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Detection of cloned voices in 
realistic forensic voice 
comparison scenarios
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Deepfakes and synthetic audio significantly degrade the performance of automatic 
speaker recognition systems commonly used in forensic laboratories. We investigate 
the effectiveness of Mel-Frequency Cepstral Coefficients (MFCCs) for detecting 
cloned voices, ultimately concluding that MFCC-based methods are insufficient 
as a universal anti-spoofing tool due to their inability to generalize across different 
cloning algorithms. Furthermore, we evaluate the performance of the HIVE AI-
deepfake Content Detection tool, noting its vulnerability to babble noise and 
signal saturation, which are common in real-world forensic recordings. This 
investigation emphasizes the ongoing competition between voice cloning and 
detection technologies, underscoring the urgent need for more robust and 
generalized anti-spoofing systems for forensic applications.
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1 Introduction

The emergence of deepfakes and cloned voices presents a significant challenge in the field 
of forensic voice comparison (FVC). An audio deepfake is a synthetic voice generated by deep 
learning models, particularly neural networks, that bears an extreme resemblance to a real 
voice and can therefore be used to clone voices and impersonate a speaker (San Segundo and 
Delgado, 2025). These synthetic recordings compromise the reliability of automatic speaker 
identification systems commonly employed in forensic laboratories, as their performance 
substantially degrades when encountering cloned voices that aim to mask original identities. 
This problematic scenario underscores a critical need: the ability to identify whether 
questioned recordings are original or cloned before applying speaker identification systems, 
thereby ensuring the validity of forensic results. While anti-spoofing systems exist to detect 
fake or cloned voices, the continuous development of new cloning algorithms creates a 
competitive landscape, leaving the problem of reliable detection largely unresolved.

In FVC, experts have to compare an unknown voice (belonging to a criminal) to one or 
more known voices (belonging to suspects). Until now, the main challenges forensic 
phoneticians faced when undertaking this task —typically required by the court or in 
collaboration with the police— were the short duration of voice recordings in most cases, or 
the degradation of their quality due to background noise or the transmission channel, among 
other factors1. Today, the greatest problem has become determining whether a questioned 
recording is real (i.e., produced by a human) or artificially generated. However, it still remains 

1  Poor recording quality also affects the field of forensic speech enhancement (FSE). See Mawalim et al. 

(2024) for a recent discussion of the quality factors influencing speech recordings used as evidence in 

criminal trials.
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important to conduct deepfake research with audio samples in the 
above-mentioned realistic forensic conditions, i.e., channel mismatch, 
noise and signal saturation, etc. (San Segundo et al., 2019).

Some recent studies examine the current state of voice spoofing 
detection. For example, Tan et  al. (2021) reviewed 172 papers 
published between 2015 and 2021. They provide a useful taxonomy 
of the types of attacks identified, the challenges they share, and 
highlight future directions for research in the field. Meanwhile, Yi 
et al. (2023), in a more recent study, offer a comprehensive review, 
identifying key differences between various types of voice deepfakes, 
describing and analyzing available datasets, acoustic features studied, 
as well as types of classifiers and evaluation metrics, along with a 
description of cutting-edge methodological approaches. For each 
aspect, they discuss foundational techniques, recent developments, 
and major challenges. In addition, the authors present a unified 
comparison of representative features and classifiers across different 
datasets for audio deepfake detection. Their study shows that future 
research should address the lack of large-scale datasets, the poor 
generalizability of existing detection methods against unknown 
spoofing attacks, and the interpretability of detection results.

In terms of acoustic features, MFCC (i.e., the coefficients that 
make up a Mel-Frequency Cepstrum, MFC), or CQCC (i.e., the 
coefficients extracted from Constant Q Transform, CQT) are 
commonly used, with different classifiers; namely, conventional, deep 
learning and multiple classifiers. These are calculated from frames or 
windows trying to describe the spectral envelope of sound, as a way 
of explaining the resonance properties of the vocal tract.

The aim of this paper is twofold: (1) to assess the performance of 
a state-of-the-art automatic speaker recognition system based on 
MFCCs2 with cloned voices, and (2) to evaluate the performance of 
a commercial anti-spoofing tool under various forensically-realistic 
conditions: utterance and channel mismatch, added noise and 
signal clipping.

	•	 Evaluation across different algorithms, utterances and channels: 
The probability of detection of genuine and cloned emissions 
generated by three different algorithms (Eleven Labs, Speechify, 
Play-ht) and recorded through two different channels 
(Microphone and WhatsApp) was measured.

	•	 Noise Impact: Detection of genuine and cloned emissions (Eleven 
Labs) was evaluated under different types of added noise (Music, 
Babble Noise, White Noise) at varying Signal-to-Noise Ratio 
(SNR) levels (10, 20, 30, ∞ dB).

	•	 Saturation Impact: The detection performance for genuine and 
cloned emissions (Eleven Labs) was evaluated across different 
levels of signal clipping (0, 5, 10, 15 dB amplification, 
corresponding to no, slight, medium, and high signal clipping).

2  The motivation for analyzing MFCC-based features in relation to ASR 

performance with cloned voices lies in the fact that MFCCs remain a core 

acoustic representation in most ASR systems. Because cloned or synthetic 

voices often reproduce the spectral envelope of natural speech imperfectly, 

examining how MFCC-based representations capture or amplify these 

differences is crucial for assessing the robustness of ASR systems to 

synthetic inputs.

2 Materials and methods

2.1 Datasets and evaluation metrics

	•	 DEEP-VOICE dataset (Bird and Lotfi, 2023)3. A total of 62 min 
and 22 s of speech were collected from eight English-speaking 
public figures, resulting in 5,889 original and 5,889 cloned 
recordings generated using a convolutional neural network.

	•	 In-the-wild (ITW) (Müller et al., 2022). This dataset presents a 
balanced mix of both spoofed and genuine speech, sourced 
from publicly accessible platforms like podcasts and political 
addresses. The fake clips were created by segmenting publicly 
available video and audio files that explicitly advertise audio 
deepfakes. It includes 17.2 h of synthetic audio and 20.7 h of 
real speech, totaling 31,779 utterances with an average length 
of 4.3 s. All recordings feature English-speaking public figures, 
including celebrities and politicians. Recordings with effective 
durations exceeding 2 s were selected, resulting in a dataset of 
24 recordings from 12 speakers (12 genuine and 12 
spoofed samples).

	•	 Ad hoc dataset. A new database was created to analyze various 
characteristics of voice cloning, including the influence of 
different market algorithms, emitted text, and speakers.

	o	 Genuine sample generation: A 66-year-old male Spanish 
speaker with an Argentinian accent was recorded using a 
microphone, speaking four utterances: (1) “Hola, te llamo para 
saber si podés venir mañana para instalar la bomba de agua en 
la pileta”; (2) “En marzo del año que viene tengo que dictar un 
curso de Metodología de la Investigación en la Universidad 
Austral,” (3) “El próximo paso para presentar el proyecto del 
Instituto Madero a los suizos es ajustar el presupuesto,” 
(4)"Tengo tiempo, pero no mucho, porque tengo que ir a 
comprar carbón para el asado de hoy.”

	o	 Cloned recording generation: These original recordings were 
cloned using three well-known commercial cloning systems: 
Eleven Labs, Speechify, and Play-ht. The new database was 
structured according to the following guidelines:

	 ▪	 Clone of phrase m emitting phrase n with system p: where 
m = [1 to 4], n = [1 to 4], and p = [Eleven Labs, Speechify, 
Play-ht].

	 ▪	 Clone of clone of (1) employing the same system p.
	 ▪	 Clone of phrase m emitting phrase n with system p, varying the 

system parameters: where m = [1 to 4], n = [1 to 4], and 
p = [Eleven Labs].

The comparison of voices was performed using FORENSIA 
(Univaso et al., 2020), an automatic speaker identification system 
based on the i-vector/PLDA approach, employed in the forensic 
laboratories of the Supreme Court of Justice and the National 
Gendarmerie of Argentina. The performance was measured using the 
Equal Error Rate (EER) metric.

3  The data used in this study is available from: https://www.kaggle.com/

datasets/birdy654/deep-voice-deepfake-voice-recognition.
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2.2 Feature extraction

To assess the potential for predicting cloned recordings, 20 
Mel-Frequency Cepstral Coefficients (MFCCs) were analyzed. The 
DEEP-VOICE dataset included them, but the In-The-Wild dataset 
they had to be generated using Praat (Boersma and Weenink, 1992). 
The first MFCC coefficient, which represents the energy of the 
recording, was excluded, as it was not considered relevant for this 
analysis. The temporal average of the coefficients was used to represent 
the long-term spectrum.

A Hamming window of 15 ms was applied every 5 ms. The 
coefficients were then temporally averaged, excluding the first energy 
coefficient. Correlation coefficients were used to quantify the spectral 
variations and similarities between recordings.

2.3 Detector performance evaluation

The detection tool selected for this study was HIVE AI 
Detector (Hive, 2023), which outperformed competing models as 
well as human expert analysis in an independent research study 
(Ha et al., 2024). Additionally, HIVE was chosen from among 36 
companies to test its deepfake detection and attribution technology 
in collaboration with the U.S. Department of Defense 
(Heikkila, 2024).

This tool provides results as a percentage probability that a given 
speech emission has been cloned. HIVE was evaluated in the present 
study under these conditions:

	•	 Evaluation across different algorithms, utterances and channels: 
The probability of detection of genuine and cloned emissions 
generated by three different algorithms (Eleven Labs, Speechify, 
Play-ht) and recorded through two different channels 
(Microphone and WhatsApp) was measured.

	•	 Noise Impact: Detection of genuine and cloned emissions (Eleven 
Labs) was evaluated under different types of added noise (Music, 
Babble Noise, White Noise) at varying Signal-to-Noise Ratio 
(SNR) levels (10, 20, 30, ∞ dB).

	•	 Saturation Impact: The detection performance for genuine and 
cloned emissions (Eleven Labs) was evaluated across different 
levels of signal saturation (0, 5, 10, 15 dB amplification, 
corresponding to no, slight, medium, and high signal clipping).

3 Results

3.1 Automatic speaker recognition system 
performance

As can be seen in Table 1, the performance of our automatic 
speaker identification system decreases substantially when the 
questioned recordings originate from cloned versions of 
original voices.

This issue highlights the need to identify, prior to using these 
systems, whether the questioned recordings being analyzed are 
original or cloned. For this purpose, there are deep-fake speech 
detectors (Nguyen et al., 2025), also known as voice-fake detectors 
(Tamilselvan and Biswal, 2024) or more generically referred to as 

audio anti-spoofing detectors (Li et al., 2024). These countermeasures 
should be employed as a preliminary screening stage before the use 
of speaker identification systems to ensure their validity. The current 
challenge lies in the fact that the development of reliable detection 
algorithms is in constant competition with the advancement of new 
spoofing or voice cloning algorithms.

It is worth noting that the EER obtained when comparing cloned 
recordings is similar to that obtained when comparing original and 
cloned recordings, although the former comparisons do not arise in 
forensic casework, where there is always control over the reference 
recordings (known samples).

3.2 Cloned voices detection using MFCC 
features

A Random Forest model was implemented in the WEKA 
toolkit (version 3.8.6; Hall et al., 2009). The model was trained 
using 5,399 genuine and 5,399 cloned samples from the DEEP-
VOICE dataset and evaluated on an additional 500 genuine and 
500 cloned samples. The results obtained (Figure  1; Table  2) 
suggest that MFCCs may be  a promising tool for detecting 
cloned voices.

Figure  2 shows the differences in MFCC values between 
original and cloned voices, with an average correlation coefficient 
of 0.86.

To compare the results reported in Table  2, the trained 
convolutional neural network model for detecting cloned 
recordings (DEEP-VOICE) was evaluated on the In-The-Wild 
(ITW) database. The ITW dataset comprises 12 genuine and 12 
cloned samples, including cloned recordings extracted from 
publicly available video and audio files that explicitly promote 
audio deepfakes (Table 3).

In this case, the precision drops from 0.98 (Table 1) to 0.50. This 
suggests that the use of different voice cloning algorithms 
undermines the reliability of MFCC coefficients as predictive 
parameters. Consequently, they cannot be consistently employed in 
anti-spoofing systems, contrary to initial expectations. This 
methodology would only be  applicable if the specific cloning 
algorithm were known and if the model had been previously trained 
on data generated using that same algorithm. In other words, the 
MFCC-based approach does not generalize across different types of 
voice cloning techniques.

Figure 3 shows the MFCC distributions of DEEP-FAKE and 
In-The-Wild datasets from genuine and cloned samples, 
represented in a two-dimensional Principal Component Analysis 
(2D PCA) plot. It can be observed that the majority of genuine test 
data fall within the cloned training region, leading to 
detection errors.

TABLE 1  Equal error rate (EER) results using automatic speaker 
recognition system FORENSIA and comparing bonafide and spoofed 
samples in the ITW dataset.

Type of comparison EER

Genuine vs. Genuine 0.06

Genuine vs. Cloned 0.20

Cloned vs. Cloned 0.20

https://doi.org/10.3389/frai.2025.1678043
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3.3 Voice cloning detection performance 
across algorithms, utterances, channels, 
noise, and signal clipping

3.3.1 Experiment I: performance across 
algorithms, utterances, and channels

As shown in Table 4, the results of the HIVE detector for four 
cloned utterances generated using different algorithms and channels 
indicate poor performance when the cloned utterance is identical to 
the genuine utterance (a scenario of limited relevance in forensic 
cases). On average, the detection likelihood is 0.61; however, it is 
notably lower when the cloning algorithm used is ElevenLabs. 
Conversely, when the cloned utterance differs from the genuine one 

— the scenario of primary forensic interest — the likelihood of 
detection increases to an average of 0.86. The system correctly 
identified all four genuine utterances.

3.3.2 Experiment II: performance across noise
In this experiment, a cloned utterance was contaminated with 

three types of noise at different Signal-to-Noise Ratio (SNR) levels, 
and HIVE was used to detect the type of utterance (cloned or 
genuine). The results (Table 5) show that the addition of babble noise 
at low SNR levels masks the detection of the cloned utterance. HIVE 
correctly identified all four genuine utterances, across the same types 
of noise and varying SNRs.

3.3.3 Experiment III: performance across signal 
clipping

In this experiment, a cloned utterance was amplified to generate 
different levels of clipping in order to analyze their effect on the HIVE 
deepfake detector. The results (Table 6) show that only moderate and 
high levels of clipping affect the detection of cloned utterances. HIVE 
correctly identified all four genuine utterances, under the same levels 
of clipping.

4 Discussion

This study highlights a critical vulnerability in current forensic 
voice analysis: the substantial reduction in performance of automatic 
speaker identification systems when confronted with cloned voices. 
This underscores the urgent need for robust pre-identification of 
synthetic speech. Our initial exploration into MFCC-based detection 
showed promising precision for a specific dataset. However, a key and 
novel finding was that this MFCC-based model failed to generalize 
across different cloning algorithms, with precision dropping by 51% 

TABLE 3  Performance metrics of the Random Forest model trained on 
the DEEP-VOICE dataset and tested on the in-the-wild dataset.

Class Precision Recall F-Measure ROC 
Area

Cloned 0.50 0.92 0.65 0.48

Genuine 0.50 0.08 0.14 0.48

Average 0.50 0.50 0.40 0.48

FIGURE 1

ROC curve of the Random Forest model on the DEEP-VOICE dataset.

TABLE 2  Performance evaluation of the Random Forest model on the 
DEEP-VOICE dataset.

Class Precision Recall F-Measure ROC 
Area

Cloned 0.98 0.98 0.98 1.00

Genuine 0.98 0.98 0.98 1.00

Average 0.98 0.98 0.98 1.00
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when evaluated on a different database. This demonstrates that while 
MFCCs can discriminate between a known original and a known 
clone, they are insufficient as a universal anti-spoofing parameter 
when the cloning algorithm is unknown. This is a significant insight, 
as it suggests that simply relying on typical acoustic features used in 
automatic speaker recognition without knowledge of the cloning 
generation process is inadequate for the rapidly evolving landscape 
of voice cloning.

A significant part of our study focused on evaluating the HIVE 
AI-generated content detection tool, a commercial solution, across 
different forensically realistic conditions. Our findings indicate that 
HIVE achieves strong performance (precision = 0.86) on 
commercial voice cloning algorithms in ideal conditions and 
demonstrates high accuracy in differentiating original from cloned 
voices. The novelty here lies in the comprehensive stress-testing of 
this tool against various types of noise and signal degradation. 
Crucially, HIVE’s performance degraded substantially in the 
presence of babble noise and medium to high signal saturation. This 
specific identification of vulnerabilities is critical for understanding 
the real-world applicability of such tools in noisy or compromised 
forensic recordings.

While recent studies have evaluated how well anti-spoofing 
systems perform under forensically realistic degradations such as 
channel and utterance mismatch, added noise, compression, and 
reverberation (e.g., Gomez-Alanis et al., 2018; Cohen et al., 2022; 
Zhang et al., 2021), to the best of our knowledge there are no anti-
spoofing studies that run controlled experiments isolating signal 
clipping (digital clipping) as a primary variable. Most robustness 
studies have focused on added noise (various SNRs), reverberation/
room impulse responses, channel effects (device impulse responses), 
codecs/compression (telephony/VoIP), and utterance/
attack mismatch.

For instance, Gomez-Alanis et  al. (2018) focused on noise 
robustness. They proposed noise-aware training and soft-masking 
to improve robustness to additive noise and reverberation. Zhang 
et al. (2021) evaluated cross-dataset channel mismatch and found 

that when systems were trained on ASVspoof2019LA and tested 
on other datasets, EERs degraded drastically. Cohen et al. (2022) 
is a targeted data-augmentation study that shows that compression 
augmentation and channel augmentation substantially reduce 
EER on DeepFake and Logistic Access tasks. This study also 
reports large relative improvements over unaugmented baselines 
when simulating codecs/telephony/bandwidth degradations.

All in all, our findings are in line with the above-discussed 
studies, which consistently show that performance deteriorates 
sharply when models trained on clean or matched conditions are 
tested under realistic mismatches.

The primary limitation of the MFCC-based detection 
approach is its lack of generalization across different voice cloning 
algorithms. This means that for forensic applications, a model 
trained on MFCCs would require prior knowledge of the specific 
cloning algorithm used, along with sufficient training data for that 
algorithm, which is often unfeasible in real-world scenarios.

Another significant shortcoming lies in the robustness of 
current detection tools. While the HIVE detector shows promise 
for commercial algorithms, its vulnerability to babble noise and 
signal saturation is a critical concern for forensic evidence, which 
frequently originates from environments with background noise or 
has undergone various forms of signal degradation. For example, 
signal degradation typically arises through recording or 
transmission via channels such as WhatsApp, as well as social 
networks, where deepfakes exploit these types of signals to mislead 
AI detectors. This suggests that even advanced commercial tools are 
not yet sufficiently robust for all real-world forensic applications. 
Furthermore, the Eleven Labs’ own detector’s ineffectiveness against 
clones from other algorithms (as promoted on their website4) 
highlights the prevalent issue of algorithm-specific detection, which 

4  https://elevenlabs.io/es/ai-speech-classifier

FIGURE 2

Average values of the MFCC coefficients from 5,889 genuine recordings and 5,889 cloned recordings from the DEEP-VOICE dataset.
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is impractical for general forensic use where the source of a clone is 
typically unknown.

5 Conclusions and directions for 
future research

This research significantly advances our current understanding 
of voice deepfakes by providing empirical evidence that the 
challenge of detecting cloned voices is indeed “far from resolved” 
due to the continuous competition between cloning and detection 
algorithms. It reinforces the urgent necessity for anti-spoofing 
measures to be implemented as a preliminary step in forensic voice 
analysis to ensure the validity of subsequent speaker identification  
processes.

The comprehensive evaluation of a commercial tool like 
HIVE provides a valuable benchmark for the state-of-the-art in 
AI-generated content detection. By precisely identifying its 
strengths (detecting known commercial clones under clean 
conditions) and weaknesses (susceptibility to babble noise and 
saturation), this study offers concrete targets for future research 
and development in this domain. It confirms that while progress 
is being made, current solutions still fall short of the robust, 
universal detection capabilities required for challenging 
forensic contexts.

Given the limitations identified, future research must 
prioritize the development of anti-spoofing systems that exhibit 
strong generalization capabilities across a wide and unknown 
range of current and future cloning algorithms. This may 
require moving beyond traditional acoustic features like MFCCs 

FIGURE 3

MFCC feature distribution (2D PCA) of genuine and cloned samples from DEEP-VOICE and in-the-wild datasets.

TABLE 4  Probability of detection by HIVE of four cloned utterances generated by three cloning algorithms from a genuine utterance recorded through 
two channels.

Genuine utterance #1 Deepfake detection likelihood (HIVE)

Cloned algorithm Channel Cloned utterance 
#1

Cloned utterance 
#2

Cloned utterance 
#3

Cloned utterance 
#4

Eleven labs Microphone 0.00 0.99 1.00 0.83

Speechify Microphone 1.00 1.00 1.00 0.19

Play-ht Microphone 0.99 0.86 0.96 0.99

Eleven labs WhatsApp 0.04 0.12 1.00 1.00

Speechify WhatsApp 1.00 1.00 1.00 1.00

Average 0.61 0.86

Values in bold mean that those results were not detected as deepfakes.
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to explore more complex, perhaps less intuitive, markers of 
synthetic speech. Deep learning architectures, particularly those 
capable of learning robust representations from raw audio or 
spectro-temporal patterns, could be promising avenues. These 
models might be  able to identify subtle, pervasive artifacts 
introduced during the cloning process, irrespective of the 
specific algorithm employed.

Furthermore, research should focus on enhancing the 
robustness of detection systems against real-world acoustic 
challenges, specifically addressing the adverse effects of various 
noise types (especially babble noise) and signal degradation 
(like saturation). This could involve incorporating noise 
reduction techniques as a pre-processing step or training models 
on highly diverse datasets that include speech corrupted by 
various types and levels of noise and distortion.

It is also pertinent to speculate on the potential for multi-
modal detection approaches. Combining acoustic analysis with 
other indicators, such as linguistic patterns, semantic 
consistency, or even analyzing the meta-data or source of the 
recording could provide a more holistic and robust detection 
framework. This would require interdisciplinary collaboration 
beyond traditional speech forensic scientists. Finally, further 
investigation into the unique “fingerprints” left by specific 
cloning algorithms at a very granular level might lead to the 
development of an ensemble of specialized detectors. Such an 
ensemble could attempt to identify the most probable cloning 
algorithm, and then apply algorithm-specific models, thereby 
improving overall accuracy when the algorithm can be inferred. 
However, the overarching goal remains a universal detector that 
does not rely on such inferences.
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TABLE 5  Probability of detection by HIVE of a cloned utterance under 
different types and levels of noise.

SNR (dB) Deepfake detection likelihood (HIVE)

Music Babble noise White noise

10 0.89 0.00 0.87

20 0.94 0.05 0.98

30 0.97 0.97 0.96

∞ 1.00 1.00 1.00

Average 0.95 0.50 0.95

Values in bold mean that those results were not detected as deepfakes.

TABLE 6  Probability of detection by HIVE of a cloned utterance under 
different types and levels of clipping.

Signal level 
(dB)

Clipping Deepfake 
detection 

likelihood (HIVE)

0 No 1.00

5 Mild 0.86

10 Moderate 0.52

15 Severe 0.00

Values in bold mean that those results were not detected as deepfakes.
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