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Introduction: Accurate and early detection of brain tumors is critical for 
effective treatment and improved patient outcomes, yet manual radiological 
analysis remains time-consuming, subjective, and error-prone. To address these 
challenges and improve clinical trust in AI systems, this study presents XAI-BT-
EdgeNet, an explainable, edge-aware deep learning framework integrated with 
squeeze-and-excitation (SE) modules for brain tumor detection using MRI scans.
Methods: The proposed architecture employs a dual-branch design that 
fuses high-level semantic features from InceptionV3 with low-level edge 
representations via an Edge Feature Block, while SE modules adaptively 
recalibrate feature importance to enhance diagnostic accuracy. To ensure 
transparency, the model incorporates four XAI techniques—LIME, Grad-
CAM, Grad-CAM++, and Vanilla Saliency—which provide interpretable visual 
justifications for predictions. The framework was trained and evaluated on the 
Brain Tumor Dataset by Preet Viradiya, comprising 4,589 labeled MRI images 
divided into Brain Tumor (2,513) and Healthy (2,076) classes.
Results: The model achieved 99.58% training accuracy, 99.71% validation 
accuracy, and 100.00% testing accuracy, alongside minimal loss values of 0.0103, 
0.0051, and 0.0026, respectively. These results demonstrate the robustness and 
precision of the proposed framework in brain tumor classification.
Discussion: This work includes the development of a dual-branch CNN 
architecture that combines semantic and edge features for enhanced 
classification, the integration of SE modules to highlight clinically significant 
regions, and the application of multi-method XAI to offer transparent, 
interpretable outputs for clinical applicability. Overall, XAI-BT-EdgeNet delivers 
a high-performing, interpretable solution that bridges the gap between deep 
learning and trustworthy clinical decision-making in brain tumor diagnosis.
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1 Introduction

Brain tumors are among the most complex and fatal diseases affecting the central nervous 
system, with substantial implications for neurological function, cognitive performance, and 
overall quality of life (Chieffo et al., 2023; Pancaldi et al., 2023). Globally, brain tumors contribute 
to a significant proportion of cancer-related deaths, especially among children and older adults. 
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Their biological heterogeneity and unpredictable growth patterns pose 
serious diagnostic and therapeutic challenges. Accurate and early 
diagnosis is paramount to improving treatment planning and patient 
outcomes, as delayed detection often leads to rapid disease progression 
and reduced survival rates (National Institutes of Health, 2025).

Magnetic resonance imaging (MRI) is the primary imaging 
modality used for non-invasive visualization of brain tumors due to 
its ability to capture high-resolution anatomical detail and tissue 
contrast without ionizing radiation (Peng et al., 2025; Misra, 2024). 
However, interpreting MRI scans is inherently complex and highly 
dependent on radiologists expertise. Manual evaluation is often 
subjective, time-intensive, and prone to intra- and inter-observer 
variability. In resource-constrained healthcare environments or high-
volume settings, the reliance on manual interpretation can result in 
diagnostic delays or oversight of subtle pathological features (Grover 
et al., 2015). These limitations have prompted the development of 
automated decision-support systems to assist in tumor detection 
and classification.

Deep learning, particularly convolutional neural networks 
(CNNs), has revolutionized the field of medical image analysis, 
offering robust capabilities in learning hierarchical feature 
representations from imaging data (Mienye et al., 2025; Mall et al., 
2023; Gupta et  al., 2021). CNN-based models have demonstrated 
excellent performance in various brain tumor classification tasks, 
owing to their ability to automatically extract both low-level and high-
level image features (Thakur et  al., 2024; Alzubaidi et  al., 2021). 
However, a critical barrier to the clinical adoption of these models lies 
in their “black-box” nature. Most CNNs provide predictions without 
any accompanying rationale, making it difficult for clinicians to trust 
or interpret the decision-making process. This opacity is particularly 
concerning in high-stakes environments such as oncology, where 
diagnostic precision and accountability are essential.

Adding to the complexity of brain tumor classification is the need 
to distinguish not only between tumor types but also tumor grades. 
According to the World Health Organization (WHO), brain tumors 
are classified into four grades (I to IV) based on histological features 
such as cellularity, mitotic activity, microvascular proliferation, and 
necrosis (Osborn et al., 2022; Louis et al., 2016).

	•	 Grade I tumors are typically benign, slow-growing, and often 
curable through surgical resection (e.g., pilocytic astrocytoma).

	•	 Grade II tumors are low-grade malignancies with a potential to 
recur or progress.

	•	 Grade III tumors exhibit more aggressive growth and cellular 
atypia, while

	•	 Grade IV tumors, such as glioblastoma multiforme (GBM), are 
highly malignant with poor prognosis and high recurrence rates.

The ability to accurately classify both tumor type and grade from 
MRI scans is critical for determining prognosis and guiding treatment 
strategies, but remains a difficult task even for experienced radiologists 
(Farahani et al., 2022). Misclassification can lead to inappropriate 
treatment protocols and adverse patient outcomes. Furthermore, while 
deep learning models excel at extracting semantic features—patterns 
that describe the broader visual context—they often underutilize 
critical edge and boundary information. In the case of brain tumors, 
the shape, margin clarity, and texture around lesion boundaries carry 
valuable diagnostic clues. Tumors of higher grades often exhibit 
irregular, infiltrative, or necrotic edges, which may not be captured 

effectively by standard convolutional architectures focused solely on 
semantic abstraction (Kunimatsu et  al., 2021). This highlights the 
importance of integrating edge-aware mechanisms into deep learning 
pipelines for enhanced diagnostic fidelity. To overcome these 
challenges, this study introduces XAI-BT-EdgeNet, an explainable 
deep learning architecture tailored for the detection and grading of 
brain tumors from MRI images. The proposed model features a dual-
branch architecture: one branch is based on the InceptionV3 network 
to capture semantic-level information, while the other is an Edge 
Feature Block that processes gradient-based edge representations to 
enhance structural detail. The fusion of these complementary branches 
allows the model to learn both high-level features and fine-grained 
edge cues critical for accurate tumor classification.

To further refine the representational power of the network, 
squeeze-and-excitation (SE) blocks are incorporated to dynamically 
recalibrate channel-wise feature responses, ensuring the network 
focuses on diagnostically salient regions. Moreover, to ensure 
transparency and foster clinical trust, the framework is intrinsically 
designed with a suite of Explainable Artificial Intelligence (XAI) tools, 
including Grad-CAM, Grad-CAM++, LIME, and Vanilla Saliency. 
These modules produce visual explanations that allow clinicians to 
understand and validate the regions influencing each prediction, 
whether tumor type or grade.

The proposed study is guided by the following key contributions:

	•	 Edge-aware dual-branch architecture: A dual-branch framework 
combining InceptionV3 with an Edge Feature Block to capture 
both semantic and boundary-level features, improving brain 
tumor detection and grading.

	•	 Feature enhancement with SE modules: Integration of squeeze-
and-excitation blocks to adaptively emphasize important features, 
enhancing classification accuracy across tumor types and grades.

	•	 Built-in explainability with multi-XAI support: Use of Grad-
CAM, Grad-CAM++, LIME, and Vanilla Saliency to generate 
interpretable visual explanations, promoting transparency and 
clinical trust.

Following these contributions, the remainder of this study is 
structured as follows: Section 2 provides a detailed literature review, 
highlighting existing methods in brain tumor detection and their 
limitations in terms of interpretability and feature representation. 
Section 3 outlines the dataset preparation, pre-processing pipeline, and 
the adapted dual-branch architecture integrated with squeeze-and-
excitation modules. Section 4 discusses the evaluation criteria using 
standard performance metrics. Section 5 presents the experimental 
results, including classification performance and interpretability analysis 
using multiple XAI methods such as LIME, Grad-CAM, Grad-CAM++, 
and Vanilla Saliency. Section 6 offers an in-depth discussion of the 
findings, addressing the model’s strengths, practical implications, and 
limitations. Finally, Section 7 concludes the study by summarizing the 
key outcomes and suggesting directions for future research.

2 Literature review

Alzahrani (2023) introduced ConvAttenMixer, a deep learning 
model for brain tumor detection and classification. This architecture 
combines convolutional mixers with both external and self-attention 
mechanisms, enabling the model to capture both local and global 
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features effectively. The study demonstrates that ConvAttenMixer 
outperforms traditional CNN-based models in detecting and 
classifying brain tumor types using MRI scans. The integration of 
attention modules significantly enhances feature representation, 
leading to improved performance in medical image analysis.

Rasheed et  al. (2023) proposed a brain tumor classification 
framework that combines image enhancement techniques with 
convolutional neural networks (CNNs) to improve diagnostic 
accuracy from MRI scans. The image preprocessing stage enhances 
critical features in MRI images, making them more distinguishable for 
the CNN model. The study demonstrates that this hybrid approach 
significantly improves classification performance across different 
tumor types, highlighting the effectiveness of enhanced imaging in 
supporting deep learning-based medical diagnosis.

AlTahhan et al. (2023) developed a refined automatic brain tumor 
classification system leveraging hybrid convolutional neural networks 
(CNNs) applied to MRI scans. The proposed method integrates 
multiple CNN architectures to extract diverse and complementary 
features, enhancing the accuracy and robustness of tumor 
classification. Experimental results show that this hybrid approach 
outperforms standard CNN models, offering a reliable solution for 
automated medical diagnostics in brain tumor analysis.

Özkaraca et al. (2023) proposed a deep learning-based method for 
classifying multiple types of brain tumors using dense convolutional 
neural networks (Dense CNNs) on MRI data. The Dense CNN 
architecture enhances feature propagation by connecting each layer to 
every other layer in a feed-forward fashion, which reduces the risk of 
vanishing gradients and encourages feature reuse. The study tested its 
model on publicly available MRI datasets and reported high accuracy 
and generalization, particularly for glioma, meningioma, and pituitary 
tumors. The model demonstrated robust performance even with 
limited data, making it suitable for real-world clinical applications.

Peng and Liao (2023) presented a deep learning classification 
model focused on MRI-based brain tumor diagnosis. Presented at the 
IEEE ECBIOS conference, their approach integrates pre-processing 
steps to standardize MRI data, followed by a CNN-based classification 
pipeline. Their system demonstrated solid performance in identifying 
various tumor types, with emphasis on minimizing false positives. The 
study’s contribution lies in its simplicity and applicability, targeting 
real-time diagnostic support tools for medical professionals.

Gómez-Guzmán et  al. (2023) applied CNNs to classify brain 
tumors from MRI images, focusing on improving detection accuracy 
by optimizing CNN architectures (such as layer depth and filter size). 
They used image augmentation to improve dataset diversity and 
reduce overfitting. The model showed promising classification 
accuracy, especially in differentiating gliomas, meningiomas, and 
pituitary tumors. Their findings reinforce CNNs’ effectiveness in 
extracting spatial and contextual features from complex MRI datasets, 
contributing to precision in non-invasive diagnostics.

Shanjida et al. (2022) introduced a hybrid model combining CNN 
and K-nearest neighbors (CNN-KNN) for detecting and classifying 
brain tumors from MRI scans. The CNN was used to extract high-
level spatial features, which were then fed into the KNN classifier for 
final prediction. The study emphasized model simplicity and low 
computational cost, making it well-suited for environments with 
limited processing resources. Despite its hybrid nature, the model 
maintained competitive accuracy and robustness, showing particular 
strength in handling small and imbalanced datasets.

Mercaldo et  al. (2023) addressed the critical need for 
interpretability in AI-driven medical diagnostics by designing a 
CNN-based system that detects and localizes brain tumors while 
offering explainable outputs. The model was trained on publicly 
available MRI datasets and designed with a focus on maintaining 
high performance without sacrificing transparency. To achieve 
explainability, the authors integrated Grad-CAM (Gradient-weighted 
Class Activation Mapping), allowing visual heatmaps that highlight 
the specific regions influencing the classification. This is essential for 
clinical settings where black-box models are typically mistrusted. The 
CNN architecture itself followed a moderately deep structure with 
batch normalization and dropout layers to prevent overfitting. 
Performance metrics such as accuracy, precision, recall, and F1-score 
were above 90% across most tumor classes. The study’s main 
contribution lies in its human-AI collaboration approach, offering 
both performance and interpretability.

Gaur et al. (2022) proposed a deep learning system specifically 
designed to predict tumor malignancy (benign vs. malignant) using 
MRI data, with an added emphasis on explanation generation. They 
applied a custom CNN architecture, followed by the use of SHAP 
(SHapley Additive exPlanations) and Layer-wise Relevance 
Propagation (LRP) to interpret how the model arrived at each 
decision. The model was trained on a curated dataset, with 
preprocessing steps including histogram equalization and skull 
stripping to improve contrast and reduce irrelevant features. The 
CNN was fine-tuned using cross-validation, and the model achieved 
over 94% accuracy for binary classification. The study is notable for 
embedding explanation as a core component, rather than an 
afterthought. These insights not only improved model validation but 
also provided medical experts with confidence in 
decision boundaries.

Ahmed et al. (2023) employed a transfer learning strategy by fine-
tuning VGG-16, a well-known deep CNN architecture, to classify 
brain tumors into multiple types (glioma, meningioma, and pituitary). 
They further applied explainable AI (XAI) techniques like LIME 
(Local Interpretable Model-agnostic Explanations) and heatmaps to 
visualize model reasoning. Their dataset included both axial and 
coronal views of MRI scans, augmented using techniques like rotation 
and scaling. This diversity improved generalization and helped combat 
overfitting. The VGG-16 model, with minimal architectural 
modification, achieved an accuracy of ~96% and strong class-wise 
precision. The integration of VGG-16 with XAI tools proved useful 
for highlighting lesion zones and verifying model focus. The study 
bridges pretrained model power with real-world interpretability, 
making it practical for clinical deployment.

Naseer et al. (2021) investigated the role of data augmentation in 
improving CNN performance for brain tumor detection. Recognizing 
the limitations of small medical datasets, they implemented aggressive 
augmentation techniques (e.g., rotation, flipping, zooming, intensity 
variation) to generate a robust training set. Their custom CNN, 
composed of multiple convolutional, pooling, and fully connected 
layers, was evaluated on both original and augmented datasets. The 
augmented pipeline yielded a 10–12% increase in accuracy, with the 
final model reaching ~93% accuracy. This study highlighted the 
importance of dataset diversity, particularly for deep learning 
applications in healthcare, where acquiring labeled medical data is 
difficult. It also showed that simple CNNs can compete with deeper 
architectures if trained with enriched datasets.
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Bashkandi et al. (2022) proposed a novel hybrid optimization 
strategy combining two nature-inspired algorithms—Political 
Optimizer (PO) and Particle Swarm Optimizer (PSO)—to enhance 
the training and hyperparameter tuning of a CNN for brain tumor 
classification. The optimizers were applied to adjust weights, biases, 
and learning parameters of the CNN, which included several 
convolutional and max-pooling layers. The CNN was evaluated using 
cross-validation on a publicly available MRI dataset, and the 
optimizer-driven approach significantly outperformed standard 
gradient descent methods. Their model achieved over 97% accuracy, 
and the optimization process led to better convergence and fewer 
training epochs. The study represents a novel contribution by 
integrating evolutionary strategies with deep learning, allowing fine-
tuned control of network behavior and avoiding local minima.

Shawon et al. (2025) tackled the dual challenge of class imbalance 
and model explainability in brain tumor classification. They designed 
a cost-sensitive deep neural network (DNN) that penalizes 
misclassification of underrepresented classes (like rare tumor types), 
helping to reduce bias toward majority classes. In addition, they 
incorporated explainable AI techniques (such as Grad-CAM and 
SHAP) to generate heatmaps for transparency. The model was trained 
on a real-world, imbalanced MRI dataset, showing significantly 
improved recall and F1-score for minority classes. This approach is 
vital for clinical scenarios where rare but deadly tumors must not 
be overlooked.

Verma and Singh (2022) proposed and compared multiple custom 
deep learning frameworks for classifying brain tumors using MRI 
data. The study covered CNNs, RNNs, and hybrid models, with a 
thorough evaluation on multiple datasets. Their work analyzed trade-
offs in model complexity, training time, and classification 
performance, concluding that CNN-based frameworks with residual 
connections and attention blocks offered the best balance between 
accuracy and computational efficiency. They also implemented 
ensemble learning to further enhance generalization.

Kumar et al. (2021) developed a ResNet-based CNN architecture 
enhanced with Global Average Pooling (GAP) for multi-class 
classification of brain tumors. The use of residual connections helped 
mitigate the vanishing gradient problem, while GAP layers reduced 
overfitting by minimizing model parameters. The model was tested on 
a balanced dataset with three tumor classes and achieved an accuracy 
above 95%, with fast convergence and high interpretability. This 
method is computationally efficient, making it suitable for integration 
into real-time diagnostic tools.

This study (Alhassan and Zainon, 2021) introduced a modified 
activation function: Hard Swish-based ReLU, incorporated into a 
CNN for classifying brain tumors. The new activation aimed to 
balance the non-linearity of ReLU with the smoothness of Swish, 
enhancing convergence and gradient flow. Their CNN model showed 
improved accuracy and faster training compared to the standard 
ReLU-based networks. Evaluated on MRI datasets, it achieved 
classification accuracy around 96%, with noticeable gains in precision 
and recall, especially on complex tumor boundaries.

Hosny et al. (2025) introduced an ensemble learning framework 
that combines several CNN-based classifiers, each trained with 
different architectural or hyperparameter configurations. This 
ensemble was enhanced with explainable AI tools like Grad-CAM, 
giving radiologists insight into the decision-making process. The 
ensemble significantly outperformed individual models, achieving an 

accuracy of ~98% and superior generalization across tumor types. The 
visual explanations also validated the model’s focus on clinically 
relevant tumor areas, increasing its practical utility.

This study (Athisayamani et al., 2023) employed ResNet-152, a 
very deep CNN, for high-level feature extraction, followed by 
optimized dimensionality reduction techniques (e.g., PCA and LDA) 
to improve classifier performance and reduce computational burden. 
The extracted features were fed into conventional classifiers (like SVM 
and k-NN), showing that the hybrid deep feature + shallow classifier 
approach can achieve performance comparable to end-to-end deep 
networks, especially when computational resources are limited.

Malla et al. (2023) proposed a deep CNN integrated with Global 
Average Pooling (GAP) for end-to-end classification of brain tumors 
from MRI images. GAP eliminated the need for fully connected layers, 
thus reducing overfitting and improving interpretability. Their model 
was trained on a multi-class dataset and reached an accuracy of ~95%, 
performing particularly well on noisy and artifact-prone images. The 
authors emphasized the model’s computational efficiency and its 
adaptability to embedded systems or mobile devices for telemedicine.

Drawing upon the insights from the reviewed literature and 
aligning with the proposed research title, the following well-defined 
objectives have been formulated:

	•	 Objective 1: To design an edge-aware deep convolutional neural 
network integrated with squeeze-and-excitation (SE) blocks for 
accurate brain tumor segmentation and classification.

	•	 Objective 2: To integrate explainable artificial intelligence (XAI) 
methods into the proposed model to enhance the interpretability 
and transparency of tumor detection and classification outcomes.

	•	 Objective 3: To benchmark the proposed XAI-BT-EdgeNet 
against state-of-the-art CNN, attention-based, and ensemble 
models in terms of classification accuracy, computational 
efficiency, and explainability.

Table 1 shows the related work analysis for other state-of-the-art 
with a research gap.

3 Methods and materials

3.1 Dataset preparation

The Brain Tumor Dataset developed by Viradiya (2021) is a widely 
used collection of annotated medical images aimed at facilitating 
machine learning research in the domain of automated brain tumor 
classification. The dataset consists of 4,589 labeled MRI scan images, 
which are divided into two classes: Brain Tumor (2,513 images) and 
Healthy (2,076 images). Each image represents a magnetic resonance 
imaging (MRI) slice of the human brain. These images are organized 
into separate folders according to their respective classes, allowing for 
efficient supervised learning workflows. The dataset supports binary 
classification tasks, making it particularly suitable for deep learning 
techniques such as convolutional neural networks (CNNs). Although 
the dataset lacks pixel-level annotations for tumor segmentation and 
does not contain metadata such as patient information, acquisition 
parameters, or tumor types, it still serves as a valuable resource for 
initial experimentation and model prototyping in medical imaging 
tasks. Furthermore, the variability in image quality, brightness, and 
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TABLE 1  Related work for other state of art model.

References Model type Innovation Dataset 
challenge

Notable 
strength

Research gap

Alzahrani 

(2023)

ConvMixer + 

Attention

Combines convolutional mixers with both 

external and self-attention modules to capture 

local and global features simultaneously

Multi-class 

classification

Captures global–local 

features

Lacks interpretability and 

explainability in clinical 

decision-making

Rasheed et al. 

(2023)

CNN with image 

enhancement

Introduces a pre-processing pipeline to enhance 

contrast and highlight tumor regions before 

CNN classification

Noise in MRI Improved feature 

clarity

Does not incorporate attention 

mechanisms or explainable AI 

frameworks

AlTahhan et al. 

(2023)

Hybrid CNNs Integrates multiple CNN architectures to 

harness complementary feature extraction 

capabilities

MRI variability Diverse feature 

extraction

Does not offer localization or 

interpretability of decisions

Özkaraca et al. 

(2023)

Dense CNN Utilizes dense connections to maximize feature 

reuse and gradient flow during training

Multi-class 

tumors

Efficient feature reuse Absence of explainable 

components for clinical 

transparency

Peng and Liao 

(2023)

CNN-24 layers Implements a traditional CNN architecture for 

fast and accessible tumor classification

General 

classification

Feasible for 

deployment

Lacks architectural novelty and 

performance tuning

Gómez-Guzmán 

et al. (2023)

InceptionV3 Optimized configuration of CNN layers tailored 

to MRI characteristics for classification

MRI noise/

artifacts

Strong baseline Lacks integration with 

advanced modules like 

attention or hybrid models

Shanjida et al. 

(2022)

CNN-KNN Employs a hybrid classifier combining deep 

features with k-nearest neighbors for final 

decision-making

Limited data Simple and 

interpretable

Struggles to scale with larger 

and more complex datasets

Mercaldo et al. 

(2023)

Resnet50 Incorporates explainable AI via Grad-CAM to 

visualize areas of interest in MRI scans

Localization 

needed

Visual interpretability Slightly higher computational 

demand; lacks performance 

optimization

Gaur et al. 

(2022)

CNN with dual-

input

Employs explainability methods (SHAP, LRP) to 

interpret model outputs and provide confidence 

in decisions

Binary 

classification

Transparent model Only binary classification 

addressed; not evaluated for 

multi-class problems

Ahmed et al. 

(2023)

VGG16 Combines transfer learning (VGG-16) with 

heatmaps for interpretability in classification 

tasks

Multi-class Pretrained model with 

explanations

Dataset diversity is limited; not 

generalized to real-world 

settings

Naseer et al. 

(2021)

Deep neural 

network model 

CNN

Uses aggressive data augmentation to overcome 

limited training data and improve generalization

Small datasets Improved 

generalization

No use of explainability or 

advanced model optimization 

techniques

Bashkandi et al. 

(2022)

CNN optimized 

by a metaheuristic 

algorithm

Integrates Political Optimizer and Particle 

Swarm Optimization for fine-tuning CNN 

hyperparameters

Parameter 

sensitivity

Superior convergence Increased algorithmic 

complexity may hinder real-

time applications

Shawon et al. 

(2025)

CS-InceptionV3 Introduces class-weighted loss and XAI to 

mitigate data imbalance and support transparent 

decisions

Imbalanced 

dataset

Better recall for rare 

classes

May cause bias toward minority 

classes in high-class-count 

scenarios

Verma and 

Singh (2022)

Transfer learning 

using 

DenseNet201

Presents a comparative framework using 

different deep models to determine the most 

efficient design for tumor classification

Model 

optimization

Comprehensive design Not deeply tailored to MRI-

specific noise and structure 

challenges

Kumar et al. 

(2021)

ResNet-50 and 

global average 

pooling

Employs residual learning and global average 

pooling to reduce overfitting and model 

complexity

Overfitting Lightweight and 

accurate

Interpretability and clinical 

correlation not addressed

Alhassan and 

Zainon (2021)

Swish-based 

RELU activation 

function-CNN

Introduces a novel activation function (Hard 

Swish) to improve CNN learning performance

Training 

instability

Improved training 

dynamics

Needs broader validation across 

datasets and clinical settings

Hosny et al. 

(2025)

Ensemble model 

(DenseNet121 + 

InceptionV3)

Combines multiple deep models with 

explainable AI to boost performance and 

transparency

Tumor diversity High accuracy + trust High computational cost and 

training time

(Continued)
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contrast presents a realistic challenge, thereby fostering the 
development of more robust and generalizable models.

Table 2 summarizes the key characteristics of the Brain Tumor 
Dataset utilized in this study, including the total number of MRI scans, 
tumor categories, imaging modality, and resolution details. It 
highlights the distribution of samples among glioma, meningioma, 
pituitary tumors, and healthy cases, which is critical for understanding 
class representation during model training.

Figure 1 presents a representative MRI scan of a healthy brain, 
illustrating normal anatomical structures without any abnormal 
growths. In contrast, Figure 2 visualizes an MRI scan with a visible 
brain tumor, showing abnormal intensity regions that are indicative 
of pathological tissues. Figure 3 illustrates the distribution of MRI 
images across the defined classes, revealing an inherent imbalance in 
the dataset, which was addressed using augmentation techniques and 
loss function adjustments to ensure model robustness 
and generalizability.

3.2 Data pre-processing strategy

To support robust model evaluation and ensure consistency in 
experimental design, this study was developed to automate the 
process of partitioning an image dataset into distinct subsets for 
training, validation, and testing. The function accepts parameters 
specifying the desired subset type, the proportion of data to 
allocate, the source directory containing the full dataset, and a 
mapping that indicates the number of images available in 
each class.

The methodology begins by verifying whether the target directory 
already exists; if it does not, it creates the necessary subdirectories for 
each class. A random number generator with a fixed seed of 42 is 
initialized to ensure that the selection of images remains consistent 
across multiple executions, promoting reproducibility. The function 
then retrieves the list of image files belonging to each class and 
determines the appropriate number of images to include in the current 
subset based on the specified split ratio. To prevent errors caused by 
excessively large split values, a conditional check ensures that the 
number of images selected does not exceed the total available.

Once the appropriate number of images is randomly selected for 
each class, they are copied from the original dataset location to their 
corresponding destination folders within the target subset directory. 
This process is repeated for each class to maintain the original class 
distribution across all dataset splits. The function is subsequently 
invoked multiple times to create the training, validation, and testing 
sets using fixed proportions (e.g., 70, 15, and 15%, respectively) as 
illustrated in Figure 4.

This automated approach to dataset partitioning enhances both 
the scalability and reproducibility of the deep learning pipeline. It 
ensures a stratified and consistent dataset structure, which is crucial 
for developing reliable models, particularly in sensitive domains such 
as medical image classification.

In deep learning models, especially those dealing with image data, 
the quality and structure of the input pipeline are critical to achieving 
robust and generalizable performance. The create_image_generators 
function in TensorFlow/Keras is a high-level abstraction used to create 
these pipelines. It encapsulates both data preprocessing and data 
augmentation using the ImageDataGenerator class provides a 
continuous supply of mini-batches for training, validation, and testing.

Let each input image be represented by a tensor:

	 × ×∈ H W CX R

where H  and W  are the height and width of the image, 
respectively, and C  is the number of color channels (typically = 3C  for 
RGB images).

Let the dataset consist of 𝑁 such samples:

	 ( ){ } =
=

1
, N

i i i
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where { }∈ 0,1 K
iy  is a one-hot encoded vector denoting the class 

label for K categories.

TABLE 2  Key characteristics of the Brain Tumor Dataset.

Feature Description

Source Kaggle (Preet Viradiya)

Total number of images 4,589 images

Classes 2 (Brain Tumor, Healthy)

Image format JPEG

Image type MRI brain scans

Tumor images 2,513 images

Healthy images 2,076 images

Image annotation Image-level labels only (no segmentation or 

bounding boxes)

Color format Grayscale and color images

Clinical metadata Not available

Intended task Binary classification

Limitations No pixel-level labels, lack of tumor type 

categorization, no clinical metadata

TABLE 1  (Continued)

References Model type Innovation Dataset 
challenge

Notable 
strength

Research gap

Athisayamani 

et al. (2023)

ResNet-152 Uses a deep pretrained model (ResNet-152) 

followed by dimension reduction for better 

classification

High 

dimensionality

Good for low-resource 

setups

Not end-to-end trainable; relies 

on manual feature extraction 

post-CNN

Malla et al. 

(2023)

VGG-16 with 

fine-tuning

Streamlines architecture using GAP to eliminate 

fully connected layers, improving speed and 

generalization

Noisy input Efficient + deployable No focus on interpretability or 

attention mechanisms
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The preprocessing function in deep learning—particularly in 
image classification tasks—refers to a transformation applied to raw 
input data before it is passed into a neural network. The primary goal 
is to ensure that input data is numerically stable, well-scaled, and 
statistically appropriate for the operations performed by the model’s 
layers. The preprocessing function applied in this context is a 
normalization technique defined mathematically as:

	
( ) = − ∀ ∈  1, 0,255

127.5 x
xpreprocess x

This transformation operates on the raw pixel values of an 
image, where 𝑥 denotes the intensity of a given pixel. Typically, 
images are stored in an 8-bit format where pixel values lie in the 
range [0, 255]. The function first scales these values by dividing 
by 127.5, which brings them into the range [0, 2], and then shifts 
them by subtracting 1, resulting in a final normalized range of 
[−1, 1]. This type of normalization is referred to as linear 
normalization, since it preserves the relative proportions and 
distances between pixel values (i.e., it maintains the order and 
ratio of intensities).

FIGURE 1

Visualization of healthy MRI scan.

FIGURE 2

Visualization for tumor MRI scan.
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The training datagen object created using ImageDataGenerator 
is a powerful tool for real-time data augmentation in image-based 
deep learning. It is designed to synthetically expand the training 

dataset by applying a series of random geometric transformations to 
each image. This helps prevent overfitting and enables the model to 
learn transformation-invariant features.

FIGURE 3

Distribution of brain MRI images scan by class.

FIGURE 4

Distribution of brain MRI images belonging to 2 classes.
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The data generator in this configuration applies a series of 
randomized image transformations to enrich the training dataset 
and improve model generalization. Each image is treated as a 
function 𝐼 (𝑥, 𝑦, 𝑐) where 𝑥, 𝑦 ∈ 𝑅 represent pixel coordinates 
and 𝑐 ∈ {1, 2, 3} denotes the RGB color channels. The augmented 
image ( )′ ′, ,Î x y c  is produced by applying a composition of 
geometric transformations followed by a pixel-level 
preprocessing function.

The full transformation pipeline can be summarized as:

	 ( )( )° ° ° °= _ˆ final flip zoom shear shift rotateI preprocess func T T T T T I

where 𝑇 represents the transformation functions 
applied sequentially.

Unlike the training data generator, which typically includes 
augmentation to artificially expand the dataset and improve 
generalization, these generators are configured solely with a 
preprocessing_function. This means that the only transformation 
applied to the validation and test images is a predefined pixel-
level preprocessing step—commonly used to normalize or 
standardize image data. For example, the preprocessing function 
might scale pixel values to the range [0, 1], subtract the mean 
pixel value, or apply dataset-specific normalization. Applying the 
same preprocessing function to the training, validation, and test 
data ensures that all inputs are on the same scale and distribution, 
which is essential for a consistent model behavior and accurate 
evaluation. Importantly, no random changes such as rotation, 
flipping, or shifting are applied to the validation and test sets, as 
these datasets are meant to reflect real, unmodified data for 
unbiased performance measurement.

Table 3 outlines the augmentation strategies applied using the 
ImageDataGenerator function, including transformations such as 
rotation, zooming, shifting, and horizontal flipping, which introduced 
variation and improved the model’s ability to generalize across unseen 
MRI scans.

3.3 Adapted methodology

This architecture integrates a pre-trained InceptionV3 
convolutional (Rastogi et al., 2023) backbone with custom-designed 
squeeze-and-excitation (SE) attention mechanisms (Misra, 2024) 
and an edge-based feature extraction pathway using fixed Sobel 
filters, culminating in a model that is both semantically rich and 
texture-aware.

The model starts by accepting images of size 299 × 299 × 3, 
aligning with the native input dimension of InceptionV3, a state-
of-the-art convolutional neural network known for its strong 
performance on large-scale image classification tasks like ImageNet. 
The image is fed into two parallel branches: one being the 
InceptionV3 base network, and the other a Sobel-based edge 
detection branch.

The edge detection branch is grounded in classical image 
processing theory, where Sobel filters are used to approximate the 
first-order image gradients in horizontal ( xG ) and vertical ( yG ) 
directions (Timothy, 2025). These are defined as:

	 = ∗ = ∗,x x y yG I S G I S

where ∗ denotes convolution, 𝐼 is the input image and xS , yS  are 
the horizontal and vertical Sobel kernels, respectively. The gradient 
magnitude, capturing edge strength, is computed using:

	 = +2 2
x yG G G

This edge map is then passed through a shallow CNN to learn 
edge-level discriminative features, which are pooled via Global 
Average Pooling (GAP) to produce a compact edge feature vector. 
Concurrently, the input image is passed through InceptionV3, 
which extracts deep, hierarchical features through a cascade of 
convolutional blocks. This model, pre-trained on ImageNet, 

TABLE 3  ImageDataGenerator transformations.

Transformation Description Parameter value Mathematical representation

Rotation Rotates image around its center rotation_range = 20
θ
    

= +    
     

′
′   

x c cx
R

y c cy
x x

y y

where θR  is the rotation matrix

Width shift Translates image horizontally width_shift_range = 0.2 [ ]−′ = + ∆ ∆ ∈ +, 0.2 , 0.2x x x x W W

Height shift Translates image vertically height_shift_range = 0.2 [ ]−′ = + ∆ ∆ ∈ +, 0.2 , 0.2y y y y H H

Shearing Slants image along horizontal direction shear_range = 0.2
[ ]λ

λ
     

= ∈ −     
     

′
′

1
, 0.2,0.2

0 1

x x

y y

Zooming Scales image in or out centered at image center zoom_range = 0.2 ( )= − +′ ,x z x c cx x

( )= − +′y z y c cy y

[ ]∈ 0.8,1.2z

Horizontal flip Flips image left-to-right with 50% probability horizontal_flip = True =′ = ′− ,x W x y y

Fill mode Fills empty pixels after transformation using nearest pixel fill_mode = “nearest” ( ) ( )( )′ ′ ′ ′=, ,Î x y I nearest x y

Preprocessing Func Custom function for pixel value standardization preprocess_func (custom) ( )′ ′ =ˆ , ,I x y cfinal  preprocess_func ( ( )′ ′, ,Î x y c )
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retains generalized visual knowledge that helps improve 
convergence and performance on downstream tasks. However, the 
last layers (from a defined index) are unfrozen for fine-tuning, 
allowing the network to adapt to the specific task.

To enhance the representational power of InceptionV3 outputs, a 
squeeze-and-excitation (SE) block is applied. The SE block adaptively 
recalibrates channel-wise feature responses by modeling 
interdependencies among feature channels (Misra, 2024). This is 
achieved in three steps:

	•	 Squeeze: Apply GAP to reduce spatial dimensions, producing a 
channel descriptor ∈ Cz R .

	•	 Excitation: Pass 𝑧 through a bottleneck of two fully connected 
layers with activations (ReLU and Sigmoid) to generate channel-
wise weights ∈ Cs R .

	•	 Reweight: Multiply the original feature maps by these learned 
weights to emphasize informative channels.

Mathematically, for input feature map × ×∈ H W CF R , the attention-
modulated feature is:

	
⋅= = …hˆ for eac  channel 1, ,c c cF F s c C

After applying SE attention and global pooling, the network 
obtains a deep semantic feature vector. This is concatenated with the 
edge-based feature vector, effectively merging low-level edge 
descriptors with high-level semantic abstractions:

	 ( )= ,combined cnn edgef Concat f f

FIGURE 5

Proposed model architecture.

TABLE 4  Key aspect of the presented model architecture.

Aspect Advantage

Edge-aware learning Uses Sobel filters to extract explicit edge features, improving boundary awareness and spatial sensitivity—especially useful in texture- 

or shape-sensitive tasks (e.g., medical, remote sensing)

Dual-branch feature extraction Combines traditional edge features with deep CNN features, leading to rich multi-scale representations. This improves robustness to 

appearance variations

Squeeze-and-excitation (SE) block Enhances important features via channel-wise attention, increasing model’s focus on informative feature maps and reducing irrelevant 

noise.

Transfer learning efficiency Leverages pretrained InceptionV3, reducing training time and requiring less labeled data while still achieving high accuracy

Fine-tuning flexibility Enables selective fine-tuning starting at a configurable layer index (L_f), allowing a trade-off between computational efficiency and 

model adaptability

Compact & effective fusion Uses global average pooling before fusion to reduce dimensionality and prevent overfitting, while concatenation retains 

complementary features
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This fused vector is then passed through a dense layer with 1,024 
neurons and ReLU activation, followed by a Dropout layer to mitigate 
overfitting. The final classification is performed using a softmax 
output layer, which assigns probability scores across the num_classes 
defined in the training set.

The model is compiled using the Adam optimizer, which is 
well-suited for problems involving sparse gradients and noisy 
updates, with a fixed learning rate of −410 . The loss function used 
is categorical cross-entropy, appropriate for multi-class 
classification. An optional ReduceLROnPlateau callback 
monitors the validation loss and reduces the learning rate if the 
performance stagnates, helping to escape local minima and 
promote convergence.

This hybrid design is intelligent and well-justified. The integration 
of edge detection complements the semantic encoding from 
InceptionV3 by introducing texture-level cues that deep networks 
sometimes overlook. The SE block provides adaptive feature 
recalibration, addressing the issue of uniform treatment across 
channels, which is a known limitation in CNNs. Furthermore, the 
fusion strategy—combining handcrafted edge cues with deep 
features—reflects an informed design principle reminiscent of early 
fusion in multimodal learning.

One notable strength is the trainability control: by freezing most 
of the InceptionV3 layers and fine-tuning only the top layers, the 
model maintains generalization while still adapting to new data. This 
significantly reduces the risk of overfitting and shortens training time. 
Algorithm 1, describing the hybrid model that combines InceptionV3, 
squeeze-and-excitation (SE) blocks, and edge detection for brain 
tumor classification.

Table  4 highlights the key aspects of the proposed model 
architecture, detailing its core components including InceptionV3 
backbone, SE blocks, edge detection integration, and classification 
layers. These elements collectively enhance accuracy, feature focus, 
and explainability in brain tumor prediction.

Figure 5 presents the proposed XAI-BT-EdgeNet architecture, 
combining InceptionV3 with squeeze-and-excitation blocks and edge 
detection to enhance feature representation. The next Table  5 is 
showing the hyperparameter list for the proposed model.

4 Performance matrices

Performance metrics (Table 6) are quantitative measures used to 
evaluate the effectiveness of a model. These metrics provide insight 

TABLE 5  List of hyperparameter.

Component Hyperparameter name Description

Input configuration IMG_SIZE Size of the input image to the model

SE (squeeze-excitation) Block ratio Reduction ratio used in channel excitation

Edge extraction block filter_type Type of edge detection filter (e.g., Sobel)

trainable_filters Whether the edge filters are trainable or fixed

conv_filters Number of filters in conv layer after edge detection

Base model (e.g., InceptionV3) pretrained_weights Source of pretrained weights (e.g., “imagenet”)

include_top Whether to include the original classifier layers

trainable Whether base model layers are trainable

fine_tune_at Layer index to start fine-tuning from

Classifier head dense_units Number of neurons in fully connected (Dense) layer

dropout_rate Fraction of input units to drop during training

activation_output Activation function for output layer

Optimizer settings optimizer_type Type of optimizer (e.g., Adam, SGD)

learning_rate Learning rate for the optimizer

Loss function loss_function Loss function for training (e.g., categorical cross-entropy)

Evaluation metrics metrics List of metrics to monitor during training and evaluation

Training configuration epochs Total number of training epochs

steps_per_epoch Number of steps per training epoch

validation_steps Number of validation steps per epoch

Callback—EarlyStopping monitor Metric to monitor for early stopping

patience Number of epochs with no improvement before stopping

restore_best_weights Whether to restore model weights from best epoch

Callback—ReduceLROnPlateau monitor Metric to monitor for reducing learning rate

factor Factor by which the learning rate will be reduced

patience Number of epochs to wait before reducing LR

min_lr Minimum learning rate value after reduction
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into how well a model is performing on unseen data, guiding model 
selection, tuning, and deployment decisions.

Symbol Meaning

TP True positive: Correctly predicted positive class

TN True negative: Correctly predicted negative class

FP False positive: Incorrectly predicted as positive

FN False negative: Incorrectly predicted as negative

NN Total number of samples

yi
Actual label for sample i

pi
Predicted probability for sample i

wc
Class weight based on class frequency

AUCc
AUC score for class c

P, R Precision and Recall (used in F1 formula)

5 Results

As shown in the left subplot of Figure 6, the training accuracy 
exhibited a sharp increase during the initial epochs, rising from 

approximately 0.88 to over 0.98 within the first five epochs. This 
indicates that the model was able to rapidly learn meaningful 
patterns from the data. Beyond this point, accuracy improvements 
continued at a slower rate and plateaued near 0.9950, suggesting that 
the model reached a high level of predictive performance on the 
training data.

Similarly, the validation accuracy began at a relatively high 
baseline (around 0.9650) and approached 1.0000 within the first half 
of the training cycle. Notably, the validation accuracy remained 
consistently aligned with the training accuracy, demonstrating that 
the model maintained strong generalization capabilities across 
unseen data. The absence of significant divergence between the two 
curves implies that the model avoided overfitting, which is often a 
critical concern in deep learning applications.

The right subplot of Figure  6 displays the corresponding loss 
values. The training loss decreased substantially from an initial value 
above 0.25 to near zero, with a smooth and consistent downward 
trend. Minor oscillations observed after epoch 10 are typical and can 
be attributed to the stochastic nature of gradient-based optimization. 
More importantly, the validation loss also decreased consistently and 
remained lower than the training loss throughout the training period. 
This trend indicates not only that the model achieved accurate 
predictions but also that it was well-calibrated in terms of confidence 
in its outputs.

ALGORITHM 1

Algorithm step for the hybrid InceptionV3 + SE + edge detection model.
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TABLE 6  Performance matrices.

Metric Definition Formula When to use Interprets as

Accuracy Accuracy evaluates the overall effectiveness of a classification model. It tells us how many of 

the total predictions were correct, without distinguishing between the types of errors

+
=

+ + +
TP TN

Accuracy
TP TN FP FN

When classes are balanced “How often did I get it right, 

regardless of class?”

Log Loss Loss functions guide the training of classification models. Log Loss (used in binary 

classification) measures the difference between the actual label and the predicted probability. 

A lower loss indicates better predictions with more confidence

( ) ( ) ( ) = − ⋅ + − ⋅ − 
=
∑1

log log 1 log 1
1

Loss y p y p
N

N
i i i i

i

For probabilistic models, 

especially during training

“How far off was my prediction, 

especially if I was confident?”

Precision Precision assesses the model’s ability to identify only the relevant (true positive) instances out 

of all the predicted positives. It is especially useful when false positives are costly
=

+
TP

Precision
TP FP

When false positives are more 

harmful

“Out of all predicted positives, how 

many were correct?”

Recall Recall evaluates how well the model captures all the relevant positive instances from the actual 

data. It’s critical in scenarios where missing a positive case is highly undesirable
=

+
TP

Recall
TP FN

When false negatives are 

costly

“Out of actual positives, how many 

did I catch?”

F1 Score The F1 Score provides a balance between precision and recall. It is the harmonic mean, which 

penalizes extreme values. A model with high F1 is both precise and has high recall
( )⋅ ⋅

=
+

2
1

Precision Recall
F Score

Precision Recall

When needing trade-off 

between precision and recall

“How balanced is my model’s 

decision-making?”

Jaccard 

Score

This score evaluates similarity between the predicted and actual labels. It is particularly useful 

in multi-label and image segmentation tasks
=

+ +
 

TP
Jaccard Score

TP FP FN

For multi-label, segmentation, 

or set-based comparison

“How much do the predicted and 

actual labels overlap?”

Weighted 

AUC

AUC measures a classifier’s ability to distinguish between classes. In a multi-class problem, 

weighted average AUC considers each class’s importance based on its frequency in the dataset = ⋅
=
∑

1
Weighted AUC w AUC

C
c c

c

For imbalanced multi-class 

problems

“How well does the model rank 

true classes across the board?”

Variable reference.
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The combination of high accuracy and low, converging loss values 
for both training and validation sets suggests that the model was 
effectively optimized. The learning dynamics reflected in these plots 
indicate that the model was neither underfitting nor overfitting, and its 
generalization performance remained robust throughout the training 
process. Table 7 and Figure 7 shows the result for the proposed model.

The confusion matrix presented in Figure  8 illustrates the 
performance of a binary classification model designed to differentiate 
between brain tumor cases and healthy individuals. The matrix shows 
that the model correctly classified all 376 brain tumor cases as 
positive and all 313 healthy cases as negative, with no instances of 
misclassification. Specifically, the top-left cell indicates 376 true 
positives, meaning all patients with brain tumors were accurately 
identified. The bottom-right cell shows 313 true negatives, reflecting 
that all healthy individuals were correctly predicted as such. Notably, 
the matrix contains no false positives or false negatives, as indicated 
by the zero entries in the off-diagonal cells.

This outcome demonstrates that the model achieved perfect 
classification on the evaluated dataset, with 1.0000 accuracy, 
precision, recall, and specificity. The absence of any error implies that 
the model was highly effective at learning and distinguishing between 
the two classes. However, while such performance is impressive, it is 
essential to validate the model on an independent test set to confirm 
that it generalizes well to unseen data and is not merely overfitting 
the training or validation data.

The receiver operating characteristic (ROC) curve shown in 
Figure 9 evaluates the classification performance of a binary model 
distinguishing between two classes: brain tumor and healthy. The 
ROC curve plots the true positive rate (sensitivity) on the Y-axis 
against the false positive rate on the X-axis. The ideal ROC curve 
closely follows the top-left corner of the plot, indicating high 
sensitivity with low false positive rates.

In this case, the ROC curves for both classes—brain tumor and 
healthy—are represented as perfectly horizontal lines at the top of the 
graph. Both curves achieve an area under the curve (AUC) value of 
1.00, which is the maximum possible score. This means that the model 
achieved perfect classification performance, correctly identifying all 
positive and negative instances for both classes without any confusion.

The diagonal dashed line represents a random classifier, 
where the model’s predictions are no better than random 
guessing. The fact that both ROC curves are well above this line 
confirms that the model’s performance is significantly better than 
chance. The curves reaching the top-left corner with zero false 
positives and 100% true positives for each class show that the 
model is both highly sensitive and highly specific, making it 
exceptionally reliable for the classification task at hand.

The displayed image shows a set of 10 brain scan samples, each 
labeled with both the ground truth (“True”) and the model’s 
classification result (“Pred”). In all five cases, the actual class is Brain 
Tumor, and the model has also correctly predicted Brain Tumor for 
each image. This visual representation provides qualitative evidence 
of the model’s effectiveness in correctly identifying brain tumor cases.

Each image appears to be a medical imaging scan—likely from 
MRI modalities in Figure 10—processed in grayscale. The tumors are 
visible as brighter or differently textured regions in the brain scans, 
suggesting that the model was able to detect distinguishing visual 
features associated with tumorous growths. The consistency in 
correct classification across different tumor appearances indicates 
that the model has likely learned to generalize the underlying patterns 
of tumor presence effectively.

5.1 Explainable AI prediction

5.1.1 LIME
The displayed set of images (Figure  11) shows LIME (Local 

Interpretable Model-Agnostic Explanations) visualizations applied to 
five different brain scan samples, each labeled with the ground truth 
class “Brain Tumor.” LIME is a widely used interpretability technique 

FIGURE 6

Accuracy and loss graph epoch by epoch.

TABLE 7  Result for accuracy and loss.

Matrices Training Validation Testing

Accuracy 0.9958 0.9971 1.0000

Loss 0.0103 0.0051 0.0026
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that helps understand how a machine learning model arrives at a 
specific decision by highlighting which parts of the input image 
contribute most strongly to the classification (van der Velden et al., 
2022; Mir and Pal, 2025).

In each of these grayscale brain scan images, different colored 
regions—primarily outlined in yellow—represent the superpixels or 
segmented regions that most influenced the model’s prediction toward 
the correct class (brain tumor). These areas are identified as being the 
most relevant in driving the model’s decision-making process. The 

gray background typically indicates less influential or neutral regions 
that had little or no effect on the final output.

For instance:

	•	 In Image 0, a visible mass is located centrally and is surrounded 
by highlighted regions, showing that the model focused directly 
on the tumor-like structure.

	•	 Image 1 shows segmentation in multiple dispersed areas, 
particularly near the upper  and lower regions of the scan, 

FIGURE 8

Confusion matrix.

FIGURE 7

Classification report.
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suggesting the model has used both tumor features and 
possibly structural information from the surrounding 
brain anatomy.

	•	 Images 2 and 3 illustrate segmentation in non-central regions, 
but still contain some tumor-dense sections within the 
highlighted zones. This implies that LIME identified both 
relevant tumor zones and adjacent tissues as contributory.

	•	 In Image 4, the large highlighted patch precisely overlaps 
with a distinct tumor shape, indicating that the model heavily 
relied on this particular region to make its prediction.

These LIME explanations serve as a crucial tool for verifying 
that the model’s focus aligns with clinical expectations. For medical 
diagnosis tasks like brain tumor detection, it is essential to confirm 
that the classifier is basing its decisions on tumor-related patterns 

rather than irrelevant background features. LIME allows researchers 
and clinicians to inspect the model’s reasoning process, thereby 
increasing trust in its predictions and facilitating 
model transparency.

5.1.2 GRAD-CAM
The image above presents Grad-CAM (Gradient-weighted Class 

Activation Mapping) visualizations applied to five MRI brain scan 
samples, all of which are correctly classified as showing a Brain Tumor. 
Grad-CAM is a powerful interpretability technique that helps 
understand which parts of the input image contribute most to a neural 
network’s decision, particularly in convolutional neural networks 
(CNNs) (Mir and Pal, 2025; Tsai and Lee, 2025).

In the Grad-CAM heatmaps:

	•	 The red to yellow regions represent high model attention or 
importance—areas that had a strong influence on the 
model’s decision to classify the scan as showing a 
brain tumor.

	•	 The blue to green regions represent areas of lesser importance.

The heatmap is superimposed on the original image to show 
where the model “looked” most carefully.

Let us break down the explanation per image:

	•	 Image 0: The tumor is visible in the lower right area of the brain 
scan. The Grad-CAM heatmap highlights this same region in red, 
confirming that the model’s prediction is based on the actual 
tumor site.

	•	 Image 1: The tumor appears slightly more complex and 
irregular in structure. The heat-map shows attention on the 
central part of the brain, especially around the bright white 
tumor region, suggesting the model used this area to identify 
the abnormality.

FIGURE 9

ROC curve.

FIGURE 10

Predicted result.
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	•	 Image 2: This scan is a side profile (sagittal view), making 
interpretation more complex. Despite the different orientation, 
the Grad-CAM heatmap still highlights the central mass with 
strong attention, indicating that the model adapted well and 
localized the tumor area accurately.

	•	 Image 3: The tumor appears to occupy a deeper region of the 
brain. The model again focuses on this region, with the heatmap 
showing a dense red spot right on the tumor, reinforcing the 
reliability of the model’s detection.

	•	 Image 4: The tumor here is located in the upper right quadrant of 
the scan. The heatmap aligns with this mass, highlighting it in red 

and confirming that the model’s prediction was influenced by the 
actual tumor.

These Grad-CAM visualizations demonstrate (Figure 12) that the 
model consistently focuses on the correct anatomical regions associated 
with brain tumors. The heatmaps provide visual confirmation that the 
CNN is not relying on irrelevant or misleading features, but rather, is 
making predictions based on medically significant areas. This enhances 
the interpretability and trustworthiness of the AI model in a sensitive 
application like medical diagnostics, where understanding the reasoning 
behind a decision is crucial for clinical validation.

FIGURE 11

LIME explanation.

https://doi.org/10.3389/frai.2025.1676524
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Rastogi et al.� 10.3389/frai.2025.1676524

Frontiers in Artificial Intelligence 19 frontiersin.org

5.1.3 GRAD-CAM++
The provided image set presents a series of Grad-CAM++ 

visualizations applied to five brain MRI scans, who each diagnosed 
as having a brain tumor. These visualizations serve as an 
interpretability tool to understand the internal workings of deep 
learning models used in medical imaging. Grad-CAM++ 
(Gradient-weighted Class Activation Mapping++) is an 

enhancement over the original Grad-CAM technique, offering finer 
and more spatially precise localization of features that influence a 
model’s decision.

Grad-CAM++ improves upon Grad-CAM by considering 
higher-order derivatives of the output can coming the feature maps. 
This results in sharper and more reliable heatmaps, especially useful 
when multiple instances or small objects are present in an image 

FIGURE 12

GRAD-CAM visualization.
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(Chattopadhyay et al., 2022). In the context of medical imaging, such 
as MRI scans of brain tumors, Grad-CAM++ helps visualize which 
exact regions of the scan the model deems important for classification 
(Gao et al., 2023).

	•	 Image 0:
	o	 Original image: Displays a clear structure of the brain, 

including the tumor area.
	o	 Grad-CAM++ heatmap: The central region, where the tumor 

is visibly located, shows a high activation (in red-yellow), 
indicating that the model strongly relied in this area to identify 
the tumor.

	o	 Observation: The tumor boundary and surrounding tissue are 
highlighted effectively, demonstrating good interpretability.

	•	 Image 1:
	o	 Original image: Features a darker scan, but the tumor 

is discernible.
	o	 Grad-CAM++ heatmap: Activations are concentrated around 

the upper-mid portion of the brain, aligning well with the 
tumor location.

	o	 Observation: The model captures both the core of the tumor 
and some adjacent regions, suggesting sensitivity to 
contextual features.

	•	 Image 2:
	o	 Original image: A clean scan with a bright abnormal region.
	o	 Grad-CAM++ heatmap: Strong focus in the central part, 

slightly diffused around the tumor area.
	o	 Observation: Grad-CAM++ shows focused activation, but also 

includes surrounding regions, possibly indicating model 
consideration of surrounding tissues.

	•	 Image 3:
	o	 Original image: Exhibits distinct brain anatomy with a 

visible lesion.
	o	 Grad-CAM++ heatmap: High intensity near the center with 

tight boundary focus, particularly over the tumor.
	o	 Observation: Suggests that the model is highly accurate in 

pinpointing tumor locations, confirming the reliability of its 
internal decision logic.

	•	 Image 4:

	o	 Original image: Displays a well-formed tumor in the lower 
right area.

	o	 Grad-CAM++ heatmap: The highest activation is located 
precisely over the tumor mass, with minimal distraction in 
other areas.

	o	 Observation: The result here shows a nearly perfect match 
between the medical region of interest and the model’s focus.

These visualizations demonstrate (Figure 13) that Grad-CAM++ 
offers high-resolution, interpretable insights into CNN-based tumor 
detection models. It not only reveals the correct regions of interest 
(ROIs) within the MRI scans but also provides medical professionals 
with a visual validation of model predictions, which is essential for 
building trust in AI-assisted diagnostics. The consistent overlap 
between activated areas in the heatmaps and the actual tumor 
locations supports the use of Grad-CAM++ as a credible explainability 
method in medical imaging research.

5.1.4 Vanilla Saliency
The image shows (Figure 14) a brain MRI (left) and its Vanilla 

Saliency Map (right), which highlights pixel regions influencing the 
model’s prediction. Vanilla Saliency computes gradients of the output 
to input pixels. Brighter areas indicate greater influence. However, the 
map appears noisy and lacks clear focus, making it less reliable for 
clinical use. While simple and fast, it’s often outperformed by advanced 
methods like Grad-CAM or LIME in interpretability and clarity.

6 Discussion

Table 8 presents a comparative overview of various deep learning 
architectures employed for multiclass and binary image classification 
tasks, highlighting their respective classification accuracies and the 
application of Explainable AI (XAI) methods. The primary goal of 
this comparison is to evaluate not only the predictive performance 
but also the interpretability of the models—a key requirement in 
high-stakes domains such as medical diagnostics. Among the 
surveyed models, the proposed XAI-BT-EdgeNet architecture 
demonstrates superior performance with an accuracy of 0.9958, 
surpassing all baseline and state-of-the-art methods listed. This is 
closely followed by ensemble and transfer learning-based approaches 
such as the Ensemble model (DenseNet121 + InceptionV3) (R18, 
0.9902), ResNet-50 with global average pooling (R16, 0.9800), and 
VGG-16 with fine-tuning (R20, 0.9893).

These results reaffirm the established trend that deep feature 
fusion and transfer learning significantly enhance classification 
performance. Traditional convolutional models such as 
VGG-CNN (R3), Modified CNN (R5), and CNN-24 Layers (R6) 
achieve competitive accuracies ranging from 0.9400 to 0.9700, 
indicating the reliability of CNN-based architectures even 
without extensive fine-tuning or hybrid designs. Notably, some 
hybrid models like AlexNet-KNN (R4) and CNN-KNN (R8) also 
achieve robust accuracies, suggesting that classical machine 
learning components, when integrated with deep features, can 
yield effective results. It is worth noting that several models such 
as ResNet50 (R9) and VGG16 (R11), were applied in binary 
classification tasks and achieved high accuracies (0.9900 and 
0.9700, respectively), though the binary nature of their 
classification may inherently lead to better performance metrics 
compared to a more complex multiclass settings.

While most models focus solely on achieving high accuracy, only 
a limited subset incorporates XAI techniques are vital for transparency 
and trustworthiness. The proposed XAI-BT-EdgeNet is notable not 
only for its performance but also for its rich interpretability, employing 
a diverse suite of XAI methods, including LIME, GRAD-CAM, 
GRAD-CAM++, and Vanilla Saliency Maps. This extensive integration 
of explainability tools enables deeper insight into model decision-
making and supports clinical validation.

Other models that incorporate XAI include CNN with dual-
input (R10) using LIME and SHAP, VGG16 (R11) with Layer-
wise Relevance Propagation (LRP), and ResNet50 (R9), and the 
Ensemble model (R18) utilizing GRAD-CAM. These methods 
provide varying levels of post-hoc interpretability, but are 
relatively limited in scope compared to the multi-method 
framework of the proposed model.
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Despite the clear utility of XAI, its adoption remains limited 
across the surveyed literature. A significant proportion of high-
performing models (e.g., R1–R8, R12–R17, R19–R20) do not report 
the use of any XAI methods. This presents a critical research gap, 
particularly in medical imaging, where model transparency can be as 
important as accuracy for clinical adoption.

Interestingly, R10, which integrates LIME and SHAP, reports a 
comparatively low accuracy (0.8500), suggesting a potential trade-off 

between model complexity, dual-input designs, and classification 
performance. However, this is not a generalizable trend, as 
demonstrated by the proposed model and R18, both of which achieve 
state-of-the-art accuracy while incorporating explainability. This 
indicates that with thoughtful model design, it is possible to strike a 
balance between performance and interpretability.

Statistical significance analysis is a way of determining 
whether the difference or improvement observed in your 

FIGURE 13

GRAD-CAM++ visualization.
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experimental results is real and meaningful, or whether it could 
have happened just by chance. For this analysis, study has done 
the t-test for Table 8.

Step 1—Prior models’ accuracies

	 a)	 Number of models (n): 20
	b)	 Mean: 0.9634
	 c)	 Standard deviation ≈ 0.0366

Step 2—Proposed model accuracy

	 = 0.9958proposedx

Step 3—One sample t-test formula

	

µ−
=

/
proposed previousx

t
s n

FIGURE 14

Vanilla Saliency map.

TABLE 8  Comparative analysis for other literature model.

References Model used Classification XAI method Accuracy

Alzahrani (2023) ConvMixer + Attention Multiclass — 0.9700

Rasheed et al. (2023) CNN with Image Enhancement Multiclass — 0.9700

Imam and Alam (2023) VGG-CNN Multiclass — 0.9600

AlTahhan et al. (2023) Hybrid CNNs Multiclass — 0.9700

Özkaraca et al. (2023) Dense CNN Multiclass — 0.9600

Peng and Liao (2023) CNN-24 Layers Multiclass — 0.9400

Gómez-Guzmán et al. (2023) InceptionV3 Multiclass — 0.9700

Shanjida et al. (2022) CNN-KNN Multiclass — 0.9500

Mercaldo et al. (2023) Resnet50 Binary GRAD-CAM 0.9900

Gaur et al. (2022) CNN with dual-input Multiclass LIME, SHAP 0.8500

Ahmed et al. (2023) VGG16 Binary LRP 0.9700

Naseer et al. (2021) Deep neural network model CNN Multiclass — 0.9881

Bashkandi et al. (2022) CNN optimized by a metaheuristic algorithm Multiclass — 0.9709

Shawon et al. (2025) CS-InceptionV3 Multiclass — 0.9231

Verma and Singh (2022) Transfer learning using DenseNet201 Multiclass — 0.9822

Kumar et al. (2021) ResNet-50 and global average pooling Multiclass — 0.9800

Alhassan and Zainon (2021) Swish-based RELU activation function-CNN Multiclass — 0.9860

Hosny et al. (2025) Ensemble model (DenseNet121 + InceptionV3) Multiclass GRAD-CAM 0.9902

Athisayamani et al. (2023) ResNet-152 Multiclass — 0.9885

Malla et al. (2023) VGG-16 with fine-tuning Multiclass — 0.9893

Proposed model XAI-BT-EdgeNet Multiclass LIME, GRAD-CAM, GRAD-

CM++, VANILLA SALIENCY

0.9958
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TABLE 9  Setup requirement.

Hardware/Software Specification Notes

GPU NVIDIA A100, 40 GB VRAM High-performance GPU available via Colab Pro+

CPU 32-core virtual CPU Provided by Colab environment for preprocessing

RAM 52 GB system RAM Supports dataset loading and training

Python version 3.10 Compatible with PyTorch and supporting libraries

Deep learning framework Tensorflow Library Used for model implementation

Batch size 32 Optimized for GPU memory usage

Training time ~45–50 min per epoch Total ~3–4 h for full dataset (4,589 MRI scans)

Inference time ~30–50 ms per MRI scan Efficient for real-time clinical usage

Model parameters ~45 million Dual-branch CNN with SE and XAI modules

TABLE 10  Advantages of the proposed XAI-BT-EdgeNet framework.

Component/Block Technical mechanism Core advantage Detailed benefit Clinical relevance

Edge Feature Block Applies fixed Sobel X and Y filters (3 × 3) to 

extract horizontal/vertical gradients; 

combines with edge magnitude layer and 2D 

conv (3 × 3, ReLU) followed by Global 

Average Pooling

Enhances edge sensitivity Captures low-level structural 

features (e.g., tumor 

boundaries, shape 

discontinuities) that semantic 

models may miss

Useful for identifying 

hard-to-spot or irregular 

tumor boundaries; 

supports differential 

diagnosis

InceptionV3 Backbone Multi-scale convolutions with parallel paths 

(1 × 1, 3 × 3, 5 × 5 filters); pretrained on 

ImageNet

Captures semantic richness Learns high-level abstractions 

like texture, mass, and shape 

variations across tumor types

Effectively distinguishes 

among different tumor 

classes (e.g., glioma vs. 

meningioma)

Fine-Tuning of Backbone Trains top layers on medical MRI data while 

retaining low-level features from ImageNet

Improves domain 

adaptation

Adjusts weights to align with 

medical imaging patterns 

while preserving general 

visual knowledge

Avoids overfitting and 

ensures adaptability to 

patient-specific brain scans

Squeeze-and-Excitation (SE) 

Block

Learns channel-wise attention via global 

pooling → bottleneck (FC) → sigmoid gating

Focuses on relevant 

channels

Dynamically enhances 

informative feature maps 

while suppressing noisy or 

irrelevant ones

Improves robustness in 

detecting subtle tumor 

patterns and handles 

variations across patients

Global Average Pooling 

(GAP)

Replaces flattening with spatial averaging 

across feature maps

Reduces parameters Minimizes overfitting, 

increases efficiency, and 

retains global spatial 

information

Makes the model 

lightweight and applicable 

for clinical tools with 

limited hardware (e.g., 

mobile, edge devices)

Feature Fusion Layer Concatenates or aggregates edge and 

semantic features post-GAP before feeding 

into classifier

Combines complementary 

features

Integrates fine-grained 

boundary cues with high-level 

contextual understanding

Increases classification 

robustness and precision; 

enables better handling of 

tumors with mixed textures

Modular Design for XAI Clearly separated processing paths and 

interpretable transformations (e.g., Sobel, 

attention weights)

XAI-friendly Facilitates application of 

interpretability tools like 

Grad-CAM, LIME on 

individual branches

Supports explainable 

outputs to aid clinicians in 

decision-making and 

trust-building

Auxiliary Classifier (in 

InceptionV3)

Mid-level output supervision through 

additional classifier

Reduces gradient vanishing 

in deep layers

Stabilizes training and 

improves generalization

Helps achieve more stable 

convergence on noisy 

medical data with limited 

samples
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−
= = =

0.9958 0.9634 0.0324 3.96
0.008190.0366 / 20

t

Degrees of freedom = n − 1 = 19
Step 4—Significance (p-value)
For df = 19, a t-value ≈ 3.96 gives

	 < 0.001p

To statistically assess performance improvement, a one-sample 
t-test was conducted comparing the proposed XAI-BT-EdgeNet 
(accuracy = 0.9958) with the accuracies of 20 previously reported 
models. The prior studies had a mean accuracy of 0.9634 ± 0.0366. 
The obtained t(19) = 3.96, p < 0.001, indicating that the improvement 
offered by XAI-BT-EdgeNet is statistically significant.

The XAI-BT-EdgeNet model was trained on Google Colab Pro+, 
leveraging an NVIDIA A100 GPU with 40 GB VRAM, 52 GB system 
RAM, and Python 3.10. The setup and performance metrics are 
summarized below (see Table 9).

The proposed brain tumor classification framework utilizes a 
dual-branch architecture that integrates InceptionV3 with an Edge 
Feature Block, aiming to improve tumor detection by combining 
high-level semantic features with low-level edge information. The 
following tables are a comprehensive examination of the framework’s 
strengths (see Table 10).

Despite its numerous advantages, the framework also presents 
several limitations outlined below.

	•	 Computational overhead: Dual-branch networks with edge and 
semantic paths, plus SE blocks and feature fusion result in 
increased memory and computational costs.

	•	 Fixed edge filters: The use of fixed Sobel kernels (non-trainable) 
in the edge block may limit adaptability to different imaging 
modalities or conditions (e.g., different MRI machines, 
noise levels).

	•	 Redundancy in feature fusion: The semantic and edge branches 
may generate overlapping or correlated features, especially after 
global average pooling.

	•	 Spatial misalignment during fusion: Due to separate processing 
pipelines, edge and semantic features may differ in spatial 
semantics or resolution.

	•	 Risk of overfitting on small medical datasets: The deep and 
complex structure of the model increases its capacity, which, in 
the absence of large-scale labeled MRI datasets, can lead 
to overfitting.

	•	 Domain mismatch in pretraining: The InceptionV3 model is 
pretrained on ImageNet, which contains natural RGB images, 
unlike grayscale MRI scans. While fine-tuning helps, the 
low-level features learned from non-medical images may not 
transfer well to brain MRIs, potentially limiting performance.

7 Conclusion

This study introduced XAI-BT-EdgeNet, an explainable 
edge-aware deep learning framework enhanced with squeeze-and-
excitation modules for the accurate detection and classification of 
brain tumors from MRI images. By integrating both semantic and 

edge-level features through a dual-branch architecture, the model 
effectively captures crucial visual patterns associated with tumor 
regions. The inclusion of multiple explainability techniques—LIME, 
Grad-CAM, Grad-CAM++, and Vanilla Saliency—not only improves 
interpretability but also fosters greater clinical confidence in the 
system’s decision-making. Experimental results on a well-structured 
Brain Tumor Dataset demonstrate exceptional accuracy across 
training, validation, and testing phases, underscoring the robustness 
and generalization capabilities of the proposed model.

In addition to high performance, the framework addresses a 
critical gap in medical AI by balancing predictive strength with 
transparency, a requirement for real-world deployment in healthcare 
environments. The combination of edge detection, attention-based 
feature recalibration, and XAI integration provide a comprehensive 
and clinically relevant solution for brain tumor analysis. Future work 
may extend this approach to multi-class tumor grading, real-time 
diagnostics, and integration with radiologist feedback to further 
validate its practical utility.
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