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Antenatal prediction of small for
gestational age at birth based on
four birthweight standards using
machine learning algorithms

Qiu-Yan Yu'?, Ying Lin® Yu-Run Zhou?, Xin-Jun Yang®*' and
Joris Hemelaar™*'

!Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom, ?School of
Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China, *Wenzhou Women and
Children Health Guidance Center, Wenzhou, Zhejiang, China

Background: Accurate antenatal prediction of SGA at birth is essential to improve
development and delivery of preventative and therapeutic interventions. This
study aimed to assess the performance of machine learning (ML) models to
predict SGA at birth among Chinese pregnancies classified according to the
Chinese birthweight standard and three international birthweight standards.
Methods: We collected multimodal, longitudinal, antenatal surveillance data on
350,135 singleton pregnancies in Wenzhou City, China, between Jan 1, 2014 and
Dec 31, 2016. For three pregnancy intervals we developed ML prediction models
for newborns classified as SGA using the China, Intergrowth 21st, Fetal Medicine
Foundation (FMF), and Gestation-related Optimal Weight (GROW) standards. We
applied lasso regression to conduct feature selection, and CatBoost, XGBoost,
LightBoost, Artificial Neural Networks, Random Forest, Stacked ensemble
model, and logistic regression for predictive modeling in training data sets, with
validation in testing data sets.

Results: Among 22,603 singleton pregnancies with complete data, the rate
of SGA using the China standard was 6.1%, compared to 4.3, 6.0, and 9.7% for
the Intergrowth 21st, GROW, and FMF standards, respectively. This pattern was
maintained in the imputed data set (n = 225,523), with corresponding SGA rates
of 6.8, 4.8, 74, and 10.7%. Late pregnancy models (<37 weeks) had the best power
to predict SGA, compared to middle (<26 weeks) and early pregnancy (<18 weeks)
models. With the China standard, the logistic regression model in late pregnancy
performed best with an area under the receiver operating characteristic curve
(ROC-AUC) of 0.74. Logistic regression also performed better than ML algorithms
with the Intergrowth-21st and GROW standards at each pregnancy interval,
although differences were small. The Random Forest model with the FMF standard
achieved superior performance at each pregnancy interval, reaching a ROC-
AUC of 0.79 in late pregnancy. Notably, the middle pregnancy Random Forest
model with the FMF standard already attained a ROC-AUC of 0.72 at 26 weeks'
gestation. Symphysis-fundal height, maternal abdominal circumference, maternal
age, maternal height and weight, and parity were consistently identified as key
predictors of SGA across the different standards.

Conclusion: There are important differences in the classification of SGA at
birth between national and international birthweight standards. Both machine
learning models and traditional logistic regression demonstrated comparable
predictive performance for SGA identification. These findings hold promise for
guiding risk-stratified prenatal care and optimizing resource allocation in clinical
settings.
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Introduction

Small-for-gestational-age (SGA) is defined as birthweight for
gestational age below the 10th centile according to a birthweight chart
(American College of Obstetricians and Gynecologists' Committee on
Practice Bulletins—Obstetrics, 2021). SGA newborns are a major
cause of global neonatal and child mortality and morbidity, especially
in low- and middle-income countries (LMICs) (Lee et al., 2013). An
estimated 23.3 million infants (19.3% of live births) per year are born
SGA in LMICs, which contribute to 21.9% of neonatal deaths (Lee et
al,, 2017). The highest rates and numbers of SGA infants are born in
Asia, and China has the fifth highest number of SGA newborns
annually (Lee et al., 2017). Sustainable Development Goal 3 (SDG3)
target 3.2 aims to reduce neonatal and child mortality to 12 and 25 per
1,000 live births, respectively, in all countries by 2030 (Liu et al., 2016).
However, many LMICs are not on track to meet these targets,
highlighting an urgent need to address the adverse perinatal outcomes
that contribute to neonatal and child mortality (Sharrow et al., 2022;
GBD 2019 Under-5 Mortality Collaborators, 2021).

Crucially, SGA classification depends on the birthweight charts
used, which include reference charts, prescriptive standards, and
customized growth charts (Capital Institute of Pediatrics and
Coordinating Study Group of Nine Cities on the Physical Growth and
Development of Children, 2020; Gardosi et al., 2018; Nicolaides et al.,
2018; Villar et al., 2014). Many countries use charts derived from their
own population. For example, the Chinese newborn chart is a
population-based chart based on healthy pregnant women from nine
cities across China (Capital Institute of Pediatrics and Coordinating
Study Group of Nine Cities on the Physical Growth and Development
of Children, 2020). The Intergrowth 21st birthweight standard is a
prescriptive international population-based standard derived from
multi-ethnic urban populations in eight countries and selected
healthy, well-nourished women receiving adequate antenatal care and
at low risk of fetal growth impairment (Villar et al., 2014). The Fetal
Medicine Foundation (FMF) chart is based on fetal estimated weight
and birthweight data from unselected singleton pregnancies at two
UK hospitals, including pregnancies at risk of complications and
preterm babies in utero (Nicolaides et al., 2018). Unlike these universal
charts, the customized Gestation-related Optimal Weight (GROW)
chart adjusts for maternal weight, height, parity, ethnicity or country
of origin, and fetal sex (Gardosi et al., 2018). Each birthweight chart
classifies different populations of newborn babies as SGA. To our
knowledge, few studies have compared SGA classification among
Chinese pregnancies according to different birthweight standards.

It is crucial to improve antenatal prediction of SGA to enable
development and implementation of preventative and therapeutic
interventions. The traditional approach to risk prediction has been
logistic regression based on known risk factors. However, this
approach has proven to have poor predictive power for SGA (Bai et
al., 2022; Bai et al., 2022). Given this limitation, there is a pressing
need for more sophisticated analytical approaches. The field of
perinatal epidemiology is now leveraging artificial intelligence (AI) to
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harness complex datasets for public health impact. AI promises a
paradigm shift by uncovering subtle, non-linear interactions within
routine clinical data that elude conventional methods (Mennickent et
al., 2023). Large-scale, multimodal, longitudinal electronic health
records facilitate the use of Al for predicting the risk of clinical
outcomes (Hunter and Holmes, 2023). To date, studies to predict SGA
at birth using Machine Learning (ML) have had important limitations,
including small sample sizes, highly selected patient groups, and
design or analysis biases (Bai et al., 2022; Bai et al., 2022; Vicoveanu et
al,, 2022). Some popular ML methods, such as a Stacked ensemble
model that combines predictions from multiple base models using a
meta-model to achieve superior performance, have not been applied
to SGA prediction (Naimi and Balzer, 2018), and the predictive
performance of these methods compared to other ML methods, such
as Random Forests and Catboost, is unknown (Cho et al., 2022; Choi
et al., 2021). In addition, a review of perinatal outcome prediction
found that many ML models failed to explain their decision-making
process to enable clinicians to understand the importance of input
features (Ramakrishnan et al., 2021).

The development of accurate antenatal models for predicting SGA
at birth requires high-performing ML algorithms. However, the
accuracy of any such model is fundamentally dependent on the
birthweight standards used to define SGA. Each standard identifies a
different neonatal subpopulation, leading to substantial variation in
clinical management. For example, infants classified as SGA by a
customized standard (e.g., GROW) but not by a population standard
(e.g., Intergrowth-21st) may miss essential hypoglycemia or
hypothermia monitoring, whereas misclassifying a constitutionally
small infant as SGA may prompt unnecessary investigations and
parental anxiety. Thus, the choice of standard directly shapes risk
stratification, resource use, and quality of care.

Therefore, this study aims to compare six machine learning (ML)
models and logistic regression in predicting SGA based on four
birthweight standards—the Chinese national standard, Intergrowth-
21st, FME and GROW—and to evaluate how standard selection
influences prediction accuracy.

Methods
Study design

child health
management platform covers 51 midwifery clinics and hospitals in

The Wenzhou maternal and information
Wenzhou City in Zhejiang Province, China, and was used to collect
maternal and perinatal health records. We included all 350,135
singleton pregnancies registered from 1 January 2014 to 31 December
2016. Of these, 225,523 pregnancies were registered, had antenatal
follow-up, and had delivery records (Supplementary Figure S1). The
data analysis workflow, encompassing data engineering, feature
selection, prediction modeling, and model performance and
interpretation, is illustrated in Figure 1.
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Participant features

A prospective pregnancy health survey was conducted at
registration at around 12 weeks™ gestation, collecting information
regarding demographics, social, medical, obstetric and gynecological
history, anthropometric measurements, and laboratory analyses.
Gestational age at birth was determined at first-trimester ultrasound
(standard practice). Birthweight was measured within 1 h of birth.
Symphysis fundal height (SFH), maternal abdominal circumference
(MAC), systolic blood pressure (SBP), diastolic blood pressure (DBP)
and weight were measured at each antenatal care visit. Pregnancy was
divided into three intervals which were determined based on a
combination of clinical practice and the distribution of our dataset:
early pregnancy (< 18 weeks’ gestation), middle of pregnancy (18 to
25 36" weeks)
(Supplementary Table S1). Fifteen variables were created by dividing

weeks), and late pregnancy (26 to

follow-up measurements into separate variables according to the three

10.3389/frai.2025.1679979

pregnancy intervals. If there were multiple visits during a given
pregnancy interval, the average value of measurements was used for
analysis. 43 features from registration and follow-up visits as well as
four features from delivery data are shown in Supplementary Tables S2,
S3. Additional variables were derived from the differences between
pregnancy intervals (e.g., diffSBP12).

Birthweight for gestational age standards

Singleton newborns with birthweight less than the 10th centile were
classified as SGA based on four birthweight standards. SGA classification
was according to newborn sex, except for the FMF standard (Nicolaides
et al,, 2018). Birthweight centiles for the China standard were based on
the national reference, which was used for the primary endpoint of SGA
classification in this study (Capital Institute of Pediatrics and
Coordinating Study Group of Nine Cities on the Physical Growth and

1. Applying multiple

1. Data merging by ID.
2. Removing cases with
abnormal birthweight.

Data cleaning

1. Applying the China
Integrowth 21st, GROW, and
FMF standards to classify
SGA births.

SGA classification

imputation for incomplete

data to create imputed data.

2. Removing cases with
missing values of features
of interests to create
complete data.

Data creation

Dividing the complete data

set and imputed data set
into the training sets and
the testing data sets
according to 70%/30% split
by stratified sampling,
respectively.

Applying Normalization
and standardlization
methods were used to
per.orm data engineering
Lor training sets and testing
sets.

Feature scaling

Applying the SMOTE
method to address class
imbalance in training sets

Data engineering

Feature selection

| Features available in early pregnancy

Predictors selected and ranked for early pregnancy |

| Features available in middle pregnancy

Lasso regression

Predictors selected and ranked for middle pregnancy |

| Features available in late pregnancy

Feature selection is done for each birthweight standard. Full-feature lasso regression were used with 10-fold cross-validation using training sets of complete data and imputed data

Predictors selected and ranked for late pregnancy |

| Predictors available in early pregnancy

Prediction modelling

b——

| Predictors available in middle pregnancy b

| Predictors available in late pregnancy

data and imputed data.

S—

Prediction models were developed for each birthweight standard and each pregnancy period across six algorithms and logistic regression with 5-fold cross-validation using the traning data sets of complete

Algorithms Criterion of the best-fitting model
Catboost
Ghoont If all models had a PR-AUC < 0.2, the
Feed Lightboost model with the highest ROC-AUC
Rarjom forest O—» was chosen; otherwise, the model
ANN with the highest PR-AUC was
Stacking ensemble selected.
Logistic regression

I

Model assessment and interpretation

Assessment of discriminatory
performance in the testing sets from
complete data and imputed data.

Calibration curves of the best-fitting
models in the testing sets from
complete data and imputed data.

O—>|

Model validation on the complete data
with SGA defined as the overlap of all
four standards as the positive class

Feature importance based on mean
absolute SHAP value in the testing
sets from complete data and imputed
data.

o—>

and all other births considered non-
SGA.

FIGURE 1

Study methodology. Steps to develop the machine learning models to predict small for gestational age are shown. Each step consists of several
processes, as indicated. ANN, Artificial Neural Networks; FMF, Fetal Medicine Foundation; GROW, Gestation-Related Optimal Weight; SGA, small for
gestational age (birthweight <10th centile for gestational age), SHAP, Shapley Additive Explanations; SMOTE, Synthetic Minority Over-sampling
Technique; PR-AUC, Area Under the Precision-Recall Curve; ROC-AUC, Area Under the Receiver Operating Characteristic curve.
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Development of Children, 2020). The GROW standard applied maternal
height and weight at registration, parity, country of origin (China), fetal
sex, and gestational age to calculate the birthweight centiles (www.
gestation.net). Birthweight centiles for the Intergrowth 21st standard
were calculated through its dedicated software (Villar et al., 2014).
Therefore, four separate data sets were generated with SGA at birth
classified according to each of the four birthweight standards, with the
China Standard serving as the primary classification method for defining
SGA and the other three standards as secondary classification methods.

Data preprocessing

Data preprocessing for the cohort of 225,523 singleton
pregnancies with registration, follow-up, and delivery records involved
a staged process. Prior to imputation, variables with over 30% missing
data were removed, reducing the feature set from 53 to 25. The MICE
algorithm was then applied to these 25 variables to generate an
imputed data set (n = 225,523), with the fifth iteration retained. In
parallel, a complete data set (n = 22,603) was formed by excluding all
pregnancy records with missing values from the 53 variables. The
datasets were subsequently processed as follows: a 70%/30% stratified
split was performed, using individual pregnancy records as the
sampling unit. This approach was necessitated by the anonymized
nature of the data, which precluded the identification of women with
multiple pregnancies and ensured complete separation between
training and testing sets. Following the split, all numeric features
underwent normalization via the Yeo-Johnson method, followed by
standardization (centering and scaling to achieve zero mean and unit
variance). To address class imbalance, the Synthetic Minority Over-
sampling Technique (SMOTE) was subsequently applied exclusively
to the training sets.

Feature selection

For each birthweight standard, Lasso regression was used to select
important features for SGA prediction at three different time points:
early (<18 weeks), middle (<26 weeks), and late pregnancy
(<37 weeks). This analysis was performed on the training data sets of
the imputed data and complete data using 10-fold cross-validation.
Lasso regression was chosen for its advantage in handling
multicollinearity among predictors. By applying an L1 penalty to the
coefficients, lasso regression automatically identifies relevant
predictors—shrinking the coefficients of less informative variables to
zero—to yield a sparse subset of features.

Design and development of prediction
models

For each birthweight standard, we developed distinct prediction
models for the early, middle, and late pregnancy intervals. The
primary analysis was based on the complete data, while the imputed
data were used in sensitivity analyses to evaluate the robustness of the
models to missing data. In both analyses, the features were selected
from variables available at each gestational interval using Lasso
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regression. The selected features were used to train the following
algorithms: CatBoost, XGBoost, Light GBM, Random Forest, Artificial
Neural Networks (ANN), a Stacked Ensemble model, and logistic
regression (for baseline comparison). Hyperparameters for all
individual models except the Stacked ensemble model were optimized
via a random search (Supplementary Table S4). The Stacked Ensemble
model was then constructed using these individually tuned models
(CatBoost, XGBoost, LightGBM, Random Forest, ANN, and logistic
regression) as base learners. Their predictions were combined using a
logistic regression meta-learner with a regularization strength (C) of
0.1, a fixed random state for reproducibility, and a maximum iteration
limit of 500. The tuning was guided by the area under the receiver
operating characteristic curve (ROC-AUC) value, which was
evaluated using 5-fold cross-validation on the training sets.

Model performance and interpretation

For each prediction model developed based on the training data
sets, performance metrics, including the ROC-AUC, accuracy,
sensitivity, specificity, balanced accuracy (the average of sensitivity
and specificity), positive predictive values (PPV), negative predictive
values (NPV), and F1 scores (harmonic mean of PPV and
sensitivity), were evaluated on the testing data sets using optimal
threshold values. These metrics and their corresponding 95%
confidence intervals were estimated using bootstrap resampling with
1,000 replicates. The optimal probability threshold for classifying a
case as SGA was determined as the point on the ROC curve closest
to the top-left corner (0,1). All metrics (e.g., sensitivity, specificity)
are reported using this single, consistent threshold to facilitate
model comparison. The best-fitting model was selected based on the
following criteria: if all models had a precision-recall AUC
(PR-AUC) below 0.2, the model with the highest ROC-AUC was
chosen; otherwise, the model with the highest PR-AUC was selected.
Calibration curves with a brier score were plotted to compare
predicted and observed outcomes for the final optimal predictive
model based on each birthweight standard. Model interpretation
was performed by calculating Shapley Additive Explanation (SHAP)
values on the testing datasets, employing a global approach to assess
population-level feature importance. The mean absolute SHAP value
was used to rank features by importance by their overall impact on
the model output, while the distribution and central tendency of
individual SHAP values (positive or negative) for each feature
revealed its directional association with SGA risk. This analysis
validated clinical relevance by confirming the alignment of top
features with medical knowledge and used mean absolute SHAP
values to rank features, identifying key determinants of SGA risk. To
further evaluate model generalizability, an additional analysis was
conducted using the complete data with a more stringent SGA
definition. In this analysis, SGA status was defined by the overlap of
all four birthweight standards, where a newborn was considered
SGA only if classified as such by every standard, and all other births
were defined as non-SGA. The optimal models identified under each
individual standard were then evaluated when applied to identify
SGA under this stringent, overlapping criterion. DeLong test was
used to test the ROC-AUC difference between the best-fitting
models, with P value < 0.001 considered statistically significant.
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Software and implementation

The analytical workflow was conducted using a dual-software
approach. Data preprocessing and engineering were performed in
R (version 3.6.1), which included multiple imputation via the MICE
package to handle missing data, normalization and standardization
using the recipes package with Yeo-Johnson transformation, and
addressing class imbalance through the SMOTE algorithm
implemented in the DMwR package. Subsequent predictive
modeling and evaluation were implemented in Python 3.6 within
the Spyder 6 environment, utilizing pandas and numpy for data
manipulation, scikit-learn for machine learning algorithms and
performance assessment, matplotlib and seaborn for visualization,
SHAP for model interpretability, and scipy for statistical
computations.

Results

SGA classification

Among 22,603 singleton pregnancies with complete data, the
rate of SGA with the China standard was 6.1%, which was similar
to the GROW standard (6.0%), higher than the Intergrowth 21st
standard (4.3%) and lower than the FMF standard (9.7%) (Table 1).
Multiple imputation was performed for the cohort of 225,523
singleton pregnancies, with the distribution of variables before and
after imputation compared in Supplementary Table S5. A similar
trend in SGA rates across standards was observed in the larger
imputed data (n = 225,523), with the China, GROW, Intergrowth
21st, and FMF standards yielding SGA rates of 6.8%, 7.4%, 4.8%,
and 10.7%, respectively. SGA rates according to gestational age for
each birthweight standard in 22,603 singleton pregnancies with
complete data are shown in Figure 2A. There were similar
proportions of SGA with the China and Intergrowth 21st standards
at 28 to 37 weeks’ gestation, but a higher proportion of SGA with
the China standard after 37 weeks. The GROW standard had
intermediate rates of SGA before 37 weeks, but similar rates of SGA
as the China standard after 37 weeks. The FMF standard classified
the highest proportion of infants as SGA at all gestations
(Figure 2A). 2,345 newborns were classified as SGA by at least one
of the four standards, of which 845 (36.0%) were classified as SGA
by all four standards (Figure 2B). 37 (1.6%) of infants were only
classified as SGA by the China standard and not by any other
standard (Figure 2B). The overlap of SGA cases classified by pairs
of standards ranged from 44.0 to 100% (Figure 2C). SGA cases
classified by the China standard were frequently also classified as
SGA by the other three standards (67.6-95.7%) (Figure 2C). The
overlap of non-SGA at birth classified by four birthweight standards
is shown in Supplementary Figure S2.

Significant differences in maternal age, weight, age at menarche,
education and albumin at registration were observed between
pregnancies with SGA and non-SGA infants for the China standard
and the three other birthweight standards (Table 1). Blood pressure
values (SBP3, DBP1, DBP2, DBP3), blood pressure change values
(diff DBP23), and all maternal anthropometric measurements
(maternal weight, MAC, and SFH) and their change values between
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each two pregnancy intervals differed significantly between
pregnancies with SGA infants compared to non-SGA infants for all
birthweight standards (Table 1).

SGA prediction modeling

For each birthweight standard, feature selection was conducted
using lasso regression, separately across three pregnancy intervals:
early (<18 weeks), middle (<26 weeks), and late pregnancy
(<37 weeks). The analysis was performed on both imputed and
complete datasets, with the optimal 1 value selected using the
one-standard-error criterion. The number of predictors retained for
each standard and pregnancy interval, along with the corresponding
A values, are summarized in Supplementary Table S6. The variable
selection paths and importance rankings across all four birthweight
standards are illustrated in Supplementary Figures S3-S6, which
present coeflicient shrinkage plots and variable importance bar charts
for each pregnancy interval.

ROC curves and PR-ROC curves for different pregnancy intervals
in the testing sets are illustrated in Figure 3 for the complete data and
Supplementary Figure S7 for the imputed data, respectively. Late
pregnancy prediction models performed better at ROC-AUCs than
early and middle pregnancy models for all birthweight standards
(Figure 3; Table 2). The China standard had intermediate predictive
ROC-AUC: for SGA across the three pregnancy intervals and ML
models, with ROC-AUCs similar to the Intergrowth 21st standard,
better than the GROW standard, but not as good as the FMF standard
(Figure 3; Table 2). The highest ROC-AUC values observed for the late
pregnancy models were 0.74 for logistic regression with the China
standard, and ROC-AUCs ranging from 0.64 to 0.79 for the other
standards (Table 2). For the China standard, the late pregnancy model
developed by the logistic regression had the highest F1 score, with a
value of 0.30. Based on predefined criteria, the best performing model
was the late pregnancy model based on logistic regression for the
China standard (ROC-AUC 0.74, PR-AUC 0.16), and the late
pregnancy model based on Random Forest showed superior
performance for the FMF standard (ROC-AUC 0.79, PR-AUC 0.28),
with sensitivity of 0.78, PPV of 0.20, and F1 score of 0.45. Their
calibration curves and hyper-parameter settings are shown in
Supplementary Figure S8 and Supplementary Table S7, respectively.
The calibration curves of the top-performing models
(Supplementary Figure S8) demonstrated systematic overestimation,
deviating above the line of perfect calibration. This is evidenced by
Brier scores of 0.2281 (China standard, logistic regression), 0.2359
(INTERGROWTH-21st standard, logistic regression), 0.2325 (GROW
standard, logistic regression), and 0.1949 (FMF standard, Random
Forest). The model for the FMF standard exhibited the best calibration.
The ROC curves of the training set and testing set of the complete data
indicated consistent predictive performance for the China,
INTERGROWTH-21st, and GROW standards, with minimal AUC
differences. However, a more notable performance gap was observed
for the FMF standard (training AUC: 0.982, testing AUC: 0.789),
suggesting a degree of overfitting for this specific model
(Supplementary Figure S9). The predictive performance of models
developed using the imputed dataset was largely consistent with that
observed in the complete dataset, showing similar trends across
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TABLE 1 Comparison of maternal features in the complete data sets of four birthweight standards.

China (SGA rate = 6.1%)

Features

Non-SGA

SGA

p value*

Intergrowth 21st (SGA rate = 4.3%)

Non-SGA

SGA

p value*

GROW (SGA rate = 6.0%)

Non-SGA

SGA

p value*

FMF (SGA rate = 9.7%)

Non-SGA

SGA

p value*

No. ‘ 21,232 ‘ 1,371 21,641 962 21,240 1,363 20,416 ‘ 2,187
Features collected at registration
Gestational weeks at 16.00 (13.00, 16.00 (13.00, 0.001 16.00 (13.00, 16.00 (13.00, 0.013 16.00 (13.00, 16.00 (13.00, 0.005 16.00 (13.00, 16.00 (13.00, 0.028
1st visit 17.00) 17.00) 17.00) 17.00) 17.00) 17.00) 17.00) 17.00)
Maternal 80 (0.4) 10 (0.7) 0.074 81 (0.4) 9(0.9) 0.015 78 (0.4) 12 (0.9) 0.007 76 (0.4) 14 (0.6) 0.087
complications
Age at registration (y) 26.92 (4.54) 25.44 (4.20) <0.001 26.89 (4.53) 25.44 (4.30) <0.001 26.88 (4.52) 26.12 (4.56) <0.001 26.95 (4.54) 25.73 (4.30) <0.001
Age at menarche (y) 14.06 (1.20) 14.14 (1.25) 0.017 14.06 (1.20) 14.19 (1.27) 0.001 14.06 (1.20) 14.18 (1.25) <0.001 14.06 (1.20) 14.12 (1.25) 0.021
Length of a menstrual 29.44 (2.59) 29.57 (2.60) 0.086 29.45 (2.59) 29.50 (2.67) 0.539 29.44 (2.59) 29.56 (2.66) 0.115 29.44 (2.59) 29.55 (2.61) 0.051
cycle (days)
Length of a menstrual 5.22(1.36) 5.23 (1.40) 0.887 5.22(1.36) 5.24 (1.41) 0.774 5.23 (1.36) 5.20 (1.39) 0.575 5.22 (1.36) 5.23(1.39) 0.835
period
Occupation 0.283 0.709 0.636 0.314
Farmer or 8,097 (38.1%) 539 (39.3%) 8,252 (38.1%) 384 (39.9%) 8,093 (38.1%) 543 (39.8%) 7,790 (38.2%) 846 (38.7%)
fishermen
Employee 2,610 (12.3%) 142 (10.4%) 2,647 (12.2%) 105 (10.9%) 2,601 (12.2%) 151 (11.1%) 2,511 (12.3%) 241 (11.0%)
Self-employed 2,438 (11.5%) 153 (11.2%) 2,483 (11.5%) 108 (11.2%) 2,437 (11.5%) 154 (11.3%) 2,354 (11.5%) 237 (10.8%)
Stay at home 5,503 (25.9%) 369 (26.9%) 5,624 (26.0%) 248 (25.8%) 5,520 (26.0%) 352 (25.8%) 5,287 (25.9%) 585 (26.7%)
without work
Others 2,584 (12.2%) 168 (12.3%) 2,635 (12.2%) 117 (12.2%) 2,589 (12.2%) 163 (12.0%) 2,474 (12.1%) 278 (12.7%)
Education 0.002 0.019 0.012 0.025
Primary school and 972 (4.6%) 49 (3.6%) 989 (4.6%) 32(3.3%) 966 (4.6%) 55 (4.0%) 941 (4.6%) 80 (3.7%)
below
Secondary school 12,961 (61.0%) 902 (65.8%) 13,235 (61.2%) 628 (65.3%) 12,975 (61.1%) 888 (65.2%) 12,472 (61.1%) 1,391 (63.6%)
and high school
College and above 7,299 (34.4%) 420 (30.6%) 7,417 (34.3%) 302 (31.4%) 7,299 (34.4%) 420 (30.8%) 7,003 (34.3%) 716 (32.7%)
Han Ethnicity 20,577 (96.9) 1,316 (96.0) 0.066 20,973 (96.9) 920 (95.6) 0.030 20,586 (96.9) 1,307 (95.9) 0.037 19,803 (97.0) 2090 (95.6) <0.001
Smoking or Alcohol 55 (0.3) 4(0.3) 0.782 58 (0.3) 1(0.1) 0.520 56 (0.3) 3(0.2) 1.000 52 (0.3) 7(0.3) 0.509
use
Contraception 0.117 0.372 0.268 0.087
Never 20,566 (96.9%) 1,332 (97.2%) 20,965 (96.9%) 933 (97.0%) 20,580 (96.9%) 1,318 (96.7%) 19,788 (96.9%) 2,110 (96.5%)
Physical 541 (2.5%) 26 (1.9%) 547 (2.5%) 20 (2.1%) 535 (2.5%) 32(2.3%) 511 (2.5%) 56 (2.6%)
contraception
Chemical 119 (0.6%) 13 (0.9%) 123 (0.6%) 9 (0.9%) 119 (0.6%) 13 (1.0%) 111 (0.5%) 21 (1.0%)
contraception
Both 6 (0.0%) 0(0.0%) 6 (0.0%) 0(0.0%) 6 (< 0.0%) 0(0.0%) 6 (0.0%) 0(0.0%)
Medical history 259 (1.2%) 20 (1.5%) 0.447 262 (1.2%) 17 (1.8%) 0.133 258 (1.2%) 21 (1.5%) 0.309 250 (1.2%) 29 (1.3%) 0.683
Medicine use 185 (0.9%) 7 (0.5%) 0.221 187 (0.9%) 5(0.5%) 0.365 183 (0.9%) 9 (0.7%) 0.542 177 (0.9%) 15 (0.7%) 0.461

(Continued)
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TABLE 1 (Continued)

Features China (SGA rate = 6.1%) Intergrowth 21st (SGA rate = 4.3%) GROW (SGA rate = 6.0%) FMF (SGA rate = 9.7%)
Non-SGA SGA p value* Non-SGA SGA p value*  Non-SGA SGA p value* Non-SGA SGA p value*

Gynecological history 896 (4.2%) 40 (2.9%) 0.017 906 (4.2%) 30 (3.1%) 0.116 893 (4.2%) 43 (3.2%) 0.058 863 (4.2%) 73 (3.3%) 0.048
Parity <0.001 <0.001 0.126 <0.001

0 11,595 (54.6%) 959 (69.9%) 11,879 (54.9%) 675 (70.2%) 11,761 (55.4%) 693 (58.2%) 11,081 (54.3%) 1,473 (67.4%)

1 9,213 (43.4%) 394 (28.7%) 9,332 (43.1%) 275 (28.6%) 9,061 (42.7%) 546 (40.1%) 8,919 (43.7%) 688 (31.5%)

>1 424 (2.0%) 18 (1.3%) 430 (2.0%) 12 (1.2%) 418 (2.0%) 24 (1.8%) 416 (2.0%) 26 (1.2%)
Maternal height (cm) 159.45 (4.74) 157.87 (4.90) <0.001 159.43 (4.74) 157.77 (4.98) <0.001 159.36 (4.76) 159.37 (4.89) 0.922 159.51 (4.72) 157.93 (4.92) <0.001
Maternal weight (kg) 53.38 (7.29) 50.33 (6.84) <0.001 5332 (7.29) 50.39 (6.95) <0.001 53.19 (7.27) 53.21(7.78) 0.924 53.49 (7.28) 50.44 (6.88) <0.001
Heart rate (beats per 80.38 (8.97) 80.65 (8.82) 0.270 80.38 (8.96) 80.71 (8.84) 0.266 80.38 (8.96) 80.63 (8.94) 0317 80.37 (8.97) 80.55 (8.89) 0.371
minute)
Hemoglobin (g/L) 124.15 (9.85) 123.88 (10.25) 0.317 124.14 (9.85) 123.92 (10.42) 0.485 124.10 (9.85) 124.69 (10.21) 0.031 124.14 (9.82) 124.05 (10.37) 0.681
Leukocyte count 8.14 (1.87) 8.03 (1.91) 0.045 8.13 (1.87) 8.08 (1.96) 0.397 8.13 (1.87) 8.08 (1.94) 0.304 8.14 (1.87) 8.06 (1.91) 0.056
(1079/L)
Platelet count 217.61 (47.14) 218.08 (47.51) 0.72 217.57 (47.07) 219.08 (49.12) 0.334 217.55 (47.11) 219.01 (47.91) 0.267 217.62 (47.20) 217.83 (46.79) 0.842
(10A9/L)
FBG (mmol/L) 4.70 (0.46) 4.67 (0.45) 0.017 4.70 (0.46) 4.66 (0.44) 0.022 4.69 (0.46) 4.69 (0.46) 0.789 4.70 (0.46) 4.67 (0.45) 0.016
ALT (U/L) 16.14 (10.16) 15.80 (9.91) 0.241 16.14 (10.16) 15.64 (9.82) 0.139 16.13 (10.16) 15.94 (9.99) 0.514 16.14 (10.18) 15.89 (9.89) 0.285
AST (U/L) 18.10 (6.06) 18.37 (6.14) 0.114 18.12 (6.07) 18.15 (5.98) 0.887 18.12 (6.07) 18.07 (6.05) 0.745 18.10 (6.07) 18.29 (6.03) 0.167
AIB (g/L) 41.89 (3.26) 4228 (3.17) <0.001 41.89 (3.25) 4234 (3.27) <0.001 41.89 (3.25) 42.26 (3.27) <0.001 41.87 (3.26) 42.29 (3.21) <0.001
TBil (mmol/L) 9.48 (3.66) 9.66 (3.85) 0.090 9.49 (3.66) 9.64 (3.79) 0.192 9.49 (3.66) 9.60 (3.78) 0.277 9.49 (3.66) 9.53(3.77) 0.615
Scr (mmol/L) 49.16 (12.52) 49.20 (12.20) 0.907 49.17 (12.53) 49.04 (11.94) 0.761 49.14 (12.52) 49.58 (12.30) 0.202 49.16 (12.51) 49.20 (12.41) 0.894
BUN (mmol/L) 2.81(0.76) 2.80 (0.75) 0.72 2.81(0.76) 2.81(0.77) 0.995 2.81(0.76) 2.84(0.76) 0.115 2.81(0.76) 2.83 (0.78) 0.166
Features collected during antenatal visits
Number of antenatal | 2.00 (2.00,3.00) | 2.00 (2.00, 3.00) 0.030 2.00 (2.00,3.00) | 2.00 (2.00, 3.00) 0.03 2.00 (2.00,3.00) | 2.00 (2.00, 3.00) 0.028 2.00 (2.00,3.00) | 2.00 (2.00, 3.00) 0.151
visits before 24 weeks
SBP1 (mmHg) 110.26 (11.24) 110.76 (11.69) 0.112 110.28 (11.24) 110.70 (11.86) 0.252 110.20 (11.22) 111.77 (11.83) <0.001 110.27 (11.23) 110.55 (11.57) 0.268
SBP2 (mmHg) 111.14 (10.68) 111.24 (11.16) 0.730 111.13 (10.67) 111.38 (11.40) 0.484 111.08 (10.67) 112.21 (11.23) <0.001 111.14 (10.69) 111.20 (10.86) 0.791
SBP3 (mmHg) 113.25 (9.29) 113.84 (10.54) 0.023 113.24 (9.29) 114.41 (10.94) <0.001 113.19 (9.27) 114.80 (10.73) <0.001 113.24 (9.26) 113.74 (10.30) 0.017
DBP1 (mmHg) 67.02 (7.97) 67.62 (8.43) 0.006 67.03 (7.98) 67.65 (8.56) 0.018 66.97 (7.97) 68.36 (8.46) <0.001 67.00 (7.97) 67.51 (8.27) 0.005
DBP2 (mmHg) 66.29 (7.49) 66.87 (7.90) 0.006 66.30 (7.48) 66.98 (8.19) 0.006 66.25 (7.47) 67.52 (8.13) <0.001 66.28 (7.49) 66.81 (7.75) 0.002
DBP3 (mmHg) 68.05 (6.62) 69.15 (7.83) <0.001 68.05 (6.62) 69.56 (8.27) <0.001 68.01 (6.59) 69.77 (8.13) <0.001 68.01 (6.60) 69.08 (7.58) <0.001
WEIGHT!1 (kg) 54.48 (7.48) 51.15 (7.20) <0.001 54.42 (7.49) 51.17 (7.25) <0.001 54.30 (7.47) 54.02 (7.98) 0.191 54.60 (7.47) 51.27 (7.15) <0.001
WEIGHT?2 (kg) 57.89 (7.52) 53.98 (7.19) <0.001 57.82 (7.53) 54.00 (7.27) <0.001 57.71 (7.53) 56.71 (7.90) <0.001 58.03 (7.51) 54.12 (7.06) <0.001
WEIGHTS3 (kg) 63.64 (7.84) 59.31 (7.56) <0.001 63.55 (7.85) 59.32 (7.76) <0.001 63.46 (7.85) 61.99 (8.38) <0.001 63.80 (7.82) 59.44 (7.53) <0.001
SFH2 (cm) 21.43 (2.29) 20.78 (2.33) <0.001 21.42 (2.30) 20.78 (2.32) <0.001 21.42 (2.29) 20.87 (2.36) <0.001 2145 (2.29) 20.79 (2.30) <0.001
SFH3 (cm) 30.08 (2.26) 28.81(2.27) <0.001 30.06 (2.27) 28.71 (2.23) <0.001 30.08 (2.27) 28.88 (2.26) <0.001 30.13 (2.25) 28.87 (2.25) <0.001
MAC2 (cm) 83.78 (6.28) 80.64 (6.11) <0.001 83.72 (6.29) 80.69 (6.16) <0.001 83.67 (6.29) 82.44 (6.62) <0.001 83.89 (6.27) 80.82 (6.10) <0.001
MACS3 (cm) 92.59 (5.92) 88.94 (5.78) <0.001 92.52 (5.93) 88.80 (5.74) <0.001 92.49 (5.93) 90.37 (6.22) <0.001 92.72 (5.90) 89.07 (5.60) <0.001
diffSBP12 (mmHg) | 0.50 (—5.00,7.00) | 0.00 (—5.50, 6.00) 0.034 0.50 (=5.00,7.00)  0.00 (—5.50, 6.50) 0.248 0.50 (=5.00,7.00) | 0.00 (=5.50, 6.00) 0.029 0.55 (—5.00, 7.00) = 0.00 (—5.50, 6.50) 0.092
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ey nA

6£66/91°'G2021844/682¢ 0T


https://doi.org/10.3389/frai.2025.1679979
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

25uabI)23u] |eIDYIY Ul SI213U0I

80

Bio"uISIa1U0Ly

TABLE 1 (Continued)

Features

China (SGA rate = 6.1%)

Non-SGA

SGA

p value*

Intergrowth 21st (SGA rate = 4.3%)

Non-SGA

SGA

p value*

GROW (SGA rate = 6.0%)

Non-SGA

SGA

p value*

FMF (SGA rate = 9.7%)

Non-SGA

SGA

p value*

diffSBP23 (mmHg) | 2.10 (—3.33,7.50) | 2.60 (=3.32, 8.00) 0.066 2.00 (=3.33,7.50)  3.00 (=2.79, 8.50) 0.002 2.12(=3.33,7.50) | 2.33 (—2.79, 8.00) 0.167 2.10 (=3.33,7.50) | 2.40 (—3.10, 7.80) 0.090
diffSBP13 ((mmHg)) | 3.00 (—3.50,9.50) | 3.00 (=3.00, 9.33) 0.770 3.00 (=3.50,9.50)  3.45 (—2.33,9.96) 0.026 3.00 (=3.50,9.50) | 2.67 (—3.33,9.00) 0.746 3.00 (=3.50,9.50) | 2.80 (—3.18, 9.45) 0.514
diffDBP12 (mmHg)) = —0.50 (=5.00, —0.50 (=5.00, 0.570 —0.50 (=5.00, —0.50 (=5.50, 0.633 —0.50 (=5.00, —0.50 (=5.25, 0.352 —0.50 (=5.00, —0.50 (=5.17, 0.846
4.00) 3.50) 4.00) 3.50) 4.00) 3.50) 4.00) 4.00)
diffDBP23 (mmHg) | 1.75 (—2.00,5.67) | 2.40 (—1.54,6.27) 0.002 1.75 (-2.00,5.67)  2.80 (~1.33,6.80) | <0.001 1.75 (=2.00,5.67) | 2.25 (=1.75,6.31) 0.010 1.75 (=2.00,5.67) | 2.33 (~1.75,627)  <0.001
diffDBP13 (mmHg) | 1.00 (—3.75,5.83) | 1.17 (=3.33,6.15) 0.061 1.00 (-3.75,5.80) | 1.67 (~3.19, 6.67) 0.003 1.00 (-3.75,5.83) | 1.00 (~3.50, 6.29) 0.251 1.00 (—3.80,5.75) | 1.33 (—3.50, 6.50) 0.007
diff WEIGHT12 (kg) | 3.25(2.25,4.50) | 2.85 (2.00,3.99) <0.001 325(225,4.50) | 2.85(2.00,3.85) <0.001 325(225,4.50) | 2.75(1.77,3.75) <0.001 3.30(225,4.50) | 3.00 (2.00, 4.00) <0.001
diff WEIGHT23 (kg) | 5.62(4.14,7.17) | 5.10 (3.91,6.63) <0.001 562 (4.14,7.17) | 5.10 (3.83,6.56) <0.001 563 (4.14,7.17) | 5.10 (3.75,6.52) <0.001 567 (4.17,7.17) | 5.10 (3.83, 6.60) <0.001
diff WEIGHT13 (kg) = 9.00 (7.07,11.10) | 8.00 (6.25,10.00)  <0.001  9.00(7.05,11.08) = 8.00 (6.25,10.00) | <0.001 9.00(7.08,11.10)  7.85 (6.03,10.00)  <0.001 9.0 (7.10,11.13) | 8.00(6.33,10.00) |  <0.001
diffSFH23 (cm) 8.65 (7.17,10.00) = 8.00 (6.50, 9.50) <0.001 | 8.62(7.14,10.00) | 7.95 (6.40,9.47) <0.001 8.64 (7.17,10.00) | 8.00 (6.40, 9.50) <0.001 | 8.67(7.17,10.07) = 8.00 (6.50,9.50) <0.001
diffMAC23 (cm) 8.75 (6.67,10.86) = 8.29(6.25,1025) = <0.001 | 8.75(6.67,10.86) = 8.12(6.00,10.00) = <0.001 8.80 (6.75,10.90) | 8.00 (5.67,10.00)  <0.001  8.80(6.71,10.90) | 8.25(6.17,10.33) = <0.001

Data are 1 (%), mean (SD), or median (IQR). AIB, Albumin; ALT, Alanine aminotransferase; AST, Aspartate aminotransferase; BUN, Serum urea nitrogen; DBP, diastolic blood pressure; FBG, fasting blood glucose; MAC, maternal abdominal circumference; Maternal

complications means clinical diagnosis with previa, eclampsia, or pregnancy-induced hypertension; SBP, systolic blood pressure; Scr, Serum creatinine; SGA, small for gestational age (birthweight <10th centile for gestational age); TBil, Total bilirubin; diffSBDP12,
difference between SBP1 and SBP2.#p values were calculated with the student Student’s t test for normalized continuous variables, the Mann-Whitney U test for non-normalized continuous variables, the chi-squared test for categorical variables when all of the cells
have counts more than 5, and the Fisher’s exact test for categorical variables when some of the cells have counts less than 5.
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FIGURE 2
SGA classification according to different birthweight standards. (A) The proportion of SGA at birth at different gestational ages (in weeks) according to
different birthweight for gestational age standards: China standard, Fetal Medicine Foundation (FMF) standard, Gestation-related Optimal Weight
(GROW) standard, Intergrowth-21st standard. (B) Overlap of SGA cases classified according to the four birthweight standards. (C) Overlap of SGA cases
classified according to pairs of birthweight standards. SGA, Small for gestational age (birthweight <10th centile for gestational age).

pregnancy intervals and birthweight standards. The optimal models
for the China, Intergrowth 21st, and FMF standards remained logistic
regression, while XGBoost performed best for the GROW standard,
with the performance, hyper-parameter settings, and ROC curves of
the training set and testing set provided in Supplementary Tables S8, S9
and Supplementary Figure S10, respectively.

To further assess model generalizability, we evaluated the
optimal models using a more stringent SGA definition in which a
newborn was classified as SGA only when identified as such by all
four birthweight standards (n =846; Figure 2B). Under this
overlapping criterion, performance was comparable across
standards, with mean AUCs of 0.741, 0.741, 0.729, and 0.721 for
models based on the China, Intergrowth-21st, GROW, and FMF
standards, respectively (Supplementary Figures S11A-D). However,
bootstrap analysis revealed important differences in model
performance: the FMF standard model demonstrated markedly
superior discriminative ability, achieving a mean AUC of 0.981 (95%
CI: 0.978-0.985). This substantially exceeded the performance of
models based on the China (mean AUC: 0.749), Intergrowth-21st
(0.753), and GROW (0.739) standards under their respective
original definitions. The performance advantage of the FMF-based
model was consistent across multiple metrics, including sensitivity
(0.923 vs. 0.715-0.764), specificity (0.928 vs. 0.612-0.679), and
accuracy (0.927 vs. 0.617-0.680) (Supplementary Figure S11E). The
statistical superiority of the FMF-based model was further confirmed
by DeLong tests, which revealed significant differences in ROC-AUC
between the FMF standard model and all other models (all
p < 0.001), while no significant difference was observed between
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the China and INTERGROWTH-21st standards (p =0.739)
(Supplementary Table S10).

Model interpretation

Variable importance, ranked by the mean absolute SHAP value for
the best-performing model under each birthweight standard, is
presented in Figure 4. The analysis identified consistent key predictors
across the standards. Late-pregnancy symphysis-fundal height (SFH3)
was the most important predictor for the China and FMF standards,
and ranked fourth and fifth for the Intergrowth-21st and GROW
standards, respectively. Similarly, late-pregnancy maternal abdominal
circumference (MAC3) was the second-ranked predictor for the
China and FMF standards and ranked within the top five for the other
two standards. Maternal age was also identified as a highly influential
variable, ranking within the top eight predictors for all standards.
Furthermore, maternal height and weight, and parity were among the
most important predictors for the China, Intergrowth-21st, and FMF
standards. The connected lines in the figure visually demonstrate the
variation in the relative ranking of these key predictors across the
different standards. Based on the mean SHAP values from the best-
fitting models for each birthweight standard, older maternal age was
consistently associated with an increased risk of SGA, as indicated by
positive mean SHAP values across all four standards. In contrast,
features including SFH3, MAC3, maternal height and weight, and
parity showed inconsistent directional associations with SGA risk,
with positive influences under some standards and negative under
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FIGURE 3

Receiver operating characteristic and precision-recall curves for prediction of small for gestational age at three pregnancy intervals in the testing set of
complete data according to four birthweight standards using six machine learning algorithms and logistic regression prediction models. PR-AUC, Area
under the precision-recall curve; ROC, Receiver Operating Characteristic.
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TABLE 2 Bootstrap Validation of prediction model performance using testing data set from the complete data.

10.3389/frai.2025.1679979

Models China standard Intergrowth 21st standard
Spe. Acc. PPV NPV F1 AUC Sen. Spe. Acc. PPV NPV
(95%  (95% (95%  (95% score (95% (95% (95% (95% (95%  (95%
Cl) Cl) Cl) Cl) (95% Cl) Cl) Cl) Cl) Cl) Cl)
o))
Early pregnancy
0.59 0.70 0.46 0.47 0.07 0.96 0.16 0.56 0.46 0.68 0.67 0.06 0.97 0.14
Catboost (0.56, (0.46, (0.30, (033, (0.06, (0.95, (0.11, (0.53, (0.29, (0.55, (0.55, (0.05, (0.96, (0.09,
0.62) 0.84) 0.68) 0.67) 0.08) 0.97) 0.20) 0.60) 0.61) 0.84) 0.82) 0.08) 0.97) 0.20)
0.60 0.62 0.57 0.57 0.08 0.96 0.19 0.59 0.52 0.64 0.64 0.06 0.97 0.16
XGBoost (0.58, (0.46, (0.47, (0.48, (0.07, (0.95, (0.14, (0.56, (0.31, (0.36, (0.38, (0.05, (0.96, (0.11,
0.63) 0.72) 0.72) 0.71) 0.10) 0.97) 0.24) 0.63) 0.78) 0.81) 0.79) 0.08) 0.98) 0.22)
0.59 0.63 0.52 0.52 0.07 0.96 0.15 0.57 0.59 0.55 0.55 0.05 0.97 0.14
LightBoost (0.56, (0.36, (0.29, (0.32, (0.06, (0.95, (0.10, (0.54, (0.45, (0.31, (0.33, (0.04, (0.96, (0.09,
0.62) 0.84) 0.78) 0.76) 0.09) 0.97) 0.18) 0.61) 0.84) 0.66) 0.65) 0.07) 0.98) 0.20)
Rand 0.64 0.66 0.56 0.57 0.08 0.97 0.22 0.60 0.74 0.44 0.45 0.05 0.98 0.18
anaom
F (0.61, (0.55, (0.34, (0.37, (0.07, (0.96, (0.18, (0.57, (0.54, (0.35, (0.37, (0.05, (0.97, (0.12,
orest
0.67) 0.87) 0.66) 0.65) 0.10) 0.98) 0.27) 0.63) 0.85) 0.61) 0.61) 0.06) 0.98) 0.22)
0.57 0.57 0.57 0.57 0.08 0.96 0.15 0.58 0.67 0.48 0.48 0.05 0.97 0.14
ANN (0.55, (0.39, (0.48, (0.49, (0.07, (0.95, (0.10, (0.54, (0.32, (0.31, (0.33, (0.04, (0.96, (0.09,
0.60) 0.69) 0.73) 0.71) 0.09) 0.96) 0.20) 0.61) 0.86) 0.79) 0.77) 0.07) 0.98) 0.19)
Stacki 0.59 0.57 0.61 0.60 0.08 0.96 0.17 0.56 0.60 0.51 0.52 0.05 0.97 0.12
tackin
]j (0.56, (0.49, (0.51, (0.52, (0.07, (0.95, (0.13, (0.53, (0.34, (0.29, (0.31, (0.04, (0.96, (0.07,
ensembole
0.62) 0.66) 0.66) 0.65) 0.09) 0.96) 0.22) 0.59) 0.82) 0.78) 0.76) 0.06) 0.98) 0.16)
L 0.67 0.68 0.60 0.60 0.09 0.97 0.27 0.66 0.64 0.62 0.62 0.07 0.98 0.26
ogistic
¢ . (0.65, (0.55, (0.49, (0.5, (0.08, (0.96, (0.24, (0.62, (0.48, (0.44, (0.46, (0.05, (0.97, (0.20,
regression
& 0.7) 0.76) 0.73) 0.72) 0.12) 0.97) 0.31) 0.69) 0.81) 0.76) 0.75) 0.09) 0.98) 0.31)
Middle pregnancy
0.64 0.74 0.49 0.50 0.08 0.97 0.23 0.57 0.50 0.65 0.64 0.06 0.97 0.14
Catboost (0.62, (0.45, (0.41, (0.43, (0.07, (0.96, (0.19, (0.54, (0.30, (0.53, (0.53, (0.05, (0.96, (0.09,
0.67) 0.83) 0.78) 0.76) 0.11) 0.98) 0.27) 0.60) 0.60) 0.83) 0.81) 0.07) 0.97) 0.21)
0.62 0.68 0.52 0.53 0.08 0.96 0.20 0.62 0.52 0.68 0.67 0.07 0.97 0.20
XGBoost (0.60, (0.50, (0.42, (0.44, (0.07, (0.96, (0.16, (0.59, (0.35, (0.54, (0.54, (0.05, (0.97, (0.15,
0.65) 0.78) 0.70) 0.68) 0.09) 0.97) 0.25) 0.66) 0.68) 0.84) 0.82) 0.08) 0.98) 0.27)
0.62 0.69 0.51 0.52 0.08 0.97 0.19 0.60 0.55 0.63 0.63 0.06 0.97 0.19
LightBoost (0.60, (0.37, (0.34, (0.37, (0.07, (0.95, (0.16, (0.56, (0.45, (0.56, (0.57, (0.05, (0.97, (0.13,
0.65) 0.86) 0.81) 0.79) 0.11) 0.98) 0.24) 0.63) 0.65) 0.72) 0.71) 0.07) 0.98) 0.24)
0.67 0.70 0.57 0.58 0.09 0.97 0.28 0.64 0.65 0.58 0.58 0.06 0.98 0.23
Random
E (0.65, (0.61, (0.48, (0.50, (0.08, (0.96, (0.24, (0.60, (0.54, (0.34, (0.36, (0.05, (0.97, 0.17,
orest
0.70) 0.80) 0.65) 0.65) 0.1) 0.98) 0.33) 0.67) 0.87) 0.68) 0.67) 0.07) 0.98) 0.27)
0.60 0.65 0.51 0.51 0.07 0.96 0.16 0.56 0.53 0.59 0.59 0.05 0.97 0.12
ANN (0.57, (0.46, (0.28, (0.31, (0.06, (0.95, (0.12, (0.52, (0.33, (0.21, (0.24, (0.04, (0.96, (0.07,
0.63) 0.85) 0.70) 0.69) 0.09) 0.97) 0.20) 0.59) 0.87) 0.76) 0.74) 0.07) 0.97) 0.17)
Stacki 0.62 0.53 0.67 0.66 0.09 0.96 0.19 0.58 0.54 0.60 0.6 0.06 0.97 0.14
tackin;
bf (0.59, (0.39, (0.30, (0.33, (0.07, (0.95, (0.15, (0.55, (0.35, (0.25, (0.28, (0.04, (0.96, (0.09,
ensemble
0.65) 0.86) 0.79) 0.76) 0.10) 0.97) 0.24) 0.61) 0.87) 0.78) 0.76) 0.07) 0.98) 0.19)
L 0.70 0.70 0.62 0.63 0.10 0.97 0.32 0.67 0.56 0.69 0.68 0.09 0.97 0.25
ogistic
§ ) (0.68, (0.58, (0.56, (0.57, (0.09, (0.97, (0.28, (0.66, (0.52, (0.63, (0.63, (0.08, (0.97, (0.24,
regression
& 0.73) 0.78) 0.75) 0.74) 0.12) 0.98) 0.37) 0.68) 0.63) 0.72) 0.71) 0.09) 0.97) 0.27)
(Continued)
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TABLE 2 (Continued)

China standard

10.3389/frai.2025.1679979

Intergrowth 21st standard

Sen. Spe. Acc. PPV NPV Sen. Spe. Acc. PPV NPV
(95% (95% (95% (95% (95% (95% (95% (95% (95% (95%
Cl) (@l)) (@l)) Cl) Cl) Cl) (@l)) Cl) (@])) Cl)
Late pregnancy

0.69 0.65 0.63 0.64 0.10 0.97 0.29 0.66 0.61 0.67 0.67 0.07 0.98 0.29
Catboost (0.66, (0.48, (0.49, (0.51, (0.08, (0.96, (0.25, (0.63, (0.52, 0.57, (0.57, (0.06, (0.97, (0.23,
0.71) 0.78) 0.80) 0.78) 0.13) 0.97) 0.33) 0.70) 0.71) 0.72) 0.72) 0.09) 0.98) 0.35)

0.70 0.77 0.54 0.56 0.09 0.98 0.32 0.68 0.71 0.60 0.61 0.07 0.98 0.32
XGBoost (0.68, (0.62, (0.44, (0.46, (0.08, 0.97, (0.28, (0.65, (0.52, (0.53, (0.54, (0.06, 0.97, (0.26,
0.72) 0.88) 0.68) 0.68) 0.11) 0.98) 0.36) 0.72) 0.79) 0.78) 0.77) 0.09) 0.98) 0.37)

LightBoost 0.69 0.70 0.60 0.60 0.10 0.97 0.30 0.66 0.69 0.59 0.59 0.07 0.98 0.28
(0.66, (0.58, (0.45, (0.47, (0.08, (0.96, (0.26, (0.63, (057, (0.52, (0.53, (0.06, 0.97, (0.22,

0.71) 0.84) 0.70) 0.70) 0.11) 0.98) 0.34) 0.70) 0.79) 0.73) 0.72) 0.08) 0.98) 0.34)

Random 0.73 0.72 0.65 0.65 0.11 0.98 0.37 0.71 0.74 0.61 0.62 0.08 0.98 0.35
Forest (0.71, (0.64, (0.54, (0.56, (0.09, 0.97, (0.33, (0.68, (0.65, (0.54, (0.56, (0.06, (0.98, (0.30,
0.76) 0.82) 0.72) 0.72) 0.13) 0.98) 0.42) 0.75) 0.82) 0.69) 0.69) 0.09) 0.99) 0.41)

ANN 0.64 0.59 0.63 0.63 0.09 0.96 0.23 0.66 0.63 0.61 0.61 0.07 0.98 0.24
(0.61, (0.52, (0.57, (0.57, (0.08, (0.96, (0.18, (0.62, (041, (0.40, (042, (0.05, (0.97, (0.20,

0.66) 0.66) 0.71) 0.70) 0.10) 0.97) 0.28) 0.69) 0.83) 0.81) 0.80) 0.09) 0.98) 0.29)

Stacking 0.69 0.72 0.58 0.59 0.09 0.97 0.30 0.64 0.69 0.56 0.57 0.06 0.98 0.25
ensemble (0.66, (0.65, (0.42, (0.44, (0.08, 0.97, (0.25, (0.61, (0.59, (0.49, (0.50, (0.05, (097, (0.19,
0.71) 0.86) 0.63) 0.63) 0.11) 0.98) 0.35) 0.67) 0.80) 0.65) 0.65) 0.08) 0.98) 0.31)

Logistic 0.74 0.74 0.65 0.65 0.11 0.98 0.39 0.73 0.71 0.65 0.65 0.08 0.98 0.36
regression (0.72, (0.60, (0.61, (0.62, (0.10, 0.97, (0.35, (0.69, (0.59, (0.50, (0.52, (0.06, (0.98, (0.30,
0.77) 0.79) 0.78) 0.77) 0.14) 0.98) 0.43) 0.76) 0.83) 0.75) 0.74) 0.10) 0.99) 0.40)

GROW Standard FMF Standard
Sen. Spe. Acc. PPV Spe. Acc. PPV
(95% (95% (95% (95% (95% (95% @ (95%
Cl) Cl) Cl) Cl) Cl) Cl) Cl)
Early pregnancy

0.50 0.75 0.29 0.32 0.06 0.95 0.04 0.60 0.61 0.56 0.56 0.13 0.93 0.17

Catboost (047, (0.43, (0.09, (0.15, (0.06, (0.94, (0.02, (0.58, (047, (0.46, (0.48, (0.12, (0.92, (0.13,
0.52) 0.94) 0.62) 0.61) 0.07) 0.97) 0.07) 0.62) 0.71) 0.69) 0.67) 0.14) 0.94) 0.20)

0.52 0.41 0.65 0.64 0.08 0.95 0.06 0.60 0.77 0.41 0.44 0.12 0.94 0.17

XGBoost (0.49, 0.11, (0.16, (0.21, (0.06, (0.94, (0.04, (0.59, (0.64, (0.29, (0.35, (0.11, (0.93, (0.14,
0.54) 0.90) 0.93) 0.88) 0.11) 0.96) 0.09) 0.62) 0.87) 0.52) 0.54) 0.13) 0.96) 0.21)

0.54 0.57 0.52 0.52 0.07 0.95 0.09 0.65 0.65 0.58 0.59 0.14 0.94 0.24

LightBoost | (0.51, 0.27, (0.27, (0.30, (0.06, (0.94, (0.05, (0.63, (0.55, (0.47, (0.50, (0.13, (0.93, (0.20,
0.57) 0.81) 0.81) 0.78) 0.09) 0.96) 0.13) 0.67) 0.76) 0.67) 0.66) 0.16) 0.95) 0.27)

Random 0.54 0.60 0.49 0.50 0.07 0.95 0.09 0.68 0.69 0.59 0.60 0.15 0.95 0.28
Forest (051, (0.41, (0.20, (0.23, (0.06, (0.94, (0.05, (0.66, (0.56, (0.49, (0.52, (0.14, (0.94, (0.25,
0.56) 0.88) 0.66) 0.65) 0.08) 0.97) 0.13) 0.70) 0.79) 0.70) 0.69) 0.18) 0.96) 0.31)

0.52 0.42 0.65 0.64 0.08 0.95 0.07 0.63 0.58 0.64 0.64 0.15 0.93 0.22

ANN (0.49, (0.15, (0.28, (0.32, (0.06, (0.94, (0.03, (0.61, (0.51, (0.46, (0.49, (0.13, (0.93, (0.19,
0.55) 0.79) 0.89) 0.85) 0.10) 0.96) 0.10) 0.66) 0.75) 0.71) 0.69) 0.16) 0.95) 0.26)

) 0.54 0.47 0.61 0.60 0.07 0.95 0.08 0.66 0.70 0.56 0.57 0.14 0.95 0.26
z:cek;zi (051, | (026, = (032, | (035 | (0.06, = (0.94, (0.04, (0.64, (059, = (045 | (048, | (0.13, | (0.94, (0.23,
0.56) 0.75) 0.81) 0.78) 0.09) 0.95) 0.12) 0.68) 0.81) 0.65) 0.65) 0.16) 0.96) 0.29)

Logistic 0.58 0.53 0.62 0.62 0.08 0.95 0.15 0.66 0.66 0.62 0.62 0.15 0.94 0.27
) (0.56, 032, (0.5, (0.5, (0.07, (0.95, (0.11, (0.64, (0.59, (0.54, (0.56, (0.14, (0.94, (0.24,
regression 0.61) 0.65) 0.82) 0.79) 0.1) 0.96) 0.20) 0.68) 0.73) 0.66) 0.66) 0.17) 0.95) 0.31)

(Continued)
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TABLE 2 (Continued)

GROW Standard FMF Standard

Sen.  Spe. Acc. PPV NPV Sen. Spe. Acc. PPV

(95% (95% (95% (95% (95% (95% (95% (95% @ (95%
Cl) Cl) Cl) Cl) Cl) o)) Cl) Cl) Cl)

Middle pregnancy

0.58 0.54 0.60 0.60 0.08 0.95 0.14 0.65 0.59 0.65 0.64 0.15 0.94 0.24
Catboost (0.55, (0.36, (0.23, (0.27, (0.07, (0.95, (0.09, (0.63, (0.47, (0.49, (0.52, (0.13, (0.93, (0.20,
0.61) 0.88) 0.77) 0.74) 0.10) 0.97) 0.18) 0.67) 0.77) 0.77) 0.74) 0.18) 0.95) 0.28)
0.58 0.82 0.31 0.34 0.07 0.97 0.14 0.64 0.67 0.56 0.57 0.14 0.94 0.23
XGBoost (0.55, (0.39, (0.20, (0.25, (0.06, (0.95, (0.11, (0.62, (0.61, (0.44, (0.47, (0.13, (0.93, (0.20,
0.60) 0.94) 0.74) 0.72) 0.09) 0.98) 0.17) 0.66) 0.78) 0.62) 0.62) 0.16) 0.95) 0.27)
0.60 0.68 0.49 0.50 0.08 0.96 0.17 0.70 0.68 0.63 0.63 0.17 0.95 0.31
LightBoost (0.57, (0.53, (0.35, (0.38, (0.07, (0.95, (0.12, (0.68, (0.53, (0.52, (0.55, (0.14, (0.94, (0.28,
0.62) 0.82) 0.64) 0.63) 0.09) 0.97) 0.21) 0.72) 0.79) 0.78) 0.76) 0.21) 0.96) 0.34)
Rand 0.61 0.62 0.56 0.56 0.08 0.96 0.17 0.72 0.70 0.64 0.65 0.18 0.95 0.34
andom
. (0.58, (0.41, (0.33, (0.36, (0.07, (0.95, (0.13, (0.70, (0.56, (0.55, (0.57, (0.15, (0.94, (0.31,
orest
0.63) 0.83) 0.77) 0.75) 0.10) 0.97) 0.21) 0.74) 0.80) 0.77) 0.75) 0.21) 0.96) 0.38)
0.56 0.69 0.43 0.45 0.07 0.96 0.12 0.68 0.62 0.70 0.69 0.18 0.95 0.32
ANN (0.54, (0.40, (0.25, (0.29, (0.06, (0.95, (0.09, (0.66, (0.54, (0.65, (0.65, (0.16, (0.94, (0.28,
0.59) 0.88) 0.71) 0.69) 0.09) 0.97) 0.16) 0.70) 0.68) 0.77) 0.75) 0.21) 0.95) 0.35)
Stacki 0.57 0.73 0.41 0.43 0.07 0.96 0.14 0.69 0.65 0.67 0.66 0.17 0.95 0.32
tackin
b? (0.55, (0.57, (0.27, (0.31, (0.07, (0.95, (0.10, (0.67, (0.60, (0.59, (0.60, (0.15, (0.94, (0.28,
ensemble
0.60) 0.87) 0.55) 0.55) 0.08) 0.97) 0.18) 0.71) 0.73) 0.71) 0.70) 0.19) 0.95) 0.35)
L 0.65 0.63 0.60 0.60 0.09 0.96 0.23 0.69 0.65 0.65 0.65 0.17 0.95 0.29
ogistic
¢ . (0.62, (0.41, (0.45, (0.47, (0.08, (0.95, (0.18, (0.67, (0.54, (0.52, (0.54, (0.14, (0.94, (0.26,
regression
& 0.67) 0.77) 0.78) 0.76) 0.11) 0.97) 0.28) 0.71) 0.78) 0.74) 0.72) 0.19) 0.96) 0.33)

Late pregnancy

0.65 0.54 071 0.70 0.11 0.96 0.25 0.72 0.69 0.65 0.65 0.18 0.95 0.34
Catboost (0.63, (0.46, (0.52, (0.53, (0.09, (0.95, (021, (0.69, (0.57, (0.56, (0.58, (0.15, (0.94, (0.30,
0.68) 0.74) 0.77) 0.75) 0.13) 0.97) 0.30) 0.74) 0.78) 0.76) 0.75) 0.21) 0.96) 0.38)

0.62 0.55 0.64 0.64 0.09 0.96 0.20 071 0.73 0.62 0.63 0.17 0.95 0.34
XGBoost (0.60, (0.44, (0.41, (0.43, (0.07, (0.95, (0.15, (0.70, (0.64, (0.58, (0.59, (0.15, (0.95, (0.31,
0.65) 0.78) 0.75) 0.73) 0.11) 0.97) 0.24) 0.73) 0.78) 0.69) 0.69) 0.19) 0.96) 0.38)

LightBoost 0.66 0.68 0.58 0.59 0.10 0.97 0.26 0.77 0.71 0.71 0.71 0.21 0.96 0.42
(0.64, (0.51, (0.46, (0.48, (0.08, (0.96, (0.22, (0.75, (0.63, (0.60, (0.62, (0.17, (0.95, (0.38,

0.69) 0.80) 0.75) 0.74) 0.11) 0.97) 0.30) 0.79) 0.83) 0.78) 0.77) 0.24) 0.97) 0.45)

Random 0.68 0.61 0.67 0.66 0.11 0.96 0.28 0.79 0.78 0.67 0.68 0.20 0.97 0.45
Forest (0.66, (0.53, (0.53, (0.55, (0.09, (0.96, (0.24, (0.77, (0.71, (0.63, (0.65, (0.18, (0.96, (0.42,
0.70) 0.74) 0.73) 0.72) 0.12) 0.97) 0.32) 0.81) 0.83) 0.75) 0.75) 0.24) 0.97) 0.49)

ANN 0.61 0.57 0.60 0.59 0.09 0.96 0.17 0.74 0.69 0.71 071 0.20 0.96 0.40
(0.58, (0.42, (0.39, (0.42, (0.07, (0.95, (0.13, (0.72, (0.62, (0.66, (0.66, (0.18, (0.95, (0.36,

0.63) 0.79) 0.73) 0.72) 0.1) 0.97) 0.21) 0.76) 0.75) 0.76) 0.75) 0.23) 0.96) 0.43)

Stacking 0.64 0.70 0.53 0.54 0.09 0.96 0.23 0.71 0.74 0.59 0.60 0.16 0.95 0.33
ensemble (0.62, (0.47, (0.47, (0.49, (0.08, (0.96, (0.19, (0.69, (0.65, (0.45, (0.49, (0.14, (0.95, (0.29,
0.66) 0.77) 0.75) 0.73) 0.11) 0.97) 0.27) 0.73) 0.85) 0.68) 0.68) 0.18) 0.97) 0.36)

Logistic 0.70 0.60 071 0.70 0.12 0.97 0.30 0.74 0.69 0.69 0.69 0.19 0.95 0.37
regression (0.68, (0.45, (0.1, (0.52, (0.09, (0.96, (0.26, (0.72, (0.57, (0.62, (0.63, (0.17, (0.94, (0.34,
0.73) 0.79) 0.83) 0.81) 0.16) 0.98) 0.35) 0.76) 0.76) 0.80) 0.77) 0.23) 0.96) 0.41)

ANN, artificial neural networks. AUC, area under the ROC curve; Sen., Sensitivity; Spe., Specificity; Acc., Accuracy; PPV, Positive predictive value; NPV, Negative predictive value.
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FIGURE 4
Predictor importance ranking for the optimal models across the four birthweight standards using the testing set of the complete data. Feature
importance is ranked vertically by the mean absolute SHAP value, with the specific value labeled to the right of each bar. The China, Intergrowth-21st,
and GROW standards used logistic regression as the optimal model, while the FMF standard used random forest. Common predictors across standards
are connected by solid lines of the same color to facilitate comparison of rankings. AlB, albumin; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; BUN, serum urea nitrogen; DBP, diastolic blood pressure; FBG, fasting blood glucose; MAC, maternal abdominal circumference; Scr,
serum creatinine; SBP, systolic blood pressure; SFH, symphysis fundal height; SGA, small for gestational age (birthweight <10th centile for gestational
age); SHAP, Shapley Additive Explanations; TBIil, total bilirubin. 1st pregnancy interval is the period before 18 gestational weeks. 2th pregnancy interval is
the period between 18 and 25*° gestational weeks. 3rd pregnancy interval is the period between 26 and 36*° gestational weeks.

others (Supplementary Table S11; Supplementary Figure S12). Based
on the analysis of the imputed dataset, the ranking of predictor
importance was largely consistent with that observed in the complete
dataset, with late-pregnancy SFH, MAC, maternal age, height and
weight, and parity remaining among the most influential features
across the four standards (Supplementary Figure S13). The direction
of association for key predictors, as indicated by the mean SHAP
values, also showed patterns similar to those in the complete data
(Supplementary Table S12; Supplementary Figure S14).

Discussion

The SGA rate among Chinese newborns based on the China
standard was 6.1%, which was similar to the GROW standard
(6.0%), higher than the Intergrowth 21st standard (4.3%) and lower
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than the FMF standard (9.7%). Late pregnancy models had the best
power to predict SGA, compared to middle and early pregnancy
models, which is likely due to the additional relevant features/
predictors that become available during the course of pregnancy,
such as additional MAC and SFH. Our analysis revealed that optimal
model performance was standard-dependent: logistic regression
achieved the best performance for the China standard (ROC-AUC
0.74, PR-AUC 0.16), while Random Forest demonstrated superior
performance for the FMF standard (ROC-AUC 0.79, PR-AUC 0.29,
with sensitivity of 0.78, PPV of 0.20 and F1 score of 0.45). Symphysis
fundal height, maternal abdominal circumference, maternal age,
maternal height and weight, and parity were identified as key
predictors of SGA.

In our study, the FMF standard classified the highest proportion
of newborns as SGA, in line with two previous publications (Kabiri
et al., 2020; Saviron-Cornudella et al., 2021). This elevated SGA rate
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can be attributed to the standard’s methodology, which integrates
term birth data with estimated preterm birthweights based on the
assumption that estimated fetal weight and birthweight share the
same median across gestational ages (Nicolaides et al., 2018). Since
preterm births are often associated with pathological conditions and
fetal growth restriction, the FMF standard tends to classify more
preterm infants as SGA (Nicolaides et al., 2018). The customized
GROW standard classified an intermediate proportion of infants as
SGA in our Chinese data set compared to population-based
standards. This contrasts with reports from high-income countries,
where the GROW standard typically identifies the highest
proportion of SGA at birth (Odibo et al., 2018; Fernandez-Alba et
al., 2022; Zhang et al,, 2007). The GROW standard used was
constructed with China selected as the country of origin, resulting
in SGA proportions similar to those identified by the China
standard. Moreover, we observed substantial overlap in SGA
classification between the Intergrowth 21st and China standards.
This may partly be explained by their similar study designs as both
were developed using data from low-risk, well-nourished women.
Additionally, the Intergrowth 21st project included participants
from Beijing, China, whose socioeconomic context aligns closely
with that of population used to construct the China standard (Villar
etal., 2014).

Our ML models have greatly improved predictive power for
SGA, especially the Random forest-based model based on the FMF
standard, compared to previous studies (Bai et al., 2022; Cho et al,,
2022; Kuhle et al., 2018). A big data study comparing ML methods
showed that a model using logistic regression with predictors
available at 26 weeks appeared the best-fitting tool to predict SGA
birth, with a ROC-AUC value of 0.66 for primiparous women (Kuhle
et al., 2018). Our models developed at 26 weeks achieved better
prediction, with an ROC-AUC of 0.70 based on the China standard
and a ROC-AUC of 0.72 based on the FMF standard. Compared to
the China standard, the superior performance of the Random Forest
model with the FMF standard stems from its algorithmic advantage
in handling complex data patterns, as it excels at capturing
non-linear relationships and complex interactions among predictive
features. This capability is critical for leveraging the nuanced
information within the input variables, leading to more powerful
discrimination for the specific task of SGA identification under any
given standard (Couronné et al., 2018). In contrast, logistic
regression remained the optimal or non-inferior model for the
China, Intergrowth 2Ist, and GROW standards, suggesting
predominantly linear predictor-outcome relationships, as supported
by SHAP analysis. Furthermore, its structural simplicity mitigates
overfitting and enhances generalizability (Christodoulou et al., 2019;
Deo, 2015),
transparent, quantifiable risk associations—offers a distinct

while its inherent interpretability—providing
advantage for potential clinical implementation (Rudin, 2019). The
collective findings indicate that model superiority is context-
dependent, hinging on a specific alignment between the model’s
form and the prediction task’s requirements.

Our study demonstrates that the best-fitting models show
potential for predicting SGA at birth, with performance varying by
gestational age and birthweight standard. Specifically, the Random
Forest model under the FMF standard achieved a ROC-AUC of 0.72
at 26 weeks of gestation, which represents a clinically promising
performance for early risk stratification, and further improved to 0.79
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in late pregnancy, which falls within the ‘acceptable’ to ‘excellent’ range
according to common diagnostic benchmarks. Beyond prediction, our
analysis also identified several key clinical predictors, including
symphysis-fundal height, maternal abdominal circumference,
maternal age, maternal height and weight, and parity, which may
inform opportunities for individualized antenatal management.
Within the framework of the Chinese tiered prenatal care system, this
level of predictive capability at middle pregnancy could enable
practical clinical triage by identifying high-risk pregnancies for
intensified monitoring, such as through frequent serial symphysis-
fundal height measurements and third-trimester ultrasound biometry,
while maintaining standard care for lower-risk women, thereby
optimizing resource allocation. These models thus provide a
quantitative tool for improving SGA detection and management,
while the identified key predictors further inform individualized
antenatal management strategies.

An important next step will be the validation of our ML prediction
models in independent data sets. Further improvements to our
prediction models may be achieved by incorporating additional
variables, such as previous pregnancy outcome details, glucose
monitoring data, and ultrasound measurements. When validated and
refined, ML prediction models need to be assessed prospectively,
ideally in the context of an RCT, to ascertain improved prediction of
SGA at birth. Ultimately, improved SGA prediction combined with
interventions needs to be demonstrated to improve perinatal
morbidity and mortality.

This study has several strengths. To our knowledge this is the first
study to compare four population-based and customized birthweight
standards using a large population-based data set, and develop ML
models to predict SGA at birth at different stages of pregnancy. This is
also the first study to compare the CatBoost method with widely used
Random Forest, Stacked ensemble model, and ANN methods to
determine the best-fitting model for each birthweight standard.
Finally, our study is transparent in the methodology used for data
processing, feature selection, prediction model development,
assessment and interpretation, thereby reducing the potential for
analytical bias.

This study has some limitations. While routine pregnancy
surveillance data has the advantages of scale and inclusivity, it has the
disadvantage of a relatively limited number of variables, which may
have limited model performances. Second, the pregnancies in our
study were from a single city in China, which may not be representative
of all Chinese singleton pregnancies, which may limit the
generalisability of the proposed models. Third, we assessed four
representative birthweight standards. However, other standards, such
as the World Health Organization Fetal Growth Charts and the
NICHD fetal growth standard, assess antenatal fetal weight, relying on
ultrasound scan rather than the newborn size, which may lead to more
accurate estimation of SGA risk (Grantz et al., 2018; Kiserud et al.,
2017). However, comparison of different fetal and birthweight
standards showed that all standards assessed had poor performance
for predicting adverse perinatal outcomes among an Australian
population (Choi et al., 2021). Fourth, we did not compare the
performance of the ML models to existing prediction methods that
may currently be in use in Wenzhou and therefore cannot comment
on ML performance relative to existing prediction methods. Finally,
we did not have access to antenatal fetal ultrasound measurements,
which might have improved our prediction models. However, routine
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access to antenatal ultrasound is not available in many LMICs, which
have the highest burden of SGA and may benefit most from improved
antenatal SGA prediction models.

In conclusion, this study reveals substantial variation in SGA
classification across birthweight standards. Both sophisticated
machine learning algorithms and conventional logistic regression
demonstrated comparable predictive performance for SGA
identification. These findings highlight the potential to enhance
prenatal care through computational approaches that enable risk-
stratified management.
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