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Background: Accurate antenatal prediction of SGA at birth is essential to improve 
development and delivery of preventative and therapeutic interventions. This 
study aimed to assess the performance of machine learning (ML) models to 
predict SGA at birth among Chinese pregnancies classified according to the 
Chinese birthweight standard and three international birthweight standards.
Methods: We collected multimodal, longitudinal, antenatal surveillance data on 
350,135 singleton pregnancies in Wenzhou City, China, between Jan 1, 2014 and 
Dec 31, 2016. For three pregnancy intervals we developed ML prediction models 
for newborns classified as SGA using the China, Intergrowth 21st, Fetal Medicine 
Foundation (FMF), and Gestation-related Optimal Weight (GROW) standards. We 
applied lasso regression to conduct feature selection, and CatBoost, XGBoost, 
LightBoost, Artificial Neural Networks, Random Forest, Stacked ensemble 
model, and logistic regression for predictive modeling in training data sets, with 
validation in testing data sets.
Results: Among 22,603 singleton pregnancies with complete data, the rate 
of SGA using the China standard was 6.1%, compared to 4.3, 6.0, and 9.7% for 
the Intergrowth 21st, GROW, and FMF standards, respectively. This pattern was 
maintained in the imputed data set (n = 225,523), with corresponding SGA rates 
of 6.8, 4.8, 7.4, and 10.7%. Late pregnancy models (<37 weeks) had the best power 
to predict SGA, compared to middle (<26 weeks) and early pregnancy (<18 weeks) 
models. With the China standard, the logistic regression model in late pregnancy 
performed best with an area under the receiver operating characteristic curve 
(ROC-AUC) of 0.74. Logistic regression also performed better than ML algorithms 
with the Intergrowth-21st and GROW standards at each pregnancy interval, 
although differences were small. The Random Forest model with the FMF standard 
achieved superior performance at each pregnancy interval, reaching a ROC-
AUC of 0.79 in late pregnancy. Notably, the middle pregnancy Random Forest 
model with the FMF standard already attained a ROC-AUC of 0.72 at 26 weeks’ 
gestation. Symphysis-fundal height, maternal abdominal circumference, maternal 
age, maternal height and weight, and parity were consistently identified as key 
predictors of SGA across the different standards.
Conclusion: There are important differences in the classification of SGA at 
birth between national and international birthweight standards. Both machine 
learning models and traditional logistic regression demonstrated comparable 
predictive performance for SGA identification. These findings hold promise for 
guiding risk-stratified prenatal care and optimizing resource allocation in clinical 
settings.
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Introduction

Small-for-gestational-age (SGA) is defined as birthweight for 
gestational age below the 10th centile according to a birthweight chart 
(American College of Obstetricians and Gynecologists' Committee on 
Practice Bulletins—Obstetrics, 2021). SGA newborns are a major 
cause of global neonatal and child mortality and morbidity, especially 
in low- and middle-income countries (LMICs) (Lee et al., 2013). An 
estimated 23.3 million infants (19.3% of live births) per year are born 
SGA in LMICs, which contribute to 21.9% of neonatal deaths (Lee et 
al., 2017). The highest rates and numbers of SGA infants are born in 
Asia, and China has the fifth highest number of SGA newborns 
annually (Lee et al., 2017). Sustainable Development Goal 3 (SDG3) 
target 3.2 aims to reduce neonatal and child mortality to 12 and 25 per 
1,000 live births, respectively, in all countries by 2030 (Liu et al., 2016). 
However, many LMICs are not on track to meet these targets, 
highlighting an urgent need to address the adverse perinatal outcomes 
that contribute to neonatal and child mortality (Sharrow et al., 2022; 
GBD 2019 Under-5 Mortality Collaborators, 2021).

Crucially, SGA classification depends on the birthweight charts 
used, which include reference charts, prescriptive standards, and 
customized growth charts (Capital Institute of Pediatrics and 
Coordinating Study Group of Nine Cities on the Physical Growth and 
Development of Children, 2020; Gardosi et al., 2018; Nicolaides et al., 
2018; Villar et al., 2014). Many countries use charts derived from their 
own population. For example, the Chinese newborn chart is a 
population-based chart based on healthy pregnant women from nine 
cities across China (Capital Institute of Pediatrics and Coordinating 
Study Group of Nine Cities on the Physical Growth and Development 
of Children, 2020). The Intergrowth 21st birthweight standard is a 
prescriptive international population-based standard derived from 
multi-ethnic urban populations in eight countries and selected 
healthy, well-nourished women receiving adequate antenatal care and 
at low risk of fetal growth impairment (Villar et al., 2014). The Fetal 
Medicine Foundation (FMF) chart is based on fetal estimated weight 
and birthweight data from unselected singleton pregnancies at two 
UK hospitals, including pregnancies at risk of complications and 
preterm babies in utero (Nicolaides et al., 2018). Unlike these universal 
charts, the customized Gestation-related Optimal Weight (GROW) 
chart adjusts for maternal weight, height, parity, ethnicity or country 
of origin, and fetal sex (Gardosi et al., 2018). Each birthweight chart 
classifies different populations of newborn babies as SGA. To our 
knowledge, few studies have compared SGA classification among 
Chinese pregnancies according to different birthweight standards.

It is crucial to improve antenatal prediction of SGA to enable 
development and implementation of preventative and therapeutic 
interventions. The traditional approach to risk prediction has been 
logistic regression based on known risk factors. However, this 
approach has proven to have poor predictive power for SGA (Bai et 
al., 2022; Bai et al., 2022). Given this limitation, there is a pressing 
need for more sophisticated analytical approaches. The field of 
perinatal epidemiology is now leveraging artificial intelligence (AI) to 

harness complex datasets for public health impact. AI promises a 
paradigm shift by uncovering subtle, non-linear interactions within 
routine clinical data that elude conventional methods (Mennickent et 
al., 2023). Large-scale, multimodal, longitudinal electronic health 
records facilitate the use of AI for predicting the risk of clinical 
outcomes (Hunter and Holmes, 2023). To date, studies to predict SGA 
at birth using Machine Learning (ML) have had important limitations, 
including small sample sizes, highly selected patient groups, and 
design or analysis biases (Bai et al., 2022; Bai et al., 2022; Vicoveanu et 
al., 2022). Some popular ML methods, such as a Stacked ensemble 
model that combines predictions from multiple base models using a 
meta-model to achieve superior performance, have not been applied 
to SGA prediction (Naimi and Balzer, 2018), and the predictive 
performance of these methods compared to other ML methods, such 
as Random Forests and Catboost, is unknown (Cho et al., 2022; Choi 
et al., 2021). In addition, a review of perinatal outcome prediction 
found that many ML models failed to explain their decision-making 
process to enable clinicians to understand the importance of input 
features (Ramakrishnan et al., 2021).

The development of accurate antenatal models for predicting SGA 
at birth requires high-performing ML algorithms. However, the 
accuracy of any such model is fundamentally dependent on the 
birthweight standards used to define SGA. Each standard identifies a 
different neonatal subpopulation, leading to substantial variation in 
clinical management. For example, infants classified as SGA by a 
customized standard (e.g., GROW) but not by a population standard 
(e.g., Intergrowth-21st) may miss essential hypoglycemia or 
hypothermia monitoring, whereas misclassifying a constitutionally 
small infant as SGA may prompt unnecessary investigations and 
parental anxiety. Thus, the choice of standard directly shapes risk 
stratification, resource use, and quality of care.

Therefore, this study aims to compare six machine learning (ML) 
models and logistic regression in predicting SGA based on four 
birthweight standards—the Chinese national standard, Intergrowth-
21st, FMF, and GROW—and to evaluate how standard selection 
influences prediction accuracy.

Methods

Study design

The Wenzhou maternal and child health information 
management platform covers 51 midwifery clinics and hospitals in 
Wenzhou City in Zhejiang Province, China, and was used to collect 
maternal and perinatal health records. We included all 350,135 
singleton pregnancies registered from 1 January 2014 to 31 December 
2016. Of these, 225,523 pregnancies were registered, had antenatal 
follow-up, and had delivery records (Supplementary Figure S1). The 
data analysis workflow, encompassing data engineering, feature 
selection, prediction modeling, and model performance and 
interpretation, is illustrated in Figure 1.
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Participant features

A prospective pregnancy health survey was conducted at 
registration at around 12 weeks’ gestation, collecting information 
regarding demographics, social, medical, obstetric and gynecological 
history, anthropometric measurements, and laboratory analyses. 
Gestational age at birth was determined at first-trimester ultrasound 
(standard practice). Birthweight was measured within 1 h of birth. 
Symphysis fundal height (SFH), maternal abdominal circumference 
(MAC), systolic blood pressure (SBP), diastolic blood pressure (DBP) 
and weight were measured at each antenatal care visit. Pregnancy was 
divided into three intervals which were determined based on a 
combination of clinical practice and the distribution of our dataset: 
early pregnancy (< 18 weeks’ gestation), middle of pregnancy (18 to 
25+6 weeks), and late pregnancy (26 to 36+6 weeks) 
(Supplementary Table S1). Fifteen variables were created by dividing 
follow-up measurements into separate variables according to the three 

pregnancy intervals. If there were multiple visits during a given 
pregnancy interval, the average value of measurements was used for 
analysis. 43 features from registration and follow-up visits as well as 
four features from delivery data are shown in Supplementary Tables S2, 
S3. Additional variables were derived from the differences between 
pregnancy intervals (e.g., diffSBP12).

Birthweight for gestational age standards

Singleton newborns with birthweight less than the 10th centile were 
classified as SGA based on four birthweight standards. SGA classification 
was according to newborn sex, except for the FMF standard (Nicolaides 
et al., 2018). Birthweight centiles for the China standard were based on 
the national reference, which was used for the primary endpoint of SGA 
classification in this study (Capital Institute of Pediatrics and 
Coordinating Study Group of Nine Cities on the Physical Growth and 

FIGURE 1

Study methodology. Steps to develop the machine learning models to predict small for gestational age are shown. Each step consists of several 
processes, as indicated. ANN, Artificial Neural Networks; FMF, Fetal Medicine Foundation; GROW, Gestation-Related Optimal Weight; SGA, small for 
gestational age (birthweight <10th centile for gestational age), SHAP, Shapley Additive Explanations; SMOTE, Synthetic Minority Over-sampling 
Technique; PR-AUC, Area Under the Precision-Recall Curve; ROC-AUC, Area Under the Receiver Operating Characteristic curve.
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Development of Children, 2020). The GROW standard applied maternal 
height and weight at registration, parity, country of origin (China), fetal 
sex, and gestational age to calculate the birthweight centiles (www.
gestation.net). Birthweight centiles for the Intergrowth 21st standard 
were calculated through its dedicated software (Villar et al., 2014). 
Therefore, four separate data sets were generated with SGA at birth 
classified according to each of the four birthweight standards, with the 
China Standard serving as the primary classification method for defining 
SGA and the other three standards as secondary classification methods.

Data preprocessing

Data preprocessing for the cohort of 225,523 singleton 
pregnancies with registration, follow-up, and delivery records involved 
a staged process. Prior to imputation, variables with over 30% missing 
data were removed, reducing the feature set from 53 to 25. The MICE 
algorithm was then applied to these 25 variables to generate an 
imputed data set (n = 225,523), with the fifth iteration retained. In 
parallel, a complete data set (n = 22,603) was formed by excluding all 
pregnancy records with missing values from the 53 variables. The 
datasets were subsequently processed as follows: a 70%/30% stratified 
split was performed, using individual pregnancy records as the 
sampling unit. This approach was necessitated by the anonymized 
nature of the data, which precluded the identification of women with 
multiple pregnancies and ensured complete separation between 
training and testing sets. Following the split, all numeric features 
underwent normalization via the Yeo-Johnson method, followed by 
standardization (centering and scaling to achieve zero mean and unit 
variance). To address class imbalance, the Synthetic Minority Over-
sampling Technique (SMOTE) was subsequently applied exclusively 
to the training sets.

Feature selection

For each birthweight standard, Lasso regression was used to select 
important features for SGA prediction at three different time points: 
early (<18 weeks), middle (<26 weeks), and late pregnancy 
(<37 weeks). This analysis was performed on the training data sets of 
the imputed data and complete data using 10-fold cross-validation. 
Lasso regression was chosen for its advantage in handling 
multicollinearity among predictors. By applying an L1 penalty to the 
coefficients, lasso regression automatically identifies relevant 
predictors—shrinking the coefficients of less informative variables to 
zero—to yield a sparse subset of features.

Design and development of prediction 
models

For each birthweight standard, we developed distinct prediction 
models for the early, middle, and late pregnancy intervals. The 
primary analysis was based on the complete data, while the imputed 
data were used in sensitivity analyses to evaluate the robustness of the 
models to missing data. In both analyses, the features were selected 
from variables available at each gestational interval using Lasso 

regression. The selected features were used to train the following 
algorithms: CatBoost, XGBoost, LightGBM, Random Forest, Artificial 
Neural Networks (ANN), a Stacked Ensemble model, and logistic 
regression (for baseline comparison). Hyperparameters for all 
individual models except the Stacked ensemble model were optimized 
via a random search (Supplementary Table S4). The Stacked Ensemble 
model was then constructed using these individually tuned models 
(CatBoost, XGBoost, LightGBM, Random Forest, ANN, and logistic 
regression) as base learners. Their predictions were combined using a 
logistic regression meta-learner with a regularization strength (C) of 
0.1, a fixed random state for reproducibility, and a maximum iteration 
limit of 500. The tuning was guided by the area under the receiver 
operating characteristic curve (ROC-AUC) value, which was 
evaluated using 5-fold cross-validation on the training sets.

Model performance and interpretation

For each prediction model developed based on the training data 
sets, performance metrics, including the ROC-AUC, accuracy, 
sensitivity, specificity, balanced accuracy (the average of sensitivity 
and specificity), positive predictive values (PPV), negative predictive 
values (NPV), and F1 scores (harmonic mean of PPV and 
sensitivity), were evaluated on the testing data sets using optimal 
threshold values. These metrics and their corresponding 95% 
confidence intervals were estimated using bootstrap resampling with 
1,000 replicates. The optimal probability threshold for classifying a 
case as SGA was determined as the point on the ROC curve closest 
to the top-left corner (0,1). All metrics (e.g., sensitivity, specificity) 
are reported using this single, consistent threshold to facilitate 
model comparison. The best-fitting model was selected based on the 
following criteria: if all models had a precision-recall AUC 
(PR-AUC) below 0.2, the model with the highest ROC-AUC was 
chosen; otherwise, the model with the highest PR-AUC was selected. 
Calibration curves with a brier score were plotted to compare 
predicted and observed outcomes for the final optimal predictive 
model based on each birthweight standard. Model interpretation 
was performed by calculating Shapley Additive Explanation (SHAP) 
values on the testing datasets, employing a global approach to assess 
population-level feature importance. The mean absolute SHAP value 
was used to rank features by importance by their overall impact on 
the model output, while the distribution and central tendency of 
individual SHAP values (positive or negative) for each feature 
revealed its directional association with SGA risk. This analysis 
validated clinical relevance by confirming the alignment of top 
features with medical knowledge and used mean absolute SHAP 
values to rank features, identifying key determinants of SGA risk. To 
further evaluate model generalizability, an additional analysis was 
conducted using the complete data with a more stringent SGA 
definition. In this analysis, SGA status was defined by the overlap of 
all four birthweight standards, where a newborn was considered 
SGA only if classified as such by every standard, and all other births 
were defined as non-SGA. The optimal models identified under each 
individual standard were then evaluated when applied to identify 
SGA under this stringent, overlapping criterion. DeLong test was 
used to test the ROC-AUC difference between the best-fitting 
models, with P value < 0.001 considered statistically significant.
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Software and implementation

The analytical workflow was conducted using a dual-software 
approach. Data preprocessing and engineering were performed in 
R (version 3.6.1), which included multiple imputation via the MICE 
package to handle missing data, normalization and standardization 
using the recipes package with Yeo-Johnson transformation, and 
addressing class imbalance through the SMOTE algorithm 
implemented in the DMwR package. Subsequent predictive 
modeling and evaluation were implemented in Python 3.6 within 
the Spyder 6 environment, utilizing pandas and numpy for data 
manipulation, scikit-learn for machine learning algorithms and 
performance assessment, matplotlib and seaborn for visualization, 
SHAP for model interpretability, and scipy for statistical 
computations.

Results

SGA classification

Among 22,603 singleton pregnancies with complete data, the 
rate of SGA with the China standard was 6.1%, which was similar 
to the GROW standard (6.0%), higher than the Intergrowth 21st 
standard (4.3%) and lower than the FMF standard (9.7%) (Table 1). 
Multiple imputation was performed for the cohort of 225,523 
singleton pregnancies, with the distribution of variables before and 
after imputation compared in Supplementary Table S5. A similar 
trend in SGA rates across standards was observed in the larger 
imputed data (n = 225,523), with the China, GROW, Intergrowth 
21st, and FMF standards yielding SGA rates of 6.8%, 7.4%, 4.8%, 
and 10.7%, respectively. SGA rates according to gestational age for 
each birthweight standard in 22,603 singleton pregnancies with 
complete data are shown in Figure 2A. There were similar 
proportions of SGA with the China and Intergrowth 21st standards 
at 28 to 37 weeks’ gestation, but a higher proportion of SGA with 
the China standard after 37 weeks. The GROW standard had 
intermediate rates of SGA before 37 weeks, but similar rates of SGA 
as the China standard after 37 weeks. The FMF standard classified 
the highest proportion of infants as SGA at all gestations 
(Figure 2A). 2,345 newborns were classified as SGA by at least one 
of the four standards, of which 845 (36.0%) were classified as SGA 
by all four standards (Figure 2B). 37 (1.6%) of infants were only 
classified as SGA by the China standard and not by any other 
standard (Figure 2B). The overlap of SGA cases classified by pairs 
of standards ranged from 44.0 to 100% (Figure 2C). SGA cases 
classified by the China standard were frequently also classified as 
SGA by the other three standards (67.6–95.7%) (Figure 2C). The 
overlap of non-SGA at birth classified by four birthweight standards 
is shown in Supplementary Figure S2.

Significant differences in maternal age, weight, age at menarche, 
education and albumin at registration were observed between 
pregnancies with SGA and non-SGA infants for the China standard 
and the three other birthweight standards (Table 1). Blood pressure 
values (SBP3, DBP1, DBP2, DBP3), blood pressure change values 
(diffDBP23), and all maternal anthropometric measurements 
(maternal weight, MAC, and SFH) and their change values between 

each two pregnancy intervals differed significantly between 
pregnancies with SGA infants compared to non-SGA infants for all 
birthweight standards (Table 1).

SGA prediction modeling

For each birthweight standard, feature selection was conducted 
using lasso regression, separately across three pregnancy intervals: 
early (<18 weeks), middle (<26 weeks), and late pregnancy 
(<37 weeks). The analysis was performed on both imputed and 
complete datasets, with the optimal λ value selected using the 
one-standard-error criterion. The number of predictors retained for 
each standard and pregnancy interval, along with the corresponding 
λ values, are summarized in Supplementary Table S6. The variable 
selection paths and importance rankings across all four birthweight 
standards are illustrated in Supplementary Figures S3–S6, which 
present coefficient shrinkage plots and variable importance bar charts 
for each pregnancy interval.

ROC curves and PR-ROC curves for different pregnancy intervals 
in the testing sets are illustrated in Figure 3 for the complete data and 
Supplementary Figure S7 for the imputed data, respectively. Late 
pregnancy prediction models performed better at ROC-AUCs than 
early and middle pregnancy models for all birthweight standards 
(Figure 3; Table 2). The China standard had intermediate predictive 
ROC-AUCs for SGA across the three pregnancy intervals and ML 
models, with ROC-AUCs similar to the Intergrowth 21st standard, 
better than the GROW standard, but not as good as the FMF standard 
(Figure 3; Table 2). The highest ROC-AUC values observed for the late 
pregnancy models were 0.74 for logistic regression with the China 
standard, and ROC-AUCs ranging from 0.64 to 0.79 for the other 
standards (Table 2). For the China standard, the late pregnancy model 
developed by the logistic regression had the highest F1 score, with a 
value of 0.30. Based on predefined criteria, the best performing model 
was the late pregnancy model based on logistic regression for the 
China standard (ROC-AUC 0.74, PR-AUC 0.16), and the late 
pregnancy model based on Random Forest showed superior 
performance for the FMF standard (ROC-AUC 0.79, PR-AUC 0.28), 
with sensitivity of 0.78, PPV of 0.20, and F1 score of 0.45. Their 
calibration curves and hyper-parameter settings are shown in 
Supplementary Figure S8 and Supplementary Table S7, respectively. 
The calibration curves of the top-performing models 
(Supplementary Figure S8) demonstrated systematic overestimation, 
deviating above the line of perfect calibration. This is evidenced by 
Brier scores of 0.2281 (China standard, logistic regression), 0.2359 
(INTERGROWTH-21st standard, logistic regression), 0.2325 (GROW 
standard, logistic regression), and 0.1949 (FMF standard, Random 
Forest). The model for the FMF standard exhibited the best calibration. 
The ROC curves of the training set and testing set of the complete data 
indicated consistent predictive performance for the China, 
INTERGROWTH-21st, and GROW standards, with minimal AUC 
differences. However, a more notable performance gap was observed 
for the FMF standard (training AUC: 0.982, testing AUC: 0.789), 
suggesting a degree of overfitting for this specific model 
(Supplementary Figure S9). The predictive performance of models 
developed using the imputed dataset was largely consistent with that 
observed in the complete dataset, showing similar trends across 
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TABLE 1  Comparison of maternal features in the complete data sets of four birthweight standards.

Features China (SGA rate = 6.1%) Intergrowth 21st (SGA rate = 4.3%) GROW (SGA rate = 6.0%) FMF (SGA rate = 9.7%)

Non-SGA SGA p value* Non-SGA SGA p value* Non-SGA SGA p value* Non-SGA SGA p value*
No. 21,232 1,371 21,641 962 21,240 1,363 20,416 2,187

Features collected at registration

Gestational weeks at 

1st visit

16.00 (13.00, 

17.00)

16.00 (13.00, 

17.00)

0.001 16.00 (13.00, 

17.00)

16.00 (13.00, 

17.00)

0.013 16.00 (13.00, 

17.00)

16.00 (13.00, 

17.00)

0.005 16.00 (13.00, 

17.00)

16.00 (13.00, 

17.00)

0.028

Maternal 

complications

80 (0.4) 10 (0.7) 0.074 81 (0.4) 9 (0.9) 0.015 78 (0.4) 12 (0.9) 0.007 76 (0.4) 14 (0.6) 0.087

Age at registration (y) 26.92 (4.54) 25.44 (4.20) <0.001 26.89 (4.53) 25.44 (4.30) <0.001 26.88 (4.52) 26.12 (4.56) < 0.001 26.95 (4.54) 25.73 (4.30) <0.001

Age at menarche (y) 14.06 (1.20) 14.14 (1.25) 0.017 14.06 (1.20) 14.19 (1.27) 0.001 14.06 (1.20) 14.18 (1.25) < 0.001 14.06 (1.20) 14.12 (1.25) 0.021

Length of a menstrual 

cycle (days)

29.44 (2.59) 29.57 (2.60) 0.086 29.45 (2.59) 29.50 (2.67) 0.539 29.44 (2.59) 29.56 (2.66) 0.115 29.44 (2.59) 29.55 (2.61) 0.051

Length of a menstrual 

period

5.22 (1.36) 5.23 (1.40) 0.887 5.22 (1.36) 5.24 (1.41) 0.774 5.23 (1.36) 5.20 (1.39) 0.575 5.22 (1.36) 5.23 (1.39) 0.835

Occupation 0.283 0.709 0.636 0.314

 � Farmer or 

fishermen

8,097 (38.1%) 539 (39.3%) 8,252 (38.1%) 384 (39.9%) 8,093 (38.1%) 543 (39.8%) 7,790 (38.2%) 846 (38.7%)

 � Employee 2,610 (12.3%) 142 (10.4%) 2,647 (12.2%) 105 (10.9%) 2,601 (12.2%) 151 (11.1%) 2,511 (12.3%) 241 (11.0%)

 � Self-employed 2,438 (11.5%) 153 (11.2%) 2,483 (11.5%) 108 (11.2%) 2,437 (11.5%) 154 (11.3%) 2,354 (11.5%) 237 (10.8%)

 � Stay at home 

without work

5,503 (25.9%) 369 (26.9%) 5,624 (26.0%) 248 (25.8%) 5,520 (26.0%) 352 (25.8%) 5,287 (25.9%) 585 (26.7%)

 � Others 2,584 (12.2%) 168 (12.3%) 2,635 (12.2%) 117 (12.2%) 2,589 (12.2%) 163 (12.0%) 2,474 (12.1%) 278 (12.7%)

Education 0.002 0.019 0.012 0.025

 � Primary school and 

below

972 (4.6%) 49 (3.6%) 989 (4.6%) 32 (3.3%) 966 (4.6%) 55 (4.0%) 941 (4.6%) 80 (3.7%)

 � Secondary school 

and high school

12,961 (61.0%) 902 (65.8%) 13,235 (61.2%) 628 (65.3%) 12,975 (61.1%) 888 (65.2%) 12,472 (61.1%) 1,391 (63.6%)

 � College and above 7,299 (34.4%) 420 (30.6%) 7,417 (34.3%) 302 (31.4%) 7,299 (34.4%) 420 (30.8%) 7,003 (34.3%) 716 (32.7%)

Han Ethnicity 20,577 (96.9) 1,316 (96.0) 0.066 20,973 (96.9) 920 (95.6) 0.030 20,586 (96.9) 1,307 (95.9) 0.037 19,803 (97.0) 2090 (95.6) <0.001

Smoking or Alcohol 

use

55 (0.3) 4 (0.3) 0.782 58 (0.3) 1 (0.1) 0.520 56 (0.3) 3 (0.2) 1.000 52 (0.3) 7 (0.3) 0.509

Contraception 0.117 0.372 0.268 0.087

 � Never 20,566 (96.9%) 1,332 (97.2%) 20,965 (96.9%) 933 (97.0%) 20,580 (96.9%) 1,318 (96.7%) 19,788 (96.9%) 2,110 (96.5%)

 � Physical 

contraception

541 (2.5%) 26 (1.9%) 547 (2.5%) 20 (2.1%) 535 (2.5%) 32 (2.3%) 511 (2.5%) 56 (2.6%)

 � Chemical 

contraception

119 (0.6%) 13 (0.9%) 123 (0.6%) 9 (0.9%) 119 (0.6%) 13 (1.0%) 111 (0.5%) 21 (1.0%)

 � Both 6 (0.0%) 0 (0.0%) 6 (0.0%) 0 (0.0%) 6 (< 0.0%) 0 (0.0%) 6 (0.0%) 0 (0.0%)

Medical history 259 (1.2%) 20 (1.5%) 0.447 262 (1.2%) 17 (1.8%) 0.133 258 (1.2%) 21 (1.5%) 0.309 250 (1.2%) 29 (1.3%) 0.683

Medicine use 185 (0.9%) 7 (0.5%) 0.221 187 (0.9%) 5 (0.5%) 0.365 183 (0.9%) 9 (0.7%) 0.542 177 (0.9%) 15 (0.7%) 0.461
(Continued)
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TABLE 1  (Continued)

Features China (SGA rate = 6.1%) Intergrowth 21st (SGA rate = 4.3%) GROW (SGA rate = 6.0%) FMF (SGA rate = 9.7%)

Non-SGA SGA p value* Non-SGA SGA p value* Non-SGA SGA p value* Non-SGA SGA p value*
Gynecological history 896 (4.2%) 40 (2.9%) 0.017 906 (4.2%) 30 (3.1%) 0.116 893 (4.2%) 43 (3.2%) 0.058 863 (4.2%) 73 (3.3%) 0.048

Parity <0.001 <0.001 0.126 <0.001

 � 0 11,595 (54.6%) 959 (69.9%) 11,879 (54.9%) 675 (70.2%) 11,761 (55.4%) 693 (58.2%) 11,081 (54.3%) 1,473 (67.4%)

 � 1 9,213 (43.4%) 394 (28.7%) 9,332 (43.1%) 275 (28.6%) 9,061 (42.7%) 546 (40.1%) 8,919 (43.7%) 688 (31.5%)

 � >1 424 (2.0%) 18 (1.3%) 430 (2.0%) 12 (1.2%) 418 (2.0%) 24 (1.8%) 416 (2.0%) 26 (1.2%)

Maternal height (cm) 159.45 (4.74) 157.87 (4.90) <0.001 159.43 (4.74) 157.77 (4.98) <0.001 159.36 (4.76) 159.37 (4.89) 0.922 159.51 (4.72) 157.93 (4.92) <0.001

Maternal weight (kg) 53.38 (7.29) 50.33 (6.84) <0.001 53.32 (7.29) 50.39 (6.95) <0.001 53.19 (7.27) 53.21 (7.78) 0.924 53.49 (7.28) 50.44 (6.88) <0.001

Heart rate (beats per 

minute)

80.38 (8.97) 80.65 (8.82) 0.270 80.38 (8.96) 80.71 (8.84) 0.266 80.38 (8.96) 80.63 (8.94) 0.317 80.37 (8.97) 80.55 (8.89) 0.371

Hemoglobin (g/L) 124.15 (9.85) 123.88 (10.25) 0.317 124.14 (9.85) 123.92 (10.42) 0.485 124.10 (9.85) 124.69 (10.21) 0.031 124.14 (9.82) 124.05 (10.37) 0.681

Leukocyte count 

(10^9/L)

8.14 (1.87) 8.03 (1.91) 0.045 8.13 (1.87) 8.08 (1.96) 0.397 8.13 (1.87) 8.08 (1.94) 0.304 8.14 (1.87) 8.06 (1.91) 0.056

Platelet count 

(10^9/L)

217.61 (47.14) 218.08 (47.51) 0.72 217.57 (47.07) 219.08 (49.12) 0.334 217.55 (47.11) 219.01 (47.91) 0.267 217.62 (47.20) 217.83 (46.79) 0.842

FBG (mmol/L) 4.70 (0.46) 4.67 (0.45) 0.017 4.70 (0.46) 4.66 (0.44) 0.022 4.69 (0.46) 4.69 (0.46) 0.789 4.70 (0.46) 4.67 (0.45) 0.016

ALT (U/L) 16.14 (10.16) 15.80 (9.91) 0.241 16.14 (10.16) 15.64 (9.82) 0.139 16.13 (10.16) 15.94 (9.99) 0.514 16.14 (10.18) 15.89 (9.89) 0.285

AST (U/L) 18.10 (6.06) 18.37 (6.14) 0.114 18.12 (6.07) 18.15 (5.98) 0.887 18.12 (6.07) 18.07 (6.05) 0.745 18.10 (6.07) 18.29 (6.03) 0.167

AIB (g/L) 41.89 (3.26) 42.28 (3.17) <0.001 41.89 (3.25) 42.34 (3.27) <0.001 41.89 (3.25) 42.26 (3.27) <0.001 41.87 (3.26) 42.29 (3.21) <0.001

TBil (mmol/L) 9.48 (3.66) 9.66 (3.85) 0.090 9.49 (3.66) 9.64 (3.79) 0.192 9.49 (3.66) 9.60 (3.78) 0.277 9.49 (3.66) 9.53 (3.77) 0.615

Scr (mmol/L) 49.16 (12.52) 49.20 (12.20) 0.907 49.17 (12.53) 49.04 (11.94) 0.761 49.14 (12.52) 49.58 (12.30) 0.202 49.16 (12.51) 49.20 (12.41) 0.894

BUN (mmol/L) 2.81 (0.76) 2.80 (0.75) 0.72 2.81 (0.76) 2.81 (0.77) 0.995 2.81 (0.76) 2.84 (0.76) 0.115 2.81 (0.76) 2.83 (0.78) 0.166

Features collected during antenatal visits

Number of antenatal 

visits before 24 weeks

2.00 (2.00, 3.00) 2.00 (2.00, 3.00) 0.030 2.00 (2.00, 3.00) 2.00 (2.00, 3.00) 0.03 2.00 (2.00, 3.00) 2.00 (2.00, 3.00) 0.028 2.00 (2.00, 3.00) 2.00 (2.00, 3.00) 0.151

SBP1 (mmHg) 110.26 (11.24) 110.76 (11.69) 0.112 110.28 (11.24) 110.70 (11.86) 0.252 110.20 (11.22) 111.77 (11.83) < 0.001 110.27 (11.23) 110.55 (11.57) 0.268

SBP2 (mmHg) 111.14 (10.68) 111.24 (11.16) 0.730 111.13 (10.67) 111.38 (11.40) 0.484 111.08 (10.67) 112.21 (11.23) < 0.001 111.14 (10.69) 111.20 (10.86) 0.791

SBP3 (mmHg) 113.25 (9.29) 113.84 (10.54) 0.023 113.24 (9.29) 114.41 (10.94) <0.001 113.19 (9.27) 114.80 (10.73) < 0.001 113.24 (9.26) 113.74 (10.30) 0.017

DBP1 (mmHg) 67.02 (7.97) 67.62 (8.43) 0.006 67.03 (7.98) 67.65 (8.56) 0.018 66.97 (7.97) 68.36 (8.46) < 0.001 67.00 (7.97) 67.51 (8.27) 0.005

DBP2 (mmHg) 66.29 (7.49) 66.87 (7.90) 0.006 66.30 (7.48) 66.98 (8.19) 0.006 66.25 (7.47) 67.52 (8.13) < 0.001 66.28 (7.49) 66.81 (7.75) 0.002

DBP3 (mmHg) 68.05 (6.62) 69.15 (7.83) <0.001 68.05 (6.62) 69.56 (8.27) <0.001 68.01 (6.59) 69.77 (8.13) <0.001 68.01 (6.60) 69.08 (7.58) <0.001

WEIGHT1 (kg) 54.48 (7.48) 51.15 (7.20) <0.001 54.42 (7.49) 51.17 (7.25) <0.001 54.30 (7.47) 54.02 (7.98) 0.191 54.60 (7.47) 51.27 (7.15) <0.001

WEIGHT2 (kg) 57.89 (7.52) 53.98 (7.19) <0.001 57.82 (7.53) 54.00 (7.27) <0.001 57.71 (7.53) 56.71 (7.90) <0.001 58.03 (7.51) 54.12 (7.06) <0.001

WEIGHT3 (kg) 63.64 (7.84) 59.31 (7.56) <0.001 63.55 (7.85) 59.32 (7.76) <0.001 63.46 (7.85) 61.99 (8.38) <0.001 63.80 (7.82) 59.44 (7.53) <0.001

SFH2 (cm) 21.43 (2.29) 20.78 (2.33) <0.001 21.42 (2.30) 20.78 (2.32) <0.001 21.42 (2.29) 20.87 (2.36) <0.001 21.45 (2.29) 20.79 (2.30) <0.001

SFH3 (cm) 30.08 (2.26) 28.81 (2.27) <0.001 30.06 (2.27) 28.71 (2.23) <0.001 30.08 (2.27) 28.88 (2.26) <0.001 30.13 (2.25) 28.87 (2.25) <0.001

MAC2 (cm) 83.78 (6.28) 80.64 (6.11) <0.001 83.72 (6.29) 80.69 (6.16) <0.001 83.67 (6.29) 82.44 (6.62) <0.001 83.89 (6.27) 80.82 (6.10) <0.001

MAC3 (cm) 92.59 (5.92) 88.94 (5.78) <0.001 92.52 (5.93) 88.80 (5.74) <0.001 92.49 (5.93) 90.37 (6.22) <0.001 92.72 (5.90) 89.07 (5.60) <0.001

diffSBP12 (mmHg) 0.50 (−5.00, 7.00) 0.00 (−5.50, 6.00) 0.034 0.50 (−5.00, 7.00) 0.00 (−5.50, 6.50) 0.248 0.50 (−5.00, 7.00) 0.00 (−5.50, 6.00) 0.029 0.55 (−5.00, 7.00) 0.00 (−5.50, 6.50) 0.092

(Continued)

https://doi.org/10.3389/frai.2025.1679979
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Yu
 et al.�

10
.3

3
8

9
/frai.2

0
2

5.16
79

9
79

Fro
n

tie
rs in

 A
rtifi

cial In
te

llig
e

n
ce

0
8

fro
n

tie
rsin

.o
rg

TABLE 1  (Continued)

Features China (SGA rate = 6.1%) Intergrowth 21st (SGA rate = 4.3%) GROW (SGA rate = 6.0%) FMF (SGA rate = 9.7%)

Non-SGA SGA p value* Non-SGA SGA p value* Non-SGA SGA p value* Non-SGA SGA p value*
diffSBP23 (mmHg) 2.10 (−3.33, 7.50) 2.60 (−3.32, 8.00) 0.066 2.00 (−3.33, 7.50) 3.00 (−2.79, 8.50) 0.002 2.12 (−3.33, 7.50) 2.33 (−2.79, 8.00) 0.167 2.10 (−3.33, 7.50) 2.40 (−3.10, 7.80) 0.090

diffSBP13 ((mmHg)) 3.00 (−3.50, 9.50) 3.00 (−3.00, 9.33) 0.770 3.00 (−3.50, 9.50) 3.45 (−2.33, 9.96) 0.026 3.00 (−3.50, 9.50) 2.67 (−3.33, 9.00) 0.746 3.00 (−3.50, 9.50) 2.80 (−3.18, 9.45) 0.514

diffDBP12 ((mmHg)) −0.50 (−5.00, 

4.00)

−0.50 (−5.00, 

3.50)

0.570 −0.50 (−5.00, 

4.00)

−0.50 (−5.50, 

3.50)

0.633 −0.50 (−5.00, 

4.00)

−0.50 (−5.25, 

3.50)

0.352 −0.50 (−5.00, 

4.00)

−0.50 (−5.17, 

4.00)

0.846

diffDBP23 (mmHg) 1.75 (−2.00, 5.67) 2.40 (−1.54, 6.27) 0.002 1.75 (−2.00, 5.67) 2.80 (−1.33, 6.80) <0.001 1.75 (−2.00, 5.67) 2.25 (−1.75, 6.31) 0.010 1.75 (−2.00, 5.67) 2.33 (−1.75, 6.27) <0.001

diffDBP13 (mmHg) 1.00 (−3.75, 5.83) 1.17 (−3.33, 6.15) 0.061 1.00 (−3.75, 5.80) 1.67 (−3.19, 6.67) 0.003 1.00 (−3.75, 5.83) 1.00 (−3.50, 6.29) 0.251 1.00 (−3.80, 5.75) 1.33 (−3.50, 6.50) 0.007

diffWEIGHT12 (kg) 3.25 (2.25, 4.50) 2.85 (2.00, 3.99) <0.001 3.25 (2.25, 4.50) 2.85 (2.00, 3.85) <0.001 3.25 (2.25, 4.50) 2.75 (1.77, 3.75) <0.001 3.30 (2.25, 4.50) 3.00 (2.00, 4.00) <0.001

diffWEIGHT23 (kg) 5.62 (4.14, 7.17) 5.10 (3.91, 6.63) <0.001 5.62 (4.14, 7.17) 5.10 (3.83, 6.56) <0.001 5.63 (4.14, 7.17) 5.10 (3.75, 6.52) <0.001 5.67 (4.17, 7.17) 5.10 (3.83, 6.60) <0.001

diffWEIGHT13 (kg) 9.00 (7.07, 11.10) 8.00 (6.25, 10.00) <0.001 9.00 (7.05, 11.08) 8.00 (6.25, 10.00) <0.001 9.00 (7.08, 11.10) 7.85 (6.03, 10.00) <0.001 9.00 (7.10, 11.13) 8.00 (6.33, 10.00) <0.001

diffSFH23 (cm) 8.65 (7.17, 10.00) 8.00 (6.50, 9.50) <0.001 8.62 (7.14, 10.00) 7.95 (6.40, 9.47) <0.001 8.64 (7.17, 10.00) 8.00 (6.40, 9.50) <0.001 8.67 (7.17, 10.07) 8.00 (6.50, 9.50) <0.001

diffMAC23 (cm) 8.75 (6.67, 10.86) 8.29 (6.25, 10.25) <0.001 8.75 (6.67, 10.86) 8.12 (6.00, 10.00) <0.001 8.80 (6.75, 10.90) 8.00 (5.67, 10.00) <0.001 8.80 (6.71, 10.90) 8.25 (6.17, 10.33) <0.001

Data are n (%), mean (SD), or median (IQR). AIB, Albumin; ALT, Alanine aminotransferase; AST, Aspartate aminotransferase; BUN, Serum urea nitrogen; DBP, diastolic blood pressure; FBG, fasting blood glucose; MAC, maternal abdominal circumference; Maternal 
complications means clinical diagnosis with previa, eclampsia, or pregnancy-induced hypertension; SBP, systolic blood pressure; Scr, Serum creatinine; SGA, small for gestational age (birthweight <10th centile for gestational age); TBil, Total bilirubin; diffSBDP12, 
difference between SBP1 and SBP2.*p values were calculated with the student Student’s t test for normalized continuous variables, the Mann–Whitney U test for non-normalized continuous variables, the chi-squared test for categorical variables when all of the cells 
have counts more than 5, and the Fisher’s exact test for categorical variables when some of the cells have counts less than 5.
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pregnancy intervals and birthweight standards. The optimal models 
for the China, Intergrowth 21st, and FMF standards remained logistic 
regression, while XGBoost performed best for the GROW standard, 
with the performance, hyper-parameter settings, and ROC curves of 
the training set and testing set provided in Supplementary Tables S8, S9 
and Supplementary Figure S10, respectively.

To further assess model generalizability, we evaluated the 
optimal models using a more stringent SGA definition in which a 
newborn was classified as SGA only when identified as such by all 
four birthweight standards (n = 846; Figure 2B). Under this 
overlapping criterion, performance was comparable across 
standards, with mean AUCs of 0.741, 0.741, 0.729, and 0.721 for 
models based on the China, Intergrowth-21st, GROW, and FMF 
standards, respectively (Supplementary Figures S11A–D). However, 
bootstrap analysis revealed important differences in model 
performance: the FMF standard model demonstrated markedly 
superior discriminative ability, achieving a mean AUC of 0.981 (95% 
CI: 0.978–0.985). This substantially exceeded the performance of 
models based on the China (mean AUC: 0.749), Intergrowth-21st 
(0.753), and GROW (0.739) standards under their respective 
original definitions. The performance advantage of the FMF-based 
model was consistent across multiple metrics, including sensitivity 
(0.923 vs. 0.715–0.764), specificity (0.928 vs. 0.612–0.679), and 
accuracy (0.927 vs. 0.617–0.680) (Supplementary Figure S11E). The 
statistical superiority of the FMF-based model was further confirmed 
by DeLong tests, which revealed significant differences in ROC-AUC 
between the FMF standard model and all other models (all 
p < 0.001), while no significant difference was observed between 

the China and INTERGROWTH-21st standards (p = 0.739) 
(Supplementary Table S10).

Model interpretation

Variable importance, ranked by the mean absolute SHAP value for 
the best-performing model under each birthweight standard, is 
presented in Figure 4. The analysis identified consistent key predictors 
across the standards. Late-pregnancy symphysis-fundal height (SFH3) 
was the most important predictor for the China and FMF standards, 
and ranked fourth and fifth for the Intergrowth-21st and GROW 
standards, respectively. Similarly, late-pregnancy maternal abdominal 
circumference (MAC3) was the second-ranked predictor for the 
China and FMF standards and ranked within the top five for the other 
two standards. Maternal age was also identified as a highly influential 
variable, ranking within the top eight predictors for all standards. 
Furthermore, maternal height and weight, and parity were among the 
most important predictors for the China, Intergrowth-21st, and FMF 
standards. The connected lines in the figure visually demonstrate the 
variation in the relative ranking of these key predictors across the 
different standards. Based on the mean SHAP values from the best-
fitting models for each birthweight standard, older maternal age was 
consistently associated with an increased risk of SGA, as indicated by 
positive mean SHAP values across all four standards. In contrast, 
features including SFH3, MAC3, maternal height and weight, and 
parity showed inconsistent directional associations with SGA risk, 
with positive influences under some standards and negative under 

FIGURE 2

SGA classification according to different birthweight standards. (A) The proportion of SGA at birth at different gestational ages (in weeks) according to 
different birthweight for gestational age standards: China standard, Fetal Medicine Foundation (FMF) standard, Gestation-related Optimal Weight 
(GROW) standard, Intergrowth-21st standard. (B) Overlap of SGA cases classified according to the four birthweight standards. (C) Overlap of SGA cases 
classified according to pairs of birthweight standards. SGA, Small for gestational age (birthweight <10th centile for gestational age).
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FIGURE 3

Receiver operating characteristic and precision-recall curves for prediction of small for gestational age at three pregnancy intervals in the testing set of 
complete data according to four birthweight standards using six machine learning algorithms and logistic regression prediction models. PR-AUC, Area 
under the precision-recall curve; ROC, Receiver Operating Characteristic.
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TABLE 2  Bootstrap Validation of prediction model performance using testing data set from the complete data.

Models China standard Intergrowth 21st standard

AUC 
(95% 
CI)

Sen. 
(95% 
CI)

Spe. 
(95% 
CI)

Acc. 
(95% 
CI)

PPV 
(95% 
CI)

NPV 
(95% 
CI)

F1 
score 
(95% 
CI)

AUC 
(95% 
CI)

Sen. 
(95% 
CI)

Spe. 
(95% 
CI)

Acc. 
(95% 
CI)

PPV 
(95% 
CI)

NPV 
(95% 
CI)

F1 
score 
(95% 
CI)

Early pregnancy

Catboost

0.59 

(0.56, 

0.62)

0.70 

(0.46, 

0.84)

0.46 

(0.30, 

0.68)

0.47 

(0.33, 

0.67)

0.07 

(0.06, 

0.08)

0.96 

(0.95, 

0.97)

0.16 

(0.11, 

0.20)

0.56 

(0.53, 

0.60)

0.46 

(0.29, 

0.61)

0.68 

(0.55, 

0.84)

0.67 

(0.55, 

0.82)

0.06 

(0.05, 

0.08)

0.97 

(0.96, 

0.97)

0.14 

(0.09, 

0.20)

XGBoost

0.60 

(0.58, 

0.63)

0.62 

(0.46, 

0.72)

0.57 

(0.47, 

0.72)

0.57 

(0.48, 

0.71)

0.08 

(0.07, 

0.10)

0.96 

(0.95, 

0.97)

0.19 

(0.14, 

0.24)

0.59 

(0.56, 

0.63)

0.52 

(0.31, 

0.78)

0.64 

(0.36, 

0.81)

0.64 

(0.38, 

0.79)

0.06 

(0.05, 

0.08)

0.97 

(0.96, 

0.98)

0.16 

(0.11, 

0.22)

LightBoost

0.59 

(0.56, 

0.62)

0.63 

(0.36, 

0.84)

0.52 

(0.29, 

0.78)

0.52 

(0.32, 

0.76)

0.07 

(0.06, 

0.09)

0.96 

(0.95, 

0.97)

0.15 

(0.10, 

0.18)

0.57 

(0.54, 

0.61)

0.59 

(0.45, 

0.84)

0.55 

(0.31, 

0.66)

0.55 

(0.33, 

0.65)

0.05 

(0.04, 

0.07)

0.97 

(0.96, 

0.98)

0.14 

(0.09, 

0.20)

Random 

Forest

0.64 

(0.61, 

0.67)

0.66 

(0.55, 

0.87)

0.56 

(0.34, 

0.66)

0.57 

(0.37, 

0.65)

0.08 

(0.07, 

0.10)

0.97 

(0.96, 

0.98)

0.22 

(0.18, 

0.27)

0.60 

(0.57, 

0.63)

0.74 

(0.54, 

0.85)

0.44 

(0.35, 

0.61)

0.45 

(0.37, 

0.61)

0.05 

(0.05, 

0.06)

0.98 

(0.97, 

0.98)

0.18 

(0.12, 

0.22)

ANN

0.57 

(0.55, 

0.60)

0.57 

(0.39, 

0.69)

0.57 

(0.48, 

0.73)

0.57 

(0.49, 

0.71)

0.08 

(0.07, 

0.09)

0.96 

(0.95, 

0.96)

0.15 

(0.10, 

0.20)

0.58 

(0.54, 

0.61)

0.67 

(0.32, 

0.86)

0.48 

(0.31, 

0.79)

0.48 

(0.33, 

0.77)

0.05 

(0.04, 

0.07)

0.97 

(0.96, 

0.98)

0.14 

(0.09, 

0.19)

Stacking 

ensemble

0.59 

(0.56, 

0.62)

0.57 

(0.49, 

0.66)

0.61 

(0.51, 

0.66)

0.60 

(0.52, 

0.65)

0.08 

(0.07, 

0.09)

0.96 

(0.95, 

0.96)

0.17 

(0.13, 

0.22)

0.56 

(0.53, 

0.59)

0.60 

(0.34, 

0.82)

0.51 

(0.29, 

0.78)

0.52 

(0.31, 

0.76)

0.05 

(0.04, 

0.06)

0.97 

(0.96, 

0.98)

0.12 

(0.07, 

0.16)

Logistic 

regression

0.67 

(0.65, 

0.7)

0.68 

(0.55, 

0.76)

0.60 

(0.49, 

0.73)

0.60 

(0.5, 

0.72)

0.09 

(0.08, 

0.12)

0.97 

(0.96, 

0.97)

0.27 

(0.24, 

0.31)

0.66 

(0.62, 

0.69)

0.64 

(0.48, 

0.81)

0.62 

(0.44, 

0.76)

0.62 

(0.46, 

0.75)

0.07 

(0.05, 

0.09)

0.98 

(0.97, 

0.98)

0.26 

(0.20, 

0.31)

Middle pregnancy

Catboost

0.64 

(0.62, 

0.67)

0.74 

(0.45, 

0.83)

0.49 

(0.41, 

0.78)

0.50 

(0.43, 

0.76)

0.08 

(0.07, 

0.11)

0.97 

(0.96, 

0.98)

0.23 

(0.19, 

0.27)

0.57 

(0.54, 

0.60)

0.50 

(0.30, 

0.60)

0.65 

(0.53, 

0.83)

0.64 

(0.53, 

0.81)

0.06 

(0.05, 

0.07)

0.97 

(0.96, 

0.97)

0.14 

(0.09, 

0.21)

XGBoost

0.62 

(0.60, 

0.65)

0.68 

(0.50, 

0.78)

0.52 

(0.42, 

0.70)

0.53 

(0.44, 

0.68)

0.08 

(0.07, 

0.09)

0.96 

(0.96, 

0.97)

0.20 

(0.16, 

0.25)

0.62 

(0.59, 

0.66)

0.52 

(0.35, 

0.68)

0.68 

(0.54, 

0.84)

0.67 

(0.54, 

0.82)

0.07 

(0.05, 

0.08)

0.97 

(0.97, 

0.98)

0.20 

(0.15, 

0.27)

LightBoost

0.62 

(0.60, 

0.65)

0.69 

(0.37, 

0.86)

0.51 

(0.34, 

0.81)

0.52 

(0.37, 

0.79)

0.08 

(0.07, 

0.11)

0.97 

(0.95, 

0.98)

0.19 

(0.16, 

0.24)

0.60 

(0.56, 

0.63)

0.55 

(0.45, 

0.65)

0.63 

(0.56, 

0.72)

0.63 

(0.57, 

0.71)

0.06 

(0.05, 

0.07)

0.97 

(0.97, 

0.98)

0.19 

(0.13, 

0.24)

Random 

Forest

0.67 

(0.65, 

0.70)

0.70 

(0.61, 

0.80)

0.57 

(0.48, 

0.65)

0.58 

(0.50, 

0.65)

0.09 

(0.08, 

0.1)

0.97 

(0.96, 

0.98)

0.28 

(0.24, 

0.33)

0.64 

(0.60, 

0.67)

0.65 

(0.54, 

0.87)

0.58 

(0.34, 

0.68)

0.58 

(0.36, 

0.67)

0.06 

(0.05, 

0.07)

0.98 

(0.97, 

0.98)

0.23 

(0.17, 

0.27)

ANN

0.60 

(0.57, 

0.63)

0.65 

(0.46, 

0.85)

0.51 

(0.28, 

0.70)

0.51 

(0.31, 

0.69)

0.07 

(0.06, 

0.09)

0.96 

(0.95, 

0.97)

0.16 

(0.12, 

0.20)

0.56 

(0.52, 

0.59)

0.53 

(0.33, 

0.87)

0.59 

(0.21, 

0.76)

0.59 

(0.24, 

0.74)

0.05 

(0.04, 

0.07)

0.97 

(0.96, 

0.97)

0.12 

(0.07, 

0.17)

Stacking 

ensemble

0.62 

(0.59, 

0.65)

0.53 

(0.39, 

0.86)

0.67 

(0.30, 

0.79)

0.66 

(0.33, 

0.76)

0.09 

(0.07, 

0.10)

0.96 

(0.95, 

0.97)

0.19 

(0.15, 

0.24)

0.58 

(0.55, 

0.61)

0.54 

(0.35, 

0.87)

0.60 

(0.25, 

0.78)

0.6 

(0.28, 

0.76)

0.06 

(0.04, 

0.07)

0.97 

(0.96, 

0.98)

0.14 

(0.09, 

0.19)

Logistic 

regression

0.70 

(0.68, 

0.73)

0.70 

(0.58, 

0.78)

0.62 

(0.56, 

0.75)

0.63 

(0.57, 

0.74)

0.10 

(0.09, 

0.12)

0.97 

(0.97, 

0.98)

0.32 

(0.28, 

0.37)

0.67 

(0.66, 

0.68)

0.56 

(0.52, 

0.63)

0.69 

(0.63, 

0.72)

0.68 

(0.63, 

0.71)

0.09 

(0.08, 

0.09)

0.97 

(0.97, 

0.97)

0.25 

(0.24, 

0.27)
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TABLE 2  (Continued)

Models China standard Intergrowth 21st standard

AUC 
(95% 
CI)

Sen. 
(95% 
CI)

Spe. 
(95% 
CI)

Acc. 
(95% 
CI)

PPV 
(95% 
CI)

NPV 
(95% 
CI)

F1 
score 
(95% 
CI)

AUC 
(95% 
CI)

Sen. 
(95% 
CI)

Spe. 
(95% 
CI)

Acc. 
(95% 
CI)

PPV 
(95% 
CI)

NPV 
(95% 
CI)

F1 
score 
(95% 
CI)

Late pregnancy

Catboost

0.69 

(0.66, 

0.71)

0.65 

(0.48, 

0.78)

0.63 

(0.49, 

0.80)

0.64 

(0.51, 

0.78)

0.10 

(0.08, 

0.13)

0.97 

(0.96, 

0.97)

0.29 

(0.25, 

0.33)

0.66 

(0.63, 

0.70)

0.61 

(0.52, 

0.71)

0.67 

(0.57, 

0.72)

0.67 

(0.57, 

0.72)

0.07 

(0.06, 

0.09)

0.98 

(0.97, 

0.98)

0.29 

(0.23, 

0.35)

XGBoost

0.70 

(0.68, 

0.72)

0.77 

(0.62, 

0.88)

0.54 

(0.44, 

0.68)

0.56 

(0.46, 

0.68)

0.09 

(0.08, 

0.11)

0.98 

(0.97, 

0.98)

0.32 

(0.28, 

0.36)

0.68 

(0.65, 

0.72)

0.71 

(0.52, 

0.79)

0.60 

(0.53, 

0.78)

0.61 

(0.54, 

0.77)

0.07 

(0.06, 

0.09)

0.98 

(0.97, 

0.98)

0.32 

(0.26, 

0.37)

LightBoost 0.69 

(0.66, 

0.71)

0.70 

(0.58, 

0.84)

0.60 

(0.45, 

0.70)

0.60 

(0.47, 

0.70)

0.10 

(0.08, 

0.11)

0.97 

(0.96, 

0.98)

0.30 

(0.26, 

0.34)

0.66 

(0.63, 

0.70)

0.69 

(0.57, 

0.79)

0.59 

(0.52, 

0.73)

0.59 

(0.53, 

0.72)

0.07 

(0.06, 

0.08)

0.98 

(0.97, 

0.98)

0.28 

(0.22, 

0.34)

Random 

Forest

0.73 

(0.71, 

0.76)

0.72 

(0.64, 

0.82)

0.65 

(0.54, 

0.72)

0.65 

(0.56, 

0.72)

0.11 

(0.09, 

0.13)

0.98 

(0.97, 

0.98)

0.37 

(0.33, 

0.42)

0.71 

(0.68, 

0.75)

0.74 

(0.65, 

0.82)

0.61 

(0.54, 

0.69)

0.62 

(0.56, 

0.69)

0.08 

(0.06, 

0.09)

0.98 

(0.98, 

0.99)

0.35 

(0.30, 

0.41)

ANN 0.64 

(0.61, 

0.66)

0.59 

(0.52, 

0.66)

0.63 

(0.57, 

0.71)

0.63 

(0.57, 

0.70)

0.09 

(0.08, 

0.10)

0.96 

(0.96, 

0.97)

0.23 

(0.18, 

0.28)

0.66 

(0.62, 

0.69)

0.63 

(0.41, 

0.83)

0.61 

(0.40, 

0.81)

0.61 

(0.42, 

0.80)

0.07 

(0.05, 

0.09)

0.98 

(0.97, 

0.98)

0.24 

(0.20, 

0.29)

Stacking 

ensemble

0.69 

(0.66, 

0.71)

0.72 

(0.65, 

0.86)

0.58 

(0.42, 

0.63)

0.59 

(0.44, 

0.63)

0.09 

(0.08, 

0.11)

0.97 

(0.97, 

0.98)

0.30 

(0.25, 

0.35)

0.64 

(0.61, 

0.67)

0.69 

(0.59, 

0.80)

0.56 

(0.49, 

0.65)

0.57 

(0.50, 

0.65)

0.06 

(0.05, 

0.08)

0.98 

(0.97, 

0.98)

0.25 

(0.19, 

0.31)

Logistic 

regression

0.74 

(0.72, 

0.77)

0.74 

(0.60, 

0.79)

0.65 

(0.61, 

0.78)

0.65 

(0.62, 

0.77)

0.11 

(0.10, 

0.14)

0.98 

(0.97, 

0.98)

0.39 

(0.35, 

0.43)

0.73 

(0.69, 

0.76)

0.71 

(0.59, 

0.83)

0.65 

(0.50, 

0.75)

0.65 

(0.52, 

0.74)

0.08 

(0.06, 

0.10)

0.98 

(0.98, 

0.99)

0.36 

(0.30, 

0.40)

Models

GROW Standard FMF Standard

AUC 
(95% 
CI)

Sen. 
(95% 
CI)

Spe. 
(95% 
CI)

Acc. 
(95% 
CI)

PPV 
(95% 
CI)

NPV 
(95% 
CI)

F1 
score 
(95% 
CI)

AUC 
(95% 
CI)

Sen. 
(95% 
CI)

Spe. 
(95% 
CI)

Acc. 
(95% 
CI)

PPV 
(95% 
CI)

NPV 
(95% 
CI)

F1 
score 
(95% 
CI)

Early pregnancy

Catboost

0.50 

(0.47, 

0.52)

0.75 

(0.43, 

0.94)

0.29 

(0.09, 

0.62)

0.32 

(0.15, 

0.61)

0.06 

(0.06, 

0.07)

0.95 

(0.94, 

0.97)

0.04 

(0.02, 

0.07)

0.60 

(0.58, 

0.62)

0.61 

(0.47, 

0.71)

0.56 

(0.46, 

0.69)

0.56 

(0.48, 

0.67)

0.13 

(0.12, 

0.14)

0.93 

(0.92, 

0.94)

0.17 

(0.13, 

0.20)

XGBoost

0.52 

(0.49, 

0.54)

0.41 

(0.11, 

0.90)

0.65 

(0.16, 

0.93)

0.64 

(0.21, 

0.88)

0.08 

(0.06, 

0.11)

0.95 

(0.94, 

0.96)

0.06 

(0.04, 

0.09)

0.60 

(0.59, 

0.62)

0.77 

(0.64, 

0.87)

0.41 

(0.29, 

0.52)

0.44 

(0.35, 

0.54)

0.12 

(0.11, 

0.13)

0.94 

(0.93, 

0.96)

0.17 

(0.14, 

0.21)

LightBoost

0.54 

(0.51, 

0.57)

0.57 

(0.27, 

0.81)

0.52 

(0.27, 

0.81)

0.52 

(0.30, 

0.78)

0.07 

(0.06, 

0.09)

0.95 

(0.94, 

0.96)

0.09 

(0.05, 

0.13)

0.65 

(0.63, 

0.67)

0.65 

(0.55, 

0.76)

0.58 

(0.47, 

0.67)

0.59 

(0.50, 

0.66)

0.14 

(0.13, 

0.16)

0.94 

(0.93, 

0.95)

0.24 

(0.20, 

0.27)

Random 

Forest

0.54 

(0.51, 

0.56)

0.60 

(0.41, 

0.88)

0.49 

(0.20, 

0.66)

0.50 

(0.23, 

0.65)

0.07 

(0.06, 

0.08)

0.95 

(0.94, 

0.97)

0.09 

(0.05, 

0.13)

0.68 

(0.66, 

0.70)

0.69 

(0.56, 

0.79)

0.59 

(0.49, 

0.70)

0.60 

(0.52, 

0.69)

0.15 

(0.14, 

0.18)

0.95 

(0.94, 

0.96)

0.28 

(0.25, 

0.31)

ANN

0.52 

(0.49, 

0.55)

0.42 

(0.15, 

0.79)

0.65 

(0.28, 

0.89)

0.64 

(0.32, 

0.85)

0.08 

(0.06, 

0.10)

0.95 

(0.94, 

0.96)

0.07 

(0.03, 

0.10)

0.63 

(0.61, 

0.66)

0.58 

(0.51, 

0.75)

0.64 

(0.46, 

0.71)

0.64 

(0.49, 

0.69)

0.15 

(0.13, 

0.16)

0.93 

(0.93, 

0.95)

0.22 

(0.19, 

0.26)

Stacking 

ensemble

0.54 

(0.51, 

0.56)

0.47 

(0.26, 

0.75)

0.61 

(0.32, 

0.81)

0.60 

(0.35, 

0.78)

0.07 

(0.06, 

0.09)

0.95 

(0.94, 

0.95)

0.08 

(0.04, 

0.12)

0.66 

(0.64, 

0.68)

0.70 

(0.59, 

0.81)

0.56 

(0.45, 

0.65)

0.57 

(0.48, 

0.65)

0.14 

(0.13, 

0.16)

0.95 

(0.94, 

0.96)

0.26 

(0.23, 

0.29)

Logistic 

regression

0.58 

(0.56, 

0.61)

0.53 

(0.32, 

0.65)

0.62 

(0.5, 

0.82)

0.62 

(0.5, 

0.79)

0.08 

(0.07, 

0.1)

0.95 

(0.95, 

0.96)

0.15 

(0.11, 

0.20)

0.66 

(0.64, 

0.68)

0.66 

(0.59, 

0.73)

0.62 

(0.54, 

0.66)

0.62 

(0.56, 

0.66)

0.15 

(0.14, 

0.17)

0.94 

(0.94, 

0.95)

0.27 

(0.24, 

0.31)
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TABLE 2  (Continued)

Models

GROW Standard FMF Standard

AUC 
(95% 
CI)

Sen. 
(95% 
CI)

Spe. 
(95% 
CI)

Acc. 
(95% 
CI)

PPV 
(95% 
CI)

NPV 
(95% 
CI)

F1 
score 
(95% 
CI)

AUC 
(95% 
CI)

Sen. 
(95% 
CI)

Spe. 
(95% 
CI)

Acc. 
(95% 
CI)

PPV 
(95% 
CI)

NPV 
(95% 
CI)

F1 
score 
(95% 
CI)

Middle pregnancy

Catboost

0.58 

(0.55, 

0.61)

0.54 

(0.36, 

0.88)

0.60 

(0.23, 

0.77)

0.60 

(0.27, 

0.74)

0.08 

(0.07, 

0.10)

0.95 

(0.95, 

0.97)

0.14 

(0.09, 

0.18)

0.65 

(0.63, 

0.67)

0.59 

(0.47, 

0.77)

0.65 

(0.49, 

0.77)

0.64 

(0.52, 

0.74)

0.15 

(0.13, 

0.18)

0.94 

(0.93, 

0.95)

0.24 

(0.20, 

0.28)

XGBoost

0.58 

(0.55, 

0.60)

0.82 

(0.39, 

0.94)

0.31 

(0.20, 

0.74)

0.34 

(0.25, 

0.72)

0.07 

(0.06, 

0.09)

0.97 

(0.95, 

0.98)

0.14 

(0.11, 

0.17)

0.64 

(0.62, 

0.66)

0.67 

(0.61, 

0.78)

0.56 

(0.44, 

0.62)

0.57 

(0.47, 

0.62)

0.14 

(0.13, 

0.16)

0.94 

(0.93, 

0.95)

0.23 

(0.20, 

0.27)

LightBoost

0.60 

(0.57, 

0.62)

0.68 

(0.53, 

0.82)

0.49 

(0.35, 

0.64)

0.50 

(0.38, 

0.63)

0.08 

(0.07, 

0.09)

0.96 

(0.95, 

0.97)

0.17 

(0.12, 

0.21)

0.70 

(0.68, 

0.72)

0.68 

(0.53, 

0.79)

0.63 

(0.52, 

0.78)

0.63 

(0.55, 

0.76)

0.17 

(0.14, 

0.21)

0.95 

(0.94, 

0.96)

0.31 

(0.28, 

0.34)

Random 

Forest

0.61 

(0.58, 

0.63)

0.62 

(0.41, 

0.83)

0.56 

(0.33, 

0.77)

0.56 

(0.36, 

0.75)

0.08 

(0.07, 

0.10)

0.96 

(0.95, 

0.97)

0.17 

(0.13, 

0.21)

0.72 

(0.70, 

0.74)

0.70 

(0.56, 

0.80)

0.64 

(0.55, 

0.77)

0.65 

(0.57, 

0.75)

0.18 

(0.15, 

0.21)

0.95 

(0.94, 

0.96)

0.34 

(0.31, 

0.38)

ANN

0.56 

(0.54, 

0.59)

0.69 

(0.40, 

0.88)

0.43 

(0.25, 

0.71)

0.45 

(0.29, 

0.69)

0.07 

(0.06, 

0.09)

0.96 

(0.95, 

0.97)

0.12 

(0.09, 

0.16)

0.68 

(0.66, 

0.70)

0.62 

(0.54, 

0.68)

0.70 

(0.65, 

0.77)

0.69 

(0.65, 

0.75)

0.18 

(0.16, 

0.21)

0.95 

(0.94, 

0.95)

0.32 

(0.28, 

0.35)

Stacking 

ensemble

0.57 

(0.55, 

0.60)

0.73 

(0.57, 

0.87)

0.41 

(0.27, 

0.55)

0.43 

(0.31, 

0.55)

0.07 

(0.07, 

0.08)

0.96 

(0.95, 

0.97)

0.14 

(0.10, 

0.18)

0.69 

(0.67, 

0.71)

0.65 

(0.60, 

0.73)

0.67 

(0.59, 

0.71)

0.66 

(0.60, 

0.70)

0.17 

(0.15, 

0.19)

0.95 

(0.94, 

0.95)

0.32 

(0.28, 

0.35)

Logistic 

regression

0.65 

(0.62, 

0.67)

0.63 

(0.41, 

0.77)

0.60 

(0.45, 

0.78)

0.60 

(0.47, 

0.76)

0.09 

(0.08, 

0.11)

0.96 

(0.95, 

0.97)

0.23 

(0.18, 

0.28)

0.69 

(0.67, 

0.71)

0.65 

(0.54, 

0.78)

0.65 

(0.52, 

0.74)

0.65 

(0.54, 

0.72)

0.17 

(0.14, 

0.19)

0.95 

(0.94, 

0.96)

0.29 

(0.26, 

0.33)

Late pregnancy

Catboost

0.65 

(0.63, 

0.68)

0.54 

(0.46, 

0.74)

0.71 

(0.52, 

0.77)

0.70 

(0.53, 

0.75)

0.11 

(0.09, 

0.13)

0.96 

(0.95, 

0.97)

0.25 

(0.21, 

0.30)

0.72 

(0.69, 

0.74)

0.69 

(0.57, 

0.78)

0.65 

(0.56, 

0.76)

0.65 

(0.58, 

0.75)

0.18 

(0.15, 

0.21)

0.95 

(0.94, 

0.96)

0.34 

(0.30, 

0.38)

XGBoost

0.62 

(0.60, 

0.65)

0.55 

(0.44, 

0.78)

0.64 

(0.41, 

0.75)

0.64 

(0.43, 

0.73)

0.09 

(0.07, 

0.11)

0.96 

(0.95, 

0.97)

0.20 

(0.15, 

0.24)

0.71 

(0.70, 

0.73)

0.73 

(0.64, 

0.78)

0.62 

(0.58, 

0.69)

0.63 

(0.59, 

0.69)

0.17 

(0.15, 

0.19)

0.95 

(0.95, 

0.96)

0.34 

(0.31, 

0.38)

LightBoost 0.66 

(0.64, 

0.69)

0.68 

(0.51, 

0.80)

0.58 

(0.46, 

0.75)

0.59 

(0.48, 

0.74)

0.10 

(0.08, 

0.11)

0.97 

(0.96, 

0.97)

0.26 

(0.22, 

0.30)

0.77 

(0.75, 

0.79)

0.71 

(0.63, 

0.83)

0.71 

(0.60, 

0.78)

0.71 

(0.62, 

0.77)

0.21 

(0.17, 

0.24)

0.96 

(0.95, 

0.97)

0.42 

(0.38, 

0.45)

Random 

Forest

0.68 

(0.66, 

0.70)

0.61 

(0.53, 

0.74)

0.67 

(0.53, 

0.73)

0.66 

(0.55, 

0.72)

0.11 

(0.09, 

0.12)

0.96 

(0.96, 

0.97)

0.28 

(0.24, 

0.32)

0.79 

(0.77, 

0.81)

0.78 

(0.71, 

0.83)

0.67 

(0.63, 

0.75)

0.68 

(0.65, 

0.75)

0.20 

(0.18, 

0.24)

0.97 

(0.96, 

0.97)

0.45 

(0.42, 

0.49)

ANN 0.61 

(0.58, 

0.63)

0.57 

(0.42, 

0.79)

0.60 

(0.39, 

0.73)

0.59 

(0.42, 

0.72)

0.09 

(0.07, 

0.1)

0.96 

(0.95, 

0.97)

0.17 

(0.13, 

0.21)

0.74 

(0.72, 

0.76)

0.69 

(0.62, 

0.75)

0.71 

(0.66, 

0.76)

0.71 

(0.66, 

0.75)

0.20 

(0.18, 

0.23)

0.96 

(0.95, 

0.96)

0.40 

(0.36, 

0.43)

Stacking 

ensemble

0.64 

(0.62, 

0.66)

0.70 

(0.47, 

0.77)

0.53 

(0.47, 

0.75)

0.54 

(0.49, 

0.73)

0.09 

(0.08, 

0.11)

0.96 

(0.96, 

0.97)

0.23 

(0.19, 

0.27)

0.71 

(0.69, 

0.73)

0.74 

(0.65, 

0.85)

0.59 

(0.45, 

0.68)

0.60 

(0.49, 

0.68)

0.16 

(0.14, 

0.18)

0.95 

(0.95, 

0.97)

0.33 

(0.29, 

0.36)

Logistic 

regression

0.70 

(0.68, 

0.73)

0.60 

(0.45, 

0.79)

0.71 

(0.51, 

0.83)

0.70 

(0.52, 

0.81)

0.12 

(0.09, 

0.16)

0.97 

(0.96, 

0.98)

0.30 

(0.26, 

0.35)

0.74 

(0.72, 

0.76)

0.69 

(0.57, 

0.76)

0.69 

(0.62, 

0.80)

0.69 

(0.63, 

0.77)

0.19 

(0.17, 

0.23)

0.95 

(0.94, 

0.96)

0.37 

(0.34, 

0.41)

ANN, artificial neural networks. AUC, area under the ROC curve; Sen., Sensitivity; Spe., Specificity; Acc., Accuracy; PPV, Positive predictive value; NPV, Negative predictive value.
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others (Supplementary Table S11; Supplementary Figure S12). Based 
on the analysis of the imputed dataset, the ranking of predictor 
importance was largely consistent with that observed in the complete 
dataset, with late-pregnancy SFH, MAC, maternal age, height and 
weight, and parity remaining among the most influential features 
across the four standards (Supplementary Figure S13). The direction 
of association for key predictors, as indicated by the mean SHAP 
values, also showed patterns similar to those in the complete data 
(Supplementary Table S12; Supplementary Figure S14).

Discussion

The SGA rate among Chinese newborns based on the China 
standard was 6.1%, which was similar to the GROW standard 
(6.0%), higher than the Intergrowth 21st standard (4.3%) and lower 

than the FMF standard (9.7%). Late pregnancy models had the best 
power to predict SGA, compared to middle and early pregnancy 
models, which is likely due to the additional relevant features/
predictors that become available during the course of pregnancy, 
such as additional MAC and SFH. Our analysis revealed that optimal 
model performance was standard-dependent: logistic regression 
achieved the best performance for the China standard (ROC-AUC 
0.74, PR-AUC 0.16), while Random Forest demonstrated superior 
performance for the FMF standard (ROC-AUC 0.79, PR-AUC 0.29, 
with sensitivity of 0.78, PPV of 0.20 and F1 score of 0.45). Symphysis 
fundal height, maternal abdominal circumference, maternal age, 
maternal height and weight, and parity were identified as key 
predictors of SGA.

In our study, the FMF standard classified the highest proportion 
of newborns as SGA, in line with two previous publications (Kabiri 
et al., 2020; Savirón-Cornudella et al., 2021). This elevated SGA rate 

FIGURE 4

Predictor importance ranking for the optimal models across the four birthweight standards using the testing set of the complete data. Feature 
importance is ranked vertically by the mean absolute SHAP value, with the specific value labeled to the right of each bar. The China, Intergrowth-21st, 
and GROW standards used logistic regression as the optimal model, while the FMF standard used random forest. Common predictors across standards 
are connected by solid lines of the same color to facilitate comparison of rankings. AlB, albumin; ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; BUN, serum urea nitrogen; DBP, diastolic blood pressure; FBG, fasting blood glucose; MAC, maternal abdominal circumference; Scr, 
serum creatinine; SBP, systolic blood pressure; SFH, symphysis fundal height; SGA, small for gestational age (birthweight <10th centile for gestational 
age); SHAP, Shapley Additive Explanations; TBil, total bilirubin. 1st pregnancy interval is the period before 18 gestational weeks. 2th pregnancy interval is 
the period between 18 and 25+6 gestational weeks. 3rd pregnancy interval is the period between 26 and 36+6 gestational weeks.
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can be attributed to the standard’s methodology, which integrates 
term birth data with estimated preterm birthweights based on the 
assumption that estimated fetal weight and birthweight share the 
same median across gestational ages (Nicolaides et al., 2018). Since 
preterm births are often associated with pathological conditions and 
fetal growth restriction, the FMF standard tends to classify more 
preterm infants as SGA (Nicolaides et al., 2018). The customized 
GROW standard classified an intermediate proportion of infants as 
SGA in our Chinese data set compared to population-based 
standards. This contrasts with reports from high-income countries, 
where the GROW standard typically identifies the highest 
proportion of SGA at birth (Odibo et al., 2018; Fernández-Alba et 
al., 2022; Zhang et al., 2007). The GROW standard used was 
constructed with China selected as the country of origin, resulting 
in SGA proportions similar to those identified by the China 
standard. Moreover, we observed substantial overlap in SGA 
classification between the Intergrowth 21st and China standards. 
This may partly be explained by their similar study designs as both 
were developed using data from low-risk, well-nourished women. 
Additionally, the Intergrowth 21st project included participants 
from Beijing, China, whose socioeconomic context aligns closely 
with that of population used to construct the China standard (Villar 
et al., 2014).

Our ML models have greatly improved predictive power for 
SGA, especially the Random forest-based model based on the FMF 
standard, compared to previous studies (Bai et al., 2022; Cho et al., 
2022; Kuhle et al., 2018). A big data study comparing ML methods 
showed that a model using logistic regression with predictors 
available at 26 weeks appeared the best-fitting tool to predict SGA 
birth, with a ROC-AUC value of 0.66 for primiparous women (Kuhle 
et al., 2018). Our models developed at 26 weeks achieved better 
prediction, with an ROC-AUC of 0.70 based on the China standard 
and a ROC-AUC of 0.72 based on the FMF standard. Compared to 
the China standard, the superior performance of the Random Forest 
model with the FMF standard stems from its algorithmic advantage 
in handling complex data patterns, as it excels at capturing 
non-linear relationships and complex interactions among predictive 
features. This capability is critical for leveraging the nuanced 
information within the input variables, leading to more powerful 
discrimination for the specific task of SGA identification under any 
given standard (Couronné et al., 2018). In contrast, logistic 
regression remained the optimal or non-inferior model for the 
China, Intergrowth 21st, and GROW standards, suggesting 
predominantly linear predictor-outcome relationships, as supported 
by SHAP analysis. Furthermore, its structural simplicity mitigates 
overfitting and enhances generalizability (Christodoulou et al., 2019; 
Deo, 2015), while its inherent interpretability—providing 
transparent, quantifiable risk associations—offers a distinct 
advantage for potential clinical implementation (Rudin, 2019). The 
collective findings indicate that model superiority is context-
dependent, hinging on a specific alignment between the model’s 
form and the prediction task’s requirements.

Our study demonstrates that the best-fitting models show 
potential for predicting SGA at birth, with performance varying by 
gestational age and birthweight standard. Specifically, the Random 
Forest model under the FMF standard achieved a ROC-AUC of 0.72 
at 26 weeks of gestation, which represents a clinically promising 
performance for early risk stratification, and further improved to 0.79 

in late pregnancy, which falls within the ‘acceptable’ to ‘excellent’ range 
according to common diagnostic benchmarks. Beyond prediction, our 
analysis also identified several key clinical predictors, including 
symphysis-fundal height, maternal abdominal circumference, 
maternal age, maternal height and weight, and parity, which may 
inform opportunities for individualized antenatal management. 
Within the framework of the Chinese tiered prenatal care system, this 
level of predictive capability at middle pregnancy could enable 
practical clinical triage by identifying high-risk pregnancies for 
intensified monitoring, such as through frequent serial symphysis-
fundal height measurements and third-trimester ultrasound biometry, 
while maintaining standard care for lower-risk women, thereby 
optimizing resource allocation. These models thus provide a 
quantitative tool for improving SGA detection and management, 
while the identified key predictors further inform individualized 
antenatal management strategies.

An important next step will be the validation of our ML prediction 
models in independent data sets. Further improvements to our 
prediction models may be achieved by incorporating additional 
variables, such as previous pregnancy outcome details, glucose 
monitoring data, and ultrasound measurements. When validated and 
refined, ML prediction models need to be assessed prospectively, 
ideally in the context of an RCT, to ascertain improved prediction of 
SGA at birth. Ultimately, improved SGA prediction combined with 
interventions needs to be demonstrated to improve perinatal 
morbidity and mortality.

This study has several strengths. To our knowledge this is the first 
study to compare four population-based and customized birthweight 
standards using a large population-based data set, and develop ML 
models to predict SGA at birth at different stages of pregnancy. This is 
also the first study to compare the CatBoost method with widely used 
Random Forest, Stacked ensemble model, and ANN methods to 
determine the best-fitting model for each birthweight standard. 
Finally, our study is transparent in the methodology used for data 
processing, feature selection, prediction model development, 
assessment and interpretation, thereby reducing the potential for 
analytical bias.

This study has some limitations. While routine pregnancy 
surveillance data has the advantages of scale and inclusivity, it has the 
disadvantage of a relatively limited number of variables, which may 
have limited model performances. Second, the pregnancies in our 
study were from a single city in China, which may not be representative 
of all Chinese singleton pregnancies, which may limit the 
generalisability of the proposed models. Third, we assessed four 
representative birthweight standards. However, other standards, such 
as the World Health Organization Fetal Growth Charts and the 
NICHD fetal growth standard, assess antenatal fetal weight, relying on 
ultrasound scan rather than the newborn size, which may lead to more 
accurate estimation of SGA risk (Grantz et al., 2018; Kiserud et al., 
2017). However, comparison of different fetal and birthweight 
standards showed that all standards assessed had poor performance 
for predicting adverse perinatal outcomes among an Australian 
population (Choi et al., 2021). Fourth, we did not compare the 
performance of the ML models to existing prediction methods that 
may currently be in use in Wenzhou and therefore cannot comment 
on ML performance relative to existing prediction methods. Finally, 
we did not have access to antenatal fetal ultrasound measurements, 
which might have improved our prediction models. However, routine 
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access to antenatal ultrasound is not available in many LMICs, which 
have the highest burden of SGA and may benefit most from improved 
antenatal SGA prediction models.

In conclusion, this study reveals substantial variation in SGA 
classification across birthweight standards. Both sophisticated 
machine learning algorithms and conventional logistic regression 
demonstrated comparable predictive performance for SGA 
identification. These findings highlight the potential to enhance 
prenatal care through computational approaches that enable risk-
stratified management.
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