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Rationale and objectives: To address the challenges in detecting anterior
cruciate ligament (ACL) lesions in knee MRI examinations, including difficulties
in identifying tiny lesions, insufficient extraction of low-contrast features, and
poor modeling of irregular lesion morphologies, and to provide a precise and
efficient auxiliary diagnostic tool for clinical practice.

Materials and methods: An enhanced framework based on YOLOv10 is
constructed. The backbone network is optimized using the C2f-SimAM module
to enhance multi-scale feature extraction and spatial attention; an Adaptive
Spatial Fusion (ASF) module is introduced in the neck to better fuse multi-scale
spatial features; and a novel hybrid loss function combining Focal-EloU and KPT
Loss is employed. To ensure rigorous statistical evaluation, we utilized a five-fold
cross-validation strategy on a dataset of 917 cases.

Results: Evaluation on the KneeMRI dataset demonstrates that the proposed
model achieves statistically significant improvements over standard YOLOv10,
Faster R-CNN, and Transformer-based detectors (RT-DETR). Specifically,
mMAP@O.5 is increased by 1.3% (p < 0.05) compared to the standard YOLOv10,
and mAP@0.5:0.95 is improved by 2.5%. Qualitative analysis further confirms the
model’s ability to reduce false negatives in small, low-contrast tears.
Conclusion: This framework effectively connects general object detection
models with the specific requirements of medical imaging, providing a precise
and efficient solution for diagnosing ACL injuries in routine clinical workflows.

KEYWORDS

knee MRI, lesion detection, low contrast feature extraction, small object detection,
YOLOv10

1 Introduction

Magnetic resonance imaging (MRI) has emerged as an indispensable modality
in modern musculoskeletal diagnostics, offering high-resolution and non-invasive
visualization of soft tissue structures. Among various orthopedic applications, the
assessment of anterior cruciate ligament (ACL) lesions occupies a pivotal role
due to the high incidence of ACL injuries in athletic and general populations.
Early and accurate detection of ACL lesions is crucial, as delayed or missed
diagnoses can lead to progressive joint degeneration, secondary injuries, and
suboptimal treatment outcomes (Chavez et al, 2025 Griffin et al, 2000).
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Recent regenerative medicine has seen MSCs and their EVs as a
new cartilage repair direction for ACL post-injury reconstruction
(Yang et al., 2025). Precise preoperative imaging diagnosis is a
prerequisite for realizing individualized treatment of traditional
surgery or emerging regenerative therapies.

However, automatic detection of ACL lesions in MRI scans
presents formidable challenges. Clinically, ACL tears often manifest
as subtle signal hyperintensities within the femoral intercondylar
notch, which can be easily obscured by artifacts or mimic mucoid
degeneration (Liu F. et al, 2018). Secondly, the low contrast
between damaged ligaments and surrounding soft tissues further
complicates lesion delineation (Sun et al., 2021). Thirdly, MRI data
are susceptible to artifacts, noise, and patient-specific anatomical
variability (He et al., 2020).

In recent years, deep learning has revolutionized medical image
analysis (Litjens et al., 2017). The field of artificial intelligence in
medical imaging continues to experience rapid growth, addressing
a wide array of diagnostic and prognostic challenges across various
modalities (Li et al., 2024). Within this domain, the You Only Look
Once (YOLO) family has garnered significant attention due to its
balance of accuracy and computational efficiency (Redmon et al.,
2016). However, applying generic detectors to medical imaging
requires adaptation. Medical images differ fundamentally from
natural images in texture homogeneity and object scale (Roth et al.,
2018). Conventional architectures often struggle with the “micro-
fractures” and subtle fiber disruptions typical of early ACL injury.

To address these limitations, we propose an enhanced
YOLOV10-based framework specifically optimized for knee MRI.
Unlike previous studies that apply off-the-shelf models, our
contributions focus on medical-specific adaptations: (1) Integrating
C2f-SimAM modules to capture low-contrast features typical
of edema; (2) Introducing an Adaptive Spatial Fusion (ASF)
module to handle the irregular morphology of torn ligaments; and
(3) Implementing a hybrid Focal-EIoU + KPT loss for precise
boundary regression. We validate our approach using rigorous
five-fold cross-validation against state-of-the-art models, including
Transformers and two-stage detectors.

2 Related work

2.1 Object detection in medical imaging

Convolutional neural networks (CNNs) have made remarkable
progress in object detection. While segmentation models like U-
Net are prevalent in medical imaging for pixel-level tasks, object
detection frameworks are often preferred for rapid screening
and localization of specific pathologies where bounding boxes
suffice for clinical decision support. YOLO has been widely
adopted; for instance, Zhang et al. (2021) proposed a YOLO-based
method for liver tumor detection. More recently, an enhanced
YOLOVS8 framework, SCFAST-YOLO, was developed for accurate
classification of distal radius fractures, showcasing the versatility of
YOLO in diverse medical contexts (Wang Y. et al.,, 2025). However,
standard YOLO models often prioritize speed over the fine-grained
precision required for orthopedic diagnosis. Recent advancements
in low-light image recognition (Gen et al., 2025) and advanced
signal processing (Aldanma et al., 2024) suggest that attention
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TABLE 1 Demographic characteristics of the study population.

Characteristic Value (N =917)

Age (years), Mean & SD ‘

324+11.2
Gender
Male 568 (61.9%)
Female 349 (38.1%)
Laterality
Right knee 486 (53.0%)
Left knee 431 (47.0%)

mechanisms and enhanced feature fusion are critical for improving
performance in challenging visual environments, a concept we
adapt here for MRI analysis.

2.2 Knee MRI lesion detection

Knee MRI lesion detection, particularly for ACL injuries,
presents unique challenges. Existing literature has largely focused
on classification (tear vs. no tear) using 2D or 3D CNNs.
However, detection (localization) provides more interpretability.
Comparative studies often lack rigor, failing to compare against
non-YOLO architectures like Faster R-CNN or emerging
Transformer-based models (e.g., DETR, Zhu et al, 2021). In
this work, we aim to address these gaps by enhancing YOLOvV10
and providing a comprehensive comparison against SOTA
architectures to benchmark its clinical utility.

3 Materials and methods

3.1 Dataset demographics and preparation

We utilized the KneeMRI dataset consisting of 917 cases.
We specifically selected sagittal plane images for training and
evaluation. This decision is based on clinical consensus that the
ACL runs obliquely through the knee and is best visualized and
graded in the sagittal plane, which offers the highest diagnostic
value for ligamentous integrity.

The demographic characteristics of the patient cohort are
detailed in Table 1. The dataset includes a balanced representation
of gender and laterality.

To ensure rigorous evaluation, we employed stratified random
sampling to divide the dataset into Training, Validation, and Test
sets (70:15:15), ensuring the class distribution remained consistent
across subsets. The detailed class distribution is presented in
Table 2.

Data augmentation was performed online during training to
improve generalization. Techniques included random horizontal
flip (probability 0.5), random rotation (#£10°), and mosaic
augmentation. The final sample sizes for each epoch varied
dynamically due to the mosaic technique, but the base dataset
remained fixed as described.
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TABLE 2 Class distribution across Training, Validation, and Test sets.

Class Total Training Validation Test
cases (70%) (15%) (15%)
Healthy 550 385 82 83
Partial tear 150 105 23 22
Complete tear 217 152 32 33
Total 917 642 137 138

3.2 Overall framework architecture

The proposed architecture builds upon the YOLOV1O
foundation, incorporating a multi-stage processing pipeline
designed to extract and fuse highly discriminative features suitable
for complex medical imaging tasks. First, the input MRI slices
are passed through an optimized backbone network integrated
with C2f-SimAM modules, which effectively capture both local
fine-grained features and global semantic representations. The
extracted multi-scale feature maps are then passed through an
improved neck structure, which typically involves path aggregation
mechanisms similar to PANet (Liu S. et al., 2018), incorporating
the Adaptive Spatial Fusion module to achieve dynamic multi-scale
feature integration. Finally, the head outputs refined bounding
box predictions and keypoint estimations under the supervision
of a hybrid loss function, which guides the network to achieve
highly accurate localization and boundary delineation. This
architecture is carefully balanced to ensure both high accuracy and
computational efficiency.

For clarity, we present a visual overview of our enhanced
YOLOVI0 architecture in Figure 1. We explicitly define key
abbreviations here: ACL (Anterior Cruciate Ligament), ASF
(Adaptive Spatial Fusion), and SimAM (Simple Attention Module).

3.3 Backbone optimization with
C2f-SimAM

The original YOLOv10 backbone utilizes Cross Stage Partial
(CSP) modules to achieve a trade-off between feature extraction
quality and computational cost. However, due to the distinct
nature of knee MRI images, where lesions often present as
small, low-contrast, and irregularly shaped structures embedded
within complex tissue backgrounds, the standard CSP module
may not sufficiently capture relevant lesion features. To enhance
sensitivity and robustness, we introduce the C2f-SimAM module
as a replacement for selected CSP blocks.

Attention mechanisms have significantly advanced deep
learning performance. A pioneering example, the Squeeze-and-
Excitation (SE) network, introduced a channel-wise attention
module to adaptively recalibrate feature responses (Hu et al., 2017).
Building on such impactful strategies, our C2f-SimAM module
integrates advanced feature processing with effective attention.

The Cross-Stage Fusion (C2f) module partitions the feature
map into dual pathways: one branch preserves high-resolution
fine-grained spatial features, while the other extracts deeper
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semantic representations through additional convolutional layers.
The outputs of both branches are then concatenated to form a
comprehensive feature map:

Fout = Concat(Fy, Fp) 1)

This design enables the network to simultaneously model
fine local textures and broader contextual information, which
is particularly crucial for detecting minute ACL tears and
differentiating them from surrounding normal tissues.

Following C2f processing, the Simple Attention Module
(SimAM) is employed to further enhance spatial attention without
introducing additional trainable parameters, thereby maintaining
computational efficiency. For each neuron x;, SimAM calculates an
energy function based on its deviation from the local mean p and

variance o2

Ei=(x—p?+o? (2)

The corresponding attention weight is computed as:

1

w; =
Ei+e€

3)

where € is a stabilizing constant. This mechanism allows the model
to emphasize neurons that carry salient lesion-specific information,
improving detection accuracy for low-contrast structures typically
observed in MRI scans. Such attention-driven feature refinement,
including modules integrating both channel and spatial awareness
(Woo etal., 2018), is crucial for robust medical image analysis.

3.4 Adaptive Spatial Fusion in the neck

Feature fusion plays a pivotal role in accurately localizing
lesions of varying sizes and morphologies. Traditional neck
designs employ fixed fusion rules that may not adapt well to
the heterogeneous nature of lesion appearances. To address this,
we propose an Adaptive Spatial Fusion (ASF) module, which
dynamically assigns attention weights to features at different
resolutions. The structure of the module is shown in the Figure 2.

The fused feature representation is calculated as:

N
Ffused = Z a;F; (4)

i=1

where F; denotes the feature map from scale i, and «; are
learnable weights normalized to ensure Zfil a; = 1. Through
adaptive weighting, the ASF module selectively emphasizes scales
that contain the most relevant spatial information for each lesion
instance. This capability is particularly beneficial for handling
lesions exhibiting diverse shapes, such as elongated ACL tears or
fragmented partial injuries.

Additionally, ASF mitigates information loss typically caused
by repeated downsampling in conventional neck structures,
thereby preserving both fine-grained and global lesion descriptors.
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FIGURE 1

Proposed YOLOv10-based architecture with C2f-SimAM, ASF, and hybrid loss integration for knee MRI lesion detection.
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This figure shows the structural flowchart of the ASF module, which
is mainly used to achieve adaptive fusion of multi-scale features to
enhance the model's ability to detect complex targets.

3.5 Loss function optimization: focal-EloU
with KPT loss

Accurate lesion detection requires both precise bounding box
localization and fine-grained delineation of lesion boundaries.
To jointly optimize these objectives, we design a hybrid
loss function that integrates Focal-EIoU loss and KeyPoint
(KPT) loss.

For bounding box regression, we utilize Focal-EIoU

loss, which extends the traditional IoU loss by applying
a modulating factor to focus

learning on challenging

Frontiersin Artificial Intelligence

examples (Lin et al, 2017b) and by incorporating aspect
ratio penalties:

IoU —v
Lpocal-Elou = (1 — IoU) - <1 - ﬁ) (5)

Here, y controls the focusing strength, and v penalizes aspect
ratio inconsistencies, which helps stabilize training for lesions of
diverse shapes.

Simultaneously, the KPT loss supervises anatomical keypoint
predictions to refine lesion boundary alignment. This loss is
computed as:

K
Lxpr = Z pj — jl* (6)

j=1

where pj and p; represent the predicted and ground truth keypoint
coordinates, respectively.
The combined loss function is formulated as:

Liotal = A1LFocal-EloU + A2LkpT (7)

where A; and A, control the relative contributions of each loss
component. This joint formulation ensures balanced optimization
between coarse localization and fine boundary accuracy, which is
highly desirable for medical diagnosis.
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FIGURE 3

the module’s ability to localize abnormalities despite low contrast.

SimAM Attention Mechanism Visualization Analysis

SimAM Attention Map

SimAM attention heatmaps visualization. The red regions indicate high attention weights, which clearly focus on the ACL lesion areas, demonstrating

Attention Overlay

Attention

Attention
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3.6 Implementation details and
hyperparameter selection

The model was implemented in PyTorch. Hyperparameters
were optimized using a genetic algorithm (GA) evolution strategy
on the validation set for the first 50 epochs. The final parameters
were: initial learning rate 0.01 (SGD optimizer), momentum
0.937, and weight decay 0.0005. Transfer learning was employed
by initializing the backbone with COCO-pretrained weights to
accelerate convergence.

4 Results

4.1 Experimental setup and statistical
analysis

To ensure the robustness of our results, we implemented a
five-fold cross-validation scheme. All reported metrics represent
the mean =+ standard deviation across the five fold. Statistical
significance was evaluated using the paired t-test, with a p-value

Frontiersin Artificial Intelligence

< 0.05 considered statistically significant. Confidence intervals
(95% CI) were calculated for the primary metric (mAP).

4.2 Evaluation metrics

To evaluate detection performance, we adopt widely accepted
object detection metrics: precision (P), recall (R), mean average
precision (mAP@0.5), mAP@0.5:0.95 (multi-scale
inference time per image (ms), and floating-point operations

average),

(FLOPs). These metrics allow us to comprehensively assess both
detection accuracy and computational efficiency.

4.3 Attention mechanism visualization

To further understand how the proposed model attends to
lesion regions, we visualize the SimAM attention maps. As shown
in Figure 3, the attention heatmaps clearly concentrate around the
ACL tear locations, aligning well with the annotated ground truth.
This verifies that SimAM effectively enhances the representation of
lesion-relevant regions, even in low-contrast MRI scenarios.
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FIGURE 4
Comparison of feature maps before and after ASF application. (Left) Baseline features show scattered activation. (Right) ASF-enhanced features
show concentrated activation on the lesion boundaries.
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4.4 Multi-scale feature visualization via ASF

We also visualize the effect of the Adaptive Spatial
Fusion (ASF) module by comparing feature maps at different
scales before and after fusion. Figure4 shows that ASF
significantly ~enhances feature localization precision by
adaptively weighting spatial information across scales. The
resulting fused features exhibit clearer activation in regions of

diagnostic interest.

4.5 Comparative analysis
We compared the proposed method
YOLO family (v5, V8,
R-CNN  (ResNet50
RT-DETR,
summarizes the

against a
diverse set of baselines: the
v10), the two-stage
backbone), the

UNet (adapted for

quantitative results.

detector Faster

Transformer-based and
detection). Table 3

As shown in Table3, our model achieved the highest
detection accuracy. The improvement over the baseline YOLOv10
(1.3% in mAP@0.5) is statistically significant (p = 0.012).
While RT-DETR showed competitive performance, our proposed
method maintains a substantial advantage in inference speed
(11.8 vs. 285 ms), making it more suitable for real-time
clinical use.
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4.6 Qualitative analysis of detections and
errors

To further validate the model, we analyzed success and
failure cases . Successful detections: the model accurately
localized complete tears even in cases with joint effusion
(Figure 5A). primarily
occurred in “micro-tears” (<3 mm) or when the ACL was

False negatives: missed detections
obscured by significant bone artifacts (Figure 5B). False positives:
misinterpretations were mostly due to mucoid degeneration,
which presents high-signal intensity similar to tears (Figure 5C).
This suggests a need for future multi-modal fusion to distinguish

these pathologies.

4.7 Ablation study

To further validate the individual contributions of each
proposed module, we conducted an ablation study summarized in
Table 4.

The ablation results in Figure 6 confirm that each module
contributes incrementally to the overall performance gain. The
C2f-SimAM backbone brings noticeable improvements in small
lesion detection, ASF further strengthens localization under shape
variability, while the hybrid loss function yields the most substantial
gain in overall detection precision.
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TABLE 3 Performance comparison of different models (Mean + SD from five-fold cross-validation).

mAP@0.5 (%)  mAP@0.5:0.95 (%)

Precision

Recall Inference (ms) ETET I (Y))]

Non-YOLO architectures

UNet (Adapted) 842412 625+ 1.4
Faster R-CNN 86.5+0.9 68.1+£1.1
RT-DETR 89.51+0.7 721408
YOLO family

YOLOV5s 87.1£0.8 67.8+0.9
YOLOVS8s 882+ 0.6 70.1 £0.7
YOLOV10s 892405 714+ 0.6
Proposed 90.5 £ 0.4* 73.9 £ 0.5*

*Indicates statistical significance (p < 0.05) compared to YOLOv10.

0.865 0.830 45.2 31.0
0.880 0.845 62.1 41.3
0.915 0.870 28.5 38.0
0.894 0.852 12.4 7.2
0.908 0.863 13.1 11.1
0.921 0.875 11.5 8.9
0.937 0.891 11.8 9.2

cp12865-8_slice_014.png
Detections: 1

FIGURE 5
Qualitative results. (A) Correct detection of a complete ACL tear. (B) False negative: a small partial tear was missed due to low contrast. (C) False
positive: mucoid degeneration misclassified as a tear.

1ep04663-8_slice_013.png
Detections: 1

5 Discussion

The empirical results presented in this study convincingly
demonstrate the superiority of the proposed YOLOv10-based
framework. The five-fold cross-validation confirms that the
performance gains are robust and not due to random data
splitting. The integration of the C2f-SimAM module within the
backbone plays a pivotal role in enhancing multi-scale feature
extraction and spatial attention. By enabling the network to
emphasize fine-grained textures while simultaneously capturing
high-level semantic information, this design addresses the inherent
challenge of detecting small and low-contrast lesions (Woo et al.,
2018; Shin et al., 2023). Moreover, the parameter-free nature of
SimAM ensures that these improvements are achieved without
significantly increasing computational overhead, which is a critical
consideration for real-time clinical applications.

The Adaptive Spatial Fusion (ASF) module introduced into
the neck further strengthens the networks ability to handle
the morphological variability of ACL lesions. Traditional feature
fusion methods often apply fixed aggregation rules (Lin et al,
2017a), potentially leading to suboptimal performance when lesion
characteristics vary substantially across cases. ASF overcomes this

Frontiersin Artificial Intelligence

limitation by dynamically adjusting fusion weights based on feature
relevance, thus enabling the model to adaptively emphasize the
most informative spatial scales (Tan et al., 2020; Wang T. et al,,
2025).

The proposed hybrid loss function, combining Focal-EIoU and
KPT losses, contributes substantially to localization accuracy. The
Focal-EIoU component enhances the learning focus on hard-to-
detect and ambiguous samples, mitigating class imbalance and
improving bounding box regression performance (Zhang et al,,
2021). Meanwhile, the KPT loss directly supervises key anatomical
boundary landmarks, yielding more precise delineation of lesion
margins, which is essential for clinical diagnosis and treatment
planning (Maji et al., 2022; Ambellan et al., 2018).

5.1 Clinical implications and limitations

The statistically significant improvement in mAP@0.5:0.95
(2.5%) translates to higher reliability in distinguishing partial
from complete tears. However, limitations exist. First, we relied
solely on sagittal images. While this is the standard for ACL,
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combining coronal views could potentially reduce false positives
caused by volume averaging artifacts. Second, the differentiation
between mucoid degeneration and tears remains a challenge,
as highlighted in our error analysis. Notably, for ACL patients
with concurrent cartilage defects—a common comorbidity in
chronic injuries—precise preoperative lesion localization via our
framework can further guide targeted regenerative interventions,
such as stem cell-derived exosome therapy, which has been
validated to accelerate cartilage repair in rabbit models (Yang,
2022). Future work will focus on 3D-input models to leverage
volumetric spatial consistency.

In conclusion, the proposed framework offers a robust,
efficient, and clinically applicable solution for knee MRI lesion
detection. Its modular design allows for future enhancements and
adaptation to broader musculoskeletal imaging tasks, potentially
contributing significantly to automated orthopedic diagnostics.

6 Conclusions

In this study, we proposed an improved YOLOv10-based
framework specifically tailored for knee MRI lesion detection,

10.3389/frai.2025.1675834

addressing the critical challenges of small object detection, low-
contrast feature extraction, irregular lesion shape modeling, and
computational efficiency. By recognizing the unique difficulties
presented by musculoskeletal imaging, particularly the subtleties
of anterior cruciate ligament (ACL) pathology, our approach
offers a significant step forward in the field of automated
diagnostic imaging.

The backbone was extensively enhanced by integrating C2f-
SimAM modules, which enable the model to simultaneously
capture fine-grained spatial details and higher-level semantic
context. This dual capability is vital for effectively distinguishing
subtle lesion features from surrounding anatomical structures,
especially in MRI images characterized by inherently low signal-
to-noise ratios and complex tissue contrasts. Unlike conventional
modules, C2f-SimAM achieves this improvement while preserving
parameter efficiency, making it suitable for resource-constrained
clinical environments.

In addition, the Adaptive Spatial Fusion (ASF) module was
introduced into the neck of the architecture, which allows for
dynamic and context-sensitive fusion of multi-scale features.
This adaptive mechanism ensures that the model can robustly
localize lesions regardless of their size or morphological variability,
thus addressing one of the most pressing challenges in ACL

TABLE 4 Ablation study showing the incremental contribution of each module (Mean mAP from five-fold CV).

Configuration mAP@0.5:0.95 Inference time (ms) FLOPs (G)
YOLOV10 (baseline) 0.892 0.714 18.3 52.9
C2f-SimAM 0.898 0.722 18.2 52.3
Adaptive Spatial Fusion (ASF) 0.902 0.728 18.1 51.9
Focal-EloU + KPT Loss 0.905 0.739 17.9 51.2

Ablation Study - Performance Metrics Comparison

. MAP@0.5
e MAP@0.5:0.95

96.1%

95 93.8%
91.2%
9% 88.5%
= & 83.7%
B
<
o
g 80.1%
80
76.8%
75
73.2%
70
65 YOLOvV10 YOLOv10 YOLOV10 + C2f-SimAM  YOLOv10 + C2f-SimAM
Baseline + C2f-SimAM + ASF + ASF + Focal-EloU
+ KPT Loss
(Proposed)
Model Configuration
FIGURE 6

Improvement over Baseline (%)

Ablation study graph illustrating the stepwise improvement in mAP@0.5 and mAP@0.5:0.95 with the addition of each module.
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Model Configuration
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lesion detection where lesion presentation can range from
minute fiber disruptions to large ruptures involving multiple
tissue planes.

Furthermore, the novel hybrid loss function, combining Focal-
EIoU and KPT Loss, provides comprehensive supervision that
extends beyond mere bounding box accuracy. By incorporating
keypoint-based refinement, the model benefits from both
global and fine-grained boundary alignment, allowing for
precise lesion delineation. This dual-loss strategy significantly
improves clinical interpretability, as precise localization is
essential for surgical planning and outcome assessment in ACL
injury management.

The rigorous statistical analysis confirms the model’s efficacy.
This work provides a strong technical foundation for automated
ACL screening, balancing high precision with the efficiency
required for clinical workflows.

Extensive comparative experiments and ablation studies on the
KneeMRI dataset further validate the effectiveness of each proposed
architectural component. These investigations reveal that each
modification, from the C2f-SimAM backbone to the ASF neck and
hybrid loss function, contributes incrementally yet significantly to
the overall system performance. Collectively, these enhancements
address critical clinical requirements for robustness, computational
efficiency, and high-precision lesion analysis.

Looking forward, future research will focus on extending this
framework to multi-center datasets to evaluate its generalizability
across diverse patient populations and imaging protocols. In
addition, the incorporation of semi-supervised and self-supervised
learning paradigms will be explored to leverage the growing volume
of unannotated MRI data, potentially further improving model
robustness and reducing annotation burdens. Finally, adaptations
to multi-modality imaging scenarios, such as integrating data from
arthroscopy, ultrasound, or 3D MRI sequences, offer promising
directions for further enhancing diagnostic accuracy and clinical
utility across broader orthopedic applications.
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