizing vaccine design, and reducing reliance on animal models. The pipeline 
supports regulatory integration (FDA), ethical compliance, and human-relevant predictive outcomes across toxicity, efficacy, and subgroup analyses.

https://doi.org/10.3389/frai.2025.1681106
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Elfatimi et al.� 10.3389/frai.2025.1681106

Frontiers in Artificial Intelligence 07 frontiersin.org

For example, AI-driven epitope prediction and virtual antigen 
screening platforms can analyze millions of antigen-target combinations 
within hours, compared to the weeks or months required for in vivo 
testing (Diogo Goncalves et al., 2025; Eshak and Goupil-Lamy, 2025; 
Eshak et  al., 2024). This accelerated timeline not only reduces 
development cycles but also minimizes the number of failed candidates 
entering clinical trials. Recent estimates suggest that integrating AI into 
drug discovery pipelines can reduce the total development cost by 
50–70% and decrease the time-to-market by several years (Rudroff, 
2024; Fu and Chen, 2025; Diogo Goncalves et al., 2025; Vora et al., 2023; 
March et al., 2025; Arora et al., 2024; Gangwal and Lavecchia, 2025). 
Moreover, AI systems facilitate parallel processing and rapid iteration, 
allowing researchers to test multiple hypotheses simultaneously, which 
would be impractical with live animal models (Hasselgren and Oprea, 
2024; Diogo Goncalves et al., 2025). Platforms such as DeepMind’s 
AlphaFold2 or immune organoid-AI hybrids have already demonstrated 
success in structure-based antigen prediction, epitope mapping, and 
toxicity forecasting (Fan et al., 2025; Kim et al., 2020; Huang et al., 2025; 
Liu X. et al., 2025; Diogo Goncalves et al., 2025). This flexibility is 
especially valuable in pandemic situations or when addressing emerging 
pathogens, where time is a critical factor (Rudroff, 2024; El Arab et al., 
2025; Fu and Chen, 2025; Gangwal and Lavecchia, 2025).

The transition to AI-powered platforms also allows for more 
sustainable allocation of research funding. No widely standardized 
percentage of a university’s total research infrastructure budget is 
devoted to animal facilities (Holbrook and Sanberg, 2013). However, it 
has been estimated that up to 15–20% of a university’s research 
infrastructure budget is dedicated to the upkeep of animal research 
facilities, highlighting a significant area where costs could be redirected 
toward AI-driven tools and computational resources (Holbrook and 
Sanberg, 2013). A growing number of institutions are beginning to 

reallocate investments from animal housing and breeding facilities to 
computational resources and personnel specializing in data science 
(Gangwal and Lavecchia, 2025; He et al., 2025; Ajisafe et al., 2025; 
Mehta et al., 2025), representing a substantial financial burden that 
could be  redirected toward AI infrastructure. This shift not only 
promotes long-term cost efficiency but also enhances reproducibility 
and transparency (Deng and Strong, 2025; Han, 2025; Moassefi et al., 
2023). AI models can be easily shared, versioned, and audited, unlike 
animal studies, which often suffer from variability, irreproducibility, 
and inter-laboratory inconsistencies (Deng and Strong, 2025; Han, 
2025; Moassefi et al., 2023). However, the reproducibility of AI results 
also depends on transparent reporting of model architectures, training 
data availability, and computing environments, which are now 
increasingly standardized through open-source frameworks and FAIR 
data principles (Deng and Strong, 2025; Han, 2025; Moassefi 
et al., 2023).

Furthermore, AI supports real-time learning and adaptation. As 
new biological data, whether from clinical trials, organ-on-chip 
platforms, or immune organoids, become available, models can 
be retrained and improved without having to restart the experimental 
process (Sun et al., 2022; Farhang Doost and Srivastava, 2024; Alver 
et al., 2024; Wang et al., 2024; Picollet-D'hahan et al., 2021; Fan et al., 
2025; Kim et al., 2020; Huang et al., 2025; Liu X. et al., 2025; Niazi and 
Mariam, 2025). This dynamic feedback loop accelerates the 
optimization of vaccine candidates and immune modulators, 
ultimately driving faster regulatory approval and broader accessibility.

In summary, AI represents not only a scientific innovation but 
also a paradigm shift in the economics and efficiency of immunological 
research (Elfatimi et  al., 2025; El Arab et  al., 2025; Goktas and 
Damadoglu, 2025). By reducing costs, increasing scalability, and 
eliminating many practical barriers of animal experimentation, AI 

TABLE 2  Comparative framework of traditional animal-based research versus AI-driven approaches in pre-clinical development of drugs, vaccines, and 
immunotherapeutics.

Research purpose Traditional animal-based methods AI-driven approaches

Drug/vaccine/immunotherapeutic 

screenings

	•	 In vivo challenge tests, immunogenicity, protective efficacy, 

immune assays

	•	 Toxicity studies in rodents and non-human primates

	•	 AI-guided virtual screening of compounds

	•	 In silico simulation of immune activation and toxicity

Target discovery
	•	 Gene knockout and transgenic animal studies

	•	 Observational findings from animal pathology

	•	 AI analysis of omics data (genomics, transcriptomics, 

proteomics)

	•	 Pattern discovery in large datasets

Lead optimization
	•	 Medicinal chemistry adjusted based on animal response

	•	 Dose–response curves in animals

	•	 Predictive modeling of pharmacodynamics and ADMET

	•	 Machine learning for epitope-antigen matching

Efficacy evaluation
	•	 Behavioral and clinical scoring in animal disease models

	•	 Tissue pathology and serology

	•	 Simulation of immune protection in silico

	•	 Clinical trial data used for predictive efficacy modeling

Safety and toxicity
	•	 Long-term exposure studies in multiple species

	•	 Organ-specific toxicity observed post-mortem

	•	 AI prediction of adverse events from molecular structure

	•	 Toxicogenomic-based machine learning tools

Pharmacokinetics (PK)
	•	 ADME and bioavailability tracking via labeled substances

	•	 Tissue sampling at set intervals

	•	 AI-based modeling of drug distribution

	•	 PBPK models derived from real-world and simulated data

Biomarker identification
	•	 Cytokine profiling and immune markers in animal fluids

	•	 Histological scoring

	•	 AI integration of multi-omics for biomarker prediction

	•	 Deep learning to identify signature pathways

Disease modeling
	•	 Animal induction of disease via infection or mutation

	•	 Progression tracked over weeks/months

	•	 AI simulation of immune dysregulation

	•	 Longitudinal modeling of patient-derived datasets

Comparison of conventional in vivo methods with artificial intelligence (AI)-powered strategies across the significant stages in drug, vaccine, and immunotherapeutic development. This 
includes toxicity, immunogenicity, and protective screening, target discovery, lead optimization, efficacy evaluation, safety and toxicity assessment, pharmacokinetics, biomarker identification, 
and disease modeling.
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lays the foundation for a more ethical, rapid, and data-driven future 
in vaccine development and immunotherapy research.

5 Emergent AI and human-relevant 
alternatives in vaccine and 
immunotherapeutic development

From both scientific and ethical standpoints, there is an urgent 
need to reimagine pre-clinical immunology using methods that are 
more human-relevant and technologically scalable (Elfatimi et al., 
2025; Alanazi, 2025). Over the past two decades, a paradigm shift has 
emerged in pre-clinical and translational research, driven by 
increasing challenges and limitations of animal models and a parallel 
surge in computational and tissue engineering technologies.

In response to these challenges, major regulatory bodies have 
institutionalized this shift. In 2010, the European Directive 2010/63/
EU (1) provided a framework for animal testing through the three R’s: 
Replacement, Reduction, and Refinement; and (2) formulated the 
ultimate goal of entirely replacing animal experiments with 
non-animal methods when scientifically possible, marking the 
beginning of the phase-out process of animal experimentation in the 
EU. More recently, the U.S. Food and Drug Administration (FDA) and 
the National Institutes of Health (NIH) have launched landmark 
initiatives to reduce and eventually eliminate the requirement for 
animal testing in the development of biologics, including vaccines 
(Elfatimi et al., 2025; Xiao et al., 2025; Riviere et al., 2025; Alanazi, 
2025; Barreto et al., 2025; Olawade et al., 2024; Omranian et al., 2024; 
Zhuang et al., 2024). These agencies are encouraging the adoption of 
advanced human-based methodologies, including artificial 
intelligence (AI), human-derived organoids, organ-on-a-chip 
platforms, and induced pluripotent stem cell (iPSC) technologies 
(Alver et al., 2024; Nelson et al., 2024; Ouyang et al., 2019). These 
models aim to capture the nuances of human immune physiology in 
a more accurate and ethically acceptable manner.

Artificial intelligence has been applied to model host–pathogen 
interactions, performing virtual high-throughput screening of vaccine 
candidates, and simulating immune dynamics under various 
therapeutic conditions. These applications are already reshaping how 
immunological questions are framed and answered (Xu et al., 2023; 
Bender and Cortes-Ciriano, 2021; Goldberg and Hartung, 2006; 
Hartung, 2010; Vinken et al., 2021; Rawal et al., 2022). For instance, 
AI-based models integrated multi-omics datasets to simulate B- and 
T-cell responses, cytokine and chemokine signaling, and antigen 
presentation, offering immunologically relevant representations that 
improve upon traditional static models (Elfatimi et al., 2025; Farzan, 
2024; Sharma et al., 2022). These models enable the real-time tracking 
of B- and T-cell responses, including T-cell function, T-cell exhaustion, 
and cross-reactivity, allowing for the optimization of vaccine and 
immunotherapeutic designs (Elfatimi et al., 2025; Kumar et al., 2024). 
In another example, AI facilitates reverse vaccinology, epitope 
prediction, and personalized vaccine and immunotherapeutic 
formulation by integrating large-scale immunological data (Elfatimi 
et al., 2025; Farzan, 2024; Sharma et al., 2022; Ito et al., 2024; Kumar 
et al., 2024). This reduces time and costs by filtering out ineffective 
vaccine and immunotherapeutic candidates before pre-clinical and 
clinical trials. In both animal models and humans, AI can predict the 
B- and T-cell responses to vaccines and immunotherapies, allowing 

dynamic adjustments and refinement of immunological 
interpretations (Elfatimi et  al., 2025; Farzan, 2024). It enhances 
predictions of cytokine and chemokine networks and immune 
checkpoint dynamics, thereby contributing to the development of 
more effective vaccines and immunotherapeutics (Elfatimi et al., 2025; 
Farzan, 2024; Sharma et  al., 2022). The U.S. NIH has recently 
established the Office of Research Innovation, Validation, and 
Application (ORIVA), which is tasked with developing and validating 
non-animal-based models across the NIH’s research portfolio (Goktas 
and Grzybowski, 2025). This marked a clear move toward prioritizing 
“human-relevant” technologies that could bridge the gap between 
laboratory science and real-world human biology, particularly in areas 
such as immunology and vaccine development.

Among these alternatives, artificial intelligence (AI) stands out as 
a transformative tool for rethinking how immune responses are 
modeled and predicted. Deep learning and machine learning 
algorithms are now being widely employed for epitope prediction, 
vaccine antigen optimization, immune repertoire classification, and 
simulation of host-pathogen interactions (Xu et al., 2023; Sinicrope 
et al., 2024; Chen et al., 2023). For example, AI-based methods can 
analyze massive immunological datasets, such as those from flow 
cytometry, RNA-seq, proteomics, and clinical trials, to identify novel 
antigenic targets or anticipate adverse immune reactions. These 
algorithms are capable of uncovering hidden patterns in human data 
that would be difficult to detect using traditional statistical methods, 
enabling more personalized and predictive vaccine design (Kumar 
et  al., 2024). Simultaneously, the FDA has released a regulatory 
roadmap to begin reducing reliance on animal testing for biologics, 
including monoclonal antibodies and vaccine candidates. The FDA’s 
policy encourages the integration of computational simulations, 
immune organoids, and organ-on-a-chip technologies into pre-clinical 
pipelines over the next 5 years, aiming to make animal studies the 
exception rather than the norm (Fan et al., 2025; Kim et al., 2020; 
Huang et al., 2025; Liu X. et al., 2025; Nelson et al., 2024). These 
changes are reinforced by a growing ecosystem of public-private 
partnerships and research consortia focused on AI-powered precision 
medicine, including applications in immunotoxicity, vaccine 
durability, and the prediction of immune escape.

Human immune organoids have emerged as another promising 
platform for research (Fan et al., 2025; Kim et al., 2020; Huang et al., 
2025; Liu X. et al., 2025). These 3D miniaturized lymphoid tissues, 
often derived from human tonsils, spleens, or iPSC-derived immune 
progenitors, have been shown to replicate essential features of adaptive 
immunity, including germinal center formation, antibody class 
switching, and T–B cell interactions (Wagar et al., 2021; Kastenschmidt 
et  al., 2023). These features make them particularly attractive for 
vaccine evaluation, as they allow scientists to study antigen-specific 
responses in  vitro under near-physiological conditions. When 
combined with AI-based analytical pipelines, organoids enable more 
efficient hypothesis generation, screening, and mechanistic insight, all 
without relying on animals (Fan et al., 2025; Kim et al., 2020; Huang 
et al., 2025; Liu X. et al., 2025).

Organ-on-a-chip (OoC) systems offer yet another level of 
complexity. These microfluidic devices mimic the dynamic 
biochemical, mechanical, and cellular microenvironments of human 
tissues. Immunology-focused OoCs can model lung, gut, or skin 
immune barriers, supporting studies on mucosal immunity, vaccine 
delivery, and adjuvant response. For example, Ingber and colleagues 
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have developed multiorgan chip systems that enable the real-time 
analysis of interactions between immune cells and target tissues to 
be studied in real-time (Nithin et al., 2023; Tian et al., 2024). When 
used in conjunction with AI models, these systems can generate 
multiscale simulations that incorporate tissue-specific immune 
responses, pharmacokinetics, and safety profiles. Despite the 
enormous potential of these technologies, significant limitations 
remain. Most current organoid and chip-based systems simulate 
responses in isolated compartments and do not replicate the systemic 
coordination observed in complete immune responses, an essential 
feature for understanding vaccine-induced protection or immune-
related adverse events (Fan et al., 2025; Kim et al., 2020; Huang et al., 
2025; Liu X. et al., 2025). Moreover, many AI models lack sufficient 
external validation, and their performance can degrade when applied 
to new populations or unseen clinical scenarios due to dataset biases 
or limited training diversity (Huang et al., 2022). However, some of 
the organoids and organ-on-chips are not strictly human-based and 
may still incorporate animal-derived components or cells (Sun et al., 
2022; Farhang Doost and Srivastava, 2024; Alver et al., 2024; Wang 
et al., 2024; Picollet-D'hahan et al., 2021; Fan et al., 2025; Kim et al., 
2020; Huang et al., 2025; Liu X. et al., 2025; Ingber, 2022; Liu K. et al., 
2025; Horejs, 2021). Despite these limitations, the field is progressing 
toward increasingly human-relevant models, aiming to reduce animal 
use by more accurately mimicking human physiology (Ingber, 2022; 
Liu K. et al., 2025). While the transition to completely human-based 
systems is ongoing, challenges remain in fully replicating complex 
tissue environments and functions without incorporating animal 
elements (Elfatimi et al., 2025; Xiao et al., 2025; Riviere et al., 2025; 
Alanazi, 2025; Barreto et al., 2025; Olawade et al., 2024; Omranian 
et  al., 2024; Zhuang et  al., 2024; Ingber, 2022; Liu K. et  al., 2025; 
Horejs, 2021).

Integrative approaches that combine organoids, organ-on-chip 
(OoC) platforms, and artificial intelligence (AI) are being 
developed to overcome these shortcomings (Sun et  al., 2022; 
Farhang Doost and Srivastava, 2024; Alver et al., 2024; Wang et al., 
2024; Picollet-D'hahan et al., 2021; Fan et al., 2025; Kim et al., 
2020; Huang et  al., 2025; Liu X. et  al., 2025). These multiscale 

models aim to reconstruct both cellular-level interactions and 
system-wide immune responses, but they are still in their infancy. 
Additional regulatory guidelines, benchmarking standards, and 
collaborative infrastructures are necessary to facilitate the routine 
adoption of these approaches in immunological research and 
vaccine development pipelines.

Table  3 provides an overview of emerging human-relevant 
technologies designed to reduce reliance on animal models in 
immunological research. It highlights key platforms, including 
artificial intelligence (AI), immune organoids, organ-on-a-chip 
systems, and integrated multiscale models, alongside their primary 
features, applications in immunology, and current limitations (Fan 
et al., 2025; Kim et al., 2020; Huang et al., 2025; Liu X. et al., 2025). The 
table also includes the NIH’s ORIVA program, which supports the 
validation and adoption of these alternatives. Collectively, these tools 
offer promising avenues for modeling immune responses more 
accurately and ethically, however, challenges such as limited systemic 
integration and scalability still need to be addressed (Elfatimi et al., 
2025; Xiao et al., 2025; Riviere et al., 2025; Alanazi, 2025; Barreto et al., 
2025; Olawade et al., 2024; Omranian et al., 2024; Zhuang et al., 2024).

6 Benefits of AI in pre-clinical vaccine 
and immunotherapeutic development

The current practices in animal models used in research always 
consider the “three Rs”: (1) Replacement involves assessing the 
scientific justification and rationale for using an animal in biomedical 
research, including whether there are alternatives to using live 
animals. (2) Reduction entails assessing whether the number of 
animals required in an experiment is adequate to achieve scientifically 
valid results. This includes power and statistical tests to determine the 
smallest number of animals in each experiment that would 
be sufficient to produce statistically meaningful results. (3) Refinement 
will determine whether and how animal procedures are likely to cause 
pain or distress, and how this can be  minimized. This involves 
ensuring that similar animal experiments are not already reported in 

TABLE 3  Emerging human-relevant alternatives to animal models in immunology (Singer and Akhtar, 2024).

Platform/tool Key features Applications in immunology Limitations

Artificial intelligence (AI)

Predictive modeling using large datasets 

(e.g., transcriptomics, EHR, imaging) (Singer 

and Akhtar, 2024; Diray-Arce et al., 2022)

Epitope prediction, antigen design, immune 

simulation, vaccine response forecast

Depends on dataset quality; limited 

generalizability across populations

Immune organoids
3D lymphoid tissues derived from tonsil, 

spleen, or iPSCs (Braham et al., 2023)

Study of germinal center reactions, T-B cell 

interaction, and antibody production

Limited to single-organ systems; lacks 

systemic integration

Organ-on-a-chip (OoC)

Microfluidic devices that mimic human 

tissue architecture and microenvironments 

(Sinha et al., 2018)

Barrier immunity (e.g., gut, lung), vaccine 

delivery, and immunotoxicity studies

High complexity; expensive; limited 

scalability across complete immune 

systems

Multiscale hybrid models

Integration of AI + Organoids + OoC for 

systemic simulation (Morrison et al., 2024; 

Suhito et al., 2025)

Comprehensive simulation of immune 

response across compartments

Still in development; no regulatory 

standardization yet

ORIVA (NIH Program)
NIH office dedicated to the validation of 

non-animal research models

Funding and coordinating the adoption of 

human-relevant tools

Early-stage implementation; depends 

on interagency and interinstitutional 

support

Summary of innovative AI platforms, immune organoids, organ-on-a-chip systems, multiscale hybrid models, and the NIH ORIVA initiative. Key features of vaccine and immunotherapeutic 
applications, as well as current limitations, are outlined, illustrating the growing ecosystem of non-animal, human-relevant research tools.
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the scientific literature and describing the potential novelty of the 
additional experiment.

Artificial Intelligence (AI), which has rapidly become a critical 
tool in reshaping the landscape of pre-clinical immunological 
research, will certainly help accelerate the implementation of the 
“three Rs” above (Rudroff, 2024). AI offers numerous advantages over 
traditional animal-based models, providing both scientific and ethical 
advancements in how we investigate immune responses and design 
therapeutic interventions by leveraging high-throughput data and 
complex algorithms. Figure 4 provides a visual summary of the key 
advantages of AI in pre-clinical immunology, including improved 
speed, predictive power, cost-efficiency, structural insight, and 
ethical impact.

6.1 Speed and scale

AI enables researchers to analyze millions of potential peptide 
MHC interactions in silico within hours. This task would 
be impractical using animal experiments or conventional laboratory 
techniques. This rapid computational screening significantly 
accelerates the prioritization of vaccine targets and epitope candidates. 
Deep neural networks trained on human immunopeptidome data can 
predict binding affinities and T-cell immunogenicity with high 
precision, thereby narrowing down the most promising antigens for 
experimental validation (Xu et al., 2023; Phloyphisut et al., 2019).

6.2 Cost efficiency

AI-driven platforms have already demonstrated substantial cost 
savings in drug discovery pipelines, particularly in oncology 
(Hasselgren and Oprea, 2024; Vora et al., 2023). Similar frameworks 
are now being adapted for the treatment of infectious diseases. By 
de-risking vaccine and immunotherapeutic discoveries and reducing 
reliance on expensive and time-consuming in vivo studies, AI enables 
pre-clinical development teams to conduct early-stage hypothesis 
testing, virtual compound screening, and immunological modeling at 

a fraction of the cost of animal-based trials (Gangwal and Lavecchia, 
2025; Bonaiti et al., 2024). Additionally, these efficiencies can help 
reduce financial barriers for smaller research institutions and startups 
working in global vaccine development.

While AI-driven pre-clinical assessments of vaccines and 
immunotherapeutic candidates can reduce animal use and lower 
expenses, the extent to which AI benefits the economy by lowering the 
cost of pre-clinical animal experiments for vaccines and 
immunotherapy candidates remains to be determined. For instance, 
AI-powered drug discovery platforms are expected to reduce expenses 
associated with pre-clinical animal studies by 50–70%. Overall, AI has 
the potential to save millions of dollars and years compared to 
traditional animal-based experiments to select safe, immunogenic, 
and protective vaccine and immunotherapy candidates (Chang et al., 
2025). Recent return on investment analyses indicate that AI 
applications in immunotherapy are accelerating cost savings (Chang 
et al., 2025; Nierengarten, 2025; Villanueva-Meyer et al., 2024; Bakas 
et  al., 2024). AI-driven tools, including deep learning models 
integrated with digital pathology, imaging, and multi-omic datasets, 
are enabling more intelligent resource allocation by targeting therapies 
to patients most likely to respond, reducing waste in clinical trials, and 
decreasing unnecessary treatments (Chang et al., 2025; Nierengarten, 
2025; Dlamini et al., 2020).

6.3 Predictive power

Unlike animal models, which often fail to replicate human 
immune responses accurately, AI systems can be trained on real-world 
datasets, including single-cell transcriptomics, clinical trial data, and 
immune repertoire profiles, to simulate immune dynamics across 
diverse human populations. These simulations can be used to predict 
immune responses to novel antigens, identify patient subgroups most 
likely to benefit from a given vaccine or immunotherapy, and model 
rare adverse events such as cytokine storms or immune escape (Xu 
et al., 2023; Kastenschmidt et al., 2023). This level of predictive insight 
is not possible in animal systems due to their biological and 
immunological constraints.

FIGURE 4

Benefits of AI in pre-clinical immunological research. Key advantages of artificial intelligence (AI) in pre-clinical immunological research: AI 
technologies enhance the speed and scalability of screening peptide–MHC interactions, reduce reliance on costly and ethically challenging animal 
models, provide predictive insights into immune responses across diverse human populations, and support structure-based immunogen design using 
tools like AlphaFold2.
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6.4 Ethical soundness

One of the most compelling arguments for the adoption of AI in 
pre-clinical animal research is its potential to drastically reduce, and 
eventually eliminate, the use of animal subjects. Immunogenicity 
testing, toxicity screening, and inflammation profiling can now 
be partially or fully modeled through AI simulations and human-
based organoid systems (Fan et al., 2025; Kim et al., 2020; Huang et al., 
2025; Liu X. et al., 2025). This shift not only aligns with the enhanced 
principles (Replacement, Reduction, Refinement) but also improves 
public trust and acceptance in biomedical research by promoting 
more humane and sustainable practices (Rudroff, 2024; Ingber, 2022; 
Nithin et al., 2023).

6.5 Technological synergy with structural 
prediction tools

AI models such as AlphaFold2 have revolutionized structural 
biology by predicting 3D protein folding with near-experimental 
accuracy. This capability is highly valuable in vaccine design, where 
structural information on viral antigens or immune receptors is 
critical for epitope mapping and rational immunogen selection. 
Combined with machine learning algorithms tailored to accelerate 
and de-risk epitope discovery and antigenicity scoring, these 
technologies are streamlining the conceptualization and optimization 
of immune intervention (Gangwal and Lavecchia, 2025; Tian 
et al., 2024).

Overall, AI represents a scalable, ethical, and scientifically 
superior alternative for many aspects of immunological research. 
When integrated with complementary technologies, such as organoids 
and organ-on-chip systems, AI has the potential to create fully 
human-relevant pipelines that replace traditional animal models in 
both discovery and translational immunology (Sun et  al., 2022; 
Farhang Doost and Srivastava, 2024; Alver et al., 2024; Wang et al., 
2024; Picollet-D'hahan et al., 2021; Fan et al., 2025; Kim et al., 2020; 
Huang et al., 2025; Liu X. et al., 2025).

7 Challenges and limitations

While artificial intelligence (AI) offers immense promise in 
reducing and replacing animal models in immunology, several 
limitations must still be acknowledged (Elfatimi et al., 2025; Xiao 
et al., 2025; Riviere et al., 2025; Alanazi, 2025; Barreto et al., 2025; 
Olawade et al., 2024; Omranian et al., 2024; Zhuang et al., 2024). 
Despite their increasing sophistication, current AI models still cannot 
fully replicate the complexity of a living organism. Certain conditions, 
particularly systemic immune disorders, and long-term physiological 
responses, remain challenging to model without in  vivo studies 
(Rudroff, 2024; Kamimoto et al., 2023; Laurent et al., 2024; Blanc 
et al., 2025).

Several scientific barriers to entirely replacing animal studies with 
AI stem from the complexity of living systems and the current 
limitations of computational models (Rudroff, 2024; Kamimoto et al., 
2023; Fruhwein and Paul, 2025). For instance, AI is less effective at 
discovering new side effects, toxicity pathways, or immunological 
mechanisms that emerge in  vivo following the administration of 

vaccine and immunotherapeutic candidates, particularly those that 
are not represented in the initial AI training data (Rudroff, 2024; 
Kamimoto et al., 2023). Some immune responses only appear in the 
context of a functioning organism as a whole and therefore are difficult 
to predict through AI simulations alone (Rudroff, 2024; Kamimoto 
et al., 2023). Moreover, ethical replacement of animal studies by AI 
should proceed with a commitment to validate and implement 
human-relevant models, grounded not only in animal welfare but also 
in science’s duty to generate reliable and translatable data for human 
health (Fruhwein and Paul, 2025).

A key concern is the risk of bias in training data. Suppose AI 
models are developed using datasets that primarily reflect a narrow 
demographic. In that case, they may produce less accurate or even 
misleading predictions for other populations, including women, 
children, or older adults (El Arab et al., 2025). Addressing such biases 
requires deliberate efforts to diversify and balance input data during 
model training and validation. Complex datasets from genomics and 
proteomics may yield false-positive correlations due to various factors, 
such as data size, technical variability, and statistical noise (Lafit et al., 
2019; Huttlin et al., 2007; Zhang et al., 2015). For instance, errors in 
identifying protein antigens to be  incorporated into vaccine and 
immunotherapeutic candidates as differentially expressed in 
proteomics (false positives) are common and require careful 
experimental design and statistical testing in vitro and in animals to 
avoid misinterpretation (Lafit et al., 2019; Huttlin et al., 2007; Zhang 
et al., 2015). This highlights the importance of using robust statistical 
approaches, high-quality data preprocessing, and critical biological 
validation to ensure that identified correlations are both biologically 
plausible and actionable (Huttlin et al., 2007; Zhang et al., 2015). Thus, 
without rigorous validation—such as biochemical confirmation, 
replication in comparable biological contexts, and advanced statistical 
controls—false-positive correlations in genomics and proteomics can 
mislead vaccine and immunotherapeutic research, as well as clinical 
decision-making (Lafit et  al., 2019; Huttlin et  al., 2007; Zhang 
et al., 2015).

Overfitting is another technical limitation, where models may 
perform well on internal datasets but fail to generalize to external or 
unseen data (Yang et al., 2023). This can lead to overly optimistic 
performance estimates and reduced real-world applicability. To 
mitigate this, rigorous validation methods such as cross-validation, 
regularization techniques, and external benchmarking are essential 
during model development.

High-dimensional biomedical data, including omics and imaging 
datasets, can also increase the risk of spurious associations or 
biologically implausible outputs (Xiao et al., 2025; Omranian et al., 
2024). Researchers must therefore interpret AI-generated predictions 
cautiously and prioritize experimental validation, especially in 
applications involving the development of vaccines 
or immunotherapies.

Other limitations of AI include (1) the “black-box” problem 
(Duran and Jongsma, 2021; Rudin, 2019) and (2) the complex process 
of model retraining with new data (Rudin, 2019; Vela et al., 2022). (1) 
The black-box problem refers to the lack of transparency in how 
complex AI and deep learning models arrive at their decisions 
(Sinicrope et al., 2024; Duran and Jongsma, 2021; Rudin, 2019; Vela 
et  al., 2022). These models learn from vast amounts of data and 
develop intricate internal representations that human natural 
intelligence, including the model designers, often cannot fully 
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understand or explain (Duran and Jongsma, 2021; Rudin, 2019; Vela 
et al., 2022). This opacity makes it difficult to trace or interpret the 
decision-making process, creating issues with trust, accountability, 
and the ethical use of resources (Duran and Jongsma, 2021; Rudin, 
2019; Vela et al., 2022). (2) Retraining AI models with new data is a 
time-consuming and laborious process (Vela et al., 2022). It typically 
requires large volumes of labeled data and careful tuning to avoid 
issues such as “catastrophic forgetting” (where a model loses previously 
acquired knowledge), lack of convergence, and variability due to 
random initialization. Automating frequent retraining is challenging 
and can introduce significant risks (Vela et al., 2022). In clinical and 
translational applications, retraining often necessitates additional 
regulatory review, documentation, and validation before deployment, 
thereby further increasing the time and cost burden. These limitations 
underscore fundamental difficulties in making AI systems trustworthy, 
reliable, and responsive to new data while maintaining transparency 
and clarity that are understandable to human natural intelligence 
(Vela et al., 2022).

Despite its transformative potential, AI is not a panacea. Most 
models are only as reliable as the data on which they are trained, and 
many suffer from inherent biases tied to demographics, geography, or 
time (Prathaban and Hande, 2024). Moreover, while organoid models 
offer valuable alternatives to animal tissues, current systems such as 
those derived from tonsils often reflect isolated lymphoid structures 
and fail to reproduce the complex, systemic immune interactions that 
occur during real infections or vaccinations (Deng and Strong, 2025; 
Han, 2025; Moassefi et al., 2023; Wagar et al., 2021; Fan et al., 2025; 
Kim et al., 2020; Huang et al., 2025; Liu X. et al., 2025; Kastenschmidt 
et al., 2023). As such, AI-based predictions still require experimental 
validation, and moving from animal-based to fully digital pipelines 
demand standardization, benchmarking, and ongoing refinement 
(Shahabipour et  al., 2023). Safety concerns remain particularly 
relevant, as even the most advanced AI systems may not yet fully 
capture toxicological or immunopathological risks, making final 
in  vivo validation necessary in many cases (Wagar et  al., 2021; 
Bar-Ephraim et al., 2020). Moreover, many AI techniques, intensive 
learning still function as “black boxes,” where the underlying 
reasoning behind predictions is challenging to interpret (Riviere et al., 
2025). This lack of transparency can limit trust among clinicians, 
immunologists, and regulators. Ongoing advancements in explainable 
AI aim to address this challenge, but wide-scale adoption 
remains limited.

There are also practical challenges to implementing AI approaches 
(Elfatimi et al., 2025; Xiao et al., 2025; Riviere et al., 2025; Alanazi, 
2025; Barreto et al., 2025; Olawade et al., 2024; Omranian et al., 2024; 
Zhuang et al., 2024). Some research institutions may lack access to 
computational infrastructure, specialized personnel, or funding 
required to utilize AI-based tools fully. Additionally, regulatory bodies 
are still adapting their frameworks to evaluate and approve 
AI-generated evidence, which means that even well-performing 
models may face barriers to clinical integration.

While AI faces significant challenges related to data biases, there 
are established approaches to address them effectively (Elfatimi et al., 
2025; Xiao et al., 2025; Riviere et al., 2025; Alanazi, 2025; Barreto et al., 
2025; Olawade et al., 2024; Omranian et al., 2024; Zhuang et al., 2024). 
Among the challenges is that a bias can stem from unbalanced 
datasets, flawed data collection processes, or inherited societal 
prejudices within the data (Elfatimi et al., 2025; Xiao et al., 2025; 

Riviere et al., 2025; Alanazi, 2025; Barreto et al., 2025; Olawade et al., 
2024; Omranian et al., 2024; Zhuang et al., 2024). This bias can lead to 
reduced fairness, trust issues, and ethical concerns, impacting 
pre-clinical and clinical decision-making for vaccines and 
immunotherapies. A major contributing factor is the difficulty of 
acquiring large, well-curated, and standardized multi-omic datasets 
from diverse human populations. Such data collection efforts are 
expensive, time-consuming, and complicated by privacy regulations 
and a lack of harmonized data formats across institutions, which limit 
data sharing and the generalizability of models. This issue can 
be mitigated by (1) cleaning, balancing, and transforming data to 
reduce discrimination before training; (2) implementing fairness 
constraints, counterfactual fairness, and re-weighting to ensure 
equitable decision outcomes across demographics; (3) calibrating 
model outputs to improve fairness after decisions are made; and (4) 
implementing human oversight for continuous bias auditing and 
transparent reporting of AI decision logic.

There also exist challenges related to deep learning networks, 
which operate as “black boxes” where the decision-making process is 
unclear, thereby hindering trust, regulatory compliance, and bias 
detection (Elfatimi et al., 2025; Xiao et al., 2025; Riviere et al., 2025; 
Alanazi, 2025; Barreto et al., 2025; Olawade et al., 2024; Omranian 
et al., 2024; Zhuang et al., 2024). This can also be mitigated by (1) 
using interpretable models or applying post-hoc explanation tools like 
LIME (Local Interpretable Model-Agnostic Explanations) and SHAP 
(SHapley Additive exPlanations) to explain which features influence 
decisions; (2) providing transparency through documentation of 
model training, data characteristics, and decision logic fosters 
stakeholder understanding and trust; (3) encouraging human-in-the-
loop frameworks that allow experts to validate AI decisions and 
improve system outcomes; and (4) aligning with regulatory 
requirements for transparency and explainability, particularly in 
industries requiring high accountability. The challenges of data biases 
and interpretability in AI are addressable through a multi-faceted 
approach involving technical solutions, organizational practices, 
transparency, and collaboration, resulting in fairer, more reliable, and 
trustworthy AI systems (Elfatimi et al., 2025; Xiao et al., 2025; Riviere 
et al., 2025; Alanazi, 2025; Barreto et al., 2025; Olawade et al., 2024; 
Omranian et al., 2024; Zhuang et al., 2024).

Another challenge with AI is that data biases in digital immune 
twins affect predictive reliability (Weinberger et  al., 2025). These 
biases typically arise because the datasets used to train these predictive 
models often overrepresent populations with specific ethnicities, 
races, and genders, as well as genetic mix-ups (e.g., males, whites, 
affluent individuals), and underrepresent others (e.g., women, 
non-binary individuals, marginalized groups) (Weinberger et  al., 
2025). This imbalance in data leads to algorithmic biases that impact 
the accuracy and fairness of model predictions for underrepresented 
groups, potentially reducing the overall reliability of these models in 
pre-clinical and clinical decision-making for vaccines and 
immunotherapies (Mann, 2024; De Domenico et  al., 2025). 
Specifically, the predictive reliability of digital immune twins suffers 
when the underlying data lacks representation of physiological, 
demographic, or socio-medical diversity (Weinberger et al., 2025). 
This can result in inaccurate or less effective vaccine and 
immunotherapy predictions, as well as disease progression 
simulations, for specific populations. Such limitations are especially 
critical when simulating systemic immune responses, for example, 
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systemic inflammation or long-term protection, where missing 
population diversity can lead to misleading projections of efficacy or 
adverse events. Structural exclusions in data and limited diversity in 
training datasets exacerbate these issues, reinforcing health disparities 
rather than mitigating them (Mann, 2024; De Domenico et al., 2025).

Furthermore, these biases in digital immune twins are not merely 
theoretical concerns: AI models trained on biased data tend to 
propagate and even amplify these biases, resulting in less trustworthy 
predictions and decision-making for vaccines and immunotherapies 
in pre-clinical and clinical settings (Mann, 2024; De Domenico et al., 
2025). Efforts to detect, understand, and correct biases using 
simulations or bias correction algorithms exist, but challenges remain 
to eliminate prejudice and improve model reliability for all populations 
entirely. In summary, data biases in digital immune twins significantly 
affect their predictive reliability, especially when those biases lead to 
underrepresentation of key patient subgroups, impacting both the 
accuracy and equity of predictions (Weinberger et al., 2025; Mann, 
2024; De Domenico et al., 2025).

Despite these hurdles, the scientific, economic, and ethical 
motivations for adopting non-animal approaches are gaining 

traction. Traditional animal models are increasingly viewed as 
limited in their ability to predict human outcomes, costly to 
maintain, and misaligned with public sentiment regarding animal 
welfare. Consequently, many leading research institutions and 
pharmaceutical companies are beginning the shift toward 
AI-based, human-relevant systems.

While AI may not immediately replace animal models in every 
context, it is likely to progressively reduce reliance on them, first by 
supporting early-stage screening and hypothesis generation, and 
eventually by enabling comprehensive immune modeling pipelines. 
As AI systems continue to mature and align with clinical data, they are 
expected to become both more trustworthy and scientifically superior. 
Rather than an abrupt end to animal research, this will represent a 
gradual but inevitable evolution toward more ethical, accurate, and 
efficient biomedical science. Figure 5 provides a visual summary of the 
key challenges discussed in this section, illustrating how limitations 
such as data bias, model overfitting, interpretability issues, and the 
need for experimental validation remain critical barriers to replacing 
animal models with AI-driven approaches in immunology (Elfatimi 
et al., 2025; Xiao et al., 2025; Riviere et al., 2025; Alanazi, 2025; Barreto 

FIGURE 5

Challenges and limitations of AI in immunology. This flowchart summarizes the key obstacles that limit the complete replacement of animal models in 
immunology with AI (Elfatimi et al., 2025; Xiao et al., 2025; Riviere et al., 2025; Alanazi, 2025; Barreto et al., 2025; Olawade et al., 2024; Omranian et al., 
2024; Zhuang et al., 2024). These include complex immune responses that are challenging to model, data biases that reduce generalizability, 
overfitting on training data, the lack of interpretability in deep learning models (the “black box problem”), the ongoing need for experimental validation, 
and the continued reliance on animal testing for confirming toxicity and safety. Each challenge is interconnected, highlighting the need for a 
multidisciplinary and standardized approach to overcome these challenges (Elfatimi et al., 2025; Xiao et al., 2025; Riviere et al., 2025; Alanazi, 2025; 
Barreto et al., 2025; Olawade et al., 2024; Omranian et al., 2024; Zhuang et al., 2024).
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et  al., 2025; Olawade et  al., 2024; Omranian et  al., 2024; Zhuang 
et al., 2024).

8 Regulatory momentum and funding 
initiatives

Encouragingly, regulatory bodies are now actively supporting the 
shift. The NIH has begun prioritizing research projects that avoid 
animal testing and explicitly encourages “human-relevant” 
methodologies (Nelson et al., 2024). The FDA similarly states that 
animal testing should become the exception, not the norm (Nelson 
et al., 2024). In a landmark decision reflecting a growing commitment 
to ethical research practices, the NIH announced the creation of the 
Office of Research Innovation, Validation, and Application (ORIVA). 
This new office is tasked with promoting and funding non-animal 
research methods, marking a significant shift towards human-relevant 
science. The initiative is hailed as a major victory for animal ethics, 
aligning scientific research with ethical imperatives and public 
sentiment. ORIVA’s mission includes scaling AI and organoid models 
across immunological research domains (Fan et al., 2025; Kim et al., 
2020; Huang et  al., 2025; Liu X. et  al., 2025). However, for this 
transformation to succeed, dedicated funding is required for 
researcher training, infrastructure development, and cross-laboratory 
standardization (Wagar, 2023; Kastenschmidt et al., 2023). Beyond 
technical limitations, the persistence of animal methods bias in 
scientific publishing and research funding has also been identified as 
a significant barrier to the adoption of non-animal alternatives. 
Kavanagh and Krebs highlighted how entrenched preferences for 
animal models, despite the availability of human-relevant tools, can 
hinder scientific progress and misallocate research resources (Nelson 
et al., 2024). Addressing such biases through policy reform, reviewer 
education, and structural changes in grant evaluation is essential to 
support the broader implementation of AI-integrated, organoid, and 
organ-on-chip-based platforms (Alver et al., 2024). By prioritizing 
these alternative methods, the NIH aims to enhance the relevance and 
applicability of biomedical research to human health outcomes (Sun 
et al., 2022; Farhang Doost and Srivastava, 2024; Alver et al., 2024; 
Wang et al., 2024; Picollet-D'hahan et al., 2021; Fan et al., 2025; Kim 
et al., 2020; Huang et al., 2025; Liu X. et al., 2025; Nelson et al., 2024).

9 Future of AI-based approaches to 
aid animal model experiments in 
vaccine and immunotherapeutic 
development

The path toward reducing and eventually replacing animal models 
in immunology and vaccine research is increasingly shaped by the 
rapid evolution of artificial intelligence (AI), human-relevant models, 
and cross-disciplinary innovation (Elfatimi et al., 2025; El Arab et al., 
2025; Goktas and Damadoglu, 2025). This transformation is no longer 
a speculative goal; it is unfolding now through advances in AI-driven 
modeling, regulatory support, and integration of biological data across 
scales (Elfatimi et  al., 2025; El Arab et  al., 2025; Goktas and 
Damadoglu, 2025).

Several international efforts have already laid the groundwork for 
this transition. Initiatives such as the NIH’s ORIVA program and 

similar regulatory developments in the U.S. and Europe are 
accelerating the validation and adoption of AI-based platforms in 
immunological research. The U.S. FDA has recently initiated efforts to 
eliminate specific animal testing requirements, promoting the use of 
AI-driven computational models and human organoid platforms to 
strengthen pre-clinical assessments and increase their relevance to 
human biology (Fan et al., 2025; Kim et al., 2020; Huang et al., 2025; 
Liu X. et al., 2025). The FDA Modernization Act 2.0 marks a pivotal 
shift by officially endorsing non-animal methods such as AI-driven 
platforms as valid tools for specific pre-clinical assessments (Elfatimi 
et  al., 2025; Rawal et  al., 2022; Preeti et  al., 2023). Among these 
innovations, systems like Vaxi-DL, a deep learning framework for 
vaccine antigen prediction, illustrate how in silico approaches can 
accurately prioritize high-potential candidates, substantially 
decreasing reliance on animal experiments (Elfatimi et  al., 2025; 
Rawal et al., 2022; Preeti et al., 2023). In addition, emerging AI models 
now possess the capability to simulate key pharmacological processes, 
including pharmacokinetics, metabolic pathways, and immune system 
interactions, enabling rapid and efficient virtual screening of 
therapeutic agents before human trials (Elfatimi et al., 2025; Rawal 
et al., 2022; Preeti et al., 2023). These developments are being matched 
by growing investment from biotech companies, startups, and public-
private consortia committed to developing non-animal testing 
strategies for immune-related diseases and vaccine evaluation.

One of the most exciting areas of progress is the development of 
multiscale, system-level AI models that can simulate complex immune 
responses. Unlike earlier models focused on isolated molecular events, 
new AI frameworks are incorporating data from genomics, 
proteomics, transcriptomics, imaging, and clinical outcomes to build 
integrated, patient-specific simulations. These tools enable researchers 
to model immune pathways in silico with increasing biological realism, 
thereby drastically reducing the need for animal experimentation.

Equally transformative is the rise of in silico clinical trials. These 
virtual trials use AI to simulate how different individuals might 
respond to vaccines or immunotherapies based on their immune 
profile, potentially reducing reliance on both pre-clinical animal 
testing and early-stage human trials. As regulatory agencies begin to 
develop clear frameworks for validating AI-generated evidence, 
we  expect these simulations to become a standard component of 
ethical vaccine development pipelines. Another key priority is AI 
explainability, which refers to the ability of models to provide 
interpretable predictions that can be  trusted by immunologists, 
clinicians, and regulators. Progress in this area will increase 
transparency and help shift AI from a mere analytical tool to a 
collaborative partner in experimental design, hypothesis generation, 
and clinical translation.

Emerging computational tools, such as neuromorphic systems 
and digital immune twins, personalized virtual representations of a 
patient’s immune system, promise to enhance modeling precision 
further, making it possible to test immunotherapies and vaccines 
entirely in silico under realistic, individualized conditions (Kumar 
et al., 2024). In diseases such as autoimmune disorders and chronic 
infections, where animal models have repeatedly failed to predict 
human outcomes, AI-driven insights may accelerate and de-risk the 
discovery of new therapeutic targets and biomarkers (Gangwal and 
Lavecchia, 2025). This could unlock breakthrough treatments in areas 
that have long stagnated due to the limitations of traditional animal-
based approaches. Ultimately, the expansion of AI in immunology 
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must be  guided by clear and established ethical standards. As 
we  entrust machines with decisions that influence human health, 
building frameworks for fairness, transparency, and responsible data 
use is not an option; it is essential.

To successfully transition from traditional animal models to 
human-relevant research tools, the field of immunology must adopt a 
multifaceted strategy that integrates advanced technologies, regulatory 
frameworks, and ethical considerations. Artificial intelligence (AI) 
plays a central role in this shift, offering scalable, predictive, and 
ethically sound alternatives for modeling immune responses and 
evaluating vaccine efficacy. Table 4 outlines the key innovation areas 
driving this transformation, detailing the current limitations, 
anticipated advancements, and expected impact of AI across various 
domains of immunological research.

Future directions of AI and quantum computing in simulating 
complex molecular interactions for vaccine and immunotherapy 
development in animal models will focus on several key advances and 
impacts (Elfatimi et al., 2025; Contreras et al., 2022; de la Fuente et al., 
2022; de la Fuente and Contreras, 2023). AI and DL will continue to 
actively transform vaccine and immunotherapy research through 
predictive frameworks that enable rapid, data-driven decision-making 
and the integration of multi-omics data with computational models 
(Elfatimi et al., 2025; Contreras et al., 2022; de la Fuente et al., 2022; 
de la Fuente and Contreras, 2023). This will include better phenotyping 
and classification of diseases, as well as tailored vaccine and 
immunotherapy designs and refined antigen/epitope selections to 
enhance the efficacy and durability of immune protection (Elfatimi 
et  al., 2025). AI is expected to push further toward the potential 
replacement of traditional animal preclinical testing with 
computational simulations, as supported by initiatives from the NIH 
and FDA to phase out some animal testing in favor of AI models 
(Elfatimi et  al., 2025). AI will uncover more complex immune 

interactions not evident through traditional experimental assays, 
helping to guide novel vaccine and immunotherapeutic strategies, 
improve the precision of immune response predictions, and optimize 
vaccine and immunotherapeutic formulations (Elfatimi et al., 2025). 
Advanced AI techniques, such as generative models, multimodal 
learning, and interpretable machine learning, will further accelerate 
the design of personalized vaccines and immunotherapies, enabling 
the simulation and optimization of immune responses in silico before 
animal or human trials (Elfatimi et al., 2025; Kumar et al., 2024).

Additionally, emerging approaches such as federated learning 
enable model training across decentralized datasets from multiple 
institutions without sharing raw data, thereby preserving patient 
privacy while improving model generalizability and reducing bias, 
an essential step for building robust vaccine prediction pipelines. 
Quantum computing is expected to simulate the molecular 
interactions and complex vaccine and immunotherapeutic 
molecules with unprecedented precision, surpassing the limits of 
classical computation (Elfatimi et al., 2025; Contreras et al., 2022; 
de la Fuente et al., 2022; de la Fuente and Contreras, 2023). This 
capability will enhance the prediction of interactions, efficacy, 
safety, pharmacodynamics, and toxicity of vaccine and 
immunotherapeutic molecules (Elfatimi et  al., 2025; Contreras 
et al., 2022; de la Fuente et al., 2022; de la Fuente and Contreras, 
2023). By improving the accuracy of vaccine and 
immunotherapeutic molecule simulations, quantum computing 
will support the reduction of reliance on animal testing, the 
refinement of lead compounds more efficiently, and the prediction 
of toxicity earlier in pre-clinical development (Elfatimi et al., 2025; 
Contreras et al., 2022; de la Fuente et al., 2022; de la Fuente and 
Contreras, 2023). Quantum-enhanced AI and quantum machine 
learning optimize molecular dynamics simulations for antigen and 
epitope discovery, protein folding, and elucidation of immune 

TABLE 4  Strategic advances in artificial intelligence to replace animal models in pre-clinical development of drugs, vaccines, and immunotherapeutics.

Focus area Current limitations Future outlook Expected impact

AI model complexity Focused on narrow immune mechanisms
Development of multiscale, systems-level 

immune models

Better prediction of immunotherapy 

outcomes and vaccine efficacy

Data integration Fragmented omics and clinical datasets
Seamless fusion of genomic, proteomic, 

and patient data

Personalized immune modeling and 

biomarker discovery

Virtual trials for predicting immune 

response
Used only in simple simulation scenarios

Expansion to simulate diverse immune 

responses across populations

Ethical, rapid, and cost-effective pre-

clinical testing

Regulatory validation of AI-driven 

pre-clinical tools
Limited formal validation of AI tools

Regulatory frameworks for AI validation 

in immunology research

Faster approval and integration of non-

animal methods

AI explainability Many models remain “black boxes” Transparent, interpretable AI models
Enhanced trust, reproducibility, and 

collaboration across fields

AI–human collaboration AI used as a supplementary analytical tool
AI as a proactive partner in hypothesis 

generation and experiment design

Accelerated discovery with improved 

scientific rigor

Digital immune twins Conceptual and limited to research use
Fully functional, patient-specific 

immune simulations

Tailored vaccine design and immune 

therapy optimization

AI in autoimmune/chronic disease
Traditional models poorly replicate 

human immune pathologies

AI-driven discovery of disease 

mechanisms and response profiles

New treatments in hard-to-model 

immune conditions

Ethical frameworks for AI Use Ethical guidelines remain emergent
Establishment of responsible standards 

for AI in immunological research

Trustworthy and human-centric 

development of digital biomedical tools

Current limitations, future outlooks, and expected impacts of AI-driven innovations across multiple domains are outlined. This includes model complexity, data integration, virtual trials, 
regulatory validation, explainability, AI-human collaboration, digital immune twins, modeling of autoimmune/chronic diseases, and ethical frameworks.
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system mechanisms, which are critical to vaccine and 
immunotherapy development (Elfatimi et  al., 2025; Contreras 
et al., 2022; de la Fuente et al., 2022; de la Fuente and Contreras, 
2023). Quantum vaccinomics will integrate quantum computing 
with immunogenetics and genomics to identify protective immune 
antigens and epitopes, and design vaccines and immunotherapeutic 
molecules. This approach will utilize both in silico and experimental 
methods to elucidate protective immune mechanisms (Elfatimi 
et al., 2025; Contreras et al., 2022; de la Fuente et al., 2022; de la 
Fuente and Contreras, 2023). Thus, the synergy of AI and quantum 
computing is expected to significantly accelerate the design, 
testing, and optimization of vaccines and immunotherapies by 
providing deep insights into immune regulation and disease 
mechanisms (Elfatimi et  al., 2025; Contreras et  al., 2022; de la 
Fuente et  al., 2022; de la Fuente and Contreras, 2023). This 
combination is expected to enhance translational relevance by 
delivering more accurate computational models that can replace 
animal models in many preclinical contexts, thereby reducing 
ethical concerns and development times (Elfatimi et  al., 2025; 
Contreras et al., 2022; de la Fuente et al., 2022; de la Fuente and 
Contreras, 2023). Regulatory agencies are increasingly recognizing 
and supporting these transformative computational technologies 
to modernize and improve preclinical evaluation pipelines 
(Elfatimi et al., 2025; Contreras et al., 2022; de la Fuente et al., 
2022; de la Fuente and Contreras, 2023).

Finally, another direction of preclinical animal studies is moving 
towards Hybrid Intelligence (HI), which combines Natural Intelligence 
(NI) and Artificial Intelligence (AI) (Sollini et al., 2020; Jia et al., 2022; 
Saravi et al., 2022; Kurvers et al., 2023; Hirosawa et al., 2024). On one 
hand, the NI spans the breadth of human (and collective) cognition, 
emotion, and ethical understanding, encompassing not only 
individual thinking but also group dynamics, societal norms, and 
planetary well-being. It reflects our ability to empathize, innovate, 
sense our surroundings, and collaborate at every level (Loaiza et al., 
2024; Mohite et al., 2024; Ou et al., 2025). On the other hand, AI 
encompasses computational systems and algorithms designed to 
process large datasets, discern patterns, and handle tasks—such as 
language understanding or predictive analytics—that traditionally rely 
on human-like intelligence (Imani et al., 2024; Huemer et al., 2020; 
Natali et al., 2021; Liu et al., 2024; Qin et al., 2024; Zakariya et al., 
2024; Bhujel et al., 2025; Kedar et al., 2025; Zhao and Wang, 2025). The 
combination provides HI, which represents the synergy between AI’s 
speed and analytical rigor, and NI’s depth of insight. Researchers in 
animal models harness solid, data-driven capabilities by uniting both, 
while still honoring essential human values, ethical reasoning, and 
collective stewardship (Zhao and Wang, 2025; Hou et  al., 2024; 
Zemelka-Wiacek et al., 2024; Lv et al., 2025; Zhou et al., 2025).

10 Conclusion

The integration of artificial intelligence (AI) into biomedical 
research represents a transformative opportunity to improve 
experiments in animal models, particularly in immunology and the 
development of vaccines and immunotherapies (Xiao et al., 2025). 
AI-driven approaches such as deep learning, mechanistic modeling, 
digital immune twins, and in silico clinical trials offer the potential to 
simulate complex immune responses with increasing precision, speed, 

and ethical accountability. When combined with advanced 
technologies like organoids, organ-on-a-chip systems, and multi-
omics integration, these tools can model human-relevant biology in a 
more scalable and predictive manner than traditional animal 
experiments (Fan et al., 2025; Kim et al., 2020; Huang et al., 2025; Liu 
X. et al., 2025).

On one hand, animal models remain critical for biological 
research due to their complex physiology and living-system 
context, which current AI and in  vitro methods cannot fully 
replace (Chang and Grieder, 2024; Barre-Sinoussi and Montagutelli, 
2015). Animal models facilitate an understanding of whole-
organism biology, development, and systemic responses that AI 
simulations, based on existing data and algorithms, may not yet 
fully capture (Barre-Sinoussi and Montagutelli, 2015). On the 
other hand, AI advancements are increasingly supporting the 
refinement and reduction of animal use by automating immune 
response assessments, screening vaccine and immunotherapy 
candidates, and improving the precision of in vivo experiments 
(Alanazi, 2025; Germain et  al., 2024; Gururaj et  al., 2024). 
Comparisons between AI models and animal models reveal both 
complementarities and distinctions. AI models, including machine 
learning (ML) and deep learning (DL), provide powerful tools for 
optimizing preclinical animal experiments to test vaccine and 
immunotherapy candidates by analyzing complex datasets, 
enhancing experimental design, predicting outcomes, and 
extracting more meaningful insights from experiments (Germain 
et al., 2024; Gururaj et al., 2024). AI can also integrate results from 
animal models with human clinical data to improve the 
translational relevance of vaccine and immunotherapy candidates. 
AI-based methods are scalable, adaptable, and can run simulations 
much faster than animal experiments, often in hours or days 
instead of weeks or months. This enables the rapid exploration of 
multiple hypotheses without the ethical and resource burdens 
associated with breeding, housing, and handling animals. In 
summary, AI and animal models serve partly overlapping but 
distinct functions: AI enhances, complements, and can partially 
substitute for animal experiments, especially in data analysis, 
simulation, and rapid hypothesis testing. However, animal models 
remain indispensable for capturing complex biological systems 
in vivo, pending further development of AI (Germain et al., 2024; 
Gururaj et al., 2024).

While AI, organoids, and organ-on-a-chip systems are rapidly 
transforming immunological research, they cannot yet fully replace 
animal models (Fan et al., 2025; Kim et al., 2020; Huang et al., 2025; 
Liu X. et  al., 2025). Multiorgan immune interactions, long-term 
vaccine responses, and real-world safety evaluations still require 
in vivo validation. The future lies not in the immediate elimination of 
animal research but in progressively reducing dependence on it 
through validated, high-fidelity digital and in  vitro alternatives 
(Elfatimi et al., 2025; El Arab et al., 2025; Goktas and Damadoglu, 
2025). Rather than marking the end of animal testing, the rise of AI 
in immunology should be seen as the beginning of a more advanced 
and ethical form of biomedicine. This transition supports the 
development of scalable, human-relevant solutions in vaccine and 
immunotherapy research.

Despite the promise of these technologies, several challenges 
remain. Issues such as data bias, overfitting, limited model 
explainability, and the need for experimental validation must 
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be addressed through standardized workflows, transparent reporting, 
and cooperative regulatory development (Elfatimi et al., 2025; Xiao 
et al., 2025; Riviere et al., 2025; Alanazi, 2025; Barreto et al., 2025; 
Olawade et al., 2024; Omranian et al., 2024; Zhuang et al., 2024). AI 
should be viewed as a gradual solution that first reduces animal use by 
accelerating and de-risking early-stage discovery, and eventually 
advances to replace more complex applications as the technology 
improves (Gangwal and Lavecchia, 2025).

Regulatory agencies, such as the U.S. Food and Drug 
Administration, have already begun to recognize AI-based tools as 
valid alternatives for specific pre-clinical evaluations. Large-scale 
initiatives, including the National Institutes of Health’s Office of 
Research and Infrastructure Programs and ORIVA, support the 
development and validation of these methods. Increasing public 
awareness, economic efficiency, and scientific demand for human-
relevant models are all contributing to this shift in research strategy. 
In the long term, the responsible and collaborative use of AI, 
grounded in human biology and aligned with ethical frameworks, 
will shape the next generation of biomedical innovation. The future 
will not be defined by a binary choice between animal and digital 
models. Instead, it will emerge from a synergistic ecosystem where 
computational tools refine, augment, and ultimately replace animal 
testing (Elfatimi et  al., 2025; El Arab et  al., 2025; Goktas and 
Damadoglu, 2025). This evolution holds the potential to accelerate 
and de-risk the discovery of drugs, vaccines, and immunotherapies 
while upholding the highest standards of ethical and 
scientific integrity.

Equally transformative is the integration of AI with advanced 
experimental systems such as three-dimensional (3D) immune 
organoids and organ-on-a-chip (OoC) technologies (Fan et al., 
2025; Kim et  al., 2020; Huang et  al., 2025; Liu X. et  al., 2025). 
Human immune organoids, derived from secondary lymphoid 
tissues such as tonsils, have been shown to replicate critical 
elements of adaptive immunity, including germinal center 
formation and isotype switching (Wagar et al., 2021; Fan et al., 
2025; Kim et  al., 2020; Huang et  al., 2025; Liu X. et  al., 2025; 
Kastenschmidt et al., 2023; Morales Pantoja et al., 2023; Smirnova 
et al., 2023). When combined with computational models, these 
platforms enable detailed study of immune memory, evaluation of 
vaccine formats, and screening of adjuvants, all without relying on 
animal models. Similarly, OoC technologies, pioneered by 
researchers such as Donald Ingber, simulate vascular and 
epithelial–immune interactions across multiple organ systems, 
providing insight into systemic immune responses that single-
organ models cannot capture (Ingber, 2022; Ingber, 2006).

As AI continues to evolve in complexity, interpretability, and 
ethical oversight, it is poised to redefine how we  model immune 
responses, evaluate vaccines, and develop immunotherapies, ushering 
in a new era of precision medicine with less reliance on animals and 
greater alignment with human biology.
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