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Artificial intelligence analysis
applied to the treatment of
granulosa cell tumors of the
ovary
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Israel, 2Department of Computer Science, The College of Management Academic Studies, Rishon
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Introduction: Granulosa cell tumors (GCTs) of the ovary are rare malignancies
with limited systemic treatment options and high recurrence rates. Combining
tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-producing
oncolytic viruses with procaspase-3 activator (PAC-1) presents a promising
therapeutic strategy, as TRAIL initiates apoptosis while PAC-1 amplifies caspase
activity. However, patient responses remain variable, necessitating predictive
frameworks that can integrate biological complexity with clinical data.
Methods: We developed a hybrid framework that integrates a mechanistic
mathematical model of TRAIL-oncolytic virus and PAC-1 therapy with machine
learning (ML) algorithms to predict tumor dynamics in GCTs. Four datasets
(continuous and categorical tumor size measurements) were analyzed. Clinical
and imaging data were merged with individualized solutions from the
mathematical model to generate enriched feature sets for ML training. Linear
regression and neural network models were trained and evaluated using
accuracy, F1 scores, and root mean square error (RMSE).

Results: Integrating mathematical model outputs improved predictive
performance across all datasets. Linear regression models showed reduced
RMSE compared to models without mathematical features (e.g., RMSE decreased
from 18.4 to 16.1 in one dataset). Neural networks incorporating model-derived
variables achieved higher accuracy and F1 scores (e.g., accuracy improved
from 77.3% to 91.4%). Sensitivity analysis revealed that tumor proliferation and
apoptosis rates were the most influential parameters for treatment outcomes.
Discussion: Our results demonstrate that coupling mathematical modeling
with ML enhances the prediction of tumor burden in patients undergoing
TRAIL-oncolytic virus and PAC-1 therapy. This integrative approach provides
mechanistic insight into tumor behavior while improving predictive accuracy,
supporting the development of personalized therapeutic strategies for GCTs.
The framework also offers broader applicability to other cancers with limited
treatment options and heterogeneous responses.

KEYWORDS

artificial intelligence, mathematical model, PAC-1, oncolytic virus, granulosa cells,
ovarian cancer, machine learning

1 Introduction

Granulosa cell tumors (GCTs) of the ovary constitute a rare subtype of ovarian
neoplasms, accounting for approximately 2%-5% of all ovarian malignancies (Colombo
et al.,, 2012). These tumors arise from sex cord-stromal tissue and are notable for their
distinct biological behavior: they generally grow slowly yet retain a striking propensity

01 frontiersin.org


https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1675969
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1675969&domain=pdf&date_stamp=2025-11-11
mailto:ophirn@g.jct.ac.il
https://doi.org/10.3389/frai.2025.1675969
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2025.1675969/full
https://orcid.org/0000-0001-5499-0036
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Nave and Barasheshet

for very late recurrence, even decades after apparently successful
primary treatment (Van Meurs et al., 2014, 2013). For patients
with early-stage disease, surgical resection remains the cornerstone
of management. However, once recurrence or advanced disease
develops, the clinical scenario becomes considerably more
challenging. Unlike epithelial ovarian cancers, for which multiple
systemic regimens are available, recurrent GCTs lack effective
systemic treatment options. Platinum-based chemotherapy, often
adapted from epithelial ovarian cancer protocols, has shown only
limited and transient benefit (Van Meurs et al., 2013; Homesley
et al., 1999; Bhat et al., 2024), while hormonal and radiotherapy
approaches provide inconsistent responses (Van Meurs et al,
2014). Consequently, many patients endure repeated surgeries with
significant morbidity, and no curative systemic therapy exists. This
therapeutic gap highlights a pressing unmet clinical need: there are
currently no approved targeted or precision therapies that reliably
improve outcomes in GCTs.

GCTs represent a particularly compelling tumor type in which
to establish a proof-of-concept for novel therapeutic frameworks.
First, their biology is characterized by apoptotic dysregulation, with
elevated procaspase-3 levels and a relative susceptibility to extrinsic
apoptotic signaling, making them uniquely suited for apoptosis-
inducing strategies such as TRAIL-producing oncolytic viruses and
PAC-1 (Russell et al., 2012; Ashkenazi, 2008; Aziz et al., 2010).
Second, compared with highly heterogeneous epithelial ovarian
cancers, GCTs display a more uniform molecular landscape,
providing a tractable model system for developing integrative
predictive approaches. Third, the rarity of GCTs creates both a
challenge and an opportunity: conventional large-scale clinical
trials are difficult to conduct, increasing the value of computational
models that can extract maximal insight from limited clinical
datasets. Finally, because GCTs exemplify tumors with indolent
growth but unpredictable recurrence and resistance to standard
therapies, they offer a clinically meaningful setting to test strategies
that combine mechanistic modeling with machine learning to
personalize therapy.

In recent years, targeted combination therapies have emerged
as promising strategies for GCTs and other refractory cancers.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-
producing oncolytic viruses selectively replicate in tumor cells
while sparing normal tissue, delivering TRAIL to the tumor
microenvironment and activating extrinsic apoptotic pathways
(Russell et al., 2012). Procaspase-3 activator 1 (PAC-1) directly
activates procaspase-3, a key executioner of apoptosis, and
synergizes with pro-apoptotic agents, such as TRAIL, to amplify
tumor cell death (Ashkenazi, 2008; Aziz et al., 2010; Reed, 1999;
Peterson et al, 2009). The rationale for combining TRAIL-
oncolytic viruses with PAC-1 is therefore compelling: TRAIL
initiates apoptosis upstream, while PAC-1 amplifies downstream
caspase activity, together providing a potent and tumor-selective
pro-apoptotic strategy (Wang and El-Deiry, 2003; Gujar et al,
2018).

Despite this strong biological rationale, patient responses to
such combination therapies remain highly variable, reflecting
tumor heterogeneity, viral dynamics, drug pharmacokinetics, and
host immune responses (Lin et al, 2023; Esteva et al., 2019).
Accurate prediction of therapeutic outcomes in GCTs thus requires
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new frameworks that can integrate complex, multidimensional
data. Artificial intelligence (AI), particularly machine learning
(ML), offers a means to identify hidden patterns in clinical,
molecular, and imaging data that are not discernible through
traditional methods (Rockne et al., 2008; Zhang et al., 2017).
Integrating mechanistic, mathematical models of tumor growth,
viral kinetics, and drug action into ML pipelines enables
the development of hybrid, predictive models that not only
forecast treatment outcomes, but also provide mechanistic insights
(Obermeyer and Emanuel, 2016; Le Sauteur-Robitaille et al., 2023).

In this study, we present an artificial analysis framework
that combines a mathematical model of TRAIL-oncolytic virus
and PAC-1 therapy with ML algorithms to predict tumor
dynamics in ovarian GCTs. By training ML models on clinical
and imaging data enriched with personalized mathematical
model outputs, we aim to improve predictive accuracy and
support the design of more effective, individualized treatment
strategies. GCTs, with their well-defined unmet need and distinctive
biology, provide an ideal proof-of-concept setting for this
integrated modeling approach, with potential relevance to other
difficult-to-treat malignancies.

2 Mathematical model

In this section, we present the mathematical model describing
granulosa cell tumors of the ovary treatment by a combination of
a TRAIL-producing oncolytic virus and PAC-1. The mathematical
model includes nonlinear ordinary differential equation of the first
order. The assumptions of the model are as follows (Le Sauteur-
Robitaille et al., 2023):

GCT Equations 1-5: The variables in the granulosa cell tumor
(GCT) model are defined as follows: Q, the number of quiescent
tumor cells; Gi, the number of cells in the G; phase; and A;
(i=1...,n),the ith compartment of the active phases of the cell
cycle, with N denoting the total number of active compartments.
Quiescent cells transition into the G; phase at a rate of aj,
progress into the active phases at a,, and undergo apoptosis at ds.
Upon entering the first active compartment, A, at rate ay, cells
sequentially transit through additional active compartments, A;,
at rate k;. Throughout these active compartments, cells may also
undergo apoptosis at a rate of ds.

OV Equations 6-7: The variables of the oncolytic virus (OV)
are denoted by I, the infected cells, and V, the viral particles. The
infected cells are generated through mass-action contact dynamics
between viral particles and cells in the G; phase, and active phases
of the cell cycle N. This interaction occurs at a rate of xnV, which
accounts for the half-maximal effective concentration of virions,

10.5-

Tumor-innate immune interactions Equations8-9: The

variables that describe the interaction between the tumor-
innate and immune are Cytokine, C, and the population of
phagocytes, P. The set of equations of these variables are
incorporate parameters such as the rate with tumor cells, kp,
and the digestion rates of these immune cells, ko and k.
Additionally, immune activation was incorporated by modeling

the recruitment and stimulation of phagocytes at the site of
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oncolytic virus infection, driven by cytokine signaling. Cytokines
are produced at a rate of Cp,g in response to the number
of infected cells I and are eliminated at a rate of k,j,. The

cytokine-phagocyte interaction modulates the population
. kepC
of tumor-targeting phagocytes at a rate of ¢(C) COCSPJrC,

while these immune cells undergo natural cell death at a
rate of yp.

Pharmacokinetics of PAC-1 Equations 10-12: The variables
that describe the treatment of a combination of PAC-1 and TRAIL
are Py, Ppac—1, and P,. The administration process of PAC-1 was
modeled with the dose initially entering the gastrointestinal tract,
P4 before being absorbed into the bloodstream, Ppyc—; at a rate of
k,. After entering the plasma, PAC-1 is cleared at a rate of k., and
distributed to the peripheral compartment, P,, with the exchange
governed by the transit parameters kj2p and kz;p.

Pharmacokinetics of TRAIL Equations 13-15: The variables
that describe the TRAIL administration are T, Tp, and Ta.
The pharmacokinetics (PK) of TRAIL were described using an
irreversible binding, target-mediated drug disposition (TMDD)
model, assuming a constant receptor count, Ryp. This model
incorporates three compartments: the free TRAIL ligand, T, the
receptor-bound TRAIL complex, Tp, and the ligand present in
the peripheral tissues, T4. TRAIL is generated at a rate of ar
from the lysis of infected cells, and continuously at a constant
rate, Tyroq. Its elimination occurs at a rate of k.. TRAIL binds to
death receptors, forming a complex at a rate of ko, and it moves
between the ligand compartment T4 with transition rates k;, and
kz1. Once the complex is formed, it undergoes degradation at a rate
of kint~

Based on the above assumptions, the mathematical model
includes the following ODE system of equations. All dynamical
variables, parameters, and their corresponding units are provided
in Tables 1-3.

dQ k,P

@ = e — Q- e (1)

G _ o (e b0+ B+ev+—2" e, @
— =a1Q—|a K _— ,
at 1 2 2 n 1+ kG 1

dA, k,P
— =a;G; —kyAy — | ds(1 +E V4 — A,
o = WG~ kedy (3( +E)+xknV + 1+kG )M
(3)
dA; k,P
— =k (Ai—1 —A) — | ds(1 +E V4 — 1A,
dt tr( i—1 t) (3( + )+K77 + 1+k3G1 1
(4)
dN ktr kPP
& G — A, — (0 +E V+—2 N,
ke P <3( +E)+«n +1—|—kSG1
(5)
dIl
— =knV (G; — N) =4I, 6
il (G ) (6)
av
E:aSI—wV—KnV(Gl—N), (7)
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dp kepC
P S — 9
it~ Cs+C 7 ©
dPy
=2 — kP4, 10
% Pa (10)
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dPpac—1 _ kqP

= — (kop — k Ppac— ko1pP,, 11
I Voros (kep — k12p) Prac—1 + ka1pPe (11)
dpP,
7: = ki2pPpac—1 — ka1pPe, (12)
dT T
= = ardl — kg T — kouT (Ro — Tp) — ki T+ ka1
dt Vr
+Tpr0d) (13)
dT,
Tf = konRoT — (kint — kon T) Tp, (14)
daT,
A ke TV — kn Ta. (15)
dt
The initial conditions of the mathematical model are
Q(0) = Qo, G1(0) = G1,0,A1(0) = A1, Ai(0) = Ay,
N(0) = Ny, I(0) = Iy V(0) = Vj, C(0) = Cp, P(0) = Py,
P4(0) = Pa,0, Prac—1(0) = Ppac—1,0, Pe(0) = Pey,
T(0) = ToTp(0) = Tpo, Ta(0) = Tay. (16)

3 The dataset

3.1 Datasets with tumor size as a
continuous variable

In this study, which focuses on the treatment of granulosa
cell tumors of the ovary through the combined action of a
TRAIL-producing oncolytic virus and PAC-1 therapy, we employed
machine learning (ML) algorithms to enhance the prediction of
tumor dynamics. Four datasets were analyzed in conjunction
with mathematical models to improve the accuracy of tumor
size prediction. Two of these datasets contained tumor size as
a continuous variable, while the other two reported tumor size
categorically (divided into tertiles).

The first dataset involved 10, 389 women receiving neoadjuvant
chemotherapy for ovarian cancer, with detailed clinical and
demographic data, including ethnicity, ovarian laterality, age at
MRI1 (in years), subtype (lymph node-positive, PIK3CA mutation,
BRCA mutation, and TP53 mutation), and BMI. Tumor sizes were
recorded by MRI at 4 time points and measured by the longest
diameter (LD in c¢m) and volume 4 (cc).

The second dataset consisted of 25, 985 women diagnosed with
stage 2 or 3 ovarian cancer, recording tumor size at 3 MRI time
points, along with clinical information.

The primary objective was to predict tumor size at each
time point as accurately as possible, supporting the optimization
of a TRAIL-producing oncolytic virus and PAC-1 therapy. To
achieve this, we incorporated immunological features known to
influence tumor behavior, such as CD4 + T cells, T — reg cells
(Dentritic cells), and treatment parameters. Due to challenges in
direct patient measurement, these features were derived from a
mathematical model.

This model describes immune responses to chemotherapy
(AC), refined for dosage and timing precision. The data were then
pruned to include only treatment-matched samples, resulting in
refined datasets of 10, 389 and 25, 389 samples, respectively.

The clinical data were merged with the mathematical model
outputs using the initial MRI tumor size as Ty. Individualized
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TABLE 1 List of parameters for the model.

10.3389/frai.2025.1675969

Parameters Units Descriptions Values Sources
a 1/day Qto G rate 3.3498 Fit from data
ay 1/day G to A rate 1.44 Fit from data
dy 1/day G, apoptotic rate 0.2 Fit from data
d3 1/day Active phase apoptotic rate 0.1732 Calculated
kir 1/day Active phase transfer rate 8.4540 Calculated
K 1/day Virion infection rate 0.054 Jenner et al., 2021
8 1/day Lysis rate 248 Jenner et al., 2021
o Virions/cell Burst size 1.12 Jenner et al., 2021
® 1/day Virion decay rate 403 Jenner et al., 2021
ky 1/day Phagocyte-tumor cell contact rate 9.23 Jenner et al., 2021
kqs ks - Phagocyte cell digestion constant 0.064 Jenner et al., 2021
Wi/ 101°ce]ls/day Cytokine production half-effect 0.00011 Jenner et al., 2021
kep 10'cells/day Maximal immune cell production rate 4.6754 Jenner et al., 2021
n1/2 Virions Virion half-effect concentration 0.51 Jenner et al., 2021
Cip2 ng/ml/day Phagocyte production half-effect 0.739 Jenner et al., 2021
23 1/day Phagocyte death rate 0.35 Jenner et al., 2021
C;m J ng/ml/day Homeostatic cytokine production rate 3.9863 x 1074 Jenner et al., 2021
C;;g’; ng/ml/day Maximal cytokine production rate 1.429 Jenner et al., 2021
Kelim 1/day Cytokine elimination rate 0.16139 Jenner et al., 2021
j - Number of transit compartments 6 Calculated
T Days Expected cell cycle duration 0.7097 Calculated
T* ng/ml Homeostatic TRAIL concentration 0.08090 Xiang et al., 2014
Contains cell growth parameters, viral parameters and immune system parameters, along with other necessary values.
TABLE 2 List of PK parameters.
Parameters  Units Descriptions Values Sources
ka 1/day PAC-1 oral absorption rate 2.96 Fit using data from Danciu et al., 2023
Vpac ml Volume of PAC-1 compartment 3390.45 Fit using data from Danciu et al., 2023
kep 1/day PAC-1 elimination rate 61.97 Fit using data from Danciu et al., 2023
ki2p 1/day Transfer rate from PAC to P, 183.49 Fit using data from Danciu et al., 2023
ka1p 1/day Transfer rate from P, to PAC 1.18 Fit using data from Danciu et al., 2023
or ng/ml/cell TRAIL production from virus 7.5837 x 10~° Fit using data from Oh et al., 2018
ke 1/day TRAIL elimination rate 45 Fit using data from Kelley et al., 2001
kon 1/day TRAIL binding rate 0.026 Fit using data from Kelley et al., 2001
Ry ng/ml Initial bound TRAIL and receptor complex target 457.49 Fit using data from Kelley et al., 2001
concentration
kiz 1/day Transfer rate from T to Ty 11.38 Fit using data from Kelley et al., 2001
ko1 1/day Transfer rate from Ty to T 0.0043 Fit using data from Kelley et al., 2001
\4 ml Volume of TRAIL main compartment 100.04 Fit using data from Kelley et al., 2001
Kint 1/day Bound TRAIL Internalization rate 22.15 Fit using data from Kelley et al., 2001

Contains parameters for the PAC-1 two-compartment model and the TRAIL TMDD model.
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TABLE 3 List of PD parameters.

10.3389/frai.2025.1675969

Parameters Units Description Values Sources

Eax.pac - Maximum efficacy of PAC-1 0.8764 Cardinal et al., 2022

Ejpax, TRAIL - Maximum efficacy of TRAIL 0.438 Cardinal et al., 2022

EC50p4c ng/ml PAC-1 half-effect concentration 1,176.7 Calculated from Cardinal et al., 2022
EC507RA1L ng/ml TRAIL half-effect concentration 5 Cardinal et al., 2022

YpAC - PAC-1 hill coefficient 1.35 Cardinal et al., 2022

VIRAIL - TRAIL hill coefficient 0.874 Cardinal et al., 2022

v - Potency 0.8 Fit using data from Cardinal et al., 2022

Parameters necessary to the joint effect function of PAC-1 plus TRAIL- producing OV.

TABLE 4 Linear regression results using machine learning.

Volume 3 by all data and Volume 1

Performance RMSE P-value

Significant features

®-Values P-values

Volumel 0.4 0.0087

Without the results from the mathematical model.

solutions were computed using the ODE45 Matlab function,
producing unique solution vectors for each woman at 3 time points
for variables such as N (NK cells), L (CD4+ T cells), C, T — reg
cells (chemotherapy PAC-1), and OV-virus. These features were
appended to the clinical data for subsequent ML analysis.

ML algorithms were applied to each MRI time point using
current and previous data. Linear regression was first conducted
with the merged dataset via fitlm in Matlab, generating RMSE
and p-values to assess feature significance. The data were then
discretized into tertiles for neural network training with 50 neurons
and repeated 100 times to calculate the average performance from
confusion matrices.

3.2 Datasets with tumor size as a
categorical variable

This approach was extended to two datasets reporting
tumor size categorically. The third dataset included 626
young women with ovarian cancer, providing data on age,
nulliparity, contraceptive use, menopause, family history, full-term
pregnancies, obesity, metastasis, lymph node status, PIK3CA and
TP53 mutations, tumor size, lymph nodes, histology, vascular
invasion, grade, adjuvant chemotherapy, radiotherapy, hormone
therapy, and progression.

The fourth dataset comprised 41, 000 ovarian cancer cases with
extensive clinical and treatment information, including metastasis,
age, lymph node status, PIK3CA, P53, BRCA, stage, nodal
status, histology, tumor size, grade, surgical margins, surgeries,
chemotherapy, antihormonal, and other treatments. Tumor size
was coded as categories 1, 2 or 3.
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TABLE 5 Linear regression results using machine learning.

Volume 2 by all data and Volume 1

Performance RMSE P-value

Significant features

®-Values P-values

0.501 0.001

Volume 3 by all data and Volume 1 and Volume 2

Volume 1

Performance RMSE P-value
©®-Values P-values
BRCA —52.85 0.008
Lymph_Node positive —22.234 0.004
PIK3 mutation 17.77 0.02
Volume2 0.43 0.01
M101 6.63 0.001

Volume 3 by all data and Volume 1

Performance RMSE

Significant features

®-values P-values
Lymph_Node positive —18.631 0.01
PIK3 mutation 14.39 0.06
Volumel 0.4 0.01
M101 5.82 0.01

With the results from the mathematical model.

Following data pruning for chemotherapy regimen consistency,
these datasets contained 41,000 and 626 samples. Each tertile group
was assigned a random number between 0 and 100 as an initial
tumor size condition, and the model was numerically solved for
each sample, as described for continuous data.

Solution vectors at each time point for variables such as D,
T — reg cells, C, BRCA, and chemotherapy drugs, were converted
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TABLE 6 Neural networks results using machine learning.

Volume 2 by all data and Volume 1

10.3389/frai.2025.1675969

TABLE 11 Neural networks results using machine learning.

Volume 3 by all data and Volume 1

Accuracy 77.3% Accuracy 87.93%
Recall 0.82 Recall 0.91
Precision 0.82 Precision 0.92
F1 0.84 F1 0.92

Without the results from the mathematical model. Results from 10,389 women with ovarian

cancer.

TABLE 7 Neural networks results using machine learning.

Volume 3 by all data and Volume

With the results from the mathematical model.

TABLE 12 Linear regression results using machine learning.

Volume 2 by all data and Volume 1

1 and Volume 2 Performance RMSE P-value
Recall 0.81 Significant features
Precision 0.88 CREINES P-values
F1 0.89 TP53 mutation 20.88 0.04
Without the results from the mathematical model. Results from 10,389 women with ovarian MRI 0.769 232.10°%

cancer.

Volume 3 by all data and Volume 1 and Volume 2

TABLE 8 Neural networks results using machine learning.

Volume 3 by all data and Volume 1

Performance

RMSE

21.4

P-value

223-107%

Accuracy 76% Significant features

Recall 0.8 ©-Values P-values

Precision 0.8 BMI —23.72 0.02

F1 0.78 MRI 0.4 0.0004
Without the results from the mathematical model. MRI 2 0.4 0.002

TABLE 9 Neural networks results using machine learning.

Volume 3 by all data and Volume 1

Performance RMSE
Volume 2 by all data and Volume 1 _ 25
0y . g

Accuracy o1.42% Significant features
Recall 0.88 ©®-Values P-values
Precision 0.88 BMI —18.94 0.04
F1 0.89

MRI 0.6 2431072

With the results from the mathematical model. Results from 10,389 women with ovarian
cancer.

TABLE 10 Neural networks results using machine learning.

Volume 3 by all data and Volume

1 and Volume 2

Accuracy 87%
Recall 0.82
Precision 0.81
F1 0.82

With the results from the mathematical model. Results from 10,389 women with ovarian
cancer.

into categorical indices and merged with clinical data. As this
was a classification problem, neural network algorithms were
applied exclusively.

Frontiersin Artificial Intelligence

Without the results from the mathematical model.

3.3 ML model

To optimize the treatment of granulosa cell tumors of the ovary
using a TRAIL-producing oncolytic viruses and PAC-1 therapy
through precise tumor size prediction, the ML model was trained
using prior tumor size data:

For the 10,389-patient continuous dataset:

Predict Volume 2 (second MRI tumor size) from all data plus
Volume 1 (first MRI),

Predict Volume 3 (third MRI) from all data plus SER Volume
1 (first MRI),

Predict Volume 3 from all data plus Volume 1 and Volume 2.

For categorical datasets, tumor size was predicted
once per dataset based on  clinical data and
baseline measurements.
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TABLE 13 Linear regression results using machine learning.

Volume 2 by all data and Volume 1

Performance

RMSE

Significant features

®-Values P-values
MRI 0.89 2.55-107%8
CD4+T 1.67-107° 0.04
T-reg —7.87-107° 0.04
Dentritic cells —0.29 0.03

Volume 3 by all data and Volume 1 and Volume 2

Performance RMSE P-value
Significant features

®-Values P-values
BMI —389 0.009
MRI 0.46 0.01
MRI2 0.48 0.0002

Volume 3 by all data and Volume 1

Performance RMSE P-value
Significant features

®-Values P-values
BMI —26.37 0.02
MRI 0.44 2310718

With the results from the mathematical model.

TABLE 14 Neural network results using machine learning.

Volume 2 by all data and Volume 1

Accuracy 76.1%
Recall 0.7
Precision 0.7
F1 0.6

Without the results from the mathematical model. Results from 25,985 women with ovarian

cancer.

TABLE 15 Neural network results using machine learning.

Volume 3 by all data and Volume

1 and Volume 2

Accuracy 71.92%
Recall 0.72
Precision 0.72
F1 0.71

Without the results from the mathematical model. Results from 25,985 women with ovarian

cancer.

Frontiersin Artificial Intelligence

10.3389/frai.2025.1675969

TABLE 16 Neural network results using machine learning.

Volume 3 by all data and Volume 1

Accuracy 68.4%
Recall 0.7
Precision 0.7
F1 0.7

Without the results from the mathematical model.

TABLE 17 Neural network results using machine learning.

Volume 2 by all data and Volume 1

Accuracy 79%
Recall 0.9
Precision 0.9
F1 0.9

With the results from the mathematical model.

TABLE 18 Neural network results using machine learning.

Volume 3 by all data and Volume 1

and Volume 2

Accuracy 89%
Recall 0.8
Precision 0.8
F1 0.8

With the results from the mathematical model.

TABLE 19 Neural network results using machine learning.

Volume 3 by all data and Volume 1

Accuracy 88.39%
Recall 0.8
Precision 0.8
F1 0.8

With the results from the mathematical model.

4 Results and discussion

A novel method integrating mathematical model outputs with
clinical data was developed to improve tumor size prediction
accuracy for granulosa cell tumor treatment with TRAIL-
producing oncolytic virus and PAC-1 therapy. Linear regression
and neural networks were applied to four ovarian cancer datasets,
each offering unique advantages. Linear regression provided direct
size predictions, while neural networks classified tumors into
defined ranges. The results are presented in Tables4-19. In
Figures 1-5 we summarize the model and experimental data as
histograms: Figures 1-3 define the model’s structure and drug
characteristics (neural network performance), while Figures 4,
5 present linear regression results for tumor size prediction,
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FIGURE 1

This chart provides a direct comparison of the neural network results on the 41,000- and 626-sample datasets. In both cases, the models that
included the mathematical model features demonstrated improved overall performance, particularly in terms of accuracy and recall.

Neural Network Performance: 10,389 Samples
10

i Accuracy

Score

FIGURE 2

This chart displays the performance metrics of neural network models run on a dataset of 10,389 samples. The models with mathematical model
features consistently show a notable increase in performance across all metrics compared to the models without.
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Neural Network Performance: 25,985 Samples
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FIGURE 3
This chart presents the performance of neural network models on 25,985 samples. It highlights that, while both sets of models performed well, those
incorporating the mathematical model features achieved higher scores in terms of accuracy, recall, and precision.
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FIGURE 4
This chart shows the RMSE of linear regression models on the 10,389-sample dataset. The models that included the mathematical model generally
had a lower RMSE, indicating a better fit to the data than those without it.
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FIGURE 5

This chart presents the RMSE of linear regression models on 25,985 samples. It shows a varied outcome, with some models containing mathematical
features performing better and some performing worse in terms of RMSE than their counterparts without these features.

TABLE 20 Linear regression results using machine learning.

Volume 2 by all data and Volume 1

Performance RMSE P-value

0.000353

Significant features

TABLE 21 Linear regression results using machine learning.

Volume 3 by all data and Volume 1 and Volume 2

Performance RMSE P-value

0.02

Significant features

®-Values P-values ©-Values P-values
Volumel 0.8896 1.23-107° BRCA —23.855 0.05
Without the results from the mathematical model. Volume2 0.5 0.02

comparing models without and with mathematical features,
respectively, to demonstrate improved accuracy.

4.1 Linear regression algorithm

Tables 4, 20, and 21 present the linear regression predictions
without mathematical features (first dataset, 10,389 samples),
whereas Table 5 includes these features. Although the p-values
remained similar, the RMSE values decreased with the addition
of mathematical features. For example, the RMSE for Volume 2
dropped from 18.4 (Tables 4, 20, 21) to 16.1 (Table 5), and for
Volume 3, it decreased from 19.3 to 17.8.

This indicates that incorporating mathematical model outputs
into ML models improves prediction performance. Tables 4, 20,
and 21 identified BRCA and Volume 2 as significant, while Table 5

Frontiersin Artificial Intelligence

Without the results from the mathematical model.

additionally highlights Lymph and PIK3CA, providing further
insights into treatment-relevant factors. Notably, the feature
M101 (chemotherapy administered on day 101) was found to be
significant, suggesting its potential role in personalized treatment
adjustment.

Tables 12, 13 for the second dataset (25,985 patients) showed
improved p-values and identified CD4+ and D as important
features when including mathematical outputs.

4.2 Neural network algorithm

Neural network performance metrics (accuracy, recall,
precision, F1 score) without mathematical features are reported

in Tables 6-8, 14-16, 22, and 23. The results obtained with
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TABLE 22 Data without the mathematical model features.

Accuracy 76.1%
Recall 0.75
Precision 0.75
F1 0.75

TABLE 23 Data without the mathematical model features.

Accuracy 71.91%
Recall 0.7
Precision 0.7
F1 0.7

TABLE 24 Data with the mathematical model features.

The 101th vector

Accuracy 79%
Recall 0.86
Precision 0.82
F1 0.84

TABLE 25 Data with the mathematical model features.

The 101th vector

Accuracy 89%
Recall 0.9
Precision 0.9
F1 0.8

mathematical features are presented in Tables 9-11, 17-19, 24,
and 25. For example, Volume 2 accuracy increased from 77.3%
(F1 score 0.84, Table 6) to 91.42% (F1 score 0.89) when including
mathematical model outputs.

Similarly, the 25,985-patient dataset showed improved results
when mathematical features were integrated (Tables 17-19 vs. 14—
16). For the third cohort (41,000 women), accuracy rose from 76.1%
to 79%, with corresponding improvements in recall, precision,
and Fi.

Similarly, the 25,985-patient dataset showed improved results
when mathematical features were integrated (Tables 17-19 vs. 14—
16). For the third cohort (41,000 women), accuracy rose from 76.1%
to 79%, with corresponding improvements in recall, precision,
and Fi.

Overall, across all algorithms and datasets, merged data
outperformed original clinical data alone. These findings highlight
the value of incorporating mathematical model-derived features
for more accurate prediction of tumor dynamics, supporting the
effective and personalized treatment of granulosa cell tumors of the
ovary using a TRAIL-producing oncolytic virus and PAC-1 therapy.
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4.3 Sensitivity analysis

In this section, we evaluated how changes in specific model
parameters could influence predicted outcomes. To do this, we
conducted a local sensitivity analysis, systematically varying each
parameter from —85% to 85% of its value.

We assessed the changes in the predicted final tumor volume
relative to baseline simulations that used a consistent 21-day
treatment course consisting of daily PAC-1 administration at 375
mg with an initial multiplicity of infection (MOI) of 0.03 applied to
a tumor population of 107 cells.

The results of the sensitivity analysis, presented in Figure 6,
revealed that only a limited number of parameters significantly
impacted tumor progression in the model: a;, az, d;, and
dy. Specifically, the tumor proliferation rate a; and the tumor
cell death rate d, were the most influential, directly affecting
tumor expansion.

Quite surprisingly, the other parameters (in the list presented
in Figure 6) did not affect the stability of the model in general and
the size of the tumor in particular, i.e., they appeared to have little
effect overall.

These findings indicate that, beyond the initial tumor
burden, the tumor’s intrinsic growth characteristics-particularly its
proliferation rate-are critical indicators of how well a combination
treatment might perform.

5 Conclusions

In this study, we presented an innovative artificial analysis
framework that integrates a mechanistic mathematical model
with machine learning (ML) algorithms to improve prediction of
tumor dynamics in the treatment of granulosa cell tumors of the
ovary using the combined action of a TRAIL-producing oncolytic
virus and PAC-1 therapy. By leveraging four extensive datasets
containing both continuous and categorical tumor size data,
our approach systematically combined personalized mathematical
simulations with clinical and imaging features to enhance ML
predictive performance.

Our results demonstrated that incorporating features derived
from the mathematical model consistently improved prediction
accuracy across all datasets and ML approaches used. Linear
regression models showed a marked reduction in root mean square
error (RMSE) when mathematical outputs were added, while neural
network models exhibited increased accuracy, precision, recall,
and F1 scores. These improvements underscore the importance of
integrating mechanistic insights with data-driven algorithms for
reliable tumor burden prediction.

The inclusion of mechanistic variables such as immune
cell dynamics, the pharmacokinetics of PAC-1 and TRAIL, and
tumor-virus interactions provided additional biologically relevant
features that pure clinical data alone could not offer. This
approach enables a more comprehensive representation of tumor
behavior under therapy, enhancing the potential for effective
personalized treatment strategies in granulosa cell tumors of
the ovary.

However, several limitations should be acknowledged.
First, while the model

mathematical included  key

frontiersin.org


https://doi.org/10.3389/frai.2025.1675969
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Nave and Barasheshet

10.3389/frai.2025.1675969

a
d
dz

-85%

FIGURE 6

Sensitivity analysis of the parameters of the mathematical model, i.e., the impact of the parameters on tumor size.

1.5%108

1.0x108

5.0x107

85%

tumor-immune-pharmacokinetic interactions, further refinement
and validation with larger prospective clinical datasets are needed
to generalize these findings. Second, although this framework
focused on granulosa cell tumors treated with a TRAIL-producing
oncolytic virus and PAC-1, extending the methodology to other
tumor types and therapeutic combinations could broaden its
clinical applicability.

This study introduces an innovative hybrid framework that
integrates mechanistic mathematical modeling with machine
learning (ML) to predict tumor dynamics in granulosa cell
tumors treated with a TRAIL-producing oncolytic virus and
PAC-1 therapy. Unlike conventional approaches that rely
solely on clinical and imaging data, this method enriches ML
models with biologically meaningful variables derived from
tumor-immune-drug interaction simulations. This integration
significantly improves prediction accuracy, precision, recall,
and F1 scores across multiple large datasets. Our work not
only demonstrates the added value of combining mathematical
and data-driven approaches but also establishes a novel proof-
of-concept for personalized, mechanism-informed treatment
planning in rare ovarian cancers where therapeutic options
are limited.

Frontiersin Artificial Intelligence

In conclusion, the proposed artificial analysis framework
represents a promising tool for precision oncology. By combining
mathematical modeling and ML algorithms, clinicians and
researchers can gain deeper insights into tumor dynamics, optimize
treatment planning, and potentially improve outcomes for patients
with granulosa cell tumors of the ovary. Future studies should
focus on integrating this framework into clinical decision-support
systems and exploring its use in real-time treatment adaptation.
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