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Vaccines and immunotherapies against infectious diseases and cancers have been
a great success of the medical sciences over the last century. Pre-clinical testing
in animal models has played a crucial role in the development of vaccines and
immunotherapies, informing subsequent clinical trials. The current practices in pre-
clinical animal model research must be approved by committees with strict policies
and assessments on animal experiments including the “three Rs": (1) Replacement,
which assesses the scientific justification and rationale for using a live animal in
biomedical research; (2) Reduction, which determines whether the number of
animals required in an experiment is adequate to achieve scientifically valid results
while reducing costs; and (3) Refinement, which ascertains that any given animal
procedure will cause no to minimal pain or distress. The recent initiatives by the
United States NIH and FDA to reduce or phase out animal testing in biomedical
research underscore a growing interest in artificial Intelligence (Al), deep learning
(DL), organoid, and organ-on-chip-powered models to slash the time and cost
of preclinical animal research. This review highlights the strengths, progress, and
limitations of these alternative pre-clinical research approaches, with a focus
on vaccine and immunotherapeutic development. While the implementation of
Al- and DL-, organoid-, and organ-on-chip-powered models will certainly help
accelerate pre-clinical discoveries, modeling the safety, immunogenicity, and
protective efficacy of vaccines and immunotherapeutics as they occur in vivo is
not yet comprehensive enough to fully replace or replicate the complexity of living
systems, in both animals and humans. Thus, these models should be viewed as
powerful complementary tools that combine hybrid human and artificial intelligence
and must be validated through animal model testing. This review discusses the
path forward and the scientific challenges that persist in investing in Al- and DL-
human hybrid validation systems, regulatory reforms, and the development of
interconnected platforms that bridge digital models with biological reality.
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1 Introduction

Animal experimentation has long underpinned advances in
immunology, vaccine development, and immunotherapeutic
advancements, providing mechanistic insights into immune processes
and offering platforms for pre-clinical testing of novel therapeutics
(Quadiri et al., 2025a; Corleis et al., 2023; Tesfamariam et al., 2022).
Traditionally, rodent and non-human primate models have been
central to these efforts, enabling researchers to explore antigen
processing, immune memory, and vaccine efficacy in controlled
in vivo systems (Wang et al., 2021). While prior reviews have addressed
organoids (Wagar, 2023; Kastenschmidt et al., 2023; Chen et al., 2021),
artificial intelligence (AI) (Elfatimi et al., 2025), and organ-on-a-chip
models (Jeger-Madiot et al., 2024; Shahabipour et al., 2023) separately,
few have critically examined how these approaches converge to
improve animal testing, specifically within the context of vaccine and
immunotherapeutic development. This review aims to bridge the
translational gap between pre-clinical animal studies and human
clinical trials. We discuss the potential, progress, and challenges of
Al-, organoid-, and organ-on-chip-powered models in improving
pre-clinical testing of vaccines and immunotherapeutics.

Preclinical testing in animal models has led to major medical
breakthroughs, including the early development of vaccines against
smallpox and polio. However, in recent years, questions have intensified
regarding the translational validity and ethical justification of continued
reliance on animal testing, particularly when translating findings to
human clinical outcomes (Rudroff, 2024; Willner, 1986). Lack of
methodological rigor and statistical quality in preclinical animal
research can impact the validity, reproducibility, and translational value
of scientific findings (Deng and Strong, 2025; Han, 2025; Moassefi et al.,
2023). These include (1) a lack of randomization and blinding of
investigators, which introduces selection and detection biases that can
distort results (Osborne et al, 2018); (2) lack of proper power
calculations and sample size estimations, which can lead to studies that
are underpowered and produce results with limited statistical confidence
(Osborne et al., 2018); (3) not considering biological variables including
gender differences that may reduce the applicability and generalizability
of findings and may undermine the predictive value of animal models,
which may contribute to a failure of clinical trials (Osborne et al., 2018;
Gopel and Burggren, 2022; Gualtierotti, 2025). This calls for standardized
reporting protocols, the mandatory incorporation of design elements
such as randomization, blinding, and power calculations, as well as
improved training to prioritize methodological quality and transparency
(Osborne et al., 2018; Percie du Sert et al., 2020).

Structural and functional differences in immune cell repertoires,
cytokine expression profiles, and pathogen recognition pathways
between species often lead to misleading results. For example, promising
immunotherapies and vaccines that succeed in murine models frequently
fail in Phase I or II clinical trials, highlighting the limited fidelity of
animal models in replicating human immune complexity (Willner,
1986). Moreover, animal research is associated with significant costs and
logistical burdens, including the maintenance of specialized facilities,
breeding colonies, and compliance with strict regulatory frameworks.
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Figure 1 illustrates an Al-enabled pipeline that integrates human-relevant
biological data, including omics and imaging, into machine learning
models to support vaccine design, predict immune responses, and assess
toxicity (Elfatimi et al., 2025; Kleinstreuer and Hartung, 2024; Farzan,
2024; Sharma et al., 2022). This approach significantly reduces the need
for animal models while promoting ethical and human-relevant
biomedical research. Recent developments, such as in silico clinical trials,
explainable Al, and digital immune twins, further expand the boundaries
of what can be accomplished using human-based, Al-supported systems.
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FIGURE 1

Al-based computational modeling in immunology and vaccine
development. A conceptual overview of an Al-driven pipeline for
accelerating immunology research and vaccine development. The
workflow begins with multimodal biological inputs, including
genomic, transcriptomic, proteomic, and imaging data derived from
human-relevant sources. These data are processed using advanced
artificial intelligence techniques, including machine learning, deep
learning, and systems biology modeling. The outputs inform key
applications, including vaccine design, prediction of immune
responses, and formulation optimization. This process ultimately
contributes to reduced animal testing, faster and more precise
vaccine development, and the advancement of ethical biomedical
research.
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For instance, the AlphaFold 3 model represents a significant
advancement in biomolecular structure prediction, accurately
modeling protein monomers, protein multimers, and complex
biomolecular assemblies that involve proteins, DNA, RNA, ligands,
ions, and chemical modifications (Desai et al., 2024; Elfmann and
Stulke, 2025). AlphaFold 3 uses a next-generation DL architecture
with an improved Evoformer module and a novel diffusion network
approach (Desai et al., 2024; Elfmann and Stulke, 2025). This diffusion
process starts with a cloud of atoms. It iteratively refines the structure
to converge on a highly accurate joint 3D model of the input
molecules, enabling detailed insight into biomolecular interactions
and complexes (Desai et al., 2024; Elfmann and Stulke, 2025). Thus,
AlphaFold 3 represents a significant leap forward for structural
biology, systems biology, and the discovery of antibody-mediated
vaccines and immunotherapeutics, enabling accurate predictions of
complex biomolecular assemblies within a single framework. This
opens new avenues for biomedical research and therapeutic
development. However, there are key limitations of AlphaFold 3
compared to other models, such as ZDOCK, especially in the context
of protein—protein docking (Harmalkar et al., 2025; Abramson et al.,
2024). Unlike ZDOCK and other similar physics-based docking
approaches, AlphaFold 3 does not capture the dynamic conformational
changes that occur during binding (Harmalkar et al., 2025; Abramson
et al, 2024). Although AlphaFold 3 produces accurate protein
structures, its docking orientation predictions for protein-antibody
complexes can sometimes be incorrect, leading to flawed binding
interfaces (Harmalkar et al., 2025; Abramson et al., 2024).

Nonetheless, these emerging platforms are not without
limitations. AI models are only as good as the data on which they are
trained, and biases in publicly available immunological datasets can
skew predictions or mask relevant signals (Yang et al., 2024).
Moreover, while organoids and chips can replicate localized
responses, they do not yet fully model the integrated, systemic
nature of immune reactions seen in living organisms. Therefore,
although the long-term vision is to develop fully human-relevant
pre-clinical pipelines, animal models continue to play a necessary,
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though diminishing, role, particularly in assessing safety,

immunogenicity, and protective efficacy of vaccine and

immunotherapeutic  candidates by providing predictive
computational models, identifying patterns of B- and T-cell
response, and supplementing traditional in vivo animal pre-clinical
trials (Elfatimi et al., 2025; Reveiz et al., 2025).

Artificial intelligence (AI) is rapidly transforming immunological
research by enabling the simulation and analysis of complex immune
responses. Machine learning algorithms trained on large, multimodal
datasets, including single-cell RNA sequencing and real-world clinical
outcomes, can now predict immune responses, identify vaccine
targets, and classify disease subtypes with increasing precision. To
better understand the trajectory of innovation driving the shift away
from animal-based immunological research, we highlight key global
developments in Figure 2. This visual timeline presents a curated
series of milestones spanning from the foundational ethical framework
to recent breakthroughs in artificial intelligence (AI)-driven modeling
and regulatory reform. Events such as the NIH’s Predictive Toxicology
Roadmap, the invention of organ-on-a-chip platforms, and the rise of
deep learning tools like NetMHCpan and AlphaFold underscore the
scientific and political momentum supporting the replacement of
animal models. More recently, the use of AlphaFold2 and ESMFold
for de novo vaccine antigen discovery, along with NIH’s funding of
digital immune twins, marks a decisive turn toward Al-empowered,
human-relevant platforms for immune modeling and vaccine design
(Zhang et al., 2024; El Arab et al., 2025; Yang et al., 2023).

This review critically examines the role of Al in transforming
pre-clinical immunology and vaccine development. We provide an
overview of the technologies driving this shift, evaluate the scientific
and regulatory challenges ahead, and argue for a balanced, hybrid
approach that maximizes the strengths of computational, in vitro, and
in vivo systems (Elfatimi et al., 2025; Xiao et al., 2025; Riviere et al.,
2025; Alanazi, 2025; Barreto et al.,, 2025; Olawade et al., 2024;
Omranian et al., 2024; Zhuang et al., 2024). By doing so, we aim to
map a forward path that aligns scientific innovation with ethical
responsibility and regulatory evolution.

Russell and Burch
publish The
Principles of Humane
Experimental
Technique (37).

Donald Ingber’s team
develops the first
lung-on-a-chip (39).

1959 2010

2007 2016

Introduction of deep
learning to predict
MHC-peptide binding
(e.g., NetMHCpan)
(40).

NIH launches the
Predictive

Toxicology Roadmap
(38).

FIGURE 2

AlphaFold (by
DeepMind) wins
CASP13 (41).

2018

EU Parliament adopts
resolutionto phase

NIH funds digital twin
modeling for

out animal testing
(43).

immune response
prediction (46).

2022 2024

2021 2023

AlphaFold2 +
ESMFold used for de
novo vaccine antigen

discovery (44,45).

FDA Modernization
Act introduced in
U.S. Congress (42).

Timeline of key global milestones supporting Al and human-relevant alternatives in immunology (1959-2024). This figure illustrates the major ethical,
scientific, and regulatory advancements that are accelerating the transition away from animal testing. It includes foundational efforts, the emergence
of organ-on-a-chip technology, and Al-based immune prediction, as well as recent U.S. and European legislation promoting non-animal technologies
in immunological research.

Frontiers in Artificial Intelligence 03

frontiersin.org


https://doi.org/10.3389/frai.2025.1681106
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Elfatimi et al.

In the following sections, we review (1) the scientific limitations
of traditional animal models in immunology, (2) the role of Al in
computational modeling and vaccine and immunotherapeutic
designs, (3) emerging human-relevant alternatives such as organoids
and organ-on-chip technologies (Sun et al., 2022; Farhang Doost and
Srivastava, 2024; Alver et al., 2024; Wang et al., 2024; Picollet-D'hahan
etal., 2021), (4) the economic and practical advantages of Al-driven
methods, (5) regulatory and ethical frameworks, and (6) future
directions for fully transitioning to Al-supported research pipelines.

2 Translational limitations of animal
models in the development of
vaccines and immunotherapeutics

Animal models have played a pivotal role in uncovering
foundational concepts in immunology, including antigen recognition,
immune cell trafficking, and cytokine signaling networks (Elfatimi
etal.,, 2025; Reveiz et al., 2025; Chentoufi et al., 2025a; Chentoufi et al.,
2025b; Quadiri et al., 2025b; Quadiri et al., 2025¢; Srivastava et al.,
2025; Vahed et al., 2025; Zayou et al., 2025). However, the translational
reliability of these models in predicting human immune responses has
become a growing concern within the scientific community. This
concern arises from the fact that human and animal immune systems
differ significantly in both structure and function, leading to
inconsistencies in therapeutic outcomes when findings from
pre-clinical animal studies are applied to clinical settings (Vunjak-
Novakovic et al., 2021; Bailey, 2017). For example, laboratory mice,
despite their widespread use in immunological research, exhibit
distinct immune phenotypes shaped by their genetic homogeneity,
controlled environments, and limited microbial diversity. These
differences are manifested in altered immune cell distributions,
varying cytokine secretion profiles, and divergent T-cell receptor
repertoires compared to those of humans. As a result, immune
therapies and vaccine candidates that show efficacy in mice frequently
fail to reproduce the same effects in humans, particularly in diseases
where immune modulation plays a central role, such as autoimmune
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disorders or chronic infections. Another challenge is that animal
models often fail to adequately capture the complexity of human
immune interactions across different organ systems. Immune
responses in humans are shaped by a dynamic interplay among
multiple tissue compartments, genetic backgrounds, environmental
exposures, and microbiome factors, which are poorly replicated in
traditional animal models. Additionally, specific immune processes,
such as class-switch recombination in B cells or the formation of
memory T cells, may proceed differently across species, further
limiting the translational value of these models in vaccine development
and the design of immunotherapies (Bailey, 2017).

These limitations have catalyzed a shift in focus toward more
predictive and human-relevant systems. Immune organoids,
developed from human lymphoid tissues, are a promising in vitro
alternative by enabling the study of antigen-specific responses and
germinal center dynamics. These 3D models preserve tissue
architecture and cellular diversity, allowing the researchers to
investigate vaccine-induced immunity under physiologically relevant
conditions (Wagar et al., 2021; Wagoner et al., 2025; Prasad et al.,
2021). In parallel, AI-based simulations offer computational models
that can predict immune responses using patient-derived data, such
as transcriptomic or single-cell sequencing profiles (Gui et al., 2023;
Li,2023; Liet al., 2024; Chambuso and Meena, 2025). These tools can
simulate animal and human immune networks and forecast the
outcomes of immunomodulatory interventions with increasing
accuracy (Xu et al,, 2023; Phongpreecha et al., 2025; Elfatimi et al.,
2025). Nonetheless, these alternatives are not without their constraints.
Human organoid models are often limited to single-organ contexts
and lack systemic integration, whereas Al algorithms require robust
and diverse datasets to ensure generalizability and accuracy (Fan et al.,
2025; Kim et al., 2020; Huang et al., 2025; Liu X. et al., 2025). Despite
their limitations, these emerging models present a compelling case for
moving beyond traditional animal testing, especially when combined
within hybrid experimental-computational frameworks that aim to
preserve biological realism while enhancing predictive power.

To further contextualize the translational gap between animal
models and human immunology, Table 1 presents a comparative

TABLE 1 Comparative immunological features of mouse models versus the human immune system.

Feature Mouse models

Cytokine expression

et al., 2024)

Distinct cytokine profiles: some cytokines (e.g., IL-8)

are not naturally expressed (Du et al., 2017; Chow

Human immune system

Broad, complex cytokine responses; IL-8 plays a key role in

neutrophil recruitment

T-cell receptor (TCR) repertoire
P P etal., 2018)

Limited diversity due to inbred strains (Poltorak

Highly diverse TCRs influenced by genetic and

environmental factors

Microbiome influence
(Hanski et al., 2024)

Lab-raised mice have limited microbial exposure

Human microbiota is more varied and shapes immune

responses extensively

MHC molecules
genes (Shiina et al., 2017)

Murine MHC genes differ significantly from HLA

The human leukocyte antigen (HLA) system is highly

polymorphic and affects immunity

Immune cell subsets

Differences in NK cells, monocytes, and dendritic cell

profiles (Parodi et al., 2023)

Broader variety and plasticity in immune cell subsets

Pathogen exposure history

etal., 2023)

Naive immune systems in SPF conditions (Burger

Humans have complex immune memory shaped by

lifelong exposures

Highlights the key differences between commonly used mouse models and the human immune system, including cytokine expression, T-cell receptor repertoire, microbiome diversity, MHC

molecules, immune cell subsets, and pathogen exposure history. These distinctions highlight the translational challenges of extrapolating findings on infection and immunity from animals to

humans.
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overview of key immunological features distinguishing mouse models
from the human immune system. These distinctions span cytokine
expression, T-cell receptor diversity, microbiome complexity, MHC
molecules, immune cell subsets, and exposure history. Each of these
features plays a critical role in shaping immune responses, and their
divergence underscores why findings in murine systems often fail to
translate effectively to human clinical outcomes. This comparison
highlights the urgent need for more predictive and human-relevant
models in immunological research and therapeutic development.

3 Artificial intelligence-powered
models slash time and cost in vaccine
and immunotherapeutic development

Artificial Intelligence (AI) is rapidly transforming immunology
research by enabling advanced computational modeling and
simulation approaches that reduce reliance on animal testing while
improving the precision, speed, and scalability of vaccine development
(Mak et al., 2014; Tang et al., 2019). With the complexity of human
immune responses often poorly replicated in animal models, AI offers
human-relevant alternatives by integrating large-scale biological data
to simulate immune system dynamics, predict vaccine efficacy, and
design novel immunization strategies (Yang et al., 2021; Ikram et al.,
2023; Ito et al., 2024). Al-based systems use machine learning, deep
learning, and systems biology approaches to model immune responses
at the cellular and molecular levels (Sinicrope et al., 2024). These
models can process multimodal datasets such as transcriptomics,
proteomics, and imaging data to simulate antigen presentation,
cytokine signaling, and immune memory formation in silico (Topol,
2019). For example, deep learning frameworks have been applied to
predict B-cell and T-cell epitopes from protein sequences, improving
the identification of potent antigenic targets for vaccine design without
the need for animal immunization models (Jespersen et al., 2017).
Additionally, reinforcement learning algorithms are being developed
to de-risk vaccines and optimize dose scheduling and adjuvant
selection based on simulated responses from a population (Shahzadi
etal., 2024).

Virtual immune system platforms, such as C-ImmSim and agent-
based models, enable detailed simulations of host-pathogen
interactions, supporting hypothesis testing and comparative analysis
of vaccine candidates before pre-clinical validation. These simulations
have demonstrated their utility in evaluating the durability of immune
protection and estimating population-wide outcomes in pandemic
preparedness scenarios (Todman et al., 2008; Shinde et al., 2024). AI
has also contributed to predicting adverse immune events, allowing
early detection of potential reactogenicity based on immunological
features, which would otherwise require lengthy and ethically
concerning animal experiments (Kompa et al., 2022). Furthermore,
integrating AI with human-relevant experimental platforms such as
immune organoids, microfluidic systems, and organ-on-chip models
creates a synergistic feedback loop (Sun et al., 2022; Farhang Doost
and Srivastava, 2024; Alver et al., 2024; Wang et al., 2024; Picollet-
D'hahan et al., 2021; Fan et al., 2025; Kim et al., 2020; Huang et al.,
2025; Liu X. et al., 2025). These platforms provide high-fidelity data
that trains and refines Al algorithms, leading to more accurate
predictions of human immune responses (Gabriel et al., 2022; Ingber,
2022). Notably, recent studies have highlighted how AI-driven systems
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trained on human immune organoid data can outperform traditional
models in forecasting vaccine outcomes (Fan et al., 2025; Kim et al.,
2020; Huang et al., 2025; Liu X. et al., 2025; Morrocchi et al., 2024).
Another example of a platform is Vaxi-DL, a web-based deep
learning server designed to predict potential vaccine and
immunotherapy candidates using fully connected neural networks.
Vaxi-DL models were trained on datasets containing antigenic and
non-antigenic sequences derived from pathogens or cancers, as well as
databases such as Protegen. The performance metrics reported include
an average sensitivity of approximately 93%, accuracy, specificity, and
the area under the ROC curve, demonstrating a good capability in
correctly identifying protective antigens (or epitopes) across various
pathogens and cancers. In comparison with other vaccine and
immunotherapy prediction tools, such as Vaxign-ML and VaxiJen,
Vaxi-DL performs well, often surpassing them in accuracy and
efficiency, particularly in predicting positive vaccine and
immunotherapy candidates. Vaxi-DLs tool leverages extensive
biological and physicochemical protein features for predictions,
helping to prioritize candidates for further preclinical studies. It has
been validated through performance metrics and benchmarking
studies to be an effective deep learning tool for predicting vaccine and
immunotherapy candidates, with high sensitivity and accuracy, thereby
supporting its utility in accelerating the pre-clinical and clinical
development of vaccines and immunotherapies. This case study
presents concrete evidence of how AI can enhance candidate selection,
minimize unnecessary animal experimentation, and contribute to cost-
effective preclinical pipelines (Chang et al., 2025; Nierengarten, 2025;
Dlamini et al., 2020; Villanueva-Meyer et al., 2024; Bakas et al., 2024).
Recent advancements in computational immunology have led to
the development of integrated AI-human hybrid pipelines that combine
data from omics technologies, imaging, immune organoids, and organ-
on-a-chip systems with machine learning frameworks (Fan et al., 2025;
Kim et al., 2020; Huang et al., 2025; Liu X. et al., 2025; McGale et al.,
2024). These systems enable in silico modeling of immune responses,
epitope prediction, optimization of vaccine formulation, and bias-aware
learning. Such pipelines not only enhance the speed and predictive
accuracy of vaccine development but also significantly facilitate
traditional animal testing. This approach supports regulatory readiness
and ethical compliance by aligning with initiatives from the U.S. NIH
and FDA to prioritize human-relevant methodologies (Nelson et al.,
2024). As illustrated in Figure 3, this pipeline highlights the synergistic
integration of multimodal data inputs, fairness-aware AI modules, and
clinically actionable outputs that collectively transform the pre-clinical
vaccine research landscape (Elfatimi et al., 2025; El Arab et al., 2025).
Overall, Al is expected to significantly advance pre-clinical
animal studies in vaccines and immunotherapies by enhancing
predictive modeling, optimizing experimental designs, and
potentially reducing or replacing some animal experiments. Al and
DL create computational models that predict B- and T-cell
responses to vaccine and immunotherapy candidates more rapidly
than traditional methods. For instance, NetMHCpan uses DL
(artificial neural networks) to analyze peptide-MHC binding by
training on large datasets with advanced encoding strategies for
peptides and MHC molecules, improving the accuracy and
generalizability of predictions (Phloyphisut et al., 2019). This helps
identify optimal antigens or epitopes for improved vaccine and
immunotherapy safety, efficacy, and durability. A integrates multi-
omics data and systems biology to phenotype and differentiate
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FIGURE 3
Al-human hybrid pipeline for ethical and predictive vaccine development. A conceptual workflow integrating omics, imaging, and experimental data
with machine learning frameworks for simulating immune responses, optimizing vaccine design, and reducing reliance on animal models. The pipeline
supports regulatory integration (FDA), ethical compliance, and human-relevant predictive outcomes across toxicity, efficacy, and subgroup analyses.

animal models B- and T-cell responses, allowing in silico testing of
the safety, immunogenicity, and protective efficacy of vaccine and
immunotherapy candidates without the need for extensive initial
animal testing. AI enhances preclinical in vivo studies by
optimizing study design and improving the translation of animal
data to the clinic, increasing relevance and reproducibility (Deng
and Strong, 2025; Han, 2025; Moassefi et al., 2023). Al-driven
advanced modeling, combined with safety and efficacy simulations
using digital twins and organ-on-chip platforms, simulates vaccine
and immunotherapy safety in biological contexts, thereby further
decreasing reliance on animal models (Sun et al., 2022; Farhang
Doost and Srivastava, 2024; Alver et al., 2024; Wang et al., 2024;
Picollet-D'hahan et al., 2021). These applications collectively
enable faster, more ethical, and data-driven vaccine and
immunotherapy development during preclinical phases by
reducing or partly replacing animal experiments with Al-enhanced
approaches (Imani et al., 2024). However, these computational
predictions require validation against experimental data to ensure
biological relevance and avoid overfitting or false positives.
Collectively, these innovations offer a paradigm shift toward
ethical, efficient, and precise vaccine development pipelines. As
computational power and biological data availability continue to
expand, Al models in immunology are expected to become even more
predictive and clinically actionable. Their ability to simulate
personalized immune responses, forecast long-term protection, and
guide next-generation vaccine strategies signals a future where Al
replaces many functions previously performed through animal testing,
ultimately leading to safer, faster, and more human-relevant biomedical
research (Imani et al., 2024; Greener et al., 2022; Kumar et al., 2024).
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4 Economic and practical benefits of
Al in immunotherapy and vaccine
research

In addition to scientific and ethical advances, artificial intelligence
(AI) offers significant economic and logistical advantages over
traditional animal models in immunology and vaccine development.
Animal studies often require extensive financial and human resources,
including specialized facilities, long-term animal care, and regulatory
compliance infrastructure (Elfatimi et al., 2025; Rudroff, 2024; EI Arab
et al., 2025; Fu and Chen, 2025; Niu et al., 2025). The cumulative cost
of these efforts contributes to the high price tag of drug and vaccine
development, often exceeding $1 billion, with animal testing
accounting for a substantial portion of pre-clinical R&D budgets (Fu
and Chen, 2025; Van Norman, 2020; Van Norman, 2019; Acosta et al.,
2011; Hasselgren and Oprea, 2024).

Al-based approaches provide a cost-effective alternative by
enabling in silico simulations, drug screening, and immune modeling
without the need for animal testing (Hasselgren and Oprea, 2024;
Diogo Goncalves et al., 2025). Once foundational infrastructure, such
as computational frameworks, data pipelines, and trained personnel,
is established, AI tools can be rapidly reused and scaled at minimal
marginal cost (Prathaban and Hande, 2024; Serrano et al., 2024). As
illustrated in Table 2, Al is transforming every stage of the
immunological research pipeline from early target identification to
disease modeling by offering efficient, reproducible, and scalable
alternatives to animal-based protocols (Deng and Strong, 2025; Han,
2025; Moassefl et al., 2023; Diogo Goncalves et al., 2025; Prathaban
and Hande, 2024; Serrano et al., 2024; Lollini et al., 2006).
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TABLE 2 Comparative framework of traditional animal-based research versus Al-driven approaches in pre-clinical development of drugs, vaccines, and

immunotherapeutics.

Research purpose

Drug/vaccine/immunotherapeutic

screenings

Traditional animal-based methods

In vivo challenge tests, immunogenicity, protective efficacy,
immune assays

Toxicity studies in rodents and non-human primates

10.3389/frai.2025.1681106

Al-driven approaches

Al-guided virtual screening of compounds

In silico simulation of immune activation and toxicity

Target discovery

Gene knockout and transgenic animal studies

Observational findings from animal pathology

Al analysis of omics data (genomics, transcriptomics,
proteomics)

Pattern discovery in large datasets

Lead optimization

Medicinal chemistry adjusted based on animal response

Dose-response curves in animals

Predictive modeling of pharmacodynamics and ADMET

Machine learning for epitope-antigen matching

Efficacy evaluation

Behavioral and clinical scoring in animal disease models

Tissue pathology and serology

Simulation of immune protection in silico

Clinical trial data used for predictive efficacy modeling

Safety and toxicity

Long-term exposure studies in multiple species

Organ-specific toxicity observed post-mortem

Al prediction of adverse events from molecular structure

Toxicogenomic-based machine learning tools

ADME and bioavailability tracking via labeled substances

Al-based modeling of drug distribution

Pharmacokinetics (PK)
« Tissue sampling at set intervals

o PBPK models derived from real-world and simulated data

Biomarker identification
« Histological scoring

« Cytokine profiling and immune markers in animal fluids « Al integration of multi-omics for biomarker prediction

« Deep learning to identify signature pathways

Disease modeling

« Progression tracked over weeks/months

» Animal induction of disease via infection or mutation o Al simulation of immune dysregulation

« Longitudinal modeling of patient-derived datasets

Comparison of conventional in vivo methods with artificial intelligence (AI)-powered strategies across the significant stages in drug, vaccine, and immunotherapeutic development. This

includes toxicity, immunogenicity, and protective screening, target discovery, lead optimization, efficacy evaluation, safety and toxicity assessment, pharmacokinetics, biomarker identification,

and disease modeling.

For example, Al-driven epitope prediction and virtual antigen
screening platforms can analyze millions of antigen-target combinations
within hours, compared to the weeks or months required for in vivo
testing (Diogo Goncalves et al., 2025; Eshak and Goupil-Lamy, 2025;
Eshak et al, 2024). This accelerated timeline not only reduces
development cycles but also minimizes the number of failed candidates
entering clinical trials. Recent estimates suggest that integrating Al into
drug discovery pipelines can reduce the total development cost by
50-70% and decrease the time-to-market by several years (Rudroff,
2024; Fu and Chen, 2025; Diogo Goncalves et al., 2025; Vora et al., 2023;
March et al., 2025; Arora et al., 2024; Gangwal and Lavecchia, 2025).
Moreover, Al systems facilitate parallel processing and rapid iteration,
allowing researchers to test multiple hypotheses simultaneously, which
would be impractical with live animal models (Hasselgren and Oprea,
2024; Diogo Goncalves et al., 2025). Platforms such as DeepMind’s
AlphaFold2 or immune organoid-AI hybrids have already demonstrated
success in structure-based antigen prediction, epitope mapping, and
toxicity forecasting (Fan et al., 2025; Kim et al., 2020; Huang et al., 2025;
Liu X. et al., 2025; Diogo Goncalves et al., 2025). This flexibility is
especially valuable in pandemic situations or when addressing emerging
pathogens, where time is a critical factor (Rudroff, 2024; El Arab et al.,
2025; Fu and Chen, 2025; Gangwal and Lavecchia, 2025).

The transition to Al-powered platforms also allows for more
sustainable allocation of research funding. No widely standardized
percentage of a university’s total research infrastructure budget is
devoted to animal facilities (Holbrook and Sanberg, 2013). However, it
has been estimated that up to 15-20% of a university’s research
infrastructure budget is dedicated to the upkeep of animal research
facilities, highlighting a significant area where costs could be redirected
toward Al-driven tools and computational resources (Holbrook and
Sanberg, 2013). A growing number of institutions are beginning to
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reallocate investments from animal housing and breeding facilities to
computational resources and personnel specializing in data science
(Gangwal and Lavecchia, 2025; He et al., 2025; Ajisafe et al., 2025;
Mehta et al., 2025), representing a substantial financial burden that
could be redirected toward Al infrastructure. This shift not only
promotes long-term cost efficiency but also enhances reproducibility
and transparency (Deng and Strong, 2025; Han, 2025; Moassefi et al.,
2023). AI models can be easily shared, versioned, and audited, unlike
animal studies, which often suffer from variability, irreproducibility,
and inter-laboratory inconsistencies (Deng and Strong, 2025; Han,
2025; Moassefi et al., 2023). However, the reproducibility of Al results
also depends on transparent reporting of model architectures, training
data availability, and computing environments, which are now
increasingly standardized through open-source frameworks and FAIR
data principles (Deng and Strong, 2025; Han, 2025; Moassefi
et al., 2023).

Furthermore, Al supports real-time learning and adaptation. As
new biological data, whether from clinical trials, organ-on-chip
platforms, or immune organoids, become available, models can
be retrained and improved without having to restart the experimental
process (Sun et al., 2022; Farhang Doost and Srivastava, 2024; Alver
etal., 2024; Wang et al., 2024; Picollet-D'hahan et al., 2021; Fan et al.,
2025; Kim et al., 2020; Huang et al., 2025; Liu X. et al., 2025; Niazi and
Mariam, 2025). This dynamic feedback loop accelerates the
optimization of vaccine candidates and immune modulators,
ultimately driving faster regulatory approval and broader accessibility.

In summary, Al represents not only a scientific innovation but
also a paradigm shift in the economics and efficiency of immunological
research (Elfatimi et al., 2025; El Arab et al., 2025; Goktas and
Damadoglu, 2025). By reducing costs, increasing scalability, and
eliminating many practical barriers of animal experimentation, Al
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lays the foundation for a more ethical, rapid, and data-driven future
in vaccine development and immunotherapy research.

5 Emergent Al and human-relevant
alternatives in vaccine and
immunotherapeutic development

From both scientific and ethical standpoints, there is an urgent
need to reimagine pre-clinical immunology using methods that are
more human-relevant and technologically scalable (Elfatimi et al.,
2025; Alanazi, 2025). Over the past two decades, a paradigm shift has
emerged in pre-clinical and translational research, driven by
increasing challenges and limitations of animal models and a parallel
surge in computational and tissue engineering technologies.

In response to these challenges, major regulatory bodies have
institutionalized this shift. In 2010, the European Directive 2010/63/
EU (1) provided a framework for animal testing through the three Rs:
Replacement, Reduction, and Refinement; and (2) formulated the
ultimate goal of entirely replacing animal experiments with
non-animal methods when scientifically possible, marking the
beginning of the phase-out process of animal experimentation in the
EU. More recently, the U.S. Food and Drug Administration (FDA) and
the National Institutes of Health (NIH) have launched landmark
initiatives to reduce and eventually eliminate the requirement for
animal testing in the development of biologics, including vaccines
(Elfatimi et al., 2025; Xiao et al., 2025; Riviere et al., 2025; Alanazi,
2025; Barreto et al., 2025; Olawade et al., 2024; Omranian et al., 2024;
Zhuang et al., 2024). These agencies are encouraging the adoption of
advanced human-based methodologies, including artificial
intelligence (AI), human-derived organoids, organ-on-a-chip
platforms, and induced pluripotent stem cell (iPSC) technologies
(Alver et al., 2024; Nelson et al., 2024; Ouyang et al., 2019). These
models aim to capture the nuances of human immune physiology in
a more accurate and ethically acceptable manner.

Artificial intelligence has been applied to model host-pathogen
interactions, performing virtual high-throughput screening of vaccine
candidates, and simulating immune dynamics under various
therapeutic conditions. These applications are already reshaping how
immunological questions are framed and answered (Xu et al., 2023;
Bender and Cortes-Ciriano, 2021; Goldberg and Hartung, 2006;
Hartung, 2010; Vinken et al., 2021; Rawal et al., 2022). For instance,
Al-based models integrated multi-omics datasets to simulate B- and
T-cell responses, cytokine and chemokine signaling, and antigen
presentation, offering immunologically relevant representations that
improve upon traditional static models (Elfatimi et al., 2025; Farzan,
2024; Sharma et al., 2022). These models enable the real-time tracking
of B- and T-cell responses, including T-cell function, T-cell exhaustion,
and cross-reactivity, allowing for the optimization of vaccine and
immunotherapeutic designs (Elfatimi et al., 2025; Kumar et al., 2024).
In another example, Al facilitates reverse vaccinology, epitope
prediction, and personalized vaccine and immunotherapeutic
formulation by integrating large-scale immunological data (Elfatimi
et al., 2025; Farzan, 2024; Sharma et al., 2022; Ito et al., 2024; Kumar
et al,, 2024). This reduces time and costs by filtering out ineffective
vaccine and immunotherapeutic candidates before pre-clinical and
clinical trials. In both animal models and humans, AI can predict the
B- and T-cell responses to vaccines and immunotherapies, allowing

Frontiers in Artificial Intelligence

10.3389/frai.2025.1681106

dynamic adjustments and refinement of immunological
interpretations (Elfatimi et al., 2025; Farzan, 2024). It enhances
predictions of cytokine and chemokine networks and immune
checkpoint dynamics, thereby contributing to the development of
more effective vaccines and immunotherapeutics (Elfatimi et al., 2025;
Farzan, 2024; Sharma et al., 2022). The U.S. NIH has recently
established the Office of Research Innovation, Validation, and
Application (ORIVA), which is tasked with developing and validating
non-animal-based models across the NITH’s research portfolio (Goktas
and Grzybowski, 2025). This marked a clear move toward prioritizing
“human-relevant” technologies that could bridge the gap between
laboratory science and real-world human biology, particularly in areas
such as immunology and vaccine development.

Among these alternatives, artificial intelligence (AI) stands out as
a transformative tool for rethinking how immune responses are
modeled and predicted. Deep learning and machine learning
algorithms are now being widely employed for epitope prediction,
vaccine antigen optimization, immune repertoire classification, and
simulation of host-pathogen interactions (Xu et al., 2023; Sinicrope
et al,, 2024; Chen et al., 2023). For example, Al-based methods can
analyze massive immunological datasets, such as those from flow
cytometry, RNA-seq, proteomics, and clinical trials, to identify novel
antigenic targets or anticipate adverse immune reactions. These
algorithms are capable of uncovering hidden patterns in human data
that would be difficult to detect using traditional statistical methods,
enabling more personalized and predictive vaccine design (Kumar
et al., 2024). Simultaneously, the FDA has released a regulatory
roadmap to begin reducing reliance on animal testing for biologics,
including monoclonal antibodies and vaccine candidates. The FDA’s
policy encourages the integration of computational simulations,
immune organoids, and organ-on-a-chip technologies into pre-clinical
pipelines over the next 5 years, aiming to make animal studies the
exception rather than the norm (Fan et al., 2025; Kim et al., 20205
Huang et al., 2025; Liu X. et al., 2025; Nelson et al., 2024). These
changes are reinforced by a growing ecosystem of public-private
partnerships and research consortia focused on Al-powered precision
medicine, including applications in immunotoxicity, vaccine
durability, and the prediction of immune escape.

Human immune organoids have emerged as another promising
platform for research (Fan et al., 2025; Kim et al., 2020; Huang et al.,
2025; Liu X. et al,, 2025). These 3D miniaturized lymphoid tissues,
often derived from human tonsils, spleens, or iPSC-derived immune
progenitors, have been shown to replicate essential features of adaptive
immunity, including germinal center formation, antibody class
switching, and T-B cell interactions (Wagar et al., 2021; Kastenschmidt
et al,, 2023). These features make them particularly attractive for
vaccine evaluation, as they allow scientists to study antigen-specific
responses in vitro under near-physiological conditions. When
combined with Al-based analytical pipelines, organoids enable more
efficient hypothesis generation, screening, and mechanistic insight, all
without relying on animals (Fan et al., 2025; Kim et al., 2020; Huang
etal., 2025; Liu X. et al., 2025).

Organ-on-a-chip (OoC) systems offer yet another level of
complexity. These microfluidic devices mimic the dynamic
biochemical, mechanical, and cellular microenvironments of human
tissues. Immunology-focused OoCs can model lung, gut, or skin
immune barriers, supporting studies on mucosal immunity, vaccine
delivery, and adjuvant response. For example, Ingber and colleagues
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have developed multiorgan chip systems that enable the real-time
analysis of interactions between immune cells and target tissues to
be studied in real-time (Nithin et al., 2023; Tian et al., 2024). When
used in conjunction with AI models, these systems can generate
multiscale simulations that incorporate tissue-specific immune
responses, pharmacokinetics, and safety profiles. Despite the
enormous potential of these technologies, significant limitations
remain. Most current organoid and chip-based systems simulate
responses in isolated compartments and do not replicate the systemic
coordination observed in complete immune responses, an essential
feature for understanding vaccine-induced protection or immune-
related adverse events (Fan et al., 2025; Kim et al., 2020; Huang et al.,
2025; Liu X. et al.,, 2025). Moreover, many Al models lack sufficient
external validation, and their performance can degrade when applied
to new populations or unseen clinical scenarios due to dataset biases
or limited training diversity (Huang et al., 2022). However, some of
the organoids and organ-on-chips are not strictly human-based and
may still incorporate animal-derived components or cells (Sun et al.,
2022; Farhang Doost and Srivastava, 2024; Alver et al., 2024; Wang
et al., 2024; Picollet-D'hahan et al., 2021; Fan et al., 2025; Kim et al.,
2020; Huang et al., 2025; Liu X. et al., 2025; Ingber, 2022; Liu K. et al.,
2025; Horejs, 2021). Despite these limitations, the field is progressing
toward increasingly human-relevant models, aiming to reduce animal
use by more accurately mimicking human physiology (Ingber, 2022;
Liu K. et al,, 2025). While the transition to completely human-based
systems is ongoing, challenges remain in fully replicating complex
tissue environments and functions without incorporating animal
elements (Elfatimi et al., 2025; Xiao et al., 2025; Riviere et al., 2025;
Alanazi, 2025; Barreto et al., 2025; Olawade et al., 2024; Omranian
et al,, 2024; Zhuang et al., 2024; Ingber, 2022; Liu K. et al., 2025;
Horejs, 2021).

Integrative approaches that combine organoids, organ-on-chip
(OoC) platforms, and artificial intelligence (AI) are being
developed to overcome these shortcomings (Sun et al., 2022;
Farhang Doost and Srivastava, 2024; Alver et al., 2024; Wang et al.,
2024; Picollet-D'hahan et al., 2021; Fan et al., 2025; Kim et al.,
2020; Huang et al., 2025; Liu X. et al., 2025). These multiscale
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models aim to reconstruct both cellular-level interactions and
system-wide immune responses, but they are still in their infancy.
Additional regulatory guidelines, benchmarking standards, and
collaborative infrastructures are necessary to facilitate the routine
adoption of these approaches in immunological research and
vaccine development pipelines.

Table 3 provides an overview of emerging human-relevant
technologies designed to reduce reliance on animal models in
immunological research. It highlights key platforms, including
artificial intelligence (AI), immune organoids, organ-on-a-chip
systems, and integrated multiscale models, alongside their primary
features, applications in immunology, and current limitations (Fan
etal., 2025; Kim et al., 2020; Huang et al., 2025; Liu X. et al., 2025). The
table also includes the NIH’s ORIVA program, which supports the
validation and adoption of these alternatives. Collectively, these tools
offer promising avenues for modeling immune responses more
accurately and ethically, however, challenges such as limited systemic
integration and scalability still need to be addressed (Elfatimi et al.,
2025; Xiao et al., 2025; Riviere et al., 2025; Alanazi, 2025; Barreto et al.,
2025; Olawade et al., 2024; Omranian et al., 2024; Zhuang et al., 2024).

6 Benefits of Al in pre-clinical vaccine
and immunotherapeutic development

The current practices in animal models used in research always
consider the “three Rs”: (1) Replacement involves assessing the
scientific justification and rationale for using an animal in biomedical
research, including whether there are alternatives to using live
animals. (2) Reduction entails assessing whether the number of
animals required in an experiment is adequate to achieve scientifically
valid results. This includes power and statistical tests to determine the
smallest number of animals in each experiment that would
be sufficient to produce statistically meaningful results. (3) Refinement
will determine whether and how animal procedures are likely to cause
pain or distress, and how this can be minimized. This involves
ensuring that similar animal experiments are not already reported in

TABLE 3 Emerging human-relevant alternatives to animal models in immunology (Singer and Akhtar, 2024).

Platform/tool Key features

Predictive modeling using large datasets
Artificial intelligence (AI) (e.g., transcriptomics, EHR, imaging) (Singer

and Akhtar, 2024; Diray-Arce et al., 2022)

Applications in immunology Limitations

Epitope prediction, antigen design, immune | Depends on dataset quality; limited

simulation, vaccine response forecast generalizability across populations

3D lymphoid tissues derived from tonsil,
Immune organoids
spleen, or iPSCs (Braham et al., 2023)

Study of germinal center reactions, T-B cell Limited to single-organ systems; lacks

interaction, and antibody production systemic integration

Microfluidic devices that mimic human
Organ-on-a-chip (OoC) tissue architecture and microenvironments

(Sinha et al., 2018)

High complexity; expensive; limited
Barrier immunity (e.g., gut, lung), vaccine
scalability across complete immune
delivery, and immunotoxicity studies
systems

Integration of AI + Organoids + OoC for
Multiscale hybrid models systemic simulation (Morrison et al., 2024;

Suhito et al., 2025)

Comprehensive simulation of immune Still in development; no regulatory

response across compartments standardization yet

NIH office dedicated to the validation of
ORIVA (NIH Program)
non-animal research models

Early-stage implementation; depends
Funding and coordinating the adoption of
on interagency and interinstitutional
human-relevant tools
support

Summary of innovative AI platforms, immune organoids, organ-on-a-chip systems, multiscale hybrid models, and the NTH ORIVA initiative. Key features of vaccine and immunotherapeutic

applications, as well as current limitations, are outlined, illustrating the growing ecosystem of non-animal, human-relevant research tools.
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the scientific literature and describing the potential novelty of the
additional experiment.

Artificial Intelligence (AI), which has rapidly become a critical
tool in reshaping the landscape of pre-clinical immunological
research, will certainly help accelerate the implementation of the
“three Rs” above (Rudroff, 2024). AI offers numerous advantages over
traditional animal-based models, providing both scientific and ethical
advancements in how we investigate immune responses and design
therapeutic interventions by leveraging high-throughput data and
complex algorithms. Figure 4 provides a visual summary of the key
advantages of Al in pre-clinical immunology, including improved
speed, predictive power, cost-efficiency, structural insight, and
ethical impact.

6.1 Speed and scale

Al enables researchers to analyze millions of potential peptide
MHC interactions This task would
be impractical using animal experiments or conventional laboratory

in silico within hours.

techniques. This rapid computational screening significantly
accelerates the prioritization of vaccine targets and epitope candidates.
Deep neural networks trained on human immunopeptidome data can
predict binding affinities and T-cell immunogenicity with high
precision, thereby narrowing down the most promising antigens for
experimental validation (Xu et al., 2023; Phloyphisut et al., 2019).

6.2 Cost efficiency

Al-driven platforms have already demonstrated substantial cost
savings in drug discovery pipelines, particularly in oncology
(Hasselgren and Oprea, 2024; Vora et al., 2023). Similar frameworks
are now being adapted for the treatment of infectious diseases. By
de-risking vaccine and immunotherapeutic discoveries and reducing
reliance on expensive and time-consuming iz vivo studies, Al enables
pre-clinical development teams to conduct early-stage hypothesis
testing, virtual compound screening, and immunological modeling at

10.3389/frai.2025.1681106

a fraction of the cost of animal-based trials (Gangwal and Lavecchia,
2025; Bonaiti et al., 2024). Additionally, these efficiencies can help
reduce financial barriers for smaller research institutions and startups
working in global vaccine development.

While Al-driven pre-clinical assessments of vaccines and
immunotherapeutic candidates can reduce animal use and lower
expenses, the extent to which Al benefits the economy by lowering the
cost of pre-clinical animal experiments for vaccines and
immunotherapy candidates remains to be determined. For instance,
Al-powered drug discovery platforms are expected to reduce expenses
associated with pre-clinical animal studies by 50-70%. Overall, Al has
the potential to save millions of dollars and years compared to
traditional animal-based experiments to select safe, immunogenic,
and protective vaccine and immunotherapy candidates (Chang et al.,
2025). Recent return on investment analyses indicate that AI
applications in immunotherapy are accelerating cost savings (Chang
et al., 2025; Nierengarten, 2025; Villanueva-Meyer et al., 2024; Bakas
et al, 2024). Al-driven tools, including deep learning models
integrated with digital pathology, imaging, and multi-omic datasets,
are enabling more intelligent resource allocation by targeting therapies
to patients most likely to respond, reducing waste in clinical trials, and
decreasing unnecessary treatments (Chang et al., 2025; Nierengarten,
2025; Dlamini et al., 2020).

6.3 Predictive power

Unlike animal models, which often fail to replicate human
immune responses accurately, Al systems can be trained on real-world
datasets, including single-cell transcriptomics, clinical trial data, and
immune repertoire profiles, to simulate immune dynamics across
diverse human populations. These simulations can be used to predict
immune responses to novel antigens, identify patient subgroups most
likely to benefit from a given vaccine or immunotherapy, and model
rare adverse events such as cytokine storms or immune escape (Xu
etal., 2023; Kastenschmidt et al., 2023). This level of predictive insight
is not possible in animal systems due to their biological and
immunological constraints.

Speed & Scale
“ ¢

:

Analyze millions of

Cost Efficiency

~

Reduce reliance on

peptide-MHC animal trials and dynamics across AlphaFold2 to predict
interactions quickly expensive in vivo tissues & populations protein structures and
models epitopes
N J (. J . J \ J

Predictive Power

Structural Design
Support

Simulate immune Use tools like

FIGURE 4

tools like AlphaFold2.

Benefits of Al in pre-clinical immunological research. Key advantages of artificial intelligence (Al) in pre-clinical immunological research: Al
technologies enhance the speed and scalability of screening peptide—MHC interactions, reduce reliance on costly and ethically challenging animal
models, provide predictive insights into immune responses across diverse human populations, and support structure-based immunogen design using
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6.4 Ethical soundness

One of the most compelling arguments for the adoption of Al in
pre-clinical animal research is its potential to drastically reduce, and
eventually eliminate, the use of animal subjects. Immunogenicity
testing, toxicity screening, and inflammation profiling can now
be partially or fully modeled through AI simulations and human-
based organoid systems (Fan et al., 2025; Kim et al., 2020; Huang et al.,
2025; Liu X. et al., 2025). This shift not only aligns with the enhanced
principles (Replacement, Reduction, Refinement) but also improves
public trust and acceptance in biomedical research by promoting
more humane and sustainable practices (Rudroff, 2024; Ingber, 2022;
Nithin et al., 2023).

6.5 Technological synergy with structural
prediction tools

AT models such as AlphaFold2 have revolutionized structural
biology by predicting 3D protein folding with near-experimental
accuracy. This capability is highly valuable in vaccine design, where
structural information on viral antigens or immune receptors is
critical for epitope mapping and rational immunogen selection.
Combined with machine learning algorithms tailored to accelerate
and de-risk epitope discovery and antigenicity scoring, these
technologies are streamlining the conceptualization and optimization
of immune intervention (Gangwal and Lavecchia, 2025; Tian
etal., 2024).

Overall, AI represents a scalable, ethical, and scientifically
superior alternative for many aspects of immunological research.
When integrated with complementary technologies, such as organoids
and organ-on-chip systems, Al has the potential to create fully
human-relevant pipelines that replace traditional animal models in
both discovery and translational immunology (Sun et al., 2022;
Farhang Doost and Srivastava, 2024; Alver et al., 2024; Wang et al.,
2024; Picollet-D'hahan et al., 2021; Fan et al., 2025; Kim et al., 2020;
Huang et al., 2025; Liu X. et al., 2025).

7 Challenges and limitations

While artificial intelligence (AI) offers immense promise in
reducing and replacing animal models in immunology, several
limitations must still be acknowledged (Elfatimi et al., 2025; Xiao
et al., 2025; Riviere et al., 2025; Alanazi, 2025; Barreto et al., 2025;
Olawade et al., 2024; Omranian et al., 2024; Zhuang et al., 2024).
Despite their increasing sophistication, current AI models still cannot
fully replicate the complexity of a living organism. Certain conditions,
particularly systemic immune disorders, and long-term physiological
responses, remain challenging to model without in vivo studies
(Rudroff, 2024; Kamimoto et al., 2023; Laurent et al., 2024; Blanc
etal., 2025).

Several scientific barriers to entirely replacing animal studies with
Al stem from the complexity of living systems and the current
limitations of computational models (Rudroff, 2024; Kamimoto et al.,
2023; Fruhwein and Paul, 2025). For instance, Al is less effective at
discovering new side effects, toxicity pathways, or immunological
mechanisms that emerge in vivo following the administration of
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vaccine and immunotherapeutic candidates, particularly those that
are not represented in the initial Al training data (Rudroff, 2024;
Kamimoto et al., 2023). Some immune responses only appear in the
context of a functioning organism as a whole and therefore are difficult
to predict through Al simulations alone (Rudroff, 2024; Kamimoto
et al,, 2023). Moreover, ethical replacement of animal studies by AI
should proceed with a commitment to validate and implement
human-relevant models, grounded not only in animal welfare but also
in science’s duty to generate reliable and translatable data for human
health (Fruhwein and Paul, 2025).

A key concern is the risk of bias in training data. Suppose Al
models are developed using datasets that primarily reflect a narrow
demographic. In that case, they may produce less accurate or even
misleading predictions for other populations, including women,
children, or older adults (El Arab et al., 2025). Addressing such biases
requires deliberate efforts to diversify and balance input data during
model training and validation. Complex datasets from genomics and
proteomics may yield false-positive correlations due to various factors,
such as data size, technical variability, and statistical noise (Lafit et al.,
2019; Huttlin et al., 2007; Zhang et al., 2015). For instance, errors in
identifying protein antigens to be incorporated into vaccine and
immunotherapeutic candidates as differentially expressed in
proteomics (false positives) are common and require careful
experimental design and statistical testing in vitro and in animals to
avoid misinterpretation (Lafit et al., 2019; Huttlin et al., 2007; Zhang
etal,, 2015). This highlights the importance of using robust statistical
approaches, high-quality data preprocessing, and critical biological
validation to ensure that identified correlations are both biologically
plausible and actionable (Huttlin et al., 2007; Zhang et al., 2015). Thus,
without rigorous validation—such as biochemical confirmation,
replication in comparable biological contexts, and advanced statistical
controls—false-positive correlations in genomics and proteomics can
mislead vaccine and immunotherapeutic research, as well as clinical
decision-making (Lafit et al, 2019; Huttlin et al., 2007; Zhang
etal., 2015).

Overfitting is another technical limitation, where models may
perform well on internal datasets but fail to generalize to external or
unseen data (Yang et al., 2023). This can lead to overly optimistic
performance estimates and reduced real-world applicability. To
mitigate this, rigorous validation methods such as cross-validation,
regularization techniques, and external benchmarking are essential
during model development.

High-dimensional biomedical data, including omics and imaging
datasets, can also increase the risk of spurious associations or
biologically implausible outputs (Xiao et al., 2025; Omranian et al.,
2024). Researchers must therefore interpret Al-generated predictions
cautiously and prioritize experimental validation, especially in
applications  involving  the  development of  vaccines
or immunotherapies.

Other limitations of AI include (1) the “black-box” problem
(Duran and Jongsma, 2021; Rudin, 2019) and (2) the complex process
of model retraining with new data (Rudin, 2019; Vela et al., 2022). (1)
The black-box problem refers to the lack of transparency in how
complex Al and deep learning models arrive at their decisions
(Sinicrope et al., 2024; Duran and Jongsma, 2021; Rudin, 2019; Vela
et al., 2022). These models learn from vast amounts of data and
develop intricate internal representations that human natural
intelligence, including the model designers, often cannot fully
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understand or explain (Duran and Jongsma, 2021; Rudin, 2019; Vela
et al., 2022). This opacity makes it difficult to trace or interpret the
decision-making process, creating issues with trust, accountability,
and the ethical use of resources (Duran and Jongsma, 2021; Rudin,
2019; Vela et al., 2022). (2) Retraining AI models with new data is a
time-consuming and laborious process (Vela et al., 2022). It typically
requires large volumes of labeled data and careful tuning to avoid
issues such as “catastrophic forgetting” (where a model loses previously
acquired knowledge), lack of convergence, and variability due to
random initialization. Automating frequent retraining is challenging
and can introduce significant risks (Vela et al., 2022). In clinical and
translational applications, retraining often necessitates additional
regulatory review, documentation, and validation before deployment,
thereby further increasing the time and cost burden. These limitations
underscore fundamental difficulties in making Al systems trustworthy,
reliable, and responsive to new data while maintaining transparency
and clarity that are understandable to human natural intelligence
(Vela et al., 2022).

Despite its transformative potential, Al is not a panacea. Most
models are only as reliable as the data on which they are trained, and
many suffer from inherent biases tied to demographics, geography, or
time (Prathaban and Hande, 2024). Moreover, while organoid models
offer valuable alternatives to animal tissues, current systems such as
those derived from tonsils often reflect isolated lymphoid structures
and fail to reproduce the complex, systemic immune interactions that
occur during real infections or vaccinations (Deng and Strong, 2025;
Han, 2025; Moassefi et al., 2023; Wagar et al., 2021; Fan et al., 2025;
Kim et al., 2020; Huang et al., 2025; Liu X. et al., 2025; Kastenschmidt
etal., 2023). As such, Al-based predictions still require experimental
validation, and moving from animal-based to fully digital pipelines
demand standardization, benchmarking, and ongoing refinement
(Shahabipour et al., 2023). Safety concerns remain particularly
relevant, as even the most advanced Al systems may not yet fully
capture toxicological or immunopathological risks, making final
in vivo validation necessary in many cases (Wagar et al, 2021;
Bar-Ephraim et al., 2020). Moreover, many Al techniques, intensive
learning still function as “black boxes,” where the underlying
reasoning behind predictions is challenging to interpret (Riviere et al.,
2025). This lack of transparency can limit trust among clinicians,
immunologists, and regulators. Ongoing advancements in explainable
Al aim to address this challenge, but wide-scale adoption
remains limited.

There are also practical challenges to implementing Al approaches
(Elfatimi et al., 2025; Xiao et al., 2025; Riviere et al., 2025; Alanazi,
2025; Barreto et al., 2025; Olawade et al., 2024; Omranian et al., 2024;
Zhuang et al., 2024). Some research institutions may lack access to
computational infrastructure, specialized personnel, or funding
required to utilize Al-based tools fully. Additionally, regulatory bodies
are still adapting their frameworks to evaluate and approve
Al-generated evidence, which means that even well-performing
models may face barriers to clinical integration.

While AT faces significant challenges related to data biases, there
are established approaches to address them effectively (Elfatimi et al.,
2025; Xiao et al., 2025; Riviere et al., 2025; Alanazi, 2025; Barreto et al.,
2025; Olawade et al., 2024; Omranian et al., 2024; Zhuang et al., 2024).
Among the challenges is that a bias can stem from unbalanced
datasets, flawed data collection processes, or inherited societal
prejudices within the data (Elfatimi et al., 2025; Xiao et al., 2025;
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Riviere et al., 2025; Alanazi, 2025; Barreto et al., 2025; Olawade et al.,
2024; Omranian et al., 2024; Zhuang et al., 2024). This bias can lead to
reduced fairness, trust issues, and ethical concerns, impacting
pre-clinical and clinical decision-making for vaccines and
immunotherapies. A major contributing factor is the difficulty of
acquiring large, well-curated, and standardized multi-omic datasets
from diverse human populations. Such data collection efforts are
expensive, time-consuming, and complicated by privacy regulations
and a lack of harmonized data formats across institutions, which limit
data sharing and the generalizability of models. This issue can
be mitigated by (1) cleaning, balancing, and transforming data to
reduce discrimination before training; (2) implementing fairness
constraints, counterfactual fairness, and re-weighting to ensure
equitable decision outcomes across demographics; (3) calibrating
model outputs to improve fairness after decisions are made; and (4)
implementing human oversight for continuous bias auditing and
transparent reporting of Al decision logic.

There also exist challenges related to deep learning networks,
which operate as “black boxes” where the decision-making process is
unclear, thereby hindering trust, regulatory compliance, and bias
detection (Elfatimi et al., 2025; Xiao et al., 2025; Riviere et al., 2025;
Alanazi, 2025; Barreto et al., 2025; Olawade et al., 2024; Omranian
et al., 2024; Zhuang et al., 2024). This can also be mitigated by (1)
using interpretable models or applying post-hoc explanation tools like
LIME (Local Interpretable Model-Agnostic Explanations) and SHAP
(SHapley Additive exPlanations) to explain which features influence
decisions; (2) providing transparency through documentation of
model training, data characteristics, and decision logic fosters
stakeholder understanding and trust; (3) encouraging human-in-the-
loop frameworks that allow experts to validate AI decisions and
improve system outcomes; and (4) aligning with regulatory
requirements for transparency and explainability, particularly in
industries requiring high accountability. The challenges of data biases
and interpretability in Al are addressable through a multi-faceted
approach involving technical solutions, organizational practices,
transparency, and collaboration, resulting in fairer, more reliable, and
trustworthy Al systems (Elfatimi et al., 2025; Xiao et al., 2025; Riviere
et al., 2025; Alanazi, 2025; Barreto et al., 2025; Olawade et al., 2024;
Omranian et al., 2024; Zhuang et al., 2024).

Another challenge with Al is that data biases in digital immune
twins affect predictive reliability (Weinberger et al., 2025). These
biases typically arise because the datasets used to train these predictive
models often overrepresent populations with specific ethnicities,
races, and genders, as well as genetic mix-ups (e.g., males, whites,
affluent individuals), and underrepresent others (e.g., women,
non-binary individuals, marginalized groups) (Weinberger et al.,
2025). This imbalance in data leads to algorithmic biases that impact
the accuracy and fairness of model predictions for underrepresented
groups, potentially reducing the overall reliability of these models in
pre-clinical and clinical decision-making for vaccines and
immunotherapies (Mann, 2024; De Domenico et al., 2025).
Specifically, the predictive reliability of digital immune twins suffers
when the underlying data lacks representation of physiological,
demographic, or socio-medical diversity (Weinberger et al., 2025).
This can result in inaccurate or less effective vaccine and
immunotherapy predictions, as well as disease progression
simulations, for specific populations. Such limitations are especially
critical when simulating systemic immune responses, for example,
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systemic inflammation or long-term protection, where missing
population diversity can lead to misleading projections of efficacy or
adverse events. Structural exclusions in data and limited diversity in
training datasets exacerbate these issues, reinforcing health disparities
rather than mitigating them (Mann, 2024; De Domenico et al., 2025).

Furthermore, these biases in digital immune twins are not merely
theoretical concerns: Al models trained on biased data tend to
propagate and even amplify these biases, resulting in less trustworthy
predictions and decision-making for vaccines and immunotherapies
in pre-clinical and clinical settings (Mann, 2024; De Domenico et al.,
2025). Efforts to detect, understand, and correct biases using
simulations or bias correction algorithms exist, but challenges remain
to eliminate prejudice and improve model reliability for all populations
entirely. In summary, data biases in digital immune twins significantly
affect their predictive reliability, especially when those biases lead to
underrepresentation of key patient subgroups, impacting both the
accuracy and equity of predictions (Weinberger et al., 2025; Mann,
2024; De Domenico et al., 2025).

Despite these hurdles, the scientific, economic, and ethical
motivations for adopting non-animal approaches are gaining

10.3389/frai.2025.1681106

traction. Traditional animal models are increasingly viewed as
limited in their ability to predict human outcomes, costly to
maintain, and misaligned with public sentiment regarding animal
welfare. Consequently, many leading research institutions and
pharmaceutical companies are beginning the shift toward
Al-based, human-relevant systems.

While AT may not immediately replace animal models in every
context, it is likely to progressively reduce reliance on them, first by
supporting early-stage screening and hypothesis generation, and
eventually by enabling comprehensive immune modeling pipelines.
As Al systems continue to mature and align with clinical data, they are
expected to become both more trustworthy and scientifically superior.
Rather than an abrupt end to animal research, this will represent a
gradual but inevitable evolution toward more ethical, accurate, and
efficient biomedical science. Figure 5 provides a visual summary of the
key challenges discussed in this section, illustrating how limitations
such as data bias, model overfitting, interpretability issues, and the
need for experimental validation remain critical barriers to replacing
animal models with AI-driven approaches in immunology (Elfatimi
et al., 2025; Xiao et al., 2025; Riviere et al., 2025; Alanazi, 2025; Barreto

Complex Immune
Responses

Overfitting

Data Biases

Al models struggle
to replicate

Models may

- perform well on

Demographic,

- geographic, or age-

multisystem training data but fail related imbalances
interactions and on new datasets, in training datasets
long-term immune reducing realizability reduce
behavior generalizability
Challenges and Limitations
of Al in Immunology

Experimental Black Box ::feutly“'::d

Validation Required Problem Li guratory
imitations

Al predictions still
need rigorous
laboratory or
clinical
confirmation to
ensure reliability

\ J \

outputs

Deep learning
models often lack
interpretability
limiting clinical

Toxicity prediction
and systemic side
effect often still
require animal
testing for
confirmation

FIGURE 5

Challenges and limitations of Al in immunology. This flowchart summarizes the key obstacles that limit the complete replacement of animal models in
immunology with Al (Elfatimi et al., 2025; Xiao et al., 2025; Riviere et al., 2025; Alanazi, 2025; Barreto et al.,, 2025; Olawade et al., 2024; Omranian et al.,
2024; Zhuang et al., 2024). These include complex immune responses that are challenging to model, data biases that reduce generalizability,
overfitting on training data, the lack of interpretability in deep learning models (the "black box problem”), the ongoing need for experimental validation,
and the continued reliance on animal testing for confirming toxicity and safety. Each challenge is interconnected, highlighting the need for a
multidisciplinary and standardized approach to overcome these challenges (Elfatimi et al., 2025; Xiao et al., 2025; Riviere et al., 2025; Alanazi, 2025;
Barreto et al,, 2025; Olawade et al., 2024; Omranian et al., 2024; Zhuang et al., 2024).
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et al,, 2025; Olawade et al., 2024; Omranian et al., 2024; Zhuang
etal., 2024).

8 Regulatory momentum and funding
initiatives

Encouragingly, regulatory bodies are now actively supporting the
shift. The NIH has begun prioritizing research projects that avoid
animal testing and explicitly encourages “human-relevant”
methodologies (Nelson et al., 2024). The FDA similarly states that
animal testing should become the exception, not the norm (Nelson
etal, 2024). In a landmark decision reflecting a growing commitment
to ethical research practices, the NTH announced the creation of the
Office of Research Innovation, Validation, and Application (ORIVA).
This new office is tasked with promoting and funding non-animal
research methods, marking a significant shift towards human-relevant
science. The initiative is hailed as a major victory for animal ethics,
aligning scientific research with ethical imperatives and public
sentiment. ORIVA’s mission includes scaling Al and organoid models
across immunological research domains (Fan et al., 2025; Kim et al.,
2020; Huang et al., 2025; Liu X. et al.,, 2025). However, for this
transformation to succeed, dedicated funding is required for
researcher training, infrastructure development, and cross-laboratory
standardization (Wagar, 2023; Kastenschmidt et al., 2023). Beyond
technical limitations, the persistence of animal methods bias in
scientific publishing and research funding has also been identified as
a significant barrier to the adoption of non-animal alternatives.
Kavanagh and Krebs highlighted how entrenched preferences for
animal models, despite the availability of human-relevant tools, can
hinder scientific progress and misallocate research resources (Nelson
etal., 2024). Addressing such biases through policy reform, reviewer
education, and structural changes in grant evaluation is essential to
support the broader implementation of Al-integrated, organoid, and
organ-on-chip-based platforms (Alver et al., 2024). By prioritizing
these alternative methods, the NIH aims to enhance the relevance and
applicability of biomedical research to human health outcomes (Sun
et al,, 2022; Farhang Doost and Srivastava, 2024; Alver et al., 2024;
Wang et al.,, 2024; Picollet-D'hahan et al., 2021; Fan et al., 2025; Kim
etal,, 2020; Huang et al., 2025; Liu X. et al., 2025; Nelson et al., 2024).

9 Future of Al-based approaches to
aid animal model experiments in
vaccine and immunotherapeutic
development

The path toward reducing and eventually replacing animal models
in immunology and vaccine research is increasingly shaped by the
rapid evolution of artificial intelligence (AI), human-relevant models,
and cross-disciplinary innovation (Elfatimi et al., 2025; El Arab et al.,
2025; Goktas and Damadoglu, 2025). This transformation is no longer
a speculative goal; it is unfolding now through advances in AI-driven
modeling, regulatory support, and integration of biological data across
scales (Elfatimi et al., 2025; El Arab et al., 2025; Goktas and
Damadoglu, 2025).

Several international efforts have already laid the groundwork for
this transition. Initiatives such as the NIH’s ORIVA program and
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similar regulatory developments in the US. and Europe are
accelerating the validation and adoption of Al-based platforms in
immunological research. The U.S. FDA has recently initiated efforts to
eliminate specific animal testing requirements, promoting the use of
Al-driven computational models and human organoid platforms to
strengthen pre-clinical assessments and increase their relevance to
human biology (Fan et al., 2025; Kim et al., 2020; Huang et al., 2025;
Liu X. et al,, 2025). The FDA Modernization Act 2.0 marks a pivotal
shift by officially endorsing non-animal methods such as Al-driven
platforms as valid tools for specific pre-clinical assessments (Elfatimi
et al, 2025; Rawal et al., 2022; Preeti et al., 2023). Among these
innovations, systems like Vaxi-DL, a deep learning framework for
vaccine antigen prediction, illustrate how in silico approaches can
accurately prioritize high-potential candidates, substantially
decreasing reliance on animal experiments (Elfatimi et al., 2025;
Rawal et al., 2022; Preeti et al., 2023). In addition, emerging AI models
now possess the capability to simulate key pharmacological processes,
including pharmacokinetics, metabolic pathways, and immune system
interactions, enabling rapid and efficient virtual screening of
therapeutic agents before human trials (Elfatimi et al., 2025; Rawal
etal,, 2022; Preeti et al., 2023). These developments are being matched
by growing investment from biotech companies, startups, and public-
private consortia committed to developing non-animal testing
strategies for immune-related diseases and vaccine evaluation.

One of the most exciting areas of progress is the development of
multiscale, system-level Al models that can simulate complex immune
responses. Unlike earlier models focused on isolated molecular events,
new Al frameworks are incorporating data from genomics,
proteomics, transcriptomics, imaging, and clinical outcomes to build
integrated, patient-specific simulations. These tools enable researchers
to model immune pathways in silico with increasing biological realism,
thereby drastically reducing the need for animal experimentation.

Equally transformative is the rise of in silico clinical trials. These
virtual trials use Al to simulate how different individuals might
respond to vaccines or immunotherapies based on their immune
profile, potentially reducing reliance on both pre-clinical animal
testing and early-stage human trials. As regulatory agencies begin to
develop clear frameworks for validating Al-generated evidence,
we expect these simulations to become a standard component of
ethical vaccine development pipelines. Another key priority is Al
explainability, which refers to the ability of models to provide
interpretable predictions that can be trusted by immunologists,
clinicians, and regulators. Progress in this area will increase
transparency and help shift AI from a mere analytical tool to a
collaborative partner in experimental design, hypothesis generation,
and clinical translation.

Emerging computational tools, such as neuromorphic systems
and digital immune twins, personalized virtual representations of a
patient’s immune system, promise to enhance modeling precision
further, making it possible to test immunotherapies and vaccines
entirely in silico under realistic, individualized conditions (Kumar
et al., 2024). In diseases such as autoimmune disorders and chronic
infections, where animal models have repeatedly failed to predict
human outcomes, Al-driven insights may accelerate and de-risk the
discovery of new therapeutic targets and biomarkers (Gangwal and
Lavecchia, 2025). This could unlock breakthrough treatments in areas
that have long stagnated due to the limitations of traditional animal-
based approaches. Ultimately, the expansion of Al in immunology
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must be guided by clear and established ethical standards. As
we entrust machines with decisions that influence human health,
building frameworks for fairness, transparency, and responsible data
use is not an option; it is essential.

To successfully transition from traditional animal models to
human-relevant research tools, the field of immunology must adopt a
multifaceted strategy that integrates advanced technologies, regulatory
frameworks, and ethical considerations. Artificial intelligence (AI)
plays a central role in this shift, offering scalable, predictive, and
ethically sound alternatives for modeling immune responses and
evaluating vaccine efficacy. Table 4 outlines the key innovation areas
driving this transformation, detailing the current limitations,
anticipated advancements, and expected impact of AI across various
domains of immunological research.

Future directions of AI and quantum computing in simulating
complex molecular interactions for vaccine and immunotherapy
development in animal models will focus on several key advances and
impacts (Elfatimi et al., 2025; Contreras et al., 2022; de la Fuente et al.,
2022; de la Fuente and Contreras, 2023). AI and DL will continue to
actively transform vaccine and immunotherapy research through
predictive frameworks that enable rapid, data-driven decision-making
and the integration of multi-omics data with computational models
(Elfatimi et al., 2025; Contreras et al., 2022; de la Fuente et al., 2022;
de la Fuente and Contreras, 2023). This will include better phenotyping
and classification of diseases, as well as tailored vaccine and
immunotherapy designs and refined antigen/epitope selections to
enhance the efficacy and durability of immune protection (Elfatimi
et al,, 2025). Al is expected to push further toward the potential
replacement of traditional animal preclinical testing with
computational simulations, as supported by initiatives from the NIH
and FDA to phase out some animal testing in favor of AI models
(Elfatimi et al., 2025). AI will uncover more complex immune

10.3389/frai.2025.1681106

interactions not evident through traditional experimental assays,
helping to guide novel vaccine and immunotherapeutic strategies,
improve the precision of immune response predictions, and optimize
vaccine and immunotherapeutic formulations (Elfatimi et al., 2025).
Advanced Al techniques, such as generative models, multimodal
learning, and interpretable machine learning, will further accelerate
the design of personalized vaccines and immunotherapies, enabling
the simulation and optimization of immune responses in silico before
animal or human trials (Elfatimi et al., 2025; Kumar et al., 2024).
Additionally, emerging approaches such as federated learning
enable model training across decentralized datasets from multiple
institutions without sharing raw data, thereby preserving patient
privacy while improving model generalizability and reducing bias,
an essential step for building robust vaccine prediction pipelines.
Quantum computing is expected to simulate the molecular
interactions and complex vaccine and immunotherapeutic
molecules with unprecedented precision, surpassing the limits of
classical computation (Elfatimi et al., 2025; Contreras et al., 2022;
de la Fuente et al., 2022; de la Fuente and Contreras, 2023). This
capability will enhance the prediction of interactions, efficacy,
safety, pharmacodynamics, and toxicity of vaccine and
immunotherapeutic molecules (Elfatimi et al., 2025; Contreras
et al., 2022; de la Fuente et al., 2022; de la Fuente and Contreras,
2023). By the
immunotherapeutic molecule simulations, quantum computing

improving accuracy of vaccine and
will support the reduction of reliance on animal testing, the
refinement of lead compounds more efficiently, and the prediction
of toxicity earlier in pre-clinical development (Elfatimi et al., 2025;
Contreras et al., 2022; de la Fuente et al., 2022; de la Fuente and
Contreras, 2023). Quantum-enhanced AI and quantum machine
learning optimize molecular dynamics simulations for antigen and

epitope discovery, protein folding, and elucidation of immune

TABLE 4 Strategic advances in artificial intelligence to replace animal models in pre-clinical development of drugs, vaccines, and immunotherapeutics.

Focus area Current limitations

AT model complexity Focused on narrow immune mechanisms

Future outlook Expected impact

Development of multiscale, systems-level =~ Better prediction of immunotherapy

immune models outcomes and vaccine efficacy

Data integration Fragmented omics and clinical datasets

Seamless fusion of genomic, proteomic,

and patient data

Personalized immune modeling and

biomarker discovery

Virtual trials for predicting immune
Used only in simple simulation scenarios
response

Expansion to simulate diverse immune

responses across populations

Ethical, rapid, and cost-effective pre-

clinical testing

Regulatory validation of AI-driven
Limited formal validation of AI tools
pre-clinical tools

Regulatory frameworks for Al validation

in immunology research

Faster approval and integration of non-

animal methods

Al explainability Many models remain “black boxes”

Transparent, interpretable AI models

Enhanced trust, reproducibility, and

collaboration across fields

Al-human collaboration AT used as a supplementary analytical tool

Al as a proactive partner in hypothesis

generation and experiment design

Accelerated discovery with improved

scientific rigor

Digital immune twins Conceptual and limited to research use

Fully functional, patient-specific

immune simulations

Tailored vaccine design and immune

therapy optimization

Traditional models poorly replicate
Al in autoimmune/chronic disease
human immune pathologies

Al-driven discovery of disease

mechanisms and response profiles

New treatments in hard-to-model

immune conditions

Ethical frameworks for AI Use Ethical guidelines remain emergent

Establishment of responsible standards

for AT in immunological research

Trustworthy and human-centric

development of digital biomedical tools

Current limitations, future outlooks, and expected impacts of Al-driven innovations across multiple domains are outlined. This includes model complexity, data integration, virtual trials,

regulatory validation, explainability, AI-human collaboration, digital immune twins, modeling of autoimmune/chronic diseases, and ethical frameworks.
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system mechanisms, which are critical to vaccine and
immunotherapy development (Elfatimi et al., 2025; Contreras
et al., 2022; de la Fuente et al., 2022; de la Fuente and Contreras,
2023). Quantum vaccinomics will integrate quantum computing
with immunogenetics and genomics to identify protective immune
antigens and epitopes, and design vaccines and immunotherapeutic
molecules. This approach will utilize both in silico and experimental
methods to elucidate protective immune mechanisms (Elfatimi
et al., 2025; Contreras et al., 2022; de la Fuente et al., 2022; de la
Fuente and Contreras, 2023). Thus, the synergy of Al and quantum
computing is expected to significantly accelerate the design,
testing, and optimization of vaccines and immunotherapies by
providing deep insights into immune regulation and disease
mechanisms (Elfatimi et al., 2025; Contreras et al., 2022; de la
Fuente et al., 2022; de la Fuente and Contreras, 2023). This
combination is expected to enhance translational relevance by
delivering more accurate computational models that can replace
animal models in many preclinical contexts, thereby reducing
ethical concerns and development times (Elfatimi et al., 2025;
Contreras et al., 2022; de la Fuente et al., 2022; de la Fuente and
Contreras, 2023). Regulatory agencies are increasingly recognizing
and supporting these transformative computational technologies
to modernize and improve preclinical evaluation pipelines
(Elfatimi et al., 2025; Contreras et al., 2022; de la Fuente et al.,
2022; de la Fuente and Contreras, 2023).

Finally, another direction of preclinical animal studies is moving
towards Hybrid Intelligence (HI), which combines Natural Intelligence
(NTI) and Artificial Intelligence (AI) (Sollini et al., 2020; Jia et al., 2022;
Saravi et al., 2022; Kurvers et al., 2023; Hirosawa et al., 2024). On one
hand, the NI spans the breadth of human (and collective) cognition,
emotion, and ethical understanding, encompassing not only
individual thinking but also group dynamics, societal norms, and
planetary well-being. It reflects our ability to empathize, innovate,
sense our surroundings, and collaborate at every level (Loaiza et al.,
2024; Mohite et al., 2024; Ou et al., 2025). On the other hand, Al
encompasses computational systems and algorithms designed to
process large datasets, discern patterns, and handle tasks—such as
language understanding or predictive analytics—that traditionally rely
on human-like intelligence (Imani et al., 2024; Huemer et al., 2020;
Natali et al., 2021; Liu et al,, 2024; Qin et al., 2024; Zakariya et al,,
2024; Bhujel et al., 2025; Kedar et al., 2025; Zhao and Wang, 2025). The
combination provides HI, which represents the synergy between AT’s
speed and analytical rigor, and NT’s depth of insight. Researchers in
animal models harness solid, data-driven capabilities by uniting both,
while still honoring essential human values, ethical reasoning, and
collective stewardship (Zhao and Wang, 2025; Hou et al., 2024;
Zemelka-Wiacek et al., 2024; Lv et al., 2025; Zhou et al., 2025).

10 Conclusion

The integration of artificial intelligence (AI) into biomedical
research represents a transformative opportunity to improve
experiments in animal models, particularly in immunology and the
development of vaccines and immunotherapies (Xiao et al., 2025).
Al-driven approaches such as deep learning, mechanistic modeling,
digital immune twins, and in silico clinical trials offer the potential to
simulate complex immune responses with increasing precision, speed,
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and ethical accountabilityy. When combined with advanced
technologies like organoids, organ-on-a-chip systems, and multi-
omics integration, these tools can model human-relevant biology in a
more scalable and predictive manner than traditional animal
experiments (Fan et al., 2025; Kim et al., 2020; Huang et al., 2025; Liu
X. etal., 2025).

On one hand, animal models remain critical for biological
research due to their complex physiology and living-system
context, which current AI and in vitro methods cannot fully
replace (Chang and Grieder, 2024; Barre-Sinoussi and Montagutelli,
2015). Animal models facilitate an understanding of whole-
organism biology, development, and systemic responses that Al
simulations, based on existing data and algorithms, may not yet
fully capture (Barre-Sinoussi and Montagutelli, 2015). On the
other hand, AI advancements are increasingly supporting the
refinement and reduction of animal use by automating immune
response assessments, screening vaccine and immunotherapy
candidates, and improving the precision of in vivo experiments
(Alanazi, 2025; Germain et al., 2024; Gururaj et al.,, 2024).
Comparisons between AI models and animal models reveal both
complementarities and distinctions. AI models, including machine
learning (ML) and deep learning (DL), provide powerful tools for
optimizing preclinical animal experiments to test vaccine and
immunotherapy candidates by analyzing complex datasets,
enhancing experimental design, predicting outcomes, and
extracting more meaningful insights from experiments (Germain
etal, 2024; Gururaj et al., 2024). Al can also integrate results from
animal models with human clinical data to improve the
translational relevance of vaccine and immunotherapy candidates.
Al-based methods are scalable, adaptable, and can run simulations
much faster than animal experiments, often in hours or days
instead of weeks or months. This enables the rapid exploration of
multiple hypotheses without the ethical and resource burdens
associated with breeding, housing, and handling animals. In
summary, Al and animal models serve partly overlapping but
distinct functions: AI enhances, complements, and can partially
substitute for animal experiments, especially in data analysis,
simulation, and rapid hypothesis testing. However, animal models
remain indispensable for capturing complex biological systems
in vivo, pending further development of AI (Germain et al., 2024;
Gururaj et al., 2024).

While Al organoids, and organ-on-a-chip systems are rapidly
transforming immunological research, they cannot yet fully replace
animal models (Fan et al., 2025; Kim et al., 2020; Huang et al., 2025;
Liu X. et al,, 2025). Multiorgan immune interactions, long-term
vaccine responses, and real-world safety evaluations still require
in vivo validation. The future lies not in the immediate elimination of
animal research but in progressively reducing dependence on it
through validated, high-fidelity digital and in vitro alternatives
(Elfatimi et al., 2025; El Arab et al., 2025; Goktas and Damadoglu,
2025). Rather than marking the end of animal testing, the rise of AI
in immunology should be seen as the beginning of a more advanced
and ethical form of biomedicine. This transition supports the
development of scalable, human-relevant solutions in vaccine and
immunotherapy research.

Despite the promise of these technologies, several challenges
remain. Issues such as data bias, overfitting, limited model
explainability, and the need for experimental validation must
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be addressed through standardized workflows, transparent reporting,
and cooperative regulatory development (Elfatimi et al., 2025; Xiao
et al., 2025; Riviere et al., 2025; Alanazi, 2025; Barreto et al., 2025;
Olawade et al., 2024; Omranian et al., 2024; Zhuang et al., 2024). AI
should be viewed as a gradual solution that first reduces animal use by
accelerating and de-risking early-stage discovery, and eventually
advances to replace more complex applications as the technology
improves (Gangwal and Lavecchia, 2025).

Regulatory agencies, such as the US. Food and Drug
Administration, have already begun to recognize Al-based tools as
valid alternatives for specific pre-clinical evaluations. Large-scale
initiatives, including the National Institutes of Health’s Office of
Research and Infrastructure Programs and ORIVA, support the
development and validation of these methods. Increasing public
awareness, economic efficiency, and scientific demand for human-
relevant models are all contributing to this shift in research strategy.
In the long term, the responsible and collaborative use of Al,
grounded in human biology and aligned with ethical frameworks,
will shape the next generation of biomedical innovation. The future
will not be defined by a binary choice between animal and digital
models. Instead, it will emerge from a synergistic ecosystem where
computational tools refine, augment, and ultimately replace animal
testing (Elfatimi et al, 2025; El Arab et al., 2025; Goktas and
Damadoglu, 2025). This evolution holds the potential to accelerate
and de-risk the discovery of drugs, vaccines, and immunotherapies
while upholding the highest standards of ethical and
scientific integrity.

Equally transformative is the integration of AI with advanced
experimental systems such as three-dimensional (3D) immune
organoids and organ-on-a-chip (OoC) technologies (Fan et al.,
2025; Kim et al., 2020; Huang et al., 2025; Liu X. et al., 2025).
Human immune organoids, derived from secondary lymphoid
tissues such as tonsils, have been shown to replicate critical
elements of adaptive immunity, including germinal center
formation and isotype switching (Wagar et al., 2021; Fan et al,,
2025; Kim et al., 2020; Huang et al., 2025; Liu X. et al.,, 2025;
Kastenschmidt et al., 2023; Morales Pantoja et al., 2023; Smirnova
et al., 2023). When combined with computational models, these
platforms enable detailed study of immune memory, evaluation of
vaccine formats, and screening of adjuvants, all without relying on
animal models. Similarly, OoC technologies, pioneered by
researchers such as Donald Ingber, simulate vascular and
epithelial-immune interactions across multiple organ systems,
providing insight into systemic immune responses that single-
organ models cannot capture (Ingber, 2022; Ingber, 2006).

As Al continues to evolve in complexity, interpretability, and
ethical oversight, it is poised to redefine how we model immune
responses, evaluate vaccines, and develop immunotherapies, ushering
in a new era of precision medicine with less reliance on animals and
greater alignment with human biology.
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