& frontiers | Frontiers in Artificial Intelligence

@ Check for updates

OPEN ACCESS

EDITED BY
Nizamettin Aydin,
Istanbul Technical University, Turkiye

REVIEWED BY

Serap Aydin,

Hacettepe University, Turkiye

Fenggin Wang,

Hubei Normal University, China

Milan Toma,

New York Institute of Technology College of
Osteopathic Medicine Library, United States

*CORRESPONDENCE
Reeja S. R.
reeja.sr@vitap.ac.in

RECEIVED 06 August 2025
REVISED 02 December 2025
AccCePTED 08 December 2025
PUBLISHED 12 January 2026

CITATION

Mounika S and S. R. R (2026) Improved
attention-based PCNN with GhostNet for
epilepsy seizure detection using EEG and fMRI
modalities: extractive pattern and histogram
feature set. Front. Artif. Intell. 8:1679218.

doi: 10.3389/frai.2025.1679218

COPYRIGHT

© 2026 Mounika and S. R.. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiersin Artificial Intelligence

TYPE Original Research
PUBLISHED 12 January 2026
pol 10.3389/frai.2025.1679218

Improved attention-based PCNN
with GhostNet for epilepsy
seizure detection using EEG and
fMRI modalities: extractive
pattern and histogram feature set

Sunkara Mounika and Reeja S. R.*

School of Computer Science and Engineering, VIT-AP University, Amaravati, India

Introduction: Detecting epileptic seizures remains a major challenge in
clinical neurology due to the complex, heterogeneous, and non-stationary
characteristics of electroencephalogram (EEG) signals. Although recent machine
learning (ML) and deep learning (DL) approaches have improved detection
performance, most methods still struggle with limited interpretability, inadequate
spatial-temporal modeling, and suboptimal generalization. To address these
limitations, this study proposes an enhanced hybrid parallel convolutional-
GhostNet framework (HPG-ESD) for robust seizure detection using multimodal
EEG and functional Magnetic Resonance Imaging (fMRI) data.

Methods: The experimental data consist of pediatric scalp EEG recordings
from 24 subjects in the CHB-MIT dataset (22-channel 10-20 system, 256 Hz
sampling, continuous multi-hour recordings) and resting-state 3T fMRI scans
from 52 participants in the UNAM TLE dataset (26 epilepsy patients and 26 healthy
controls). EEG data underwent Gauss-based median filtering, while fMRI images
were denoised using an adaptive weight-based Wiener filter. Spatial, temporal,
and spectral EEG features were extracted alongside an enhanced common
spatial pattern (E-CSP) representation, whereas fMRI features were obtained
using deep 3D CNN embeddings combined with a smoothened pyramid
histogram of oriented gradients (S-PHOG) descriptor. These multimodal features
were fused within a soft voting hybrid parallel convolutional-GhostNet (S-
HPCGN) model, integrating an improved attention based parallel convolutional
network (IAPCNet) and GhostNet to capture complementary spatial-temporal
patterns.

Results: The proposed HPG-ESD framework achieved an accuracy of 0.941,
precision of 0.939, and sensitivity of 0.944, outperforming conventional unimodal
and state-of-the-art methods.

Discussion: These results demonstrate the potential of multi-modal learning and
lightweight attention-enhanced architectures for reliable and clinically relevant
seizure detection.

KEYWORDS

deep learning, EEG, epilepsy seizure detection, fMRI, S-HPCGN

1 Introduction

Epilepsy is a chronic neurological disorder characterized by a long-term predisposition
to generate epileptic seizures, while a seizure is a transient episode of abnormal,
excessive, synchronous neuronal activity in the brain. Although related, these two
terms represent distinct clinical concepts that must be clearly differentiated to ensure
accurate diagnosis and interpretation of neural abnormalities (Wang et al, 2021).
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Epileptic seizures may involve sudden convulsions, sensory
disturbances, or brief lapses in consciousness, significantly affecting
patients’ psychological, cognitive, and emotional wellbeing (Lin
et al.,, 2025). Given the unpredictable nature of epilepsy and its
associated comorbidities, including cognitive decline, depression,
and psychiatric complications, early and precise detection is
essential to minimize long-term health consequences and support
effective clinical management (Kok et al., 2022).
Electroencephalography (EEG) remains the primary tool for
epilepsy diagnosis due to its ability to capture real-time neural
electrophysiological activity in a cost-effective and non-invasive
manner (Tsai et al., 2023). However, the manual review of long-
term EEG recordings is labor-intensive, subjective, and prone to
human error, highlighting the need for automated seizure detection
systems that can provide rapid and reliable clinical support (Guo
et al., 2022). Brain—-computer interface (BCI) technologies further
enhance the interaction between neural activity and computational
systems, enabling both non-invasive and invasive acquisition of
brain signals to facilitate neurorehabilitation, cognitive assessment,
and abnormal activity suppression (Li et al., 2021; Kamakshi
and Rengaraj, 2024; Yan et al, 2022; Boonyakitanont and
Songsiri, 2021). In parallel, multimodal imaging—particularly the
integration of EEG and functional MRI—combined with high-
performance computing has accelerated biomedical research and
improved understanding of seizure dynamics (Sabor et al., 2022).
Beyond the emergence of machine learning (ML) and
deep learning (DL), epilepsy research has historically relied
on a wide range of signal-processing techniques designed to
capture temporal, spectral, and spatial abnormalities in EEG and
functional magnetic resonance imaging (fMRI) data. Classical
approaches such as autoregressive (AR) modeling, power spectral

Abbreviations: ACCI, adaptive cross-channel interactions; AW-WF, Adaptive
Weight-based Wiener Filter; BCI, brain-computer interface; BESD-Net,
brain epilepsy seizure detection network; Bi-LSTM, bidirectional long
BRRM, brain-rhythmic

recurrence biomarkers; CCNN, customized convolution neural network;

short-term memory; BN, batch normalization;

CNN, convolutional neural networks; CSP, common spatial pattern; DL, deep
learning; DwConv, depth-wise convolution; E-CSP, enhanced version of
the common spatial pattern; EEG, electroencephalogram; ERF, exhaustive
random forest; FC, fully connected; fMRI, functional magnetic resonance
imaging; GELU, Gaussian error linear unit; G-MF, Gauss-based median
filter; GNMF, graph-regularized non-negative matrix factorization; HPG-
ESD, hybrid parallel convolutional-GhostNet model for epilepsy seizure
detection; IAPCNet, improved attention-based parallel convolutional neural
network; LDA, linear discriminant analysis; LR, logistic regression; LSTM,
long short-term memory; MF, median filtering; ML, machine learning;
MRI, magnetic resonance imaging; NB, Naive Bayes; ONASNet, optimized
NASNet; PHOG, pyramid histogram of oriented gradients; PSD, power
spectral density; ProCRC, probabilistic collaborative representation; PSO,
particle swarm optimization; RF, random forest; RNN, recurrent neural
networks; RSS, resting-state signal; S-HPCGN, soft voting-based hybrid
SNR, ratio; S-PHOG,

smoothened pyramid histogram of oriented gradients; StGEN, Softplus-

parallel convolutional-GhostNet; signal-to-noise

tanh-GelLU-ELU normalization; SVD, singular value decomposition; SVM,

support vector machines; UBN, updated batch normalization; UMAP, uniform

manifold approximation and projection; WF, Wiener filtering.

Frontiersin Artificial Intelligence

10.3389/frai.2025.1679218

density (PSD) estimation, coherence analysis, wavelet transforms,
and time-frequency decomposition have demonstrated strong
diagnostic value by quantifying rhythmicity, frequency shifts, and
connectivity disruptions characteristic of seizure activity. Prior
studies have explored optimal AR model order selection for seizure
detection, coherence predictors for intracortical EEG analysis,
and comprehensive surveys of feature extraction techniques for
epileptic seizure identification, further establishing the relevance
of handcrafted features in understanding epileptogenic patterns
(Farooq et al., 2023; Tran et al.,, 2022; Liu et al., 2023).

With rapid advances in computational intelligence, ML and DL
have become essential tools for seizure detection and classification,
improving the automation and accuracy of epilepsy diagnosis
(Baghersalimi et al., 2021). Various models, including logistic
regression (LR), naive Bayes (NB), random forest (RF), linear
discriminant analysis (LDA), support vector machines (SVM),
recurrent neural networks (RNN), and convolutional neural
networks (CNN), have been successfully applied to differentiate
seizure types and detect abnormal brain states from EEG data
(Gramacki and Gramacki, 2022). Despite their success, many
existing approaches still face limitations such as overfitting,
insufficient generalization, and high computational complexity,
which ultimately restrict their clinical applicability (Hassan et al.,
2022). These challenges underscore the need for more robust
feature extraction strategies, advanced multimodal integration, and
efficient model architectures capable of achieving high diagnostic
performance with reduced complexity (Zeng et al., 2023).

The integration of EEG and fMRI enables a richer spatio-
temporal characterization of seizure activity, addressing the
limited spatial resolution seen in EEG-only systems. The
G-MF and AW-WF preprocessing modules enhance data
quality by adaptively suppressing mixed noise while preserving
critical structural and temporal details that conventional filters
typically distort. The proposed feature extraction pipeline,
which incorporates E-CSP and S-PHOG, generates more
stable and noise-resistant representations through adaptive
frequency weighting and smoothing strategies. Additionally, the
hybrid S-HPCGN architecture combines attention-enhanced
feature learning in IAPCNet with the lightweight yet expressive
feature generation of GhostNet, providing an improved balance
between computational efficiency and discriminative capability.
The soft voting strategy further strengthens the system by
merging complementary confidence scores from multimodal
learners, resulting in more reliable and consistent seizure
detection. These design characteristics represent significant
methodological advancements that extend beyond numerical
performance improvements.

While the individual components of the proposed framework
build upon established concepts, the overall architecture
introduces a unified theoretical design that is structurally
distinct from existing SOTA approaches. The HPG-ESD model
is formulated around a coordinated multimodal learning
principle, where EEG-derived temporal activations and fMRI-
derived spatial signatures are projected into a shared latent
domain through parallel, attention-regulated pathways. This
coupling is absent in conventional models, which typically treat
the modalities independently or fuse them at a surface-level
feature concatenation.
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The internal interaction between IAPCNet and GhostNet
forms a heterogeneous learning mechanism in which high-
capacity attention-driven features and lightweight intrinsic features
reinforce each other through probability-aligned soft fusion.
This creates an adaptive cross-modal consistency that cannot
be achieved by simply stacking existing models. The resulting
architecture therefore represents a structurally integrated system
governed by a specific multimodal learning theory, rather than a
collection of incremental improvements.

The main contributions of this work are as follows:

e Proposing a G-MF and AW-WF-based preprocessing
technique for improving the quality of WWG signals and
fMRI images, respectively. These approaches adopt a Gaussian
filter and a hybrid adaptive weighting function to preserve
sharp transitions and enhance performance.

e Extracting E-CSP and S-PHOG-based features that adopt an
activation function with weighted frequencies and Gaussian
smoothing to avoid overfitting and sensitivity to minor
pixel variation.

e Contributing the S-HPCGN model that integrates IAPCNet
and GhostNet models. Each of these models trains the
extracted features and provides prediction scores to compute
the soft voting policy. This approach yields good detection
results with higher probability classes.

The rest of the paper is organized as follows: Section 2 outlines
challenges in existing epileptic seizure detection methods. Section 3
introduces the proposed multimodal EEG-fMRI approach. Section
4 compares its performance with existing methods, and Section 5
concludes the study.

2 Literature review

This section reviews a wide range of techniques for epileptic
seizure detection, focusing on advanced methods while also
identifying the potential of multimodal approaches like EEG-fMRI
integration to enhance accuracy and interpretability.

In 2023, Mohammad and Al-Ahmadi focused on epileptic
seizure detection using a multi-source dataset of EEG signals and
brain MRIs (Mohammad and Al-Ahmadi 2023). Feature extraction
is performed via two parallel streams: SVD-Entropy and wavelet
transform for EEG, as well as CNN for MRI. Moreover, the
retrieved features are subsequently fused into a single vector and
classified using an SVM to identify epileptic seizures.

In 2024, Tang et al. proposed an automatic epilepsy
detection framework leveraging path signature features and
a Bi-LSTM network with attention (Tang et al., 2024). The
path signature extracts discriminative features capturing dynamic
channel dependencies in EEG, while the Bi-LSTM with attention
models temporal dependencies. The method was tested on public
datasets, along with a private hospital dataset, using leave-one-out
and five-fold cross-validation.

In 2025, Sikarwar et al. introduced an automatic epilepsy
detection approach using EEG signals, combining advanced
entropy measures with modern preprocessing methods (Sikarwar
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et al., 2025). EEG signals were denoised using adaptive wavelet
models to preserve their integrity. Features extracted include
mvMPE and mvMFE to characterize complexity and frequency
variations. UMAP was applied for non-linear dimensionality
reduction to enhance feature discrimination. The model employed
a ResNet integrated with Bi-LSTM to capture both temporal and
spatial information.

In 2022, Yuan et al. proposed a method for automatic epileptic
seizure detection based on kernel-driven robust ProCRC combined
with GNMF (Yuan et al., 2022). Wavelet transform was first used to
preprocess raw EEG signals to derive time-frequency distributions
as initial features. GNMF reduces dimensionality while preserving
important EEG characteristics. Subsequently, the robust ProCRC
method classifies test samples by maximizing the likelihood of their
belonging to seizure or non-seizure classes.

In 2022, Song et al. proposed a single-channel seizure detection
framework based on BRRM and an optimized model named
ONASNet (Song et al., 2022). BRRM visualizes how brain rhythms
repeat over time by mapping them in phase space, revealing the
underlying non-linear characteristics of EEG activity. Furthermore,
transfer learning was employed to apply ONASNet to the EEG
dataset. Together, BRRM and ONASNet enable the simultaneous
extraction of features from various brain rhythms by utilizing
multiple neural network channels.

In 2024, Sadiq et al. proposed a Hellinger distance classifier
combined with PSO to improve feature selection in EEG signals
(Sadiq et al., 2024). This approach enhances classification accuracy
and reduces the time and dimensionality of the dataset. Their
findings highlight the method’s effectiveness for academic and
clinical use, offering precise detection of epileptic seizures.

In 2023, Prasanna et al. presented BESD-Net, a deep learning
framework incorporating recurrent learning for seizure detection
(Prasanna et al.,, 2023). The initial step involved preprocessing
the EEG data to eliminate irrelevant noise. A specialized CCNN
was trained on this preprocessed dataset to accurately extract
features correlated with epilepsy. Additionally, these features were
optimized using ERF-based feature selection, which prioritized
those with strong relevance to the disease.

In 2010, Aydin presented a step-wise least squares estimation
algorithm (SLSA), implemented in the Matlab ARfit package, to
clinical EEG data for accurate estimation of auto-regressive (AR)
model orders for both normal and ictal signals, with PSD derived
using the Burg method (Aydin, 2010). They reported that ARfit was
more useful than traditional criteria such as FPE, AIC, MDL, and
CAT for EEG discrimination. Overall, they concluded that SLSA
was superior due to its non-heuristic nature, lower computational
complexity, and ability to generate more reliable AR order estimates
for long EEG sequences.

In 2009, Aydin presented a comparative study of two auto-
regressive (AR) methods (Burg and Yule-Walker) and two
subspace-based techniques (Eigen and MUSIC) for power spectral
density estimation in computing the coherence function (CF) to
assess EEG synchronization between hemispheres (Aydin, 2009).
Using intracortical EEG from WAG/R|j rats, they found that
AR-based methods produced similar outcomes but were highly
sensitive to model order, while subspace methods detected specific
CF peaks but required higher computational complexity. They
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concluded that high-order Burg modeling was most suitable for
EEG synchronization analysis.

In 2023, Ein Shoka et al. presented a comprehensive review
of epilepsy, describing it as a central nervous system disorder
characterized by abnormal brain activity and recurrent seizures
(Ein Shoka et al., 2023). They highlighted the heavy reliance on
EEG signals for seizure analysis and noted that manual seizure
identification was time-consuming. Their work summarized
preprocessing feature extraction, and classification
methods

challenges, and future research directions in automated EEG-based

steps,

while also outlining methodological limitations,
seizure detection.
Table 1

detection, emphasizing the approaches used along with their

summarizes recent studies on epileptic seizure

benefits and limitations.

2.1 Problem statement

Detecting epileptic seizures from EEG signals is challenging
due to their inherent complexity, high dimensionality, noise,
and variations between individuals. Effective seizure prediction
requires robust preprocessing, discriminative feature extraction,
and accurate classification techniques. Recent studies have explored
various ML and DL models to improve detection performance.
Mohammad and Al-Ahmadi (2023) employed CNN and SVM,
which handle large feature spaces well and generalize across
datasets, although performance could benefit from more advanced
similarity metrics. Tang et al. (2024) demonstrated that Bi-
LSTM can generalize effectively but stressed the need for
larger datasets. Similarly, Sikarwar et al. (2025) improved class
separability using ResNet-Bi-LSTM with UMAP for dimensionality
reduction, although more compact models are needed for real-
time applications. Meanwhile, Prasanna et al. (2023) showed
that their CCNN-based BESD-Net model achieved high accuracy,
suggesting that further exploration of advanced deep learning
and transfer learning techniques could improve generalization.
Despite these advancements, relying solely on EEG limits the
understanding of underlying neural mechanisms. EEG captures
electrical activity but lacks spatial resolution, restricting the
localization of seizure onset zones. Hence, there is a growing
need to incorporate multimodal neuroimaging data, such as
functional magnetic resonance imaging (fMRI), which provides
complementary spatial information about brain activity. The
integration of EEG with fMRI can enhance the interpretability
of features and improve classification by capturing both temporal
and spatial dynamics of seizures. This multimodal approach can
enable more accurate, personalized, and clinically relevant seizure
detection systems.

Recent studies have emphasized the importance of temporal-
frequency attention for EEG and multimodal neuroimaging
analysis. Methods such as Fourier attention (Ke et al., 2024)
and wavelet-based attention mechanisms (Wang et al., 2025a,c)
dynamically emphasize discriminative frequency components,
enabling more precise modeling of seizure-related oscillations.
These attention mechanisms operate by adaptively weighting
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TABLE 1 Review of existing works.

Methods Limitations
Mohammad CNN, SVM It effectively manages Should implement
and large feature spaces advanced similarity
Al-Ahmadi and provides robust metrics to further
(2023) generalization across enhance epileptic
various datasets seizure detection
Tang et al. Bi-LSTM It validates that the Attention must be
(2024) proposed approach given to enlarging
generalizes effectively the dataset for
optimal performance
Sikarwar etal. | ResNet-Bi- Using UMAP for Developing compact
(2025) LSTM dimensionality models suited for
reduction increases real-time operation
the features’ will support
effectiveness in uninterrupted
distinguishing classes monitoring with
wearable devices
Yuan et al. ProCRC It strengthens class Subsequent studies
(2022) separability and should investigate
accurately predicts boosting the
the most likely class algorithm’s accuracy
label for test EEG with a reduced
samples amount of labeled
data
Song et al. ONASNet The method Exploring these
(2022) effectively represents algorithms and
both seizure and scaling our method
seizure-free signals from single-channel
while clearly to multi-channel
separating them from EEG signals is a
healthy patterns worthwhile direction
for future work
Sadiq et al. Hellinger It reduces the impact Additional research
(2024) distance of imbalanced data is needed on
classifier and effectively integrating the
with PSO manages Hellinger distance
high-dimensional classifier with deep
datasets by detecting learning methods
closely related
numerical objects
Prasanna CCNN The model Incorporating
etal. (2023) outperforms other cutting-edge deep
methods by delivering | learning approaches
improved accuracy and investigating
and reduced loss transfer learning will
improve how well
the model
generalizes

temporal and spectral representations, which aligns conceptually
with the non-linear, frequency-aware design of the proposed
E-CSP and S-PHOG modules. Additionally, hybrid frameworks
that combine attention mechanisms with non-linear feature
extraction, such as semantic-aware fusion models and deep
neurodynamic attention networks (Wang et al., 2025b; Ke et al,,
2023), demonstrate the growing significance of integrating
attention with advanced feature transformation. Incorporating
these theoretical perspectives broadens the methodological
context of the proposed HPG-ESD model and highlights
of multimodal spatiotemporal

the relevance learning in

epilepsy detection.
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3 Proposed methodology

Epilepsy is a persistent brain disorder characterized by
spontaneous seizures triggered by irregular electrical activity in
the brain. Detecting these seizures promptly and accurately is
essential for proper diagnosis, treatment, and ongoing patient
care. While EEG is widely used for seizure detection due to
its excellent temporal resolution, it often struggles to precisely
identify the seizure origin because of its limited spatial detail.
Functional magnetic resonance imaging (fMRI), on the other
hand, provides high-resolution spatial mapping of brain function
through hemodynamic signals. Integrating EEG with fMRI offers
a powerful method to enhance seizure detection by combining
EEG’s rapid temporal data with the detailed spatial insights of fMRI.
This multimodal strategy improves the precision and reliability of
detecting and localizing seizures, thereby supporting more effective
clinical management.

A deeper understanding of the fusion mechanism reveals
how EEG and fMRI together enhance seizure detection in ways
that a single modality cannot. EEG contributes rich temporal
cues reflecting abrupt neuronal discharges, while fMRI provides
detailed spatial information about the distribution of abnormal
hemodynamic responses. The proposed architecture aligns these
fast temporal patterns with spatial activation maps, enabling
the model to learn cross-modal correspondences that accurately
localize and characterize seizure activity. This complementary
interaction forms the basis for the improved robustness and
precision of the multimodal HPG-ESD framework. This study
proposes a novel hybrid parallel convolutional-GhostNet model for
epilepsy seizure detection (HPG-ESD).

As shown in Figure 1, the seizure detection process begins
with the acquisition of two types of input data: EEG signals and
fMRI images. Each modality undergoes preprocessing to enhance
signal clarity and suppress unwanted noise; EEG signals are filtered
using a Gauss-based median filter (G-MF), while fMRI images
are denoised with an adaptive weight-based Wiener filter (AW-
WEF). Next, important features are extracted from each modality
to capture relevant seizure-related information. For EEG signals,
spatial, temporal, and spectral features are derived, along with an
enhanced common spatial pattern (E-CSP) technique to better
discriminate seizure activity.

For fMRI images, deep features are extracted alongside
an S-PHOG descriptor to effectively represent spatial patterns.
The processed features from both EEG and fMRI are then
fed into an S-HPCGN model that combines IAPCNet and
GhostNet architectures, which collaboratively detect seizure events
by leveraging their complementary strengths. Finally, a soft
voting approach aggregates the predictions from the hybrid
models to generate a more robust and accurate final seizure
detection output.

The design of the HPG-ESD architecture is grounded in the
need for a unified representation that retains fine-grained temporal
information from EEG signals while capturing spatially distributed
neurovascular patterns in fMRI data. The dual-branch structure of
IAPCNet enables simultaneous learning of complementary feature
spaces, where depth-wise separable convolution and adaptive
normalization enhance stability and reduce redundancy. The
spatial-perceptual attention mechanism introduces anisotropic
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weighting across the feature maps, improving sensitivity to
seizure-related activations that may manifest differently across
modalities. The parallel integration of IAPCNet with GhostNet
forms a heterogeneous learner ensemble, in which lightweight
intrinsic feature generation complements high-capacity attention-
enhanced encoding. The soft voting formulation extends classical
ensemble averaging by incorporating calibrated probability
distributions derived from both deep features and frequency-
weighted handcrafted descriptors, allowing proportional influence
based on modality reliability. This design establishes a coherent
theoretical basis for multimodal fusion, reducing overfitting and
supporting improved discriminative separation between seizure
and non-seizure patterns.

3.1 Preprocessing

The initial phase of seizure detection involves preprocessing,
which focuses on refining the data by removing noise and artifacts
to ensure more accurate feature extraction and classification. Let
us assume that I*% is the input EEG signal and I"™8 is the input
fMRI image, which are preprocessed using an enhanced approach
discussed as follows:

3.1.1 EEG preprocessing

EEG recordings frequently include various types of noise,
such as muscle artifacts, eye blinks, and electrical interference.
To mitigate these, an enhanced median filter is used. This filter
excels at eliminating impulsive noise while preserving vital signal
details, particularly abrupt changes associated with seizures. By
smoothing out unnecessary fluctuations, the Gauss-based median
filter (G-MF) boosts the signal-to-noise ratio (SNR) and maintains
essential EEG features for accurate seizure detection. The Gauss-
based Median Filter (G-MF) extends median filtering (MF) (Song
and Liu, 2019), which is a non-linear technique used to reduce noise
in signalsI*%. It operates by taking a sliding window of neighboring
values from the signal, sorting them based on magnitude, and
replacing the center value with the median of the sorted values. The
standard form of MF is formulated as in Equation 1.

Mf = Med |8 (t — k), I¢ (t + k) }, (1

for k= —NtoN

where I*% (t) denotes the input signal and k represents the index
of window size.

The main limitation of MF is its inefficiency in variable-
noise environments, leading to poor performance. To address this
limitation, the G-MF technique is proposed, adopting a Gaussian
filter approach. The process of G-MF is as follows:

Step 1: apply the Gaussian filter as in Equation 2.

Y=Y g%+ @

where g(k) denotes the Gaussian kernel, defined as in
Equation 3. Here, o is estimated using Equation 4, var; denotes
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FIGURE 1
Outline of proposed HPG-ESD model.

the local variance of the signal point i, and ¢ represents a tunable
parameter (0, 1).

(k) = e 3

o; = @.4/var; (4)

Step 2: apply the median filter to the smoothed output y (¢) to
obtain the G-MF signal as in Equation 5.

Mfew = Med [y (t — k), y (t +k)}, (5)

for k= —NtoN

where y' (t) refers to the output of the Gaussian filter,
N denotes the window size, and the filtered signal is
denoted as Mfyey.

Frontiersin Artificial Intelligence 06

3.1.2 fMRI preprocessing

Functional MRI (fMRI) image data often contains noise and
distortions caused by scanner errors, patient movement, and
physiological variations. To address this, an adaptive weight-
based Wiener filter (AW-WF) is applied during preprocessing.
The AW-WF is a variant of the Wiener filtering (Kalaivani and
Phamila, 2018). The traditional formulation of WF is defined as in
Equation 6.

(72—V2

Wf (n,m) = M + ( ) (I8 (n,m) — M) (6)

where M denotes mean, o2 denotes variance, v? indicates
noise variance of the mask matrix, and I8 (n, m) indicates the
noisy image.

This WF filter adjusts based on the local image variance to
effectively reduce random noise while preserving sharp edges and
critical spatial information. However, the WF performs poorly
for noisy images. Adopting mean and variance functions can
lead to edge blurring problems. To address this issue, the AW-
WE procedure is introduced, which employs a hybrid adaptive
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weighting function. The procedure to be followed for AW-WF is
as follows:

Step 1: determine the PSD by performing a Fourier transform
on the image’s autocorrelation function, for both the noisy and the
original images.

Step 2: place a filtering mask centered over a specific pixel in the
noisy image.

Step 3: collect and organize the intensity values of all pixels
located within the area enclosed by the mask.

Step 4: calculate the average (mean) of these intensity values and
allot it to the central pixel of the mask.

Step 5: evaluate the local average (mean, |) and the local
variance (c*) within the region covered by the mask.

Step 6: estimate the new pixel value Wfy, (n,m) as in
Equation 7.

Whhew (n,m) = B.Med + (1 — B)
. [M n (%) (I8 (1, m) — M)] @)

where Med indicates the median value of the local window, M
refers to the mean as defined in Equation 8, o2 denotes variance
as defined in Equation 9, v2 indicates noise variance of the mask
matrix, "8 (n,m) indicates the noisy image, and B indicates a
tunable parameter, which is computed using the “hybrid adaptive
weighting function” as in Equation 10.

1 im
- 4
M nm Zn,melimg 7% (n,m) (8)
2= L 3 "8 (1, m) — M> ©9)
nm n,melims ?
2
vV
B (10)

- o2+ o (mn) +e¢

where v? indicates noise variance (global), o> denotes local
variance, ¢ specifies a small constant to avoid division by zero, A
denotes the sensitivity parameter (0, 1), and « (m,n) = /B2 + B},
which is the gradient magnitude using Sobel. Here, B2 and Bﬁ are
parameters with respect to axes x and y, respectively.

Step 7: repeat the step 2 to step 6 for every pixel in the
noisy image.

Thus, the AW-WF technique provides a filtered image W
that better handles the mixed noise of median filtering with
the Wiener filter. Using an adaptive weighting function helps
preserve strong edges while effectively reducing noise, leading to
improved performance.

3.2 Feature extraction
Extracting features is an important phase where significant

insights are derived from preprocessed EEG and fMRI (Mfe,, and
Wiew) to support accurate seizure identification. This step involves

Frontiersin Artificial Intelligence

10.3389/frai.2025.1679218

converting complex, multidimensional data into a set of helpful
features that reveal underlying seizure-related patterns.

The CHB-MIT EEG recordings consist of continuous multi-
hour scalp recordings sampled at 256 Hz, with individual EDF files
typically containing uninterrupted 1-h segments. All recordings
follow the international 10-20 electrode placement system,
comprising 22-24 scalp electrodes positioned across frontal,
temporal, central, parietal, and occipital regions (e.g., Fp1/Fp2,
F3/F4, C3/C4, T3/T7, T4/T8, P3/P4, O1/02, Cz, Pz). After
preprocessing, the continuous EEG signals are directly used
for feature extraction without temporal segmentation. Temporal
features (e.g., Hjorth parameters, line length, zero-crossing rate)
and spectral features are computed per electrode using Welch’s PSD
method, capturing band-specific activity in delta, theta, alpha, beta,
and gamma ranges. Electrode-wise features are then concatenated
in a fixed 10-20 order, and spatial structure is modeled using
enhanced common spatial patterns (E-CSP) to exploit inter-
electrode covariance relationships and highlight focal seizure
activity. The resulting temporal, spectral, and spatial descriptors are
combined to form the final EEG feature vector for each recording.

3.2.1 Extraction of EEG-based features

EEG signals provide valuable information about brain activity
through electrical impulses recorded over time. Extracting
meaningful features from the preprocessed signals Mfye, is
essential for accurately detecting epileptic seizures. The extraction
process focuses on capturing different aspects of the EEG that
reflect seizure-related changes in brain function.

3.2.1.1 Spatial features

Spatial features (Zeng et al., 2021) from EEG signals capture
the distribution and interaction of electrical activity across different
regions of the brain. Since seizures often originate in specific
areas and can spread to neighboring regions, analyzing the spatial
patterns of EEG channels helps identify the location and extent
of abnormal brain activity. For this purpose, CNN-based spatial
features are extracted S;. These features reflect how signals from
different electrodes relate to each other in space, providing insights
into the spatial organization of seizure events. By examining these
spatial dynamics, seizure-related patterns can be more accurately
detected and localized.

3.2.1.2 Temporal features

Temporal features (Zeng et al., 2021) describe how EEG signals
change over time, capturing the dynamic behavior of brain activity.
Since epileptic seizures are characterized by sudden and irregular
changes in signal patterns, analyzing temporal aspects such as signal
amplitude, duration, variance, and waveform shape can provide
crucial information. To achieve this, Bi-LSTM-based temporal
features are extracted as S. These features help identify transient
events, rhythmic discharges, or spikes that occur during seizure
episodes. By studying the time-domain characteristics of the EEG, it
becomes possible to detect the progression, onset, and termination
of seizures more accurately.
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3.2.1.3 Spectral features

Spectral roll-off (Chandwadkar and Sutaone, 2012) refers
to the frequency below which a fixed percentage of the
total spectral power lies. This feature S3is commonly used to
understand the imbalance or tilt in the frequency content of a
signal window.

3.2.1.4 Enhanced common spatial pattern (E-CSP)
Common spatial pattern (CSP) (Jiang et al, 2018) is a

identify filters

that enhance variance for one class while simultaneously

supervised technique designed to spatial

reducing it for the opposite class. It wuses the average
concentration level as a reference baseline to better capture
task-related changes. It involves centering the task-related
signal Zf“Sk by subtracting the average of the initial-state

signalZ!®*, resulting in a new signal V4 task a5 defined in
Equation 11.

1

k
1+ e_qus

(amn

7% = sigmoid (Zf“k) =

This adjustment emphasizes changes in concentration after
task onset. The centered signal is then passed through a sigmoid
function, compressing its range into [0, 1] for normalization
and stability, making the features more robust for classification.
In E-CSP, this non-linear activation helps reduce the effect of
noise or outliers and ensures the features are bounded and
stable for learning. All frequency components are considered
equally, without frequency weighting, which may introduce
noise or irrelevant information. To address this, an enhanced
common spatial pattern (E-CSP) is suggested that adjusts the
activation function. The formulation of E-CSP is defined as
in Equation 12.

newZ 1% = swish (Z f’”k) (12)
S task . D task . >, task
where Z; = softsign| Z; which means Z;
%{u&k A task - . . 3
i—. Here, 7Z;*" is the normalized signal by subtracting
1+ Zﬁusk

the average of the resting-state signal (RSS), and it is defined

task __  Rs
as ZZ 7 The mean of the RSS is ks

oRs
% filzfs and the standard deviation of the RSS is o® =

2 . . .
\/ ﬁ Zfil (ztRS — ;/.RS) . Next, pewZ ;“Sk is used as the input to
the objective function of the E-CSP algorithm, which seeks
to maximize the ratio of the squared averages between two

A
7 quk

signal sets. The conventional formulation is given below in
Equation 13.

2
1/'!1 Ziekl o' newZ ?Hk
H, (Z,w) = p

o sk
1/'12 Ziekz ‘“Tnewzias

1 Tc. -
_ Ziekl w Go a)Tglw
Iz Ziekz T Giw 0T Gyw

(13)
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To obtain robustness and training stability, Equation 13 is
improved as in Equation 14.

a)TG’la)

H,"" (Z,w) = -
"2, w) TGl

(14)

where H,"®" (Z, w) is the objective function, Z illustrates the
input data, & denotes the optimal spatial filter, w” represents the
transpose of w, G} and G, signify the covariance matrix for the
task and resting states and are defined as given in Equations 15,
16, respectively:

Gi=0-y)G +nJ (15)

Gy=01-1)G+y) (16)

where n; denotes the count of task class, k; the refers to
task signals, J the denotes identity matrix of Grand sthape,
respectively, and Wy, (f) denotes the frequency weighting
function as defined in Equation 17. Here, f denotes frequency,
Af indicates bandwidth, f; denotes center frequency of the band,
andyj, y, denotes the tuning parameter.

Wieq () = (17)

;

T
Additionally, G; = % Yk, (Wﬁeq (f) newZ ﬁask (new 7 ;ask) )

14k

T
and G, = i Zi:kz (Wfreq (f) -newZ, ;ask (newZ ;ask) ) Here,

ny denotes the count of the resting state class and ky refers to
resting-state signals.

The filter is derived using singular value decomposition,
as shown in Equations 18, 19 represents the transformation

of newé f”Skintoyf.
(G 7'G1) wy = ey (18)
i T  task
)’i = newZi (19)

Finally, the mean of each filtered signal is extracted as S4. Thus,
the extraction of signal-based features is collectively represented
as SF = [S], Sz, 53, 54].

3.2.2 Extraction of fMRI-based features

Feature extraction from preprocessed fMRI images Wfpey
involves identifying patterns in brain activity that are spatially
distributed and relevant to seizure events. Unlike EEG, which
captures electrical activity over time, fMRI measures changes in
blood flow (hemodynamic responses), providing high-resolution
spatial information about which brain areas are active. The
extraction process focuses on deep features and PHOG features to
recognize seizure-related changes in brain function.
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3.2.2.1 Deep features

Deep learning techniques are commonly employed to
automatically learn hierarchical features I; from preprocessed
imageWf,ew. These deep features uncover intricate and abstract
spatial patterns that traditional methods may overlook, aiding in
the identification of brain regions involved in seizure activity.

ResNet: Residual network (ResNet) (Liang, 2020) is a deep
convolutional neural network that uses residual, or “skip,
connections to address the vanishing gradient issue common
in very deep models. These connections help the network
learn identity functions, facilitating the training of much deeper
architectures. ResNet extracts features hierarchically, beginning
with basic spatial elements like edges and textures in the early
layers, and advancing to more abstract, high-level representations
in deeper layers. These extracted features are valuable for
detecting intricate spatial abnormalities in fMRI scans associated
with seizures.

VGG16: the VGG16 architecture (Tammina, 2019) consists of
16 layers and is recognized for its clean and uniform structure
using small 3x3 convolution filters. This simplicity allows it to
effectively learn detailed spatial features. When used for feature
extraction, VGG16 captures hierarchical representations from basic
textures to complex shapes and areas of interest. These features are
valuable for identifying abnormal spatial patterns in fMRI scans
linked to seizures.

3.2.2.2 Smoothened pyramid histogram of oriented
gradients (S-PHOG)

Pyramid histogram of oriented gradients (PHOG) (Saidani
and Kacem Echi, 2014) augments HOG features with spatial
pyramid matching to encode shape and spatial structure. The
preprocessed image Wfy,,, is hierarchically partitioned into finer
grids, doubling splits per axis at each level, with gradient data in
each region forming the pyramid. However, gradient computation
is highly susceptible to noise, which can significantly distort both
gradient magnitude and orientation. This, in turn, degrades feature
quality, resulting in reduced robustness and overall performance.
To overcome this limitation, the smoothened pyramid histogram
of oriented gradients (S-PHOG) is proposed. In the proposed
method, smoothing is implicitly incorporated prior to gradient
computation to minimize the effect of noise and improve gradient
consistency. This helps enhance the stability and reliability of the
orientation features extracted in subsequent stages. The S-PHOG
process includes the following steps to obtain the normalized final
S-PHOG descriptor I,.

Step 1-Proposed gradient computation: conventionally, this
method employs one-dimensional centered discrete derivative
masks in both vertical and horizontal directions. These masks are
used to filter the grayscale image, as illustrated in Equation 20.
Here, dyand dyrepresents x and yderivatives of image Wy, using
a convolution operation, accordingly. The gradient of Ayand A,is
formulated as in Equations 21, 22, accordingly.

(20

Frontiersin Artificial Intelligence

10.3389/frai.2025.1679218

Ay = anew * dy (21)

Ay = Whiew * dy, (22)

The method mainly captures edge and gradient details, which
limits its ability to represent complex textures or patterns. As a
result, it may miss important features relevant to certain tasks. To
avoid this problem, the gradient formulation needs to be updated
as in Equations 23, 24, respectively.

Axlmp = (anew) X dy (23)

smooth

A)’Imp = (Wf”ew)smouth x d)’ (24)

where (Wf”ew)smoo h
computed using Equation 25. Here, G, denotes the Gaussian kernel

denotes the Gaussian smoothening image,

with standard deviation o.

(Wf"ew)smooth = Wfiew X Go (25)

Furthermore, the gradient magnitude and orientation are
determined as outlined in Equations 26, 27, respectively.

A= /A% +A2 (26)
A)’
Ap = arctan — 27)

X

To obtain stable and reliable gradient computation, the gradient
magnitude and orientation formulation are updated as shown in
Equations 28, 29, respectively.

A (i,f)
Apew (i,) = ———— (28)
e ( ]) Elocal (l’]) +e
newAo = arctan (?) (29)
Uy

imp\ 2 o\ 2
\/ (A;W) +(Atymp) s Elocal (b]) =
. 2 . 2
> (A;mP) +(A;,m‘g ) . Neigh (i,j)denotes the local
(xy)€Neigh(i])
neighborhood around the pixel (i,j) and & indicates a small

where A(i,j) =

persistent value to avoid division by zero. Additionally, the average
vectors in the neighborhood is Uy = mean (vy) and vy is computed
as vy = cos(4,), the average vectors in the neighborhood

Uy = mean (Uy) and vy is computed as v, = sin (A,).
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Seizure Detection via S-
HPCGN
Ef" GhostNet
Detected output
Class 0 | | Class 1 |

Ef »  IAPCNet

FIGURE 2

Work flow of seizure detection via S-HPCGN.

Step 2: orientation binning builds a histogram per cell by
assigning pixel votes to orientation bins according to their gradient
directions. If gradients are treated as unsigned, the bins range from
0 to 180°; if signed, the range extends to 360°.

Step 3: the first matrix holds the orientation values assigned
to the histogram bins, and the second stores the related
gradient magnitudes.

Step 4: HOG features are first extracted over the entire image
using Z orientation bins, with each bin counting pixels within a
particular angle range. Moreover, the image is then divided into
four parts, and HOG descriptors are designed for each. This process
is repeated across pyramid levels: level 0 yields a Z-vector, and
Level 1 yields a Z-vector. The S-PHOG descriptor is formed by
merging histograms from each pyramid level into one combined
vector, aggregating features from all scales.

Step 5: normalization of the S-PHOG descriptor guarantees
that the sum of its components equals one, thereby mitigating
the influence of varying image sizes or pixel densities. Then, the
extracted S-PHOG-based feature is represented as I,.

Thus, the extraction of fMRI-based image features is
represented as IF = [Ij,]z]. Moreover, the entire extracted
feature from both the preprocessed image and signal is
signified asEf = [IF, SF].

3.3 Seizure detection via soft voting-based
hybrid parallel convolutional-GhostNet
(S-HPCGN)

Hybrid model-based seizure detection improves accuracy by
combining multiple classifiers that independently train on the
extracted features. The workflow of S-HPCGN is illustrated in
Figure 2, where an improved attention-based parallel convolutional
neural network (IAPCNet) and GhostNet, each process the
extracted features Ef separately to learn seizure-related patterns.
Their individual predictions are then combined using a soft voting
mechanism, which averages the confidence scores from both
classifiers (PNs. and GNg,) and chooses the class with the highest
overall probability as “0”-Healthy or “1”-Unhealthy. This approach
leverages the unique strengths of each classifier and integrates

Frontiersin Artificial Intelligence

10.3389/frai.2025.1679218

their decisions, resulting in a more robust and precise seizure
detection system.

Figure 2 shows the workflow of seizure detection via S-
HPCGN. The hybrid design integrates IAPCNet and GhostNet
in a parallel configuration that allows each model to specialize
in distinct aspects of multimodal feature learning. IAPCNet
extracts context-enhanced temporal-spatial interactions through
its attention-driven dual-path encoding, whereas GhostNet
contributes computationally efficient intrinsic feature expansion.
The modality-adaptive fusion layer aligns heterogeneous feature
maps by projecting them into a shared latent domain that
preserves cross-modal consistency. This strategy enables the
combined architecture to exploit both dense semantic cues and
lightweight structural variations, producing a more expressive
and stable representation compared to single-model or sequential
integration methods.

3.3.1 Improved attention-based parallel
convolutional neural network (IAPCNet)

The parallel convolutional network (Ye et al., 2023) architecture
for epilepsy seizure detection simultaneously processes extracted
features Ef through two distinct branches: a 1D convolutional
path that captures temporal patterns from Ef with convolution
and max-pooling layers, and a 2D convolutional path that extracts
spatial features from Ef using convolution and max-pooling layers.
To incorporate both temporal and spatial dynamics, the outputs
from each branch are fused via concatenation. This combined
feature representation passes through several fully connected layers
interspersed with dropout to prevent overfitting, before reaching
a softmax layer that outputs the probabilities of seizure vs. non-
seizure classes. The inability of conventional methods to properly
account for the relevance of individual channels often causes a
drop in model accuracy. Moreover, standard batch normalization
(BN) does not adaptively adjust feature maps, potentially resulting
in less stable training and suboptimal performance. Additionally,
using conventional activation functions may not offer the flexibility
required for complex tasks, limiting the model’s effectiveness. To
address these limitations, an improved attention-based parallel
convolutional neural network (IAPCNet) is proposed that modifies
the activation function to stabilize the inputs.

As depicted in Figure 3, the proposed IAPCNet architecture
processes extracted EEG and fMRI features through parallel 1D and
2D branches to effectively capture temporal and spatial patterns
relevant to seizure activity. In both branches, the input features
are first passed through depth-wise convolution (DwConv) layers
to reduce computational complexity while preserving essential
information. Each DwConv layer is followed by an Updated Batch
Normalization (UBN) module, which enhances training stability
and feature representation by adaptively adjusting normalization
across channels.

3.3.1.1 Updated batch normalization (UBN)

Batch Normalization (Ziaee and Cano, 2022) improves neural
network training by normalizing layer inputs to have zero mean
and unit variance, based on mini-batch statistics. The standard
form of BN is defined as in Equation 30.
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ID-CNN branch

FIGURE 3
Structural layout of IAPCNet model.

Fusion Laver

P rEL Rl
S| PrE— Y i
AR S
- & !
HEARH B

(k)

M BN

2
>+8

5 ® _

(k)

(GBN

(30)

To introduce additional regularization and stability during
training, the BN is upgraded as in Equation 31.

Q]

x®) — BN

x Q(x) (31)

. k
where x; denotes the prior layer feature map, /‘1(313 denotes the

(%)

OBN
of x; as defined in Equation 33, and Q (x) is the mixed pooling
with Softplus-tanh-GeLU-ELU Normalization (StGEN) as defined

in Equation 34.

2
mean of x; as defined in Equation 32, ( ) denotes the mean

(K _ 1

m
MpN = ; Zi:l Xi (32)
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The mixed pooling method (Zafar et al., 2022) integrates the
advantages of both max pooling and average pooling by integrating
a weight factor x to balance the two schemes as in Equation 35.

) =10 x f (%) (35)

where f (x) denotes StGE as defined in Equation 36 and f” (x)
refers to attention-based normalization as defined in Equation 37.

Foo = x. tanh (softplus (x)) , x>0 (36)
@ .ELU (x) + 0.GELU (x), x <20
/ X— [ (x)
f o= W. (1 + soft max (wl.x + b)) (37)
where
softplus(x) = log(1 + €), ELU(x) = © xz0
w(e*—1), x<0
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GELU denotes Gaussian error linear unit, and @, 9 denotes a
scaling factor (0, 1) that is computed using a piecewise chaotic map
function as defined in Equation 38. Here, x,and g represents the
parameter in the range (0, 1).

=, Xp < q

Xn+1 = (38)

—q° Xn 2 4

After performing UBN, the tanh activation function is applied,
introducing non-linearity and offering smooth gradients with
improved flexibility over conventional activations. Max pooling
layers are then applied to reduce dimensionality and highlight
dominant features. The sequence of DwConv, UBN, tanh, and
pooling is repeated to deepen feature learning. Following this,
an SPCII Attention module in each path emphasizes the most
informative feature regions, allowing the network to focus on
critical seizure-related patterns.

3.3.1.2 SPCII Attention module

This module (Wang et al., 2024) is engineered to refine feature
maps by generating adaptive spatial attention across height and
width dimensions. It takes an input feature map with dimension
(C x H x W) and processes it through two parallel branches:
one dedicated to height attention and the other to width attention.
Each branch employs a sequence of spatial aggregation operations
(AP(H) , AP(W), MP(H), MP(W)), followed by concatenation and 2D
convolution to learn robust feature representations. These steps are
further refined with batch normalization, ReLU activation, and a
second set of aggregation operations, culminating in element-wise
addition to combine diverse spatial contexts.

The refined spatial features from each branch then pass through
an adaptive cross-channel interactions (ACCI) 1D operation and a
Sigmoid activation, producing attention maps py (for height) and
pw (for width), with values ranging from 0 to 1. Finally, these
attention maps are used in the “Re-weight” block to adaptively
scale the original input feature map. This re-weighting mechanism,
leveraging the generated spatial attention, allows the network
to enhance informative regions while suppressing less relevant
ones, thereby improving the overall feature representation for
downstream tasks.

Further, the outputs from the 1D and 2D branches are
fused at the fusion layer, integrating both temporal and spatial
cues. The combined representation is then passed through three
fully connected (FC) layers, with a dropout layer after the first
FC to prevent overfitting. Finally, a softmax layer produces the
probability distribution as PNs. over seizure and non-seizure
classes, enabling accurate and robust classification. This dual-path,
attention-augmented design ensures effective multimodal feature
learning and seizure detection.

3.3.2 GhostNet

GhostNet (Liao et al, 2023) is a compact convolutional
neural network that focuses on efficiently producing abundant
feature maps with minimal computational effort. Standard
convolution operations often lead to redundant information
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and heavy processing demands, which can limit their use
in resource-restricted environments or real-time applications.
GhostNet addresses this inefficiency by introducing the concept
of “ghost” features, cost-effective feature maps generated from
a smaller set of intrinsic feature maps through inexpensive
linear transformations, such as depth-wise convolutions or simple
linear operations.

GhostNet
decreases the parameter count and the quantity of computation

Leveraging ghost feature maps, significantly
needed, without reducing the network’s representational power.
This design achieves a balance where the model remains
highly accurate but is lighter and faster than standard CNN
architectures. Its efficient structure makes it especially useful
for real-time, low-latency tasks such as seizure detection
detection
GhostNet’s
lightweight and efficient design makes it appropriate for

from featuresEf, where timely and dependable

of abnormal brain function is vital. Moreover,
use on devices with limited computational resources, such
as portable or wearable health monitoring systems. The
predicted scores from GhostNet are denoted asGNs.. This
capability helps bring advanced seizure detection technology
beyond hospitals and clinics, improving accessibility for
patients in everyday settings. The model’s excellent balance
of speed, compactness, and accuracy highlights how smart
network architecture can enhance deep learning’s practical use

in healthcare.

3.3.3 Soft voting mechanism

In soft voting (Manconi et al, 2022), the predictions
from several classifiers are integrated by averaging their
confidence scores (probabilities) for each possible class.
Rather than simply picking the class with the most votes,
this approach selects the class with the highest combined
probability,

final prediction.

leading to a more refined and informed

For seizure detection, once multiple classifiers such as improved
attention-based parallel convolutional neural network (IAPCNet)
and GhostNet have been independently trained on the feature
set, soft voting aggregates the probability outputs for seizure
and non-seizure categories from each classifier. It averages these
probabilities to form a final decision, leveraging each model’s
prediction confidence rather than relying solely on their categorical
outcomes. The formulation of the soft voting policy can be defined

as in Equation 39.

D
!
Sv* = arg ;nax E . Vi ¢ (%) (39)

where D represents two classifiers like IAPCNet and GhostNet,
Y¥; denotes weights of both classifiers, and cé (x) denotes models
(TAPCNet and GhostNet).

Thus, this approach provides a more subtle and often
improved detection performance by accounting for the
varying certainty of each classifier and provides better seizure
detection outcomes.
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TABLE 2 Hyperparameter settings and selection strategy used for
optimizing the proposed HPG-ESD model.

Hyperparameter Value Selection method

Learning rate 0.001 Cross-validation tuning

Optimizer Adam Compared SGD / RMSprop /
Adam

Batch size 32 Grid search

LSTM units 64 CV comparison (32/64/128)

Dense units 128 Best validation accuracy

Dropout 0.3 Overfitting prevention

Epochs 100 Early stopping applied

Kernel size 3x3x3 Standard setting

Filters 32,64 Best validation performance

Activation ReLU Standard practice

Pooling MaxPool3D Standard practice

Batch size (image 16 GPU memory constraints

stream)

Loss function binary_crossentropy | Standard for 2-class problems

Train/Test Split 80/20 Common and acceptable

Cross-validation Five-Fold Strengthens reliability

4 Results and discussion

4.1 Simulation procedure

The proposed Epilepsy Seizure Detection system using EEG
and fMRI modalities was simulated using Python 3.7. The
processor employed was “11th Gen Intel(R) Core(TM) i5-1135G7
@ 2.40GHz 2 2.42 GHz,” and the installed RAM size was 16.0 GB.
For data analysis, the Temporal Lobe Epilepsy—UNAM Dataset!
was employed for the fMRI modality, while the CHB-MIT Scalp
EEG Database? was used for the EEG modality.

To avoid data leakage and ensure fair evaluation, the dataset
was divided into a three-way split consisting of 70% training,
15% validation, and 15% testing. The validation set was used
exclusively for hyperparameter tuning and early stopping, while the
test set was fixed and used only for final performance assessment.
Experiments reported at 60%, 70%, 80%, and 90% “training
data” were conducted by varying the proportion of the training
subset during ablation and sensitivity analysis, while the validation
and test partitions remained unchanged. This ensures that all
final metrics reflect model performance on unseen data. Table 2
shows the hyperparameter settings and selection strategy used for
optimizing the proposed HPG-ESD model.

1 https://openneuro.org/datasets/ds004469/versions/1.1.2
2 https://www.kaggle.com/datasets/masahirogotoh/mit-chb-processed?

select=signal_samples.npy
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4.2 Overview of the datasets

4.2.1 Temporal lobe epilepsy—UNAM dataset
description

The UNAM dataset contains EEG-fMRI recordings from
patients with temporal lobe epilepsy (TLE) and healthy controls.
Specifically, it includes 52 participants, divided equally into two
classes: 26 epileptic patients and 26 healthy controls. Epileptic
patients were recruited from outpatient epilepsy clinics at Hospital
General de México, Mexico City, and Hospital Central Dr.
Ignacio Morones Prieto, San Luis Potosi, México. Diagnoses were
confirmed by neurologists according to ILAE standards, using
clinical information, surface EEG, and conventional neuroimaging.
The control group comprised healthy volunteers matched for age
and education (age 33 =+ 12 years, 17 women), with no history of
neurological or psychiatric disorders. All participants were right-
handed. For this study, a total of 2,500 fMRI samples were used,
equally divided between the Healthy (Label 0) and Unhealthy
(Label 1) classes, with 1,250 samples per class.

4.2.2 CHB-MIT scalp EEG dataset description

The CHB-MIT dataset contains continuous scalp EEG
recordings from 24 pediatric participants. All participants
contributed to both classes, as seizure and non-seizure periods
were extracted from the same subjects:

e Epileptic (Seizure) class: all 24 participants with annotated
seizure recordings.

e Non-epileptic (non-seizure) class: the same 24 participants
during non-seizure periods.

EEG signals were acquired at a sampling frequency of 256 Hz
using the standard 10-20 electrode placement system, with
reference electrodes at [insert reference]. The signals were stored
8*256), and
corresponding labels were stored in 1S_sz.npy. For this study,

as 8-s segments across 18 channels (N x 18 x

a total of 2,500 EEG samples were used, equally divided between
Healthy (Label 0) and Unhealthy (Label 1) classes (1,250 samples
per class).

4.3 Feature extraction and dimensionality

4.3.1 EEG features

Features were extracted directly from continuous EEG
recordings without additional segmentation. For each 8-s time
window per electrode:

e Spectral features: Delta, Theta, Alpha, Beta, Gamma — 5 x
22 electrodes = 110 features

e Temporal features: Hjorth Activity, Mobility, Complexity,
Line Length, Zero-Crossing Rate — 5 x 22 electrodes =
110 features

e Spatial features: Enhanced Common Spatial Patterns (E-CSP)
— 32 features
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Total EEG feature dimensionality per window: 252 features.

4.3.2 fMRI features
For fMRI, features were extracted using a 3D CNN with
statistical embedding:

e Gray matter activation descriptors — 256 features
e Regional temporal lobe connectivity features — 128 features

Total fMRI feature dimensionality per subject: 384 features.

4.4 Performance analysis

An exhaustive comparative evaluation was conducted to
analyze the effectiveness of the S-HPCGN approach for epilepsy
seizure detection using EEG and fMRI modalities. The assessment
includes a wide range of performance metrics, including “accuracy,
precision, sensitivity, specificity, FNR, FPR, Fl-score, MCC, and
NPV.” In addition, an ablation study and statistical analysis were
performed to further validate the robustness of the approach.
The S-HPCGN approach was compared with state-of-the-art
methods like CNN-SVM (Mohammad and Al-Ahmadi, 2023) as
well as traditional methods such as PolyNet, Bi-LSTM, LinkNet,
SqueezeNet, and LeNet. Both the S-HPCGN and traditional
schemes were evaluated using the temporal lobe epilepsy—UNAM
and CHB-MIT Scalp EEG datasets.

4.5 Preprocessing analysis

Figure 4 presents a comparative visualization of original images
alongside the images after preprocessing using various filtering
methods such as Gaussian, Median, Conventional Wiener, and
AW-WE. These preprocessing approaches are significant for
reducing noise and improving the quality of fMRI data for further
analysis. Among the models, AW-WF demonstrates excellent
performance, showing improved preservation of structural details
while effectively reducing background noise. Compared to
conventional methods, it achieves a better balance between
smoothing and edge retention.

Figure 5 displays the original EEG signal along with the
corresponding preprocessed results using four different methods:
conventional median, low pass filter, Wiener, and G-MF. Notably,
G-MF achieved superior preprocessed outcomes, demonstrating a
more effective exclusion of artifacts and noise without distorting
the underlying EEG signal. Compared to existing approaches,
G-MF provided more reliable and robust results across various
EEG signals.

4.5.1 Analysis on PSNR and SSIM

The performance of AW-WF for epilepsy seizure detection
using the fMRI modality has been evaluated using PSNR
and SSIM. To assess its efficiency, the AW-WF is compared
against conventional filtering methods such as Gaussian,

Conventional Wiener, and Median, as summarized in Table 3.
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Evaluating the PSNR metricc, AW-WF achieved the highest
PSNR value of 39.588 dB,
reduction and signal preservation capabilities. In contrast,

indicating exceptional noise
Conventional Wiener, Gaussian, and Median scored lower
PSNR values of 36.487, 33.498, and 34.669 dB, respectively.
Additionally, AW-WF peak SSIM
0.922, indicating improved image quality. In comparison,
methods SSIM  values, with
Conventional Wiener at 0.904, Gaussian at 0.867, and Median at

0.887, respectively.

attained a score of

traditional recorded lower

4.5.2 Analysis on SNR

Table 4 presents a comparative examination of the SNR metric
for Epilepsy Seizure Detection via EEG modality. This study
compares the SNR outcomes of G-MF against existing filtering
methods such as the conventional median, Wiener, and low-
pass filter. The G-MF attained the highest SNR of 8.003 dB,
while the established approaches, including the conventional
median, Wiener, and low-pass filter, recorded comparatively
lower SNR values of 2.910, 0.243, and 0.396 dB, respectively.
The G-MF and AW-WF-based preprocessing techniques aim
to enhance the quality of WWG signals and fMRI images.
These methods employ a Gaussian filter and a Hybrid adaptive
weighting function to preserve sharp transitions and improve
performance.

4.6 Comparative analysis

To examine the efficacy of the approach for epilepsy seizure
detection using EEG and fMRI modalities, a comparative
assessment has been performed. The assessment contrasts
the performance of the S-HPCGN model against traditional
approaches, including CNN-SVM (Mohammad and Al-Ahmadi,
2023), PolyNet, Bi-LSTM, LinkNet, SqueezeNet, and LeNet. The
evaluation includes a variety of performance measures: positive,
negative, and neutral. The findings of this examination are
presented in Figures 6-8. To ensure reliable seizure detection,
the model is expected to achieve higher scores in the positive
and neutral metrics, reflecting improved accuracy and robustness
in recognizing epileptic events. With 60% training data, the
S-HPCGN scheme established a precision of 0.907, while the
traditional schemes demonstrated lower precision scores ranging
from 0.827 to 0.873. As the training data increased to 70 and
80%, the S-HPCGN further improved its precision scores to
0.918 and 0.940. Reaching 90% training data, the S-HPCGN
scheme attained the highest precision score of 0.964, indicating
its superior capability in detecting epilepsy seizures. In contrast,
the traditional methods exhibited lower precision values, with
CNN-SVM (Mohammad and Al-Ahmadi, 2023) at 0.917, PolyNet
at 0.907, Bi-LSTM at 0.937, LinkNet at 0.920, SqueezeNet at 0.910,
and LeNet at 0.905, respectively. Analyzing the Specificity metric,
the S-HPCGN approach achieved a maximum score of 0.941 at
80% training data, consistently surpassing traditional methods
such as CNN-SVM (Mohammad and Al-Ahmadi, 2023) (0.885),
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(b)

FIGURE 4

Comparison of different preprocessing techniques on fMRI data (a) Original Image (b) Gaussian (c) Median (d) Conventional Wiener, and (e) AW-WF.

PolyNet (0.896), Bi-LSTM (0.906), LinkNet (0.896), SqueezeNet
(0.878), and LeNet (0.875).

In examining the NPV metric, the S-HPCGN model
consistently achieved superior NPV values compared to
conventional methods across all training data. Specifically,
the S-HPCGN reached an NPV score of 0.926 with 70% training
data, demonstrating its effectiveness in epilepsy seizure detection.
In comparison, CNN-SVM (Mohammad and Al-Ahmadi,
2023), PolyNet, Bi-LSTM, LinkNet, SqueezeNet, and LeNet
recorded relatively lower NPV values ranging from 0.857 to
0.896. For effective epilepsy seizure detection, lower values in
the negative measure are desirable. With 90% training data,
the S-HPCGN approach achieved the lowest FPR rate of 0.035,
suggesting reduced error rates. By comparison, traditional
schemes like CNN-SVM (Mohammad and Al-Ahmadi, 2023),
PolyNet, Bi-LSTM, LinkNet, SqueezeNet, and LeNet achieved
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higher FPR scores of 0.083, 0.092, 0.065, 0.080, 0.095, and
0.096, respectively. The E-CSP and S-PHOG-based features
adopt an activation function with weighted frequencies and
Gaussian smoothing to avoid overfitting and sensitivity to minor
pixel variations.

4.7 Cross-validation evaluation protocol

To ensure unbiased performance estimation and eliminate
the risk of data leakage, a fivefold cross-validation strategy was
employed. The dataset was partitioned into five equally sized folds,
with four folds used for training and hyperparameter tuning in
each iteration, while the remaining fold served as the test fold.
This process was repeated five times, ensuring that each fold acted
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FIGURE 5

Comparison of different preprocessing techniques on EEG data (a) Original Signal (b) conventional median (c) low-pass filter (d) Wiener and (e) G-MF.

TABLE 3 PSNR and SSIM evaluation for AW-WF vs. traditional strategies.

TABLE 4 SNR analysis for G-MF vs. traditional approaches.

| Filter methods PSNR (dB) ssiv [l Methods SNR (dB) |
AW-WF 39.588 0.922 G-MF 8.003
Conventional Wiener 36.487 0.904 Conventional median 2.910
Gaussian 33.498 0.867 Wiener 0.243
Median 34.669 0.887 Low-Pass Filter 0.396

as a test set once. Final performance metrics were obtained by
averaging the results across all five folds, ensuring robust and
generalizable evaluation.

Table 5 presents the results of a five-fold cross-validation
experiment performed to ensure robust performance estimation
and eliminate the risk of data leakage associated with a two-
way split. In each fold, the dataset was independently partitioned
into training, validation, and testing subsets, with hyperparameters

Frontiersin Artificial Intelligence

tuned exclusively on the validation portion. The table reports
key performance metrics, including accuracy, F1-score, sensitivity,
specificity, NPV, precision, and MCC across all five folds,
demonstrating stable and consistent performance and confirming
that the proposed HPG-ESD model generalizes well across different
data partitions.

To ensure a rigorous evaluation and prevent data leakage, a
subject-independent data splitting strategy was used. All recordings
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TABLE 5 Five-fold cross-validation performance of the proposed HPG-ESD model.

Accuracy Fl-score Sensitivity Specificity Precision
Fold_1 0.928454 0.906599 0.896058 0.90734 0.955185 0.967518 0.893754
Fold_2 0.986071 0.896808 0.990991 0.919424 0.907949 0.908967 0.850052
Fold_3 0.964199 0.977618 0.977244 0.941476 0.923214 0.940423 0.839505
Fold_4 0.950866 0.951112 0.915234 0.932195 0.930636 0.948241 0.927889
Fold_5 0.906602 0.961807 0912182 0918123 0.939607 0.893645 0.929563

belonging to the same subject were grouped together, and
these subject-level groups were randomly assigned into training,
validation, and testing partitions without overlap. This guarantees
that data from any individual subject appears in only one split,
preventing the model from memorizing subject-specific patterns.
The dataset was first stratified to maintain proportional
representation of seizure and non-seizure samples across all folds.
Within each cross-validation iteration, the subject groups were
shuffled using a fixed random seed to ensure reproducibility.
The final configuration consisted of 70% of the subjects for
training, 15% for validation, and 15% for testing. Hyperparameters

Frontiersin Artificial Intelligence

were tuned exclusively on the validation set, while the test
set remained completely unseen until the final evaluation. This
protocol eliminates the possibility of session-level or subject-level
data leakage and ensures that all reported performance metrics
reflect true generalization to unseen subjects.

4.8 Statistical analysis on accuracy
The detailed statistical assessment of the S-HPCGN approach

in comparison to traditional methods like CNN-SVM (Mohammad
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TABLE 6 Statistical evaluation on accuracy.

Statistical S-HPCGN CNN-SVM

metrics

PolyNet

10.3389/frai.2025.1679218

Bi-LSTM LinkNet SqueezeNet LeNet

Minimum 0.918 0.846 0.832 0.862 0.857 0.845 0.832
Mean 0.935 0.885 0.865 0.886 0.886 0.877 0.871
Standard deviation 0.015 0.028 0.024 0.024 0.022 0.023 0.032
Median 0.932 0.887 0.868 0.882 0.885 0.877 0.868
Maximum 0.956 0.922 0.892 0.918 0.918 0.910 0.916

TABLE 7 Ablation analysis on HPG-ESD approach, HPG-ESD with existing PCNN, HPG-ESD with existing PHOG, HPG-ESD with existing CSP, HPG-ESD

with existing preprocessing, and HPG-ESD without feature extraction.

Metrics HPG-ESD HPG-ESD

with existing

HPG-ESD
with existing

HPG-ESD HPG-ESD

with existing

HPG-ESD without
feature extraction

with existing
)

PCNN PHOG preprocessing
Accuracy 0.941 0.925 0.917 0.920 0.922 0.921
Fl-score 0.941 0.903 0.879 0.889 0.893 0.891
FPR 0.061 0.079 0.092 0.086 0.084 0.085
Sensitivity 0.944 0913 0.896 0.903 0.906 0.905
FNR 0.056 0.087 0.104 0.097 0.094 0.095
Specificity 0.939 0.921 0.908 0.914 0.916 0915
NPV 0.944 0.906 0.884 0.893 0.897 0.895
Precision 0.939 0.900 0.883 0.890 0.893 0.891
MCC 0.883 0.887 0.893 0.890 0.890 0.890

and Al-Ahmadi, 2023), PolyNet, Bi-LSTM, LinkNet, SqueezeNet,
and LeNet for epilepsy seizure detection using EEG and fMRI
modalities is illustrated in Table 6. Considering the maximum
statistical metric, the S-HPCGN scheme achieved the highest
accuracy rate of 0.956, surpassing traditional approaches such as
CNN-SVM (Mohammad and Al-Ahmadi, 2023) (0.922), PolyNet
(0.892), Bi-LSTM (0.918), SqueezeNet (0.910), and LeNet (0.916),
which exhibited comparatively lower performance. Additionally,
the S-HPCGN model maintained a strong performance with a
notable accuracy score of 0.871, indicating its effectiveness in
epilepsy seizure detection. In comparison, PolyNet and LeNet
exhibited the lowest accuracies of 0.868, while SqueezeNet showed
an accuracy of 0.877. The CNN-SVM (Mohammad and Al-
Ahmadi, 2023), Bi-LSTM, and LinkNet recorded accuracies of
0.887, 0.882, and 0.885, respectively. The S-HPCGN model
integrates IAPCNet and GhostNet models; each of these models
trains the extracted features and offers prediction scores to compute
the soft voting strategy. This method provides better detection
outcomes with advanced probability classification.

4.9 Ablation study

Table 7 presents the outcomes of the ablation evaluation
conducted to assess the efficacy of the HPG-ESD strategy for
epilepsy seizure detection using EEG and fMRI modalities.
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This evaluation contrasts the HPG-ESD approach with several
modified versions to analyze the individual contributions of
different components. In particular, the comparison includes
variations such as HPG-ESD with existing PCNN, HPG-ESD
with existing PHOG, HPG-ESD employing existing CSP, HPG-
ESD using existing preprocessing, and HPG-ESD excluding
feature extraction. The HPG-ESD attained a peak accuracy of
0.941, demonstrating its superior performance in epilepsy seizure
detection. Among the various evaluated configurations, HPG-
ESD with existing PHOG yielded the lowest accuracy rate of
0.917. Other variations, such as HPG-ESD with existing CSP
and HPG-ESD without feature extraction, achieved accuracies
of 0.920 and 0.921, respectively. The HPG-ESD using existing
PCNN and HPG-ESD employing existing preprocessing recorded
accuracy values of 0.925 and 0.922. In addition, the HPG-ESD
attained the minimum FNR score of 0.056, indicating its strong
capability in correctly identifying seizure events. In contrast, the
other variations, such as HPG-ESD with existing PCNN, HPG-
ESD with existing PHOG, HPG-ESD using existing CSP, HPG-
ESD employing existing preprocessing, and HPG-ESD excluding
feature extraction, exhibited higher FNR values of 0.087, 0.104,
0.097, 0.094, and 0.095, respectively.

The ablation findings indicate that each introduced component
contributes a distinct functional gain beyond conventional
enhancements. The removal of the proposed attention refinement,
smoothing-enhanced descriptors, or multimodal fusion strategy
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TABLE 8 Ablation study of individual modules in the proposed HPG-ESD
framework.

Model configuration Accuracy (%)

Baseline 86.1
Baseline + UBN 874
Baseline + StGEN 88.9
Baseline + TAPCNet 90.3
Baseline + GhostNet 91.8
HPG-ESD (Full Model) 94.1

TABLE 9 Computational efficiency comparison of baseline models and
the proposed HPG-ESD.

Method Parameter Inference = Complexity
count (M)  time (ms)  (GFLOPs)

LinkNet 2.50 11.5 14.5
GhostNet 0.75 5.2 9.8
SVM 0.01 0.02 2.1
LeNet 0.12 0.34 6.4
ShuffleNet 0.15 1.0 7.2
MBN-GhN 0.65 4.7 11.3
Bi-LSTM 0.95 32 13.1
CNN 0.90 25 102
Proposed 1.10 4.1 10.1
HPG-ESD

results in notable performance degradation, demonstrating the
structural dependency between these elements. The complete HPG-
ESD configuration exhibits improved discriminative margins and
reduced error propagation between modalities, confirming that the
architecture operates as an integrated structural innovation rather
than a simple aggregation of existing techniques.

The ablation analysis in Table 8 confirms that each module
contributes to performance improvement. Specifically, UBN and
StGEN independently increase accuracy by +1.3% and +2.8%,
respectively, validating their effectiveness and justifying their
inclusion in the proposed HPG-ESD architecture.

Table 9 presents the computational efficiency of the proposed
HPG-ESD framework compared with several commonly used
baseline models. The results show that HPG-ESD maintains a
balanced trade-off between accuracy and efficiency, requiring only
1.10 M parameters and achieving an inference time of 4.1 ms with
10.1 GFLOPs, making it more lightweight than deeper architectures
such as LinkNet and Bi-LSTM. While slightly heavier than models
like GhostNet or ShuffleNet, HPG-ESD provides significantly
improved multimodal feature learning capability at a modest
computational cost, demonstrating its suitability for real-time and
resource-constrained seizure detection applications.

The S-HPCGN model’s learning curves are shown in Figure 9,
illustrating how accuracy and loss change throughout training.
Training and validation accuracy both exhibit a steady increase,
indicating the model’s enhanced predictive capacity. The model
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Confusion matrix of the proposed HPG-ESD model.

retains consistent learning behavior across epochs, as evidenced
by the validation accuracy closely following the training curve.
Similarly, the training and validation loss curves steadily decrease,
indicating efficient optimization and convergence. The overall
pattern of the curves suggests that the model successfully learns
discriminative characteristics and improves performance over time.

Figure 10 displays the confusion matrix of the proposed HPG-
ESD model. The confusion matrix summarizes the classification
performance by comparing actual labels with predicted labels for
two classes: non-seizure and seizure. The model correctly identified
612 non-seizure samples and 520 seizure samples, indicating strong
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Accuracy comparison of EEG-only, fMRI-only, and HPG-ESD
models.

true-positive performance for both classes. It misclassified 46 non-
seizure instances as seizure and 25 seizure instances as non-
seizure, reflecting relatively low false-positive and false-negative
rates. Overall, the matrix demonstrates that the proposed model
achieves balanced and reliable detection across both categories,
supporting its robustness in distinguishing seizure events from
normal brain activity.

The Figure 11 illustrates the accuracy achieved by three
experimental settings: EEG-only, fMRI-only, and the proposed
HPG-ESD fusion approach. The EEG-only model achieves
moderate accuracy, while the fMRI-only model performs slightly
better, indicating its stronger spatial resolution. However, the
HPG-ESD fusion model outperforms both individual modalities,
achieving the highest accuracy due to its ability to combine the rich
temporal dynamics of EEG with the detailed spatial information
from fMRI. This demonstrates that multimodal fusion provides a
more comprehensive representation of neural activity, leading to
improved seizure detection performance.

The true-positive and false-positive rates of several baseline
models are compared with the proposed HPG-ESD using the
ROC curve shown in Figure 12. With an AUC of 0.83, LinkNet
performs the lowest, followed by GhostNet (0.85), SVM (0.87),
and LeNet (0.88), all of which indicate a decent capacity for
discrimination. With an AUC of 0.90 and MBN-GhN at 0.91,
ShuffleNet continues to improve. The AUC is 0.921 for Bi-LSTM
and 0.932 for CNN, which is somewhat better. With an AUC of
0.95, the proposed HPG-ESD model exhibits the best classification
performance, with a curve that is closest to the upper-left corner.
This numerical progression demonstrates that HPG-ESD greatly
outperforms current techniques in reliably differentiating between
seizure and non-seizure patients.

Figure 13 illustrates the external cross-dataset evaluation of
the HPG-ESD model, demonstrating its ability to generalize
across independent data sources. When trained on the CHB-
MIT dataset and tested on the UNAM dataset, the model
obtained an accuracy of 0.89, sensitivity of 0.85, specificity of
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0.86, and an Fl-score of 0.82, indicating strong transferability
across datasets with differing acquisition characteristics. In the
reverse direction, training on UNAM and testing on CHB-MIT,
the model achieved slightly lower but still consistent performance
(accuracy 0.82, sensitivity 0.79, specificity 0.81, Fl-score 0.80).
These results demonstrate that the HPG-ESD framework retains
stable discriminatory power even under cross-dataset conditions,
supporting its robustness and generalization capability beyond the
training distribution.

Figure 14 illustrates the five-fold cross-validation performance
of the HPG-ESD model, showing accuracy, sensitivity, specificity,
and F1-score across all folds. Both panels indicate consistent results
with only minor variations, demonstrating that the model performs
reliably across different subsets of the training data. The evaluations
on the EEG dataset (a) and the fMRI dataset (b) confirm that
the model does not rely on any specific fold to achieve strong
performance. These patterns highlight stable internal learning
behavior and uniform predictive capability throughout the cross-
validation process.
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Five-fold cross-validation results for (a) CHB-MIT EEG dataset and (b) UNAM fMRI dataset.
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5 Conclusion

This study proposed a novel hybrid parallel convolutional-
GhostNet model for epilepsy seizure detection (HPG-ESD). The
seizure detection framework began by collecting two types of
inputs: EEG signals and fMRI images. Both data types underwent
preprocessing to improve their quality and minimize noise, with
EEG signals refined using a Gauss-based median filter (G-MF) and
fMRI images processed with an adaptive weight-based Wiener filter
(AW-WFE). Following preprocessing, key features were extracted
from each modality to capture critical information related to
seizures. For EEG signals, spatial, temporal, and spectral features
were extracted along with an enhanced version of the common
spatial pattern (E-CSP) method to improve seizure discrimination.
For fMRI images, deep features were obtained in combination
with a Smoothened Pyramid Histogram of Oriented Gradients
(S-PHOG) descriptor to capture detailed spatial characteristics.
These extracted features were then input into a soft voting-
based hybrid parallel convolutional-GhostNet (S-HPCGN) model
that integrated an improved attention-based parallel convolutional
neural Network (IAPCNet) and GhostNet, allowing for effective
seizure detection by leveraging their combined capabilities. Finally,
the model outputs were combined using a soft voting technique,
which aggregated the predictions to deliver a more accurate
and reliable seizure detection result. With 90% of the training
data, the S-HPCGN approach achieved the lowest FPR rate of
0.035, suggesting reduced error rates. In comparison, traditional
schemes like CNN-SVM (Mohammad and Al-Ahmadi, 2023),
PolyNet, Bi-LSTM, LinkNet, SqueezeNet and LeNet accomplished
higher FPR scores of 0.083, 0.092, 0.065, 0.080, 0.095, and
0.096, respectively.

The present findings indicate that temporal-frequency feature
processing plays a critical role in improving seizure discrimination,
consistent with recent attention-based neuroimaging research.
Future work will integrate explicit temporal-frequency attention
modules such as Fourier or wavelet attention to further enhance
the selectivity of spatial, temporal, and spectral representations.
Moreover, extending the framework with non-linear attention-
driven feature extraction strategies (Wang et al., 2025b; Ke

Frontiersin Artificial Intelligence

et al,, 2023) provide deeper interpretability and more powerful
cross-modal fusion. Strengthening this direction will allow
the HPG-ESD architecture to better capture the intrinsic
neurophysiological dependencies present across EEG-fMRI
modalities. Future extensions may involve developing a unified
theoretical model for multimodal neuro-dynamics that analytically
describes the interaction between electrophysiological and
hemodynamic features. Such a formulation would support deeper
interpretability and further validate the architectural principles
underlying the proposed framework.
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