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Introduction: Accurate and early detection of brain tumors is critical for
effective treatment and improved patient outcomes, yet manual radiological
analysis remains time-consuming, subjective, and error-prone. To address these
challenges and improve clinical trust in Al systems, this study presents XAI-BT-
EdgeNet, an explainable, edge-aware deep learning framework integrated with
squeeze-and-excitation (SE) modules for brain tumor detection using MRl scans.
Methods: The proposed architecture employs a dual-branch design that
fuses high-level semantic features from InceptionV3 with low-level edge
representations via an Edge Feature Block, while SE modules adaptively
recalibrate feature importance to enhance diagnostic accuracy. To ensure
transparency, the model incorporates four XAl techniques—LIME, Grad-
CAM, Grad-CAM++, and Vanilla Saliency—which provide interpretable visual
justifications for predictions. The framework was trained and evaluated on the
Brain Tumor Dataset by Preet Viradiya, comprising 4,589 labeled MRI images
divided into Brain Tumor (2,513) and Healthy (2,076) classes.

Results: The model achieved 99.58% training accuracy, 99.71% validation
accuracy, and 100.00% testing accuracy, alongside minimal loss values of 0.0103,
0.0051, and 0.0026, respectively. These results demonstrate the robustness and
precision of the proposed framework in brain tumor classification.

Discussion: This work includes the development of a dual-branch CNN
architecture that combines semantic and edge features for enhanced
classification, the integration of SE modules to highlight clinically significant
regions, and the application of multi-method XAl to offer transparent,
interpretable outputs for clinical applicability. Overall, XAI-BT-EdgeNet delivers
a high-performing, interpretable solution that bridges the gap between deep
learning and trustworthy clinical decision-making in brain tumor diagnosis.

KEYWORDS

brain tumor, magnetic resonance imaging, deep learning, edge aware, squeeze and
excitation, explainable interpretability

1 Introduction

Brain tumors are among the most complex and fatal diseases affecting the central nervous
system, with substantial implications for neurological function, cognitive performance, and
overall quality of life (Chieffo et al., 2023; Pancaldi et al., 2023). Globally, brain tumors contribute
to a significant proportion of cancer-related deaths, especially among children and older adults.
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Their biological heterogeneity and unpredictable growth patterns pose
serious diagnostic and therapeutic challenges. Accurate and early
diagnosis is paramount to improving treatment planning and patient
outcomes, as delayed detection often leads to rapid disease progression
and reduced survival rates (National Institutes of Health, 2025).

Magnetic resonance imaging (MRI) is the primary imaging
modality used for non-invasive visualization of brain tumors due to
its ability to capture high-resolution anatomical detail and tissue
contrast without ionizing radiation (Peng et al., 2025; Misra, 2024).
However, interpreting MRI scans is inherently complex and highly
dependent on radiologists expertise. Manual evaluation is often
subjective, time-intensive, and prone to intra- and inter-observer
variability. In resource-constrained healthcare environments or high-
volume settings, the reliance on manual interpretation can result in
diagnostic delays or oversight of subtle pathological features (Grover
et al., 2015). These limitations have prompted the development of
automated decision-support systems to assist in tumor detection
and classification.

Deep learning, particularly convolutional neural networks
(CNNs), has revolutionized the field of medical image analysis,
offering robust capabilities in learning hierarchical feature
representations from imaging data (Mienye et al., 2025; Mall et al.,
2023; Gupta et al., 2021). CNN-based models have demonstrated
excellent performance in various brain tumor classification tasks,
owing to their ability to automatically extract both low-level and high-
level image features (Thakur et al., 2024; Alzubaidi et al., 2021).
However, a critical barrier to the clinical adoption of these models lies
in their “black-box” nature. Most CNNs provide predictions without
any accompanying rationale, making it difficult for clinicians to trust
or interpret the decision-making process. This opacity is particularly
concerning in high-stakes environments such as oncology, where
diagnostic precision and accountability are essential.

Adding to the complexity of brain tumor classification is the need
to distinguish not only between tumor types but also tumor grades.
According to the World Health Organization (WHO), brain tumors
are classified into four grades (I to IV) based on histological features
such as cellularity, mitotic activity, microvascular proliferation, and
necrosis (Osborn et al., 2022; Louis et al., 2016).

o Grade I tumors are typically benign, slow-growing, and often
curable through surgical resection (e.g., pilocytic astrocytoma).

« Grade II tumors are low-grade malignancies with a potential to
recur or progress.

Grade III tumors exhibit more aggressive growth and cellular
atypia, while

 Grade IV tumors, such as glioblastoma multiforme (GBM), are
highly malignant with poor prognosis and high recurrence rates.

The ability to accurately classify both tumor type and grade from
MRI scans is critical for determining prognosis and guiding treatment
strategies, but remains a difficult task even for experienced radiologists
(Farahani et al., 2022). Misclassification can lead to inappropriate
treatment protocols and adverse patient outcomes. Furthermore, while
deep learning models excel at extracting semantic features—patterns
that describe the broader visual context—they often underutilize
critical edge and boundary information. In the case of brain tumors,
the shape, margin clarity, and texture around lesion boundaries carry
valuable diagnostic clues. Tumors of higher grades often exhibit
irregular, infiltrative, or necrotic edges, which may not be captured
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effectively by standard convolutional architectures focused solely on
semantic abstraction (Kunimatsu et al., 2021). This highlights the
importance of integrating edge-aware mechanisms into deep learning
pipelines for enhanced diagnostic fidelity. To overcome these
challenges, this study introduces XAI-BT-EdgeNet, an explainable
deep learning architecture tailored for the detection and grading of
brain tumors from MRI images. The proposed model features a dual-
branch architecture: one branch is based on the InceptionV3 network
to capture semantic-level information, while the other is an Edge
Feature Block that processes gradient-based edge representations to
enhance structural detail. The fusion of these complementary branches
allows the model to learn both high-level features and fine-grained
edge cues critical for accurate tumor classification.

To further refine the representational power of the network,
squeeze-and-excitation (SE) blocks are incorporated to dynamically
recalibrate channel-wise feature responses, ensuring the network
focuses on diagnostically salient regions. Moreover, to ensure
transparency and foster clinical trust, the framework is intrinsically
designed with a suite of Explainable Artificial Intelligence (XAI) tools,
including Grad-CAM, Grad-CAM++, LIME, and Vanilla Saliency.
These modules produce visual explanations that allow clinicians to
understand and validate the regions influencing each prediction,
whether tumor type or grade.

The proposed study is guided by the following key contributions:

« Edge-aware dual-branch architecture: A dual-branch framework
combining InceptionV3 with an Edge Feature Block to capture
both semantic and boundary-level features, improving brain
tumor detection and grading.

o Feature enhancement with SE modules: Integration of squeeze-
and-excitation blocks to adaptively emphasize important features,
enhancing classification accuracy across tumor types and grades.

o Built-in explainability with multi-XAI support: Use of Grad-
CAM, Grad-CAM++, LIME, and Vanilla Saliency to generate
interpretable visual explanations, promoting transparency and
clinical trust.

Following these contributions, the remainder of this study is
structured as follows: Section 2 provides a detailed literature review,
highlighting existing methods in brain tumor detection and their
limitations in terms of interpretability and feature representation.
Section 3 outlines the dataset preparation, pre-processing pipeline, and
the adapted dual-branch architecture integrated with squeeze-and-
excitation modules. Section 4 discusses the evaluation criteria using
standard performance metrics. Section 5 presents the experimental
results, including classification performance and interpretability analysis
using multiple XAI methods such as LIME, Grad-CAM, Grad-CAM++,
and Vanilla Saliency. Section 6 offers an in-depth discussion of the
findings, addressing the model’s strengths, practical implications, and
limitations. Finally, Section 7 concludes the study by summarizing the
key outcomes and suggesting directions for future research.

2 Literature review

Alzahrani (2023) introduced ConvAttenMixer, a deep learning
model for brain tumor detection and classification. This architecture
combines convolutional mixers with both external and self-attention
mechanisms, enabling the model to capture both local and global
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features effectively. The study demonstrates that ConvAttenMixer
outperforms traditional CNN-based models in detecting and
classifying brain tumor types using MRI scans. The integration of
attention modules significantly enhances feature representation,
leading to improved performance in medical image analysis.

Rasheed et al. (2023) proposed a brain tumor classification
framework that combines image enhancement techniques with
convolutional neural networks (CNNs) to improve diagnostic
accuracy from MRI scans. The image preprocessing stage enhances
critical features in MRI images, making them more distinguishable for
the CNN model. The study demonstrates that this hybrid approach
significantly improves classification performance across different
tumor types, highlighting the effectiveness of enhanced imaging in
supporting deep learning-based medical diagnosis.

AlTahhan et al. (2023) developed a refined automatic brain tumor
classification system leveraging hybrid convolutional neural networks
(CNNs) applied to MRI scans. The proposed method integrates
multiple CNN architectures to extract diverse and complementary
features, enhancing the accuracy and robustness of tumor
classification. Experimental results show that this hybrid approach
outperforms standard CNN models, offering a reliable solution for
automated medical diagnostics in brain tumor analysis.

Ozkaraca et al. (2023) proposed a deep learning-based method for
classifying multiple types of brain tumors using dense convolutional
neural networks (Dense CNNs) on MRI data. The Dense CNN
architecture enhances feature propagation by connecting each layer to
every other layer in a feed-forward fashion, which reduces the risk of
vanishing gradients and encourages feature reuse. The study tested its
model on publicly available MRI datasets and reported high accuracy
and generalization, particularly for glioma, meningioma, and pituitary
tumors. The model demonstrated robust performance even with
limited data, making it suitable for real-world clinical applications.

Peng and Liao (2023) presented a deep learning classification
model focused on MRI-based brain tumor diagnosis. Presented at the
IEEE ECBIOS conference, their approach integrates pre-processing
steps to standardize MRI data, followed by a CNN-based classification
pipeline. Their system demonstrated solid performance in identifying
various tumor types, with emphasis on minimizing false positives. The
study’s contribution lies in its simplicity and applicability, targeting
real-time diagnostic support tools for medical professionals.

Gomez-Guzman et al. (2023) applied CNNs to classify brain
tumors from MRI images, focusing on improving detection accuracy
by optimizing CNN architectures (such as layer depth and filter size).
They used image augmentation to improve dataset diversity and
reduce overfitting. The model showed promising classification
accuracy, especially in differentiating gliomas, meningiomas, and
pituitary tumors. Their findings reinforce CNNs’ effectiveness in
extracting spatial and contextual features from complex MRI datasets,
contributing to precision in non-invasive diagnostics.

Shanjida et al. (2022) introduced a hybrid model combining CNN
and K-nearest neighbors (CNN-KNN) for detecting and classifying
brain tumors from MRI scans. The CNN was used to extract high-
level spatial features, which were then fed into the KNN classifier for
final prediction. The study emphasized model simplicity and low
computational cost, making it well-suited for environments with
limited processing resources. Despite its hybrid nature, the model
maintained competitive accuracy and robustness, showing particular
strength in handling small and imbalanced datasets.
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Mercaldo et al. (2023) addressed the critical need for
interpretability in Al-driven medical diagnostics by designing a
CNN-based system that detects and localizes brain tumors while
offering explainable outputs. The model was trained on publicly
available MRI datasets and designed with a focus on maintaining
high performance without sacrificing transparency. To achieve
explainability, the authors integrated Grad-CAM (Gradient-weighted
Class Activation Mapping), allowing visual heatmaps that highlight
the specific regions influencing the classification. This is essential for
clinical settings where black-box models are typically mistrusted. The
CNN architecture itself followed a moderately deep structure with
batch normalization and dropout layers to prevent overfitting.
Performance metrics such as accuracy, precision, recall, and F1-score
were above 90% across most tumor classes. The study’s main
contribution lies in its human-AI collaboration approach, offering
both performance and interpretability.

Gaur et al. (2022) proposed a deep learning system specifically
designed to predict tumor malignancy (benign vs. malignant) using
MRI data, with an added emphasis on explanation generation. They
applied a custom CNN architecture, followed by the use of SHAP
(SHapley Additive exPlanations) and Layer-wise Relevance
Propagation (LRP) to interpret how the model arrived at each
decision. The model was trained on a curated dataset, with
preprocessing steps including histogram equalization and skull
stripping to improve contrast and reduce irrelevant features. The
CNN was fine-tuned using cross-validation, and the model achieved
over 94% accuracy for binary classification. The study is notable for
embedding explanation as a core component, rather than an
afterthought. These insights not only improved model validation but
also  provided medical experts with confidence in
decision boundaries.

Ahmed etal. (2023) employed a transfer learning strategy by fine-
tuning VGG-16, a well-known deep CNN architecture, to classify
brain tumors into multiple types (glioma, meningioma, and pituitary).
They further applied explainable AI (XAI) techniques like LIME
(Local Interpretable Model-agnostic Explanations) and heatmaps to
visualize model reasoning. Their dataset included both axial and
coronal views of MRI scans, augmented using techniques like rotation
and scaling. This diversity improved generalization and helped combat
overfitting. The VGG-16 model, with minimal architectural
modification, achieved an accuracy of ~96% and strong class-wise
precision. The integration of VGG-16 with XAI tools proved useful
for highlighting lesion zones and verifying model focus. The study
bridges pretrained model power with real-world interpretability,
making it practical for clinical deployment.

Naseer et al. (2021) investigated the role of data augmentation in
improving CNN performance for brain tumor detection. Recognizing
the limitations of small medical datasets, they implemented aggressive
augmentation techniques (e.g., rotation, flipping, zooming, intensity
variation) to generate a robust training set. Their custom CNN,
composed of multiple convolutional, pooling, and fully connected
layers, was evaluated on both original and augmented datasets. The
augmented pipeline yielded a 10-12% increase in accuracy, with the
final model reaching ~93% accuracy. This study highlighted the
importance of dataset diversity, particularly for deep learning
applications in healthcare, where acquiring labeled medical data is
difficult. It also showed that simple CNNs can compete with deeper
architectures if trained with enriched datasets.
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Bashkandi et al. (2022) proposed a novel hybrid optimization
strategy combining two nature-inspired algorithms—Political
Optimizer (PO) and Particle Swarm Optimizer (PSO)—to enhance
the training and hyperparameter tuning of a CNN for brain tumor
classification. The optimizers were applied to adjust weights, biases,
and learning parameters of the CNN, which included several
convolutional and max-pooling layers. The CNN was evaluated using
cross-validation on a publicly available MRI dataset, and the
optimizer-driven approach significantly outperformed standard
gradient descent methods. Their model achieved over 97% accuracy,
and the optimization process led to better convergence and fewer
training epochs. The study represents a novel contribution by
integrating evolutionary strategies with deep learning, allowing fine-
tuned control of network behavior and avoiding local minima.

Shawon et al. (2025) tackled the dual challenge of class imbalance
and model explainability in brain tumor classification. They designed
a cost-sensitive deep neural network (DNN) that penalizes
misclassification of underrepresented classes (like rare tumor types),
helping to reduce bias toward majority classes. In addition, they
incorporated explainable Al techniques (such as Grad-CAM and
SHAP) to generate heatmaps for transparency. The model was trained
on a real-world, imbalanced MRI dataset, showing significantly
improved recall and F1-score for minority classes. This approach is
vital for clinical scenarios where rare but deadly tumors must not
be overlooked.

Verma and Singh (2022) proposed and compared multiple custom
deep learning frameworks for classifying brain tumors using MRI
data. The study covered CNNs, RNNs, and hybrid models, with a
thorough evaluation on multiple datasets. Their work analyzed trade-
offs in model complexity, training time, and classification
performance, concluding that CNN-based frameworks with residual
connections and attention blocks offered the best balance between
accuracy and computational efficiency. They also implemented
ensemble learning to further enhance generalization.

Kumar et al. (2021) developed a ResNet-based CNN architecture
enhanced with Global Average Pooling (GAP) for multi-class
classification of brain tumors. The use of residual connections helped
mitigate the vanishing gradient problem, while GAP layers reduced
overfitting by minimizing model parameters. The model was tested on
a balanced dataset with three tumor classes and achieved an accuracy
above 95%, with fast convergence and high interpretability. This
method is computationally efficient, making it suitable for integration
into real-time diagnostic tools.

This study (Alhassan and Zainon, 2021) introduced a modified
activation function: Hard Swish-based ReLU, incorporated into a
CNN for classifying brain tumors. The new activation aimed to
balance the non-linearity of ReLU with the smoothness of Swish,
enhancing convergence and gradient flow. Their CNN model showed
improved accuracy and faster training compared to the standard
ReLU-based networks. Evaluated on MRI datasets, it achieved
classification accuracy around 96%, with noticeable gains in precision
and recall, especially on complex tumor boundaries.

Hosny et al. (2025) introduced an ensemble learning framework
that combines several CNN-based classifiers, each trained with
different architectural or hyperparameter configurations. This
ensemble was enhanced with explainable Al tools like Grad-CAM,
giving radiologists insight into the decision-making process. The
ensemble significantly outperformed individual models, achieving an
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accuracy of ~98% and superior generalization across tumor types. The
visual explanations also validated the model’s focus on clinically
relevant tumor areas, increasing its practical utility.

This study (Athisayamani et al., 2023) employed ResNet-152, a
very deep CNN, for high-level feature extraction, followed by
optimized dimensionality reduction techniques (e.g., PCA and LDA)
to improve classifier performance and reduce computational burden.
The extracted features were fed into conventional classifiers (like SVM
and k-NN), showing that the hybrid deep feature + shallow classifier
approach can achieve performance comparable to end-to-end deep
networks, especially when computational resources are limited.

Malla et al. (2023) proposed a deep CNN integrated with Global
Average Pooling (GAP) for end-to-end classification of brain tumors
from MRI images. GAP eliminated the need for fully connected layers,
thus reducing overfitting and improving interpretability. Their model
was trained on a multi-class dataset and reached an accuracy of ~95%,
performing particularly well on noisy and artifact-prone images. The
authors emphasized the model's computational efficiency and its
adaptability to embedded systems or mobile devices for telemedicine.

Drawing upon the insights from the reviewed literature and
aligning with the proposed research title, the following well-defined
objectives have been formulated:

o Objective 1: To design an edge-aware deep convolutional neural
network integrated with squeeze-and-excitation (SE) blocks for
accurate brain tumor segmentation and classification.

o Objective 2: To integrate explainable artificial intelligence (XAI)
methods into the proposed model to enhance the interpretability
and transparency of tumor detection and classification outcomes.

 Objective 3: To benchmark the proposed XAI-BT-EdgeNet
against state-of-the-art CNN, attention-based, and ensemble
models in terms of classification accuracy, computational
efficiency, and explainability.

Table 1 shows the related work analysis for other state-of-the-art
with a research gap.

3 Methods and materials
3.1 Dataset preparation

The Brain Tumor Dataset developed by Viradiya (2021) is a widely
used collection of annotated medical images aimed at facilitating
machine learning research in the domain of automated brain tumor
classification. The dataset consists of 4,589 labeled MRI scan images,
which are divided into two classes: Brain Tumor (2,513 images) and
Healthy (2,076 images). Each image represents a magnetic resonance
imaging (MRI) slice of the human brain. These images are organized
into separate folders according to their respective classes, allowing for
efficient supervised learning workflows. The dataset supports binary
classification tasks, making it particularly suitable for deep learning
techniques such as convolutional neural networks (CNNs). Although
the dataset lacks pixel-level annotations for tumor segmentation and
does not contain metadata such as patient information, acquisition
parameters, or tumor types, it still serves as a valuable resource for
initial experimentation and model prototyping in medical imaging
tasks. Furthermore, the variability in image quality, brightness, and
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TABLE 1 Related work for other state of art model.

References

Model type

Innovation

Dataset

challenge

Notable
strength

10.3389/frai.2025.1676524

Research gap

Alzahrani ConvMixer + Combines convolutional mixers with both Multi-class Captures global-local Lacks interpretability and
(2023) Attention external and self-attention modules to capture classification features explainability in clinical
local and global features simultaneously decision-making
Rasheed et al. CNN with image Introduces a pre-processing pipeline to enhance | Noise in MRI Improved feature Does not incorporate attention
(2023) enhancement contrast and highlight tumor regions before clarity mechanisms or explainable AI
CNN classification frameworks
AlTahhan et al. Hybrid CNNs Integrates multiple CNN architectures to MRI variability Diverse feature Does not offer localization or
(2023) harness complementary feature extraction extraction interpretability of decisions
capabilities
Ozkaraca et al. Dense CNN Utilizes dense connections to maximize feature Multi-class Efficient feature reuse Absence of explainable

function-CNN

(2023) reuse and gradient flow during training tumors components for clinical
transparency
Peng and Liao CNN-24 layers Implements a traditional CNN architecture for General Feasible for Lacks architectural novelty and
(2023) fast and accessible tumor classification classification deployment performance tuning
Gomez-Guzméan | InceptionV3 Optimized configuration of CNN layers tailored | MRI noise/ Strong baseline Lacks integration with
et al. (2023) to MRI characteristics for classification artifacts advanced modules like
attention or hybrid models
Shanjida et al. CNN-KNN Employs a hybrid classifier combining deep Limited data Simple and Struggles to scale with larger
(2022) features with k-nearest neighbors for final interpretable and more complex datasets
decision-making
Mercaldo et al. Resnet50 Incorporates explainable Al via Grad-CAM to Localization Visual interpretability Slightly higher computational
(2023) visualize areas of interest in MRI scans needed demand; lacks performance
optimization
Gaur et al. CNN with dual- Employs explainability methods (SHAP, LRP) to | Binary Transparent model Only binary classification
(2022) input interpret model outputs and provide confidence | classification addressed; not evaluated for
in decisions multi-class problems
Ahmed et al. VGGl6 Combines transfer learning (VGG-16) with Multi-class Pretrained model with Dataset diversity is limited; not
(2023) heatmaps for interpretability in classification explanations generalized to real-world
tasks settings
Naseer et al. Deep neural Uses aggressive data augmentation to overcome | Small datasets Improved No use of explainability or
(2021) network model limited training data and improve generalization generalization advanced model optimization
CNN techniques
Bashkandi et al. CNN optimized Integrates Political Optimizer and Particle Parameter Superior convergence Increased algorithmic
(2022) by a metaheuristic | Swarm Optimization for fine-tuning CNN sensitivity complexity may hinder real-
algorithm hyperparameters time applications
Shawon et al. CS-InceptionV3 Introduces class-weighted loss and XAI to Imbalanced Better recall for rare May cause bias toward minority
(2025) mitigate data imbalance and support transparent | dataset classes classes in high-class-count
decisions scenarios
Verma and Transfer learning = Presents a comparative framework using Model Comprehensive design | Not deeply tailored to MRI-
Singh (2022) using different deep models to determine the most optimization specific noise and structure
DenseNet201 efficient design for tumor classification challenges
Kumar et al. ResNet-50 and Employs residual learning and global average Overfitting Lightweight and Interpretability and clinical
(2021) global average pooling to reduce overfitting and model accurate correlation not addressed
pooling complexity
Alhassan and Swish-based Introduces a novel activation function (Hard Training Improved training Needs broader validation across
Zainon (2021) RELU activation Swish) to improve CNN learning performance instability dynamics datasets and clinical settings

Hosny et al.
(2025)

Ensemble model
(DenseNet121 +
InceptionV3)

Combines multiple deep models with
explainable AI to boost performance and

transparency

Tumor diversity

High accuracy + trust

High computational cost and

training time
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TABLE 1 (Continued)

10.3389/frai.2025.1676524

References Model type @ Innovation Dataset Notable Research gap
challenge strength

Athisayamani ResNet-152 Uses a deep pretrained model (ResNet-152) High Good for low-resource | Not end-to-end trainable; relies

etal. (2023) followed by dimension reduction for better dimensionality setups on manual feature extraction
classification post-CNN

Malla et al. VGG-16 with Streamlines architecture using GAP to eliminate = Noisy input Efficient + deployable No focus on interpretability or

(2023) fine-tuning fully connected layers, improving speed and attention mechanisms
generalization

contrast presents a realistic challenge, thereby fostering the
development of more robust and generalizable models.

Table 2 summarizes the key characteristics of the Brain Tumor
Dataset utilized in this study, including the total number of MRI scans,
tumor categories, imaging modality, and resolution details. It
highlights the distribution of samples among glioma, meningioma,
pituitary tumors, and healthy cases, which is critical for understanding
class representation during model training.

Figure 1 presents a representative MRI scan of a healthy brain,
illustrating normal anatomical structures without any abnormal
growths. In contrast, Figure 2 visualizes an MRI scan with a visible
brain tumor, showing abnormal intensity regions that are indicative
of pathological tissues. Figure 3 illustrates the distribution of MRI
images across the defined classes, revealing an inherent imbalance in
the dataset, which was addressed using augmentation techniques and
loss  function model robustness

adjustments to ensure

and generalizability.

3.2 Data pre-processing strategy

To support robust model evaluation and ensure consistency in
experimental design, this study was developed to automate the
process of partitioning an image dataset into distinct subsets for
training, validation, and testing. The function accepts parameters
specifying the desired subset type, the proportion of data to
allocate, the source directory containing the full dataset, and a
mapping that indicates the number of images available in
each class.

The methodology begins by verifying whether the target directory
already exists; if it does not, it creates the necessary subdirectories for
each class. A random number generator with a fixed seed of 42 is
initialized to ensure that the selection of images remains consistent
across multiple executions, promoting reproducibility. The function
then retrieves the list of image files belonging to each class and
determines the appropriate number of images to include in the current
subset based on the specified split ratio. To prevent errors caused by
excessively large split values, a conditional check ensures that the
number of images selected does not exceed the total available.

Once the appropriate number of images is randomly selected for
each class, they are copied from the original dataset location to their
corresponding destination folders within the target subset directory.
This process is repeated for each class to maintain the original class
distribution across all dataset splits. The function is subsequently
invoked multiple times to create the training, validation, and testing
sets using fixed proportions (e.g., 70, 15, and 15%, respectively) as
illustrated in Figure 4.
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TABLE 2 Key characteristics of the Brain Tumor Dataset.

Feature Description

Source Kaggle (Preet Viradiya)

Total number of images 4,589 images

Classes 2 (Brain Tumor, Healthy)

Image format JPEG

Image type MRI brain scans
Tumor images 2,513 images
Healthy images 2,076 images

Image annotation Image-level labels only (no segmentation or

bounding boxes)

Color format Grayscale and color images

Clinical metadata Not available

Intended task Binary classification

Limitations No pixel-level labels, lack of tumor type

categorization, no clinical metadata

This automated approach to dataset partitioning enhances both
the scalability and reproducibility of the deep learning pipeline. It
ensures a stratified and consistent dataset structure, which is crucial
for developing reliable models, particularly in sensitive domains such
as medical image classification.

In deep learning models, especially those dealing with image data,
the quality and structure of the input pipeline are critical to achieving
robust and generalizable performance. The create_image_generators
function in TensorFlow/Keras is a high-level abstraction used to create
these pipelines. It encapsulates both data preprocessing and data
augmentation using the ImageDataGenerator class provides a
continuous supply of mini-batches for training, validation, and testing.

Let each input image be represented by a tensor:

Xe RH><W><C

where H and W are the height and width of the image,
respectively, and C is the number of color channels (typically C =3 for
RGB images).

Let the dataset consist of N such samples:

D={(Xi)},

where y; € {O,I}K is a one-hot encoded vector denoting the class
label for K categories.
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FIGURE 1
Visualization of healthy MRI scan

FIGURE 2
Visualization for tumor MRI scan.

The preprocessing function in deep learning—particularly in
image classification tasks—refers to a transformation applied to raw
input data before it is passed into a neural network. The primary goal
is to ensure that input data is numerically stable, well-scaled, and
statistically appropriate for the operations performed by the model’s
layers. The preprocessing function applied in this context is a
normalization technique defined mathematically as:

preprocess(x) = 1 Yy 6[0,255]

_x
127.5

Frontiers in Artificial Intelligence

This transformation operates on the raw pixel values of an
image, where x denotes the intensity of a given pixel. Typically,
images are stored in an 8-bit format where pixel values lie in the
range [0, 255]. The function first scales these values by dividing
by 127.5, which brings them into the range [0, 2], and then shifts
them by subtracting 1, resulting in a final normalized range of
[—1, 1]. This type of normalization is referred to as linear
normalization, since it preserves the relative proportions and
distances between pixel values (i.e., it maintains the order and
ratio of intensities).
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The training datagen object created using ImageDataGenerator  dataset by applying a series of random geometric transformations to
is a powerful tool for real-time data augmentation in image-based  each image. This helps prevent overfitting and enables the model to
deep learning. It is designed to synthetically expand the training  learn transformation-invariant features.

Distribution of Brain MRI Images by Class
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FIGURE 3
Distribution of brain MRI images scan by class.

Distribution of Brain MRI Images belonging to 2 classes
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FIGURE 4
Distribution of brain MRI images belonging to 2 classes.
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The data generator in this configuration APPLIES a series of
randomized image transformations to enrich the training dataset
and improve model generalization. Each image is treated as a
function I (x, y, ¢) where x, y € R represent pixel coordinates
and ¢ € {1, 2, 3} denotes the RGB color channels. The augmented
image i(x',y',c) is produced by applying a composition of
geometric transformations followed by a pixel-level
preprocessing function.

The full transformation pipeline can be summarized as:

jﬁnal = prepmcess—func(Tﬂip Tzoom Tshear Tshzﬂ Trotate (I))

T
applied sequentially.

where represents  the transformation functions

Unlike the training data generator, which typically includes
augmentation to artificially expand the dataset and improve
generalization, these generators are configured solely with a
preprocessing_function. This means that the only transformation
applied to the validation and test images is a predefined pixel-
level preprocessing step—commonly used to normalize or
standardize image data. For example, the preprocessing function
might scale pixel values to the range [0, 1], subtract the mean
pixel value, or apply dataset-specific normalization. Applying the
same preprocessing function to the training, validation, and test
data ensures that all inputs are on the same scale and distribution,
which is essential for a consistent model behavior and accurate
evaluation. Importantly, no random changes such as rotation,
flipping, or shifting are applied to the validation and test sets, as
these datasets are meant to reflect real, unmodified data for
unbiased performance measurement.

Table 3 outlines the augmentation strategies applied using the
ImageDataGenerator function, including transformations such as
rotation, zooming, shifting, and horizontal flipping, which introduced
variation and improved the model’s ability to generalize across unseen
MRI scans.

TABLE 3 ImageDataGenerator transformations.

Transformation

Description

10.3389/frai.2025.1676524

3.3 Adapted methodology

This architecture integrates a pre-trained InceptionV3
convolutional (Rastogi et al., 2023) backbone with custom-designed
squeeze-and-excitation (SE) attention mechanisms (Misra, 2024)
and an edge-based feature extraction pathway using fixed Sobel
filters, culminating in a model that is both semantically rich and
texture-aware.

The model starts by accepting images of size 299 x 299 x 3,
aligning with the native input dimension of InceptionV3, a state-
of-the-art convolutional neural network known for its strong
performance on large-scale image classification tasks like ImageNet.
The image is fed into two parallel branches: one being the
InceptionV3 base network, and the other a Sobel-based edge
detection branch.

The edge detection branch is grounded in classical image
processing theory, where Sobel filters are used to approximate the
first-order image gradients in horizontal (G,) and vertical (Gy)
directions (Timothy, 2025). These are defined as:

Gy =1%S,,G, =I+%S,

where s denotes convolution, I is the input image and S, S), are
the horizontal and vertical Sobel kernels, respectively. The gradient
magnitude, capturing edge strength, is computed using:

G:\/G_,%+G§

This edge map is then passed through a shallow CNN to learn
edge-level discriminative features, which are pooled via Global
Average Pooling (GAP) to produce a compact edge feature vector.
Concurrently, the input image is passed through InceptionV3,
which extracts deep, hierarchical features through a cascade of
convolutional blocks. This model, pre-trained on ImageNet,

Parameter value = Mathematical representation

Rotation Rotates image around its center rotation_range = 20 X' X Cx Cx
=R, +
[V'} oy oy ey
where Ry is the rotation matrix
Width shift Translates image horizontally width_shift_range = 0.2 X'= X+ A%, AX €[-0.2W, +0.20]
Height shift Translates image vertically height_shift_range = 0.2 Y=y ALY € [_0.2 H 402 H]
Shearing Slants image along horizontal direction shear_range = 0.2 X' 1 21T x
= 4 e[-0.20.2]
vyl o 1y
Zooming Scales image in or out centered at image center zoom_range = 0.2 X'=z (x -cx ) +Cx,

y':z(y—cy)+cy
ze[0.8,1.2]

Horizontal flip Flips image left-to-right with 50% probability

horizontal_flip = True X' =W-x,y'=y

Fill mode Fills empty pixels after transformation using nearest pixel

fill_mode = “nearest” /A(Xfyyr) — l(nearest(x',y'))

Preprocessing Func Custom function for pixel value standardization

preprocess_func (custom) iﬁnal (x’,y’,c) = preprocess_func (f(x’,y’,c))
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retains generalized visual knowledge that helps improve » Reweight: Multiply the original feature maps by these learned
convergence and performance on downstream tasks. However, the weights to emphasize informative channels.

last layers (from a defined index) are unfrozen for fine-tuning,

allowing the network to adapt to the specific task. Mathematically, for input feature map F € RIPWXC e attention-

To enhance the representational power of InceptionV3 outputs,a  modulated feature is:
squeeze-and-excitation (SE) block is applied. The SE block adaptively
recalibrates  channel-wise feature responses by modeling 1:75 =F. s, for each channel c=1,...,C
interdependencies among feature channels (Misra, 2024). This is
achieved in three steps:
After applying SE attention and global pooling, the network
o Squeeze: Apply GAP to reduce spatial dimensions, producinga  obtains a deep semantic feature vector. This is concatenated with the
channel descriptor z€ R™. edge-based feature vector, effectively merging low-level edge
« Excitation: Pass z through a bottleneck of two fully connected  descriptors with high-level semantic abstractions:
layers with activations (ReLU and Sigmoid) to generate channel-
wise weights s € R . feombined = Concat (fcnn ’fedge)

TABLE 4 Key aspect of the presented model architecture.

Aspect Advantage

Edge-aware learning Uses Sobel filters to extract explicit edge features, improving boundary awareness and spatial sensitivity—especially useful in texture-

or shape-sensitive tasks (e.g., medical, remote sensing)

Dual-branch feature extraction Combines traditional edge features with deep CNN features, leading to rich multi-scale representations. This improves robustness to

appearance variations

Squeeze-and-excitation (SE) block Enhances important features via channel-wise attention, increasing model’s focus on informative feature maps and reducing irrelevant
noise.

Transfer learning efficiency Leverages pretrained InceptionV3, reducing training time and requiring less labeled data while still achieving high accuracy

Fine-tuning flexibility Enables selective fine-tuning starting at a configurable layer index (L_f), allowing a trade-off between computational efficiency and
model adaptability

Compact & effective fusion Uses global average pooling before fusion to reduce dimensionality and prevent overfitting, while concatenation retains

complementary features

obel X Conv
(3x3, fixed)

edge_x edge_mag
(HxWx1) (HxWx1)

Edge Magnitude Conv2D /:Jvl;‘:‘lc
Layer (3x3, 32 relu) Poot ngg

(HxWx1) 1

Edge Feature Block

Input (HXWx*3)

obel Y Conv =
(3x3, fixed) Output: edge feat
(1x1x32)
Grid Size Reduction Grid Size Reduction
2X Inception Module C
R 5X Inception Module A l 4X Inception Module B
Fine Tuning

T . N V) sV | 1
Input: 209%299x3
Squeeze-and-Excitation Output: 8x8x2048
Block Auxiliary classifier

Global Average Pooling

Output
e i > D:[ZZ]I]
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This fused vector is then passed through a dense layer with 1,024
neurons and ReLU activation, followed by a Dropout layer to mitigate
overfitting. The final classification is performed using a softmax
output layer, which assigns probability scores across the num_classes
defined in the training set.

The model is compiled using the Adam optimizer, which is
well-suited for problems involving sparse gradients and noisy
updates, with a fixed learning rate of 10™*. The loss function used
is categorical cross-entropy, appropriate for multi-class
An optional ReduceLROnPlateau callback
monitors the validation loss and reduces the learning rate if the

classification.

performance stagnates, helping to escape local minima and
promote convergence.

This hybrid design is intelligent and well-justified. The integration
of edge detection complements the semantic encoding from
InceptionV3 by introducing texture-level cues that deep networks
sometimes overlook. The SE block provides adaptive feature
recalibration, addressing the issue of uniform treatment across
channels, which is a known limitation in CNNs. Furthermore, the
fusion strategy—combining handcrafted edge cues with deep
features—reflects an informed design principle reminiscent of early
fusion in multimodal learning.

TABLE 5 List of hyperparameter.

10.3389/frai.2025.1676524

One notable strength is the trainability control: by freezing most
of the InceptionV3 layers and fine-tuning only the top layers, the
model maintains generalization while still adapting to new data. This
significantly reduces the risk of overfitting and shortens training time.
Algorithm 1, describing the hybrid model that combines InceptionV3,
squeeze-and-excitation (SE) blocks, and edge detection for brain
tumor classification.

Table 4 highlights the key aspects of the proposed model
architecture, detailing its core components including InceptionV3
backbone, SE blocks, edge detection integration, and classification
layers. These elements collectively enhance accuracy, feature focus,
and explainability in brain tumor prediction.

Figure 5 presents the proposed XAI-BT-EdgeNet architecture,
combining InceptionV3 with squeeze-and-excitation blocks and edge
detection to enhance feature representation. The next Table 5 is
showing the hyperparameter list for the proposed model.

4 Performance matrices

Performance metrics (Table 6) are quantitative measures used to
evaluate the effectiveness of a model. These metrics provide insight

Component Hyperparameter name Description

Input configuration IMG_SIZE Size of the input image to the model

SE (squeeze-excitation) Block ratio Reduction ratio used in channel excitation
Edge extraction block filter_type Type of edge detection filter (e.g., Sobel)

trainable_filters

Whether the edge filters are trainable or fixed

conv_filters

Number of filters in conv layer after edge detection

Base model (e.g., InceptionV3)

pretrained_weights

Source of pretrained weights (e.g., “imagenet”)

include_top

Whether to include the original classifier layers

trainable

Whether base model layers are trainable

fine_tune_at

Layer index to start fine-tuning from

Classifier head

dense_units

Number of neurons in fully connected (Dense) layer

dropout_rate

Fraction of input units to drop during training

activation_output

Activation function for output layer

Optimizer settings

optimizer_type

Type of optimizer (e.g., Adam, SGD)

learning_rate

Learning rate for the optimizer

Loss function

loss_function

Loss function for training (e.g., categorical cross-entropy)

Evaluation metrics

metrics

List of metrics to monitor during training and evaluation

Training configuration

epochs

Total number of training epochs

steps_per_epoch

Number of steps per training epoch

validation_steps

Number of validation steps per epoch

Callback—EarlyStopping

monitor

Metric to monitor for early stopping

patience

Number of epochs with no improvement before stopping

restore_best_weights

Whether to restore model weights from best epoch

Callback—ReduceLROnPlateau

monitor Metric to monitor for reducing learning rate
factor Factor by which the learning rate will be reduced
patience Number of epochs to wait before reducing LR
min_Ir Minimum learning rate value after reduction
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e Input Tensor I € RA*W*3 where H=W=299
e Number of output classes C € N
e Dropout rate d € [0,1]
¢ Fine — tuning layer index Ly € N
Output:
Trained classification model f(I; 8) producing probability distribution over C class.

Step 1: Sobel Edge Feature Extraction
1. Define Sobel filters:

-1 0 1 -1 -2 -1
Sx=1-2 0 2|, Sy=10 0 0
-1 0 1 1 2 1
2. Convolve image I with Sobel filters:
G, =1%S,, Gy =1xS,

3. Computer edge magnitude:

G =/G2 + G2

4. Extract edge feature via convolution:
Feqge = GAP(ReLU(Conv(G)))

Where GAP is Global Average Pooling:
1
HXW £

L

w
2P

Jj=1

GAP(F) =

H
=1
Step 2: Deep Feature via Inception V3 as Backbone

1. Load Pretrained InceptionV3 up to convolutional layers:

F.nn = InceptionV34.; (1)

2. Freeze layers 1 to Ly, fine-tune layers Ly + 1 to end.
Step 3: Squeeze-and-Excitation (SE) Attention Block
Let Fopy € RHXWXC

1. Squeeze (Global Average Pooling per channel):

w
ZFi'j'C , Z € R¢

Jj=1

_ 1
THxW

13

H
ZC
=1
2. Excitation (Fully connected layers):

s = (W, - ReLU(W, - z)) where s € R°

3. Scale (Channel-wise multiplication):

Fye(i,),6) = Fepn(i,j, €) " 5c

ALGORITHM 1 (Continued)
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Step 4: Feature Fusion

2. Concatenate with edge features:

Let
vfused € RDv

Step 5: Classification Head
1. Fully connected (dense) layer:

2. Dropout (regularization):

hdrop _
. 1 -
3. Final softmax output layer:
e
Vi = 5:':1 ezi’

Step 6: Model Compilation and Training

3. Learning Rate Scheduler:

1. Apply global average pooling to SE-enhanced CNN features:

Venn = GAP (Fse)
17]‘u§ed = Concat(vcnnvFedge)
D=

hy = ReLU(W,Vsyseq + b1)

Dropout(h,,rate = d)

1. Loss Function: Categorical Cross-Entropy

C
LO9) == ) yilog(0)
i=1

2. Optimizer: Adam with learning rate a = 10™*
If validation loss plateaus for 3 epochs, reduce learning rate:

Apew = 0.3 * gy (Minimum 107°)

len(vcnn) + len(Fedge)

where z = W,h%"? + b,

ALGORITHM 1
Algorithm step for the hybrid InceptionV3 + SE + edge detection model.

into how well a model is performing on unseen data, guiding model
selection, tuning, and deployment decisions.

Symbol Meaning

TP True positive: Correctly predicted positive class
™N True negative: Correctly predicted negative class
FP False positive: Incorrectly predicted as positive
FN False negative: Incorrectly predicted as negative
NN Total number of samples
yi Actual label for sample i
o Predicted probability for sample i
we Class weight based on class frequency
AUC, AUC score for class ¢
PR Precision and Recall (used in F1 formula)

5 Results

As shown in the left subplot of Figure 6, the training accuracy
exhibited a sharp increase during the initial epochs, rising from

Frontiers in Artificial Intelligence 13

approximately 0.88 to over 0.98 within the first five epochs. This
indicates that the model was able to rapidly learn meaningful
patterns from the data. Beyond this point, accuracy improvements
continued at a slower rate and plateaued near 0.9950, suggesting that
the model reached a high level of predictive performance on the
training data.

Similarly, the validation accuracy began at a relatively high
baseline (around 0.9650) and approached 1.0000 within the first half
of the training cycle. Notably, the validation accuracy remained
consistently aligned with the training accuracy, demonstrating that
the model maintained strong generalization capabilities across
unseen data. The absence of significant divergence between the two
curves implies that the model avoided overfitting, which is often a
critical concern in deep learning applications.

The right subplot of Figure 6 displays the corresponding loss
values. The training loss decreased substantially from an initial value
above 0.25 to near zero, with a smooth and consistent downward
trend. Minor oscillations observed after epoch 10 are typical and can
be attributed to the stochastic nature of gradient-based optimization.
More importantly, the validation loss also decreased consistently and
remained lower than the training loss throughout the training period.
This trend indicates not only that the model achieved accurate
predictions but also that it was well-calibrated in terms of confidence
in its outputs.
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TABLE 6 Performance matrices.

Metric  Definition Formula When to use Interprets as
Accuracy Accuracy evaluates the overall effectiveness of a classification model. It tells us how many of Accuracy = TP+TN When classes are balanced “How often did I get it right,
the total predictions were correct, without distinguishing between the types of errors TP+TN+FP+FN regardless of class?”
Log Loss Loss functions guide the training of classification models. Log Loss (used in binary N For probabilistic models, “How far off was my prediction,
1
classification) measures the difference between the actual label and the predicted probability. logLoss = N Z [,V j-log (P/' ) + (1 —Yi ) -log (1 —Pi ):I especially during training especially if T was confident?”
A lower loss indicates better predictions with more confidence i=1
Precision Precision assesses the model’s ability to identify only the relevant (true positive) instances out Precision = TP When false positives are more | “Out of all predicted positives, how
of all the predicted positives. It is especially useful when false positives are costly TP+FP harmful many were correct?”
Recall Recall evaluates how well the model captures all the relevant positive instances from the actual Recall = P When false negatives are “Out of actual positives, how many
data. It’s critical in scenarios where missing a positive case is highly undesirable TP+FN costly did I catch?”
F1 Score The F1 Score provides a balance between precision and recall. It is the harmonic mean, which - 2. (Precision - Recall) ‘When needing trade-off How balanced is my model’s
penalizes extreme values. A model with high F1 is both precise and has high recall 15core = Precision + Recall between precision and recall decision-making?”
Jaccard This score evaluates similarity between the predicted and actual labels. It is particularly useful Jaccard Score = P For multi-label, segmentation, | “How much do the predicted and
Score in multi-label and image segmentation tasks TP +FP+FN or set-based comparison actual labels overlap?”
Weighted AUC measures a classifier’s ability to distinguish between classes. In a multi-class problem, c For imbalanced multi-class “How well does the model rank
AUC weighted average AUC considers each class’s importance based on its frequency in the dataset Weighted AUC = 3" w¢ - AUC; problems true classes across the board?”
c=1

Variable reference.

e 3o 1boysey
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FIGURE 6
Accuracy and loss graph epoch by epoch.

The combination of high accuracy and low, converging loss values
for both training and validation sets suggests that the model was
effectively optimized. The learning dynamics reflected in these plots
indicate that the model was neither underfitting nor overfitting, and its
generalization performance remained robust throughout the training
process. Table 7 and Figure 7 shows the result for the proposed model.

The confusion matrix presented in Figure 8 illustrates the
performance of a binary classification model designed to differentiate
between brain tumor cases and healthy individuals. The matrix shows
that the model correctly classified all 376 brain tumor cases as
positive and all 313 healthy cases as negative, with no instances of
misclassification. Specifically, the top-left cell indicates 376 true
positives, meaning all patients with brain tumors were accurately
identified. The bottom-right cell shows 313 true negatives, reflecting
that all healthy individuals were correctly predicted as such. Notably,
the matrix contains no false positives or false negatives, as indicated
by the zero entries in the off-diagonal cells.

This outcome demonstrates that the model achieved perfect
classification on the evaluated dataset, with 1.0000 accuracy,
precision, recall, and specificity. The absence of any error implies that
the model was highly effective at learning and distinguishing between
the two classes. However, while such performance is impressive, it is
essential to validate the model on an independent test set to confirm
that it generalizes well to unseen data and is not merely overfitting
the training or validation data.

The receiver operating characteristic (ROC) curve shown in
Figure 9 evaluates the classification performance of a binary model
distinguishing between two classes: brain tumor and healthy. The
ROC curve plots the true positive rate (sensitivity) on the Y-axis
against the false positive rate on the X-axis. The ideal ROC curve
closely follows the top-left corner of the plot, indicating high
sensitivity with low false positive rates.

In this case, the ROC curves for both classes—brain tumor and
healthy—are represented as perfectly horizontal lines at the top of the
graph. Both curves achieve an area under the curve (AUC) value of
1.00, which is the maximum possible score. This means that the model
achieved perfect classification performance, correctly identifying all
positive and negative instances for both classes without any confusion.
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TABLE 7 Result for accuracy and loss.

Matrices Training Validation Testing
Accuracy 0.9958 0.9971 1.0000
Loss 0.0103 0.0051 0.0026

The diagonal dashed line represents a random classifier,
where the model’s predictions are no better than random
guessing. The fact that both ROC curves are well above this line
confirms that the model’s performance is significantly better than
chance. The curves reaching the top-left corner with zero false
positives and 100% true positives for each class show that the
model is both highly sensitive and highly specific, making it
exceptionally reliable for the classification task at hand.

The displayed image shows a set of 10 brain scan samples, each
labeled with both the ground truth (“True”) and the models
classification result (“Pred”). In all five cases, the actual class is Brain
Tumor, and the model has also correctly predicted Brain Tumor for
each image. This visual representation provides qualitative evidence
of the model’s effectiveness in correctly identifying brain tumor cases.

Each image appears to be a medical imaging scan—likely from
MRI modalities in Figure 10—processed in grayscale. The tumors are
visible as brighter or differently textured regions in the brain scans,
suggesting that the model was able to detect distinguishing visual
features associated with tumorous growths. The consistency in
correct classification across different tumor appearances indicates
that the model has likely learned to generalize the underlying patterns
of tumor presence effectively.

5.1 Explainable Al prediction

5.1.1LIME

The displayed set of images (Figure 11) shows LIME (Local
Interpretable Model-Agnostic Explanations) visualizations applied to
five different brain scan samples, each labeled with the ground truth
class “Brain Tumor.” LIME is a widely used interpretability technique
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Classification report.
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Confusion matrix.
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that helps understand how a machine learning model arrives at a
specific decision by highlighting which parts of the input image
contribute most strongly to the classification (van der Velden et al.,
2022; Mir and Pal, 2025).

In each of these grayscale brain scan images, different colored
regions—primarily outlined in yellow—represent the superpixels or
segmented regions that most influenced the model’s prediction toward
the correct class (brain tumor). These areas are identified as being the
most relevant in driving the model’s decision-making process. The

Frontiers in Artificial Intelligence

gray background typically indicates less influential or neutral regions
that had little or no effect on the final output.
For instance:

« In Image 0, a visible mass is located centrally and is surrounded
by highlighted regions, showing that the model focused directly
on the tumor-like structure.

« Image 1 shows segmentation in multiple dispersed areas,
particularly near the upper and lower regions of the scan,
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suggesting the model has used both tumor features and
possibly structural information from the surrounding
brain anatomy.

« Images 2 and 3 illustrate segmentation in non-central regions,
but still contain some tumor-dense sections within the
highlighted zones. This implies that LIME identified both
relevant tumor zones and adjacent tissues as contributory.

 In Image 4, the large highlighted patch precisely overlaps
with a distinct tumor shape, indicating that the model heavily
relied on this particular region to make its prediction.

These LIME explanations serve as a crucial tool for verifying
that the model’s focus aligns with clinical expectations. For medical
diagnosis tasks like brain tumor detection, it is essential to confirm
that the classifier is basing its decisions on tumor-related patterns
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rather than irrelevant background features. LIME allows researchers
and clinicians to inspect the model’s reasoning process, thereby
increasing  trust in its and

predictions facilitating

model transparency.

5.1.2 GRAD-CAM

The image above presents Grad-CAM (Gradient-weighted Class
Activation Mapping) visualizations applied to five MRI brain scan
samples, all of which are correctly classified as showing a Brain Tumor.
Grad-CAM is a powerful interpretability technique that helps
understand which parts of the input image contribute most to a neural
networK’s decision, particularly in convolutional neural networks
(CNNs) (Mir and Pal, 2025; Tsai and Lee, 2025).

In the Grad-CAM heatmaps:

o The red to yellow regions represent high model attention or
importance—areas that had a strong influence on the
model’s decision to classify the scan as showing a
brain tumor.

« The blue to green regions represent areas of lesser importance.

The heatmap is superimposed on the original image to show
where the model “looked” most carefully.
Let us break down the explanation per image:

o Image 0: The tumor is visible in the lower right area of the brain
scan. The Grad-CAM heatmap highlights this same region in red,
confirming that the model’s prediction is based on the actual
tumor site.

o Image 1: The tumor appears slightly more complex and
irregular in structure. The heat-map shows attention on the
central part of the brain, especially around the bright white
tumor region, suggesting the model used this area to identify
the abnormality.

True: Brain Tumor
Pred: Brain Tumor

True: Brain Tumor
Pred: Brain Tumor

True: Brain Tumor
Pred: Brain Tumor

True: Brain Tumor
Pred: Brain Tumor

FIGURE 10
Predicted result.

True: Brain Tumor
Pred: Brain Tumor

True: Brain Tumor
Pred: Brain Tumor

True: Brain Tumor
Pred: Brain Tumor

True: Brain Tumor
Pred:

Brain Tumor

True: Brain Tumor
Pred: Brain Tumor

True: Brain Tumer
Pred: Brain Tumor
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o Image 2: This scan is a side profile (sagittal view), making
interpretation more complex. Despite the different orientation,
the Grad-CAM heatmap still highlights the central mass with
strong attention, indicating that the model adapted well and
localized the tumor area accurately.

« Image 3: The tumor appears to occupy a deeper region of the
brain. The model again focuses on this region, with the heatmap
showing a dense red spot right on the tumor, reinforcing the
reliability of the model’s detection.

o Image 4: The tumor here is located in the upper right quadrant of
the scan. The heatmap aligns with this mass, highlighting it in red

Frontiers in Artificial Intelligence

and confirming that the model’s prediction was influenced by the
actual tumor.

These Grad-CAM visualizations demonstrate (Figure 12) that the
model consistently focuses on the correct anatomical regions associated
with brain tumors. The heatmaps provide visual confirmation that the
CNN is not relying on irrelevant or misleading features, but rather, is
making predictions based on medically significant areas. This enhances
the interpretability and trustworthiness of the AI model in a sensitive
application like medical diagnostics, where understanding the reasoning
behind a decision is crucial for clinical validation.
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FIGURE 12
GRAD-CAM visualization.

Original Image Grad-CAM Heatmap

Explanation for image 1, True Label: Brain
Tumor
Predicted Class: Brain Tumor

Original Image Grad-CAM Heatmap

Explanation for image 3, True Label: Brain
Tumor
Predicted Class: Brain Tumor

Grad-CAM Heatmap

5.1.3 GRAD-CAM++

The provided image set presents a series of Grad-CAM++
visualizations applied to five brain MRI scans, who each diagnosed
as having a brain tumor. These visualizations serve as an
interpretability tool to understand the internal workings of deep
learning models used in medical imaging. Grad-CAM++

(Gradient-weighted Class Activation Mapping++) is an

Frontiers in Artificial Intelligence

enhancement over the original Grad-CAM technique, offering finer
and more spatially precise localization of features that influence a
model’s decision.

Grad-CAM++ improves upon Grad-CAM by considering
higher-order derivatives of the output can coming the feature maps.
This results in sharper and more reliable heatmaps, especially useful
when multiple instances or small objects are present in an image
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(Chattopadhyay et al., 2022). In the context of medical imaging, such
as MRI scans of brain tumors, Grad-CAM++ helps visualize which
exact regions of the scan the model deems important for classification
(Gao et al., 2023).

o Image 0:

o Original image: Displays a clear structure of the brain,
including the tumor area.

o Grad-CAM-++ heatmap: The central region, where the tumor
is visibly located, shows a high activation (in red-yellow),
indicating that the model strongly relied in this area to identify
the tumor.

o Observation: The tumor boundary and surrounding tissue are
highlighted effectively, demonstrating good interpretability.

o Image 1:

o Original image: Features a darker scan, but the tumor
is discernible.

o Grad-CAM-++ heatmap: Activations are concentrated around
the upper-mid portion of the brain, aligning well with the
tumor location.

o Observation: The model captures both the core of the tumor
and some adjacent regions, suggesting sensitivity to
contextual features.

o Image 2:

o Original image: A clean scan with a bright abnormal region.

o Grad-CAM++ heatmap: Strong focus in the central part,
slightly diffused around the tumor area.

o Observation: Grad-CAM++ shows focused activation, but also
includes surrounding regions, possibly indicating model
consideration of surrounding tissues.

o Image 3:

o Original image: Exhibits distinct brain anatomy with a
visible lesion.

o Grad-CAM++ heatmap: High intensity near the center with
tight boundary focus, particularly over the tumor.

o Observation: Suggests that the model is highly accurate in
pinpointing tumor locations, confirming the reliability of its
internal decision logic.

o Image 4:

o Original image: Displays a well-formed tumor in the lower
right area.

o Grad-CAM++ heatmap: The highest activation is located
precisely over the tumor mass, with minimal distraction in
other areas.

o Observation: The result here shows a nearly perfect match
between the medical region of interest and the model’s focus.

These visualizations demonstrate (Figure 13) that Grad-CAM++
offers high-resolution, interpretable insights into CNN-based tumor
detection models. It not only reveals the correct regions of interest
(ROIs) within the MRI scans but also provides medical professionals
with a visual validation of model predictions, which is essential for
building trust in Al-assisted diagnostics. The consistent overlap
between activated areas in the heatmaps and the actual tumor
locations supports the use of Grad-CAM++ as a credible explainability
method in medical imaging research.
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5.1.4 Vanilla Saliency

The image shows (Figure 14) a brain MRI (left) and its Vanilla
Saliency Map (right), which highlights pixel regions influencing the
model’s prediction. Vanilla Saliency computes gradients of the output
to input pixels. Brighter areas indicate greater influence. However, the
map appears noisy and lacks clear focus, making it less reliable for
clinical use. While simple and fast, it’s often outperformed by advanced
methods like Grad-CAM or LIME in interpretability and clarity.

6 Discussion

Table 8 presents a comparative overview of various deep learning
architectures employed for multiclass and binary image classification
tasks, highlighting their respective classification accuracies and the
application of Explainable AT (XAI) methods. The primary goal of
this comparison is to evaluate not only the predictive performance
but also the interpretability of the models—a key requirement in
high-stakes domains such as medical diagnostics. Among the
surveyed models, the proposed XAI-BT-EdgeNet architecture
demonstrates superior performance with an accuracy of 0.9958,
surpassing all baseline and state-of-the-art methods listed. This is
closely followed by ensemble and transfer learning-based approaches
such as the Ensemble model (DenseNet121 + InceptionV3) (R18,
0.9902), ResNet-50 with global average pooling (R16, 0.9800), and
VGG-16 with fine-tuning (R20, 0.9893).

These results reaffirm the established trend that deep feature
fusion and transfer learning significantly enhance classification
performance. Traditional convolutional models such as
VGG-CNN (R3), Modified CNN (R5), and CNN-24 Layers (R6)
achieve competitive accuracies ranging from 0.9400 to 0.9700,
indicating the reliability of CNN-based architectures even
without extensive fine-tuning or hybrid designs. Notably, some
hybrid models like AlexNet-KNN (R4) and CNN-KNN (R8) also
achieve robust accuracies, suggesting that classical machine
learning components, when integrated with deep features, can
yield effective results. It is worth noting that several models such
as ResNet50 (R9) and VGG16 (R11), were applied in binary
classification tasks and achieved high accuracies (0.9900 and
0.9700, respectively), though the binary nature of their
classification may inherently lead to better performance metrics
compared to a more complex multiclass settings.

While most models focus solely on achieving high accuracy, only
a limited subset incorporates XAl techniques are vital for transparency
and trustworthiness. The proposed XAI-BT-EdgeNet is notable not
only for its performance but also for its rich interpretability, employing
a diverse suite of XAI methods, including LIME, GRAD-CAM,
GRAD-CAM++, and Vanilla Saliency Maps. This extensive integration
of explainability tools enables deeper insight into model decision-
making and supports clinical validation.

Other models that incorporate XAI include CNN with dual-
input (R10) using LIME and SHAP, VGG16 (R11) with Layer-
wise Relevance Propagation (LRP), and ResNet50 (R9), and the
Ensemble model (R18) utilizing GRAD-CAM. These methods
provide varying levels of post-hoc interpretability, but are
relatively limited in scope compared to the multi-method
framework of the proposed model.

frontiersin.org


https://doi.org/10.3389/frai.2025.1676524
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Rastogi et al.

10.3389/frai.2025.1676524

Original Image Grad-CAM++ Heatmap

Explanation for image 0, True Label: Brain
Tumor
Predicted Class: Brain Tumor

Original Image Grad-CAM+ 4+ Heatmap

Explanation for image 2, True Label: Brain
Tumor
Predicted Class: Brain Tumor

Original Image

FIGURE 13
GRAD-CAM++ visualization
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Despite the clear utility of XAI, its adoption remains limited
across the surveyed literature. A significant proportion of high-
performing models (e.g., R1-R8, R12-R17, R19-R20) do not report
the use of any XAI methods. This presents a critical research gap,
particularly in medical imaging, where model transparency can be as
important as accuracy for clinical adoption.

Interestingly, R10, which integrates LIME and SHAP, reports a
comparatively low accuracy (0.8500), suggesting a potential trade-off

Frontiers in Artificial Intelligence

between model complexity, dual-input designs, and classification
performance. However, this is not a generalizable trend, as
demonstrated by the proposed model and R18, both of which achieve
state-of-the-art accuracy while incorporating explainability. This
indicates that with thoughtful model design, it is possible to strike a
balance between performance and interpretability.

Statistical significance analysis is a way of determining
whether the difference or improvement observed in your
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experimental results is real and meaningful, or whether it could
have happened just by chance. For this analysis, study has done

the t-test for Table 8.

Step 1—Prior models’ accuracies

a) Number of models (n): 20

b) Mean: 0.9634

¢) Standard deviation ~ 0.0366

10.3389/frai.2025.1676524

Step 2—Proposed model accuracy
X proposed =0.9958
Step 3—One sample t-test formula

_ X proposed — Mprevious
siNn

FIGURE 14
Vanilla Saliency map.

Original Image

Vanilla Saliency Map

TABLE 8 Comparative analysis for other literature model.

Alzahrani (2023)

Rasheed et al. (2023)

Imam and Alam (2023)
AlTahhan et al. (2023)
Ozkaraca et al. (2023)

Peng and Liao (2023)
Goémez-Guzmdn et al. (2023)
Shanjida et al. (2022)
Mercaldo et al. (2023)

Gaur et al. (2022)

Ahmed et al. (2023)

Naseer et al. (2021)
Bashkandi et al. (2022)
Shawon et al. (2025)

Verma and Singh (2022)
Kumar et al. (2021)
Alhassan and Zainon (2021)
Hosny et al. (2025)
Athisayamani et al. (2023)
Malla et al. (2023)

Proposed model

ConvMixer + Attention

CNN with Image Enhancement

VGG-CNN

Hybrid CNNs

Dense CNN

CNN-24 Layers

InceptionV3

CNN-KNN

Resnet50

CNN with dual-input

VGGl6

Deep neural network model CNN

CNN optimized by a metaheuristic algorithm
CS-InceptionV3

Transfer learning using DenseNet201
ResNet-50 and global average pooling
Swish-based RELU activation function-CNN
Ensemble model (DenseNet121 + InceptionV3)
ResNet-152

VGG-16 with fine-tuning

XAI-BT-EdgeNet

Frontiers in Artificial Intelligence

Multiclass 0.9700
Multiclass — 0.9700
Multiclass — 0.9600
Multiclass — 0.9700
Multiclass — 0.9600
Multiclass — 0.9400
Multiclass — 0.9700
Multiclass — 0.9500
Binary GRAD-CAM 0.9900
Multiclass LIME, SHAP 0.8500
Binary LRP 0.9700
Multiclass — 0.9881
Multiclass — 0.9709
Multiclass — 0.9231
Multiclass — 0.9822
Multiclass — 0.9800
Multiclass — 0.9860
Multiclass GRAD-CAM 0.9902
Multiclass — 0.9885
Multiclass — 0.9893
Multiclass LIME, GRAD-CAM, GRAD- 0.9958
CM-++, VANILLA SALIENCY
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TABLE 9 Setup requirement.

10.3389/frai.2025.1676524

Hardware/Software Specification Notes

GPU NVIDIA A100, 40 GB VRAM High-performance GPU available via Colab Pro+
CPU 32-core virtual CPU Provided by Colab environment for preprocessing
RAM 52 GB system RAM Supports dataset loading and training

Python version 3.10 Compatible with PyTorch and supporting libraries
Deep learning framework Tensorflow Library Used for model implementation

Batch size 32 Optimized for GPU memory usage

Training time

~45-50 min per epoch

Total ~3-4 h for full dataset (4,589 MRI scans)

Inference time

~30-50 ms per MRI scan

Efficient for real-time clinical usage

Model parameters

~45 million

Dual-branch CNN with SE and XAI modules

TABLE 10 Advantages of the proposed XAl-BT-EdgeNet framework.

Component/Block

Edge Feature Block

Technical mechanism

Applies fixed Sobel X and Y filters (3 x 3) to
extract horizontal/vertical gradients;
combines with edge magnitude layer and 2D
conv (3 x 3, ReLU) followed by Global

Average Pooling

Core advantage

Enhances edge sensitivity

Detailed benefit

Captures low-level structural
features (e.g., tumor
boundaries, shape
discontinuities) that semantic

models may miss

Clinical relevance

Useful for identifying
hard-to-spot or irregular
tumor boundaries;
supports differential

diagnosis

InceptionV3 Backbone

Multi-scale convolutions with parallel paths

(1x1,3x 3,5 x5 filters); pretrained on

Captures semantic richness

Learns high-level abstractions

like texture, mass, and shape

Effectively distinguishes

among different tumor

while preserving general

visual knowledge

ImageNet variations across tumor types | classes (e.g., glioma vs.

meningioma)
Fine-Tuning of Backbone Trains top layers on medical MRI data while = Improves domain Adjusts weights to align with Avoids overfitting and
retaining low-level features from ImageNet adaptation medical imaging patterns ensures adaptability to

patient-specific brain scans

Squeeze-and-Excitation (SE)
Block

Learns channel-wise attention via global

pooling — bottleneck (FC) — sigmoid gating

Focuses on relevant

channels

Dynamically enhances
informative feature maps
while suppressing noisy or

irrelevant ones

Improves robustness in
detecting subtle tumor
patterns and handles

variations across patients

Global Average Pooling
(GAP)

Replaces flattening with spatial averaging

across feature maps

Reduces parameters

Minimizes overfitting,
increases efficiency, and
retains global spatial

information

Makes the model
lightweight and applicable
for clinical tools with
limited hardware (e.g.,

mobile, edge devices)

Feature Fusion Layer

Concatenates or aggregates edge and
semantic features post-GAP before feeding

into classifier

Combines complementary

features

Integrates fine-grained
boundary cues with high-level

contextual understanding

Increases classification
robustness and precision;
enables better handling of

tumors with mixed textures

Modular Design for XAI

Clearly separated processing paths and
interpretable transformations (e.g., Sobel,

attention weights)

XAl-friendly

Facilitates application of
interpretability tools like
Grad-CAM, LIME on

individual branches

Supports explainable
outputs to aid clinicians in
decision-making and

trust-building

Auxiliary Classifier (in

InceptionV3)

Mid-level output supervision through

additional classifier

Reduces gradient vanishing

in deep layers

Stabilizes training and

improves generalization

Helps achieve more stable
convergence on noisy
medical data with limited

samples
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0.9958—-0.9634 0.0324
t= = =3.
0.0366/+/20 0.00819

Degrees of freedom=n—1=19
Step 4—Significance (p-value)
For df = 19, a t-value = 3.96 gives

p<0.001

To statistically assess performance improvement, a one-sample
t-test was conducted comparing the proposed XAI-BT-EdgeNet
(accuracy = 0.9958) with the accuracies of 20 previously reported
models. The prior studies had a mean accuracy of 0.9634 + 0.0366.
The obtained #(19) = 3.96, p < 0.001, indicating that the improvement
offered by XAI-BT-EdgeNet is statistically significant.

The XAI-BT-EdgeNet model was trained on Google Colab Pro+,
leveraging an NVIDIA A100 GPU with 40 GB VRAM, 52 GB system
RAM, and Python 3.10. The setup and performance metrics are
summarized below (see Table 9).

The proposed brain tumor classification framework utilizes a
dual-branch architecture that integrates InceptionV3 with an Edge
Feature Block, aiming to improve tumor detection by combining
high-level semantic features with low-level edge information. The
following tables are a comprehensive examination of the framework’s
strengths (see Table 10).

Despite its numerous advantages, the framework also presents
several limitations outlined below.

« Computational overhead: Dual-branch networks with edge and
semantic paths, plus SE blocks and feature fusion result in
increased memory and computational costs.

Fixed edge filters: The use of fixed Sobel kernels (non-trainable)
in the edge block may limit adaptability to different imaging
modalities or conditions (e.g., different MRI machines,
noise levels).

» Redundancy in feature fusion: The semantic and edge branches
may generate overlapping or correlated features, especially after
global average pooling.

Spatial misalignment during fusion: Due to separate processing
pipelines, edge and semantic features may differ in spatial
semantics or resolution.

« Risk of overfitting on small medical datasets: The deep and
complex structure of the model increases its capacity, which, in
the absence of large-scale labeled MRI datasets, can lead
to overfitting.

o Domain mismatch in pretraining: The InceptionV3 model is

pretrained on ImageNet, which contains natural RGB images,

unlike grayscale MRI scans. While fine-tuning helps, the
low-level features learned from non-medical images may not
transfer well to brain MRIs, potentially limiting performance.

7 Conclusion

This study introduced XAI-BT-EdgeNet, an explainable
edge-aware deep learning framework enhanced with squeeze-and-
excitation modules for the accurate detection and classification of
brain tumors from MRI images. By integrating both semantic and
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edge-level features through a dual-branch architecture, the model
effectively captures crucial visual patterns associated with tumor
regions. The inclusion of multiple explainability techniques—LIME,
Grad-CAM, Grad-CAM++, and Vanilla Saliency—not only improves
interpretability but also fosters greater clinical confidence in the
system’s decision-making. Experimental results on a well-structured
Brain Tumor Dataset demonstrate exceptional accuracy across
training, validation, and testing phases, underscoring the robustness
and generalization capabilities of the proposed model.

In addition to high performance, the framework addresses a
critical gap in medical AI by balancing predictive strength with
transparency, a requirement for real-world deployment in healthcare
environments. The combination of edge detection, attention-based
feature recalibration, and XAl integration provide a comprehensive
and clinically relevant solution for brain tumor analysis. Future work
may extend this approach to multi-class tumor grading, real-time
diagnostics, and integration with radiologist feedback to further
validate its practical utility.
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