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Background: Post-operative ileus (POI) is a frequent complication after radical 
cystectomy (RC). Conventional scores capture only linear relations and have 
limited accuracy. Interpretable machine learning (ML) may improve early risk 
stratification.
Methods: In a single-centre real-world cohort (n = 1,062, 2013–2023), POI was 
defined by ≥2 standard clinical–radiological criteria. We extracted pre-operative 
comorbidities/medications, operative factors (approach, urinary diversion, 
lymph-node dissection, fluids, blood loss, nasogastric-tube placement) and 
first-day laboratory indices. After LASSO selection, five ML models were trained/
validated on a stratified split; discrimination (AUC), accuracy, precision, recall 
and Brier score were compared. SHAP delivered global and patient-level 
explanations.
Results: POI occurred in 28.9%. The back-propagation neural network performed 
best (AUC 0.828; accuracy 78.4%; Brier 0.143). Intra-operative nasogastric-tube 
placement and surgical approach dominated feature attribution, followed by 
medication history, lymph-node dissection, lymphocyte count and C-reactive 
protein. SHAP clarified feature effects and enabled interpretable, case-level risk 
summaries.
Conclusion: An interpretable ML model based on routinely captured peri-
operative variables accurately stratifies RC patients at risk for POI as early as 
postoperative day 0, outperforming existing nomograms and highlighting 
modifiable factors. Embedding this tool into electronic-health-record workflows 
could enable real-time alerts and risk-adapted management. Prospective 
multicentre validation is warranted.
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Introduction

In 2020, approximately 573,000 new cases of bladder cancer were reported globally, 
accounting for approximately 3.0% of all cancers, ranking tenth worldwide (Wéber et al., 
2024). In China, the incidence of bladder cancer was 7.03 per 100,000 people in 2019, showing 
an upward trend since 1990 (Xiang et al., 2022). Radical cystectomy (RC) remains the gold 
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standard treatment for muscle-invasive bladder cancer and is used to 
select high-risk, non-muscle-invasive tumors. Despite advances in 
perioperative care, postoperative ileus (POI) continues to complicate 
18–30% of cases, contributing to prolonged length of stay, higher 
readmission rates, and increased healthcare costs (Grilo et al., 2024). 
POI typically develops 3–5 days after surgery and is characterised by 
abdominal distension and delayed return of bowel function (Bragg et 
al., 2015; Nutt et al., 2018).

Understanding and management of POI remains limited 
because of its multifactorial etiology involving surgical techniques, 
patient characteristics, and early postoperative management (Lou 
et al., 2022). The multifactorial etiology of POI involves surgical 
methods, patient characteristics, and postoperative protocols. 
Previous studies have identified risk factors such as elevated 
preoperative creatinine, hypoalbuminemia, older age, lower BMI, 
and specific urinary diversion types (Meng et al., 2015; Tan et al., 
2019; Xue et al., 2021; Zhang et al., 2022; Sun et al., 2024). For 
example, Xue et al. (2021) proposed a point-based risk scale for POI 
in patients. However, these tools are often derived from highly 
selected cohorts or controlled trial environments, and may not 
reflect the heterogeneity of real-world practice, where patient 
comorbidities, surgeon preference, and resource availability vary 
widely across centers.

Machine-learning (ML) algorithms can learn complex, nonlinear 
relationships from high-dimensional data and frequently outperform 
traditional regression models in terms of predictive accuracy (Wang 
et al., 2023). By focusing on routinely captured preoperative data, 
intraoperative details, and early (<24 h) postoperative laboratory 
indices, an ML model can stratify POI risk on postoperative day 0–1, 
giving clinicians a practical window to intensify monitoring, optimize 
fluid therapy, and initiate targeted gastrointestinal management. 
Interpretable techniques, such as Shapley additive explanations 
(SHAP), further enable clinicians to visualize variable importance and 
gain biological insight (Greener et al., 2022; Zhou et al., 2024). 
Capturing real-world variability while providing actionable, time-
critical information can reduce patient burden and improve the 
quality of life (Dong et al., 2021).

Therefore, the present study aimed to develop and internally 
validate an explainable ML model for predicting POI in bladder 
cancer patients undergoing RC using an 11-year single-center real-
world cohort. We hypothesized that an interpretable ML framework 
would deliver higher predictive performance than traditional methods 
and provide clinically actionable insight for perioperative teams to 
prioritize timely, targeted management.

Methods

Setting and participants

This retrospective study included patients with RC from a single 
center (Sun Yat-sen University Cancer Center) between January 2013 
and December 2023. The inclusion criteria were adult patients 
(≥18 years of age) who underwent radical total vesicectomy for 
muscle-invasive bladder cancer via any surgical method (including 
open, laparoscopic, or robot-assisted procedures) and had complete 
clinical data, including routine blood tests and history records. Patients 
who underwent more than two surgeries during the same hospital stay, 

had severe psychiatric disorders or cognitive impairments, or had 
intestinal obstruction due to other diseases were excluded.

This study was conducted in accordance with the principles of the 
Declaration of Helsinki. Owing to the observational nature of the 
study and all data collected from medical records, the study was 
approved by the Ethics Committee of Sun Yat-sen University Cancer 
Center (Ethics Approval Number: B202400801), and written informed 
consent was waived.

Data collection

Clinical data and preoperative and intraoperative factors 
associated with POI were extracted from electronic medical records. 
The collected variables comprised demographics (sex, age, and body 
mass index), medical history, including previous gastrointestinal 
conditions (irritable bowel syndrome, chronic constipation, 
inflammatory bowel disease, or prior major abdominal/pelvic 
surgery), hypertension, diabetes, and preoperative medication history 
(μ-opioid agonists, anticholinergics, systemic corticosteroids, or 
prokinetic agents used within 30 days before surgery).

Surgical details captured included the operation method (open, 
conventional laparoscopy, or robot-assisted), type of urinary 
diversion, concurrent lymph node dissection, intraoperative 
metrics (crystalloid/colloid volume, red-blood-cell transfusion 
volume, blood loss, and nasogastric-tube placement), and early 
postoperative laboratory results obtained within 24 h (hemoglobin, 
platelet count, white blood cell and differential counts, C-reactive 
protein, creatinine, and albumin). Twenty-four-hour pelvic-
drainage volume was also recorded.

All predictors were selected because they are routinely available 
and have been reported to be significant correlates of POI in 
previous studies.

Definition of POI

POI was diagnosed if at least two of the following criteria were 
met: (Iskander, 2024) (1) absence of return of bowel function (e.g., 
bowel movement, flatus, defecation) on postoperative day 5 or later; 
(2) postoperative emesis or abdominal distension necessitating 
cessation of oral intake; and (3) multiple air-fluid levels observed on 
computed tomography or X-ray scans. Two researchers independently 
diagnosed POI.

Machine learning development 
process

Data preprocessing

One-hot encoding was applied to categorical variables, and 
numerical features were scaled using min-max normalization. The 
dependent variable ileus was used as the stratification target. Patients 
were randomly divided into training and test sets at a 70:30 ratio 
using stratified sampling based on the presence or absence of POI to 
ensure outcome balance and reduce selection bias. There were no 
missing data in this dataset.
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Algorithm training and validation

The dataset was randomly divided into a training set (70%) and a 
test set (30%) using stratified sampling based on the POI status. The 
training set was used for model development and hyperparameter 
tuning via five-fold cross validation. The final model performance was 
evaluated using a test set to simulate the real-world clinical applicability.

Multivariate analysis employed LASSO regression for variable 
selection, retaining features with non-zero coefficients at the optimal 
λ that maximized the AUC. These selected features were used to train 
five machine learning models: Support Vector Machine (SVM), 
Random Forest (RF), Backpropagation Neural Network (BPNN), 
Extreme Gradient Boosting (XGBoost), and K-Nearest 
Neighbors (KNN).

Model performance was evaluated using the test set by calculating 
the accuracy, precision, sensitivity, specificity, false-positive rate, and 
false-negative rate. Receiver operating characteristic (ROC) curves 
and confusion matrices were generated. Model interpretability was 
assessed using Shapley additive explanation (SHAP) analysis.

For the BPNN model, the architecture included an input layer 
(corresponding to the selected features), a single hidden layer with 10 
neurons using ReLU activation, and an output layer with a sigmoid 
activation function for binary classification. The hyperparameters 
were tuned via five-fold cross-validation using a grid search. Early 
stopping was applied to prevent overfitting and to enhance the 
reproducibility and robustness of the model.

To ensure transparency and reproducibility, model 
hyperparameters were optimized using grid search with five-fold 
cross-validation. The optimized configurations included the number 
of trees and maximum depth for RF, learning rate and depth for 
XGBoost, kernel and penalty parameter for SVM, and the number of 
neighbors for KNN. For the BPNN, a single hidden layer architecture 
with ReLU activation was employed. All random processes were 
controlled with random_state = 42.

Statistical analysis

The data analysis and model construction in this study are 
conducted using R software (version 4.3.2) and Python software 
(version 3.11.1). Continuous variables were summarized as mean ± 
standard deviation (x ± s) for normally distributed data or as median 
and interquartile range (IQR) for skewed distributions, as determined 
by the Shapiro–Wilk test. Categorical variables are presented as counts 
and percentages. Group comparisons were conducted using the 
independent samples t-test for normally distributed continuous 
variables and the Mann–Whitney U test for non-normally distributed 
data. Chi-square tests were used to analyze categorical data. For model 
evaluation, accuracy, sensitivity, precision, F1 score, and AUC were 
calculated. Statistical significance was defined as a two-tailed p < 0.05.

Results

Baseline characteristics

Between January 2013 and December 2023, 1,062 patients were 
included in this study, with ileus occurring in 307 patients (28.9%). The 

median age of the total patient population was 63 years, and 85.2% of 
the patients were male. A comparison of the demographic and clinical 
characteristics of the patients with and without ileus is shown in Table 1.

Feature selection

For feature selection, LASSO regression analysis was applied to 
the 11 variables identified as significant in the univariate analysis. This 
method, which regularizes coefficients to prevent overfitting, selects 
seven variables with non-zero coefficients, indicating their importance 
in predicting POI risk. These variables included operation history, 
medication history, operation method, lymphatic dissection, gastric 
tube placement, lymphocyte count, and C-reactive protein (CRP) 
level. The selected features are shown in Figure 1.

Performance evaluation of machine 
learning algorithms

Among the 1,062 patients, 743 were randomly allocated to the 
training set and 319 to the test set in a ratio of 70:30. There were no 
statistically significant differences in baseline clinical features between 
the training and verification groups (p > 0.05) (Table 2).

As shown in Figure 2, the confusion matrices indicate that 
Random Forest (RF) performs well in identifying positive cases, 
whereas the (SVM) shows high accuracy in detecting negative 
cases. The ROC curves in Figure 2 demonstrate that the (BPNN) 
achieved the highest AUC (0.828), followed closely by RF (0.8256), 
SVM, XGBoost, and KNN, with AUC values of 0.806, 0.794, and 
0.804, respectively. Figure 3 further compares the ROC 
curves of the models on the test set, where the BPNN 
maintained the highest AUC at 0.8277, suggesting robust 
predictive capability, whereas RF and XGBoost demonstrated 
competitive performance.

Table 3 provides detailed metrics for each model, highlighting 
that the BPNN had the highest accuracy (78.4%) and AUC (0.828). 
RF, with an AUC of 0.818, achieved the highest sensitivity (82.6%), 
making it advantageous for high-sensitivity scenarios. SVM 
showed a balanced performance with an AUC of 0.806 and an 
accuracy of 77.1%. Although XGBoost has a relatively high 
precision (0.667), its sensitivity is the lowest (17.4%), impacting its 
overall predictive power. In summary, the BPNN and RF models 
exhibit strong overall predictive performance, with the BPNN 
slightly leading to accuracy and AUC, whereas RF is preferable 
when sensitivity is prioritized.

Feature importance in POI

SHAP analysis was used to evaluate the importance of each feature 
in predicting POI (Figure 4). The analysis indicated that “Gastric tube” 
was the most significant predictive variable, with an average SHAP 
value of 0.09. This was followed by “Laparoscopic RC” and “Medication 
history” both of which had SHAP values of 0.08. “Lymphatic 
dissection” had a SHAP value of 0.04. “Lymph#” (lymphocyte count), 
“Intraoperative fluid intake,” and “CRP,” had SHAP values of 0.01, 
indicating a smaller contribution to the model’s prediction.
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TABLE 1  Comparison of demographic and clinical characteristics between patients with and without ileus.

Variables No Ileus (n = 755) Ileus (n = 307) p value

Demographics

 � Age (years), median (IQR) 63.00 (56.00–70.00) 63.00 (57.00–69.50) 0.806

 � BMI (kg/m2), median (IQR) 22.93 (21.09–24.90) 22.58 (20.37–24.50) 0.032

Gender, n (%) 0.866

 � Male 642 (85.0) 263 (85.7)

 � Female 113 (15.0) 44 (14.3)

Comorbidities & history

Hypertension, n (%) 0.087

 � No 553 (73.2) 241 (78.5)

 � Yes 202 (26.8) 66 (21.5)

Diabetes, n (%) 0.124

 � No 662 (87.7) 280 (91.2)

 � Yes 93 (12.3) 27 (8.8)

Previous GI conditions, n (%) 0.477

 � No 727 (96.3) 292 (95.1)

 � Yes 28 (3.7) 15 (4.9)

Medication history, n (%) <0.001

 � No 224 (29.7) 151 (49.2)

 � Yes 531 (70.3) 156 (50.8)

Surgery-related

 � Operation method, n (%) <0.001

 � Robot-assisted RC 185 (24.5) 17 (5.5)

 � Laparoscopic RC 560 (74.2) 289 (94.1)

 � Open RC 10 (1.3) 1 (0.3)

 � Urinary diversion, n (%) 0.910

 � Ileal conduit 548 (72.6) 223 (72.6)

 � Orthotopic neobladder 179 (23.7) 71 (23.1)

 � Cutaneous ureterostomy 28 (3.7) 13 (4.2)

Lymph-node dissection, n (%) <0.001

 � No 155 (20.5) 119 (38.8)

 � Yes 600 (79.5) 188 (61.2)

Hysterectomize, n (%) 0.310

 � No 690 (91.4) 287 (93.5)

 � Yes 65 (8.6) 20 (6.5)

Urethrectomy, n (%) 0.081

 � No 696 (92.2) 272 (88.6)

 � Yes 59 (7.8) 35 (11.4)

Intra-op NGT placement, n (%) <0.001

 � No 205 (27.2) 6 (2.0)

 � Yes 550 (72.8) 301 (98.0)

Intraoperative fluid intake (mL), median (IQR) 2,500 (2000–3,000) 2,500 (2000–3,200) <0.001

Blood loss (mL), median (IQR) 200 (100–400) 200 (100–500) 0.151

Early post-op labs

 � WBC (109/L), median (IQR) 6.79 (5.67–8.36) 6.94 (5.74–8.75) 0.224

(Continued)
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SHAP analysis results for key predictive 
features

Figure 5 summarizes the SHAP values for the top 12 variables in 
the BPNN model. “Gastric tube” and “Laparoscopic RC” were the most 
influential features that significantly impacted POI prediction. 
“Medication history” and “Lymphatic dissection” also contributed 
notably. Other features, such as “Lymph#,” “Intraoperative fluid intake,” 
and “CRP,” had smaller impacts, while variables like “BMI” showed 
minimal influence. The SHAP value distribution provides insights into 
the most critical factors for predicting postoperative ileus.

Interactive SHAP analysis of feature 
interactions

The interactive SHAP analysis demonstrated how the specific 
values of key features influenced the model’s POI predictions 
(Figure 6). Positive contributors included “Laparoscopic RC = 1” 
(laparoscopic surgery), “Gastric tube = 1” (presence of a gastric tube), 
“Lymphatic dissection = 0” (no lymphatic dissection), and 
“Medication history = 0” (no medication history), all of which were 
associated with an increased predicted risk of POI. In contrast, 

negative contributors included “Medication history = 1,” “Lymphatic 
dissection = 1,” as well as lower CRP and higher lymphocyte values. 
For instance, a lymphocyte count greater than 2.48 × 109/L or CRP 
lower than 1.34 mg/L was associated with reduced POI risk, reflecting 
model-derived inflection points rather than exact clinical thresholds. 
Notably, “Gastric tube = 1” and “Laparoscopic RC = 1” consistently 
exhibited strong positive SHAP values, while “Lymph# > 2.6” showed 
only a marginal negative effect on POI risk.

Discussion

In a retrospective analysis of 1,062 patients who underwent RC 
over an 11-year period at a large medical center, we observed a 
28.9% incidence of POI, which is consistent with a previous report 
(Grilo et al., 2024). We developed and internally validated an 
interpretable machine learning model (AUC = 0.828) that 
accurately predicted the risk of POI within 24 h after surgery. 
Compared to traditional regression-based nomograms, the machine 
learning model showed superior predictive performance by 
capturing complex nonlinear interactions among preoperative, 
intraoperative, and immediate postoperative variables. Key 
predictors identified via Shapley additive explanations included 

TABLE 1  (Continued)

Variables No Ileus (n = 755) Ileus (n = 307) p value

 � Lymphocytes (109/L), median (IQR) 1.72 (1.37–2.12) 1.60 (1.30–2.00) 0.030

 � Neutrophils (109/L), median (IQR) 4.20 (3.20–5.42) 4.40 (3.56–5.79) 0.011

 � Hb (g/L), median (IQR) 126.40 (111.50–140.00) 126 (113.00–140.00) 0.573

 � PLT# (109/L), median (IQR) 248 (203.00–307.00) 245 (201.50–307.50) 0.302

 � CRP (mg/L), median (IQR) 2.19 (0.99–6.24) 2.39 (1.19–8.20) 0.041

 � CRE (mmol/L), median (IQR) 83.20 (70.55–101.25) 83 (70.25–100.70) 0.733

 � ALB (g/L), median (IQR) 40.60 (37.80–43.20) 40 (37.50–42.60) 0.065

 � Pelvic drainage (mL), median (IQR) 250 (130–380) 250 (120–400) 0.961

Continuous variables are expressed as median (IQR); categorical variables as n (% within column). Differences were assessed with Mann–Whitney U tests (continuous) or χ2/Fisher exact tests 
(categorical); bold denotes p < 0.05. BMI, body-mass index; NGT, nasogastric tube; CRP, C-reactive protein. Medication history refers to μ-opioid agonists, anticholinergics, corticosteroids or 
pro-kinetic agents used ≤30 days pre-operatively. Previous GI conditions include IBS, chronic constipation, inflammatory bowel disease or prior major abdominal/pelvic surgery.

FIGURE 1

LASSO regression selects clinical features. LASSO regression analysis selecting clinical features for model training. (A) Regression coefficients of 
selected predictors. (B) Cross-validation plot indicating the optimal λ value where AUC is maximized.
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intraoperative nasogastric tube placement, surgical approach, 
medication history, lymph node dissection, lymphocyte count, and 
C-reactive protein level.

Our findings are consistent with those of previous studies in 
several key aspects while also providing novel insights. The observed 
POI incidence closely mirrors the findings of recent multicenter 
studies (Xue et al., 2021; Qi et al., 2022), supporting the external 
validity of our dataset. However, compared to previously developed 
nomograms, Xue et al. (2021) (AUC = 0.74) and Qi et al. (2022) 
(AUC = 0.76), our machine learning approach significantly improved 

the predictive accuracy, suggesting that nonlinear modeling enhances 
POI risk prediction following complex pelvic surgery. Similar 
performance improvements have been reported in machine learning 
studies on gastrointestinal surgery (Peters et al., 2017), further 
highlighting the broad applicability of these techniques in 
perioperative risk stratification.

Notably, SHAP-based model analysis provides new perspectives 
that challenge the conventional understanding. First, in our cohort, 
laparoscopic RC had a higher predictive weight for POI than open or 
robot-assisted RC, contrasting with the prevailing view that minimally 

TABLE 2  Training set vs. test set characteristics after variable trimming.

Variables Training (n = 743) Test (n = 319) p value

Demographics

 � Age (years), median (IQR) 63 (56–70) 63 (56–70) 0.860

 � BMI (kg/m2), median (IQR) 22.85 (20.76–24.83) 22.93 (21.10–24.80) 0.433

 � Gender (male), n (%) 638 (85.9) 267 (83.7) 0.413

Comorbidities & history

 � Hypertension (yes), n (%) 188 (25.3) 80 (25.1) 1.000

 � Diabetes (yes), n (%) 85 (11.4) 35 (11.0) 0.908

 � Previous GI conditions (yes), n (%) 31 (4.2) 12 (3.8) 0.888

 � Medication history (yes), n (%) 485 (65.3) 202 (63.3) 0.589

Surgery-related

 � Operation method, n (%) 0.678

 � Robot-assisted RC 140 (18.8) 62 (19.4)

 � Laparoscopic RC 594 (80.0) 255 (79.9)

 � Open RC 9 (1.2) 2 (0.6)

 � Urinary diversion, n (%) 0.270

 � Ileal conduit 529 (71.2) 242 (75.9)

 � Orthotopic neobladder 185 (24.9) 65 (20.4)

 � Cutaneous ureterostomy 29 (3.9) 12 (3.8)

 � Lymph-node dissection, n (%) 553 (74.4%) 235 (73.7%) 0.855

 � Hysterectomize, n (%) 57 (7.7%) 28 (8.8%) 0.627

 � Urethrectomy, n (%) 71 (9.6%) 23 (7.2%) 0.264

 � Intra-op NGT placement (yes), n (%) 599 (80.6) 252 (79.0) 0.601

 � Intraoperative fluid intake (ml), median (IQR) 2,500 (2000–3,000) 2,500 (2000–3,000) 0.567

 � Blood loss (mL), median (IQR) 200 (100–400) 200 (100–400) 0.532

Early post-op labs

 � WBC (109/L), median (IQR) 6.85 (5.71–8.43) 6.79 (5.59–8.54) 0.577

 � Lymphocytes (109/L), median (IQR) 1.70 (1.34–2.08) 1.70 (1.31–2.15) 0.937

 � Neutrophils (109/L), median (IQR) 4.29 (3.40–5.50) 4.20 (3.23–5.53) 0.507

 � Hb (g/L), median (IQR) 126 (112–140) 127 (112–140) 0.960

 � PLT# (109/L), median (IQR) 247 (203–306.70) 247 (202.50–309.50) 0.855

 � CRP (mg/L), median (IQR) 2.19 (0.99–6.40) 2.40 (1.15–7.02) 0.202

 � CRE (mmol/L), median (IQR) 83.50 (71.65–101.15) 81.60 (67.70–100.90) 0.313

 � ALB (g/L), median (IQR) 40.30 (37.90–42.90) 40.40 (37.60–43.00) 0.797

 � Pelvic drainage (ml), median (IQR) 250 (130–380) 250 (125–380) 0.395

Continuous variables are median (IQR); categorical variables are n (% within column). Group differences were tested with Mann–Whitney U (continuous) or χ2 (categorical) as appropriate. 
Medication history = μ-opioid agonists, anticholinergics, corticosteroids or pro-kinetic agents ≤30 days pre-operatively. Previous GI conditions include IBS, chronic constipation, IBD or prior 
major abdominal/pelvic surgery.
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invasive techniques generally promote faster recovery (Rockall et al., 
2014; Tanneru et al., 2021). This discrepancy may stem from limited 
instrument dexterity owing to the absence of robotic wrist articulation, 
prolonged pneumoperitoneum, and increased procedural complexity, 
which are often underrepresented or diluted in standard regression 
models. Second, intraoperative nasogastric tube placement was the 

strongest predictor. Although the ERAS guidelines discourage routine 
nasogastric intubation and promote early enteral nutrition (Feng et 
al., 2022), RC involves prolonged pelvic procedures and urinary 
diversion, prompting surgeons to make real-time decisions regarding 
prophylactic placement. In our study, nasogastric tube use functioned 
as a “real-time flag” by the surgical team to indicate high-risk 

FIGURE 2

Performance Evaluation of SVM, RF, BPNN, AdaBoost, and KNN Algorithms. Performance evaluation of machine learning models for POI prediction. 
(A–E) Confusion matrices for SVM, RF, BPNN, XGBoost, and KNN models. (F–J) ROC curves for SVM, RF, BPNN, XGBoost, and KNN models on the test 
set. The BPNN model achieved the highest AUC (0.828).

FIGURE 3

ROC curves of 5 models in the test set. Comparison of ROC curves for all models in the test set. The BPNN model demonstrated superior 
discriminative ability with an AUC of 0.828, surpassing other models.
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TABLE 3  Performance of each model for prediction.

Model Accuracy (%) Precision Sensitivity (%) F1 AUCe (%)

SVMa 0.771 0.634 0.489 0.552 0.806

RFb 0.705 0.494 0.826 0.618 0.818

BPNNc 0.784 0.689 0.457 0.549 0.828

XGBoost 0.737 0.667 0.174 0.276 0.794

KNNd 0.752 0.582 0.500 0.538 0.804

SVM, Support Vector Machine; RF, Random Forest; BPNN, BP Neural Network; KNN, K-Nearest Neighbors; AUC, Area Under the Curve. Metrics include model Accuracy, Precision, 
Sensitivity, F1 Score, and AUC. The BPNN model showed the highest AUC (0.828), indicating superior predictive performance for POI.

FIGURE 4

Feature importance ranking. SHAP-based feature importance ranking in the BPNN model. Higher-ranked features indicate greater contribution to POI 
prediction. ‘Gastric tube’ refers specifically to intraoperative nasogastric tube placement.

FIGURE 5

Characteristics of the selected model (BP neural network model): SHAP Value summary graph of top-12 variables and their impact on the prediction. 
“SHAP summary plot of the top 12 features influencing POI risk in the BPNN model. Red indicates positive contribution, blue indicates negative. ‘Gastric 
tube’ denotes intraoperative placement.
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procedures, an intraoperative signal automatically captured by the 
model, underscoring its potential as an actionable risk indicator in the 
post-anesthesia care unit. Moreover, the unexpected association 
between omission of concurrent lymph node dissection and increased 
POI risk may reflect underlying differences in surgical technique, 
surgeon experience, or pelvic exposure—subtle signals often 
overlooked in traditional studies focused on average treatment effects 
(Xue et al., 2021; Fang et al., 2022).

A key strength of our machine learning model is its ease of 
integration into existing hospital workflow. All identified predictors 
are readily available in standard perioperative records, enabling the 
seamless integration of the model into electronic health record 
systems without additional data collection. Intraoperative 
nasogastric tube placement may serve as an early postoperative 
indicator for identifying patients who may benefit from enhanced 
gastrointestinal monitoring. Moreover, elevated CRP levels and 
decreased lymphocyte counts, which are established markers of 
systemic inflammation and immunosuppression (Peters et al., 2017; 
Tang et al., 2020), are associated with delayed gastrointestinal 
recovery. These routinely available laboratory parameters may 
inform personalized postoperative strategies, including tailored 
fluid management, nutritional support, and proactive monitoring 
of complications.

Additionally, our findings underscore the need for individualized 
postoperative care pathways, challenging the “one-size-fits-all” 
approach that is commonly embedded in standardized perioperative 
protocols. Specifically, laparoscopic RC may require distinct 
postoperative management strategies compared to open or robot-
assisted procedures. Recognizing these differences allows clinicians to 
tailor care plans based on patient- and procedure-specific risk profiles, 
thereby improving the postoperative outcomes. Early real-time risk 
stratification may facilitate timely identification of high-risk patients 
and support critical decisions regarding patient placement, resource 
allocation, and monitoring intensity.

Limitations and future directions

This study had several limitations. First, the retrospective, single-
center design may limit the generalizability of the findings owing to 
institutional differences in surgical techniques, perioperative 
protocols, and patient demographics. Second, potentially influential 

variables, such as cumulative opioid dosage and detailed medication 
regimens, were unavailable owing to the constraints of retrospective 
data, limiting our ability to fully elucidate the underlying causal 
mechanisms. Finally, the model has not yet been externally validated 
in an independent cohort, leaving uncertainties regarding its broader 
applicability and portability.

Future studies should address these limitations through 
prospective multicenter validation to assess the robustness and 
generalizability of the machine learning model. Additionally, 
implementation trials are needed to assess the impact of real-time risk 
alerts integrated into electronic health records, clinical outcomes, 
resource use, and recovery trajectories. These efforts will enhance 
clinical adoption and provide a strong evidence base for the broader 
integration of machine learning–based predictive tools into routine 
perioperative care.

Conclusion

This study developed an interpretable machine learning model 
based on routinely available perioperative data to accurately predict 
the occurrence of POI within 24 h in patients undergoing RC. Our 
model outperformed existing predictive approaches and identified 
novel clinically actionable predictors. Future external validation 
and integration of the model into electronic clinical workflows may 
support informed clinical decision-making and enable personalized 
gastrointestinal recovery strategies, representing a critical milestone 
toward the data-driven optimization of perioperative care.
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