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Accelerating earth science
discovery via multi-agent LLM
systems

Dmitrii Pantiukhin®*, Boris Shapkin®, lvan Kuznetsov®,
Antonia Anna Jost® and Nikolay Koldunov

Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany

This Perspective explores the transformative potential of multi-agent systems
(MAS) powered by Large Language Models (LLMs) in the geosciences. Users of
geoscientific data repositories face challenges due to the complexity and diversity
of data formats, inconsistent metadata practices, and a considerable number of
unprocessed datasets. MAS possesses transformative potential for improving scientists’
interaction with geoscientific data by enabling intelligent data processing, natural
language interfaces, and collaborative problem-solving capabilities. We illustrate
this approach with "PANGAEA GPT,” a specialized MAS pipeline integrated with the
diverse PANGAEA database for Earth & Environmental Science, demonstrating how
MAS-driven workflows can effectively manage complex datasets and accelerate
scientific discovery. We discuss how MAS can address current data challenges in
geosciences, highlight advancements in other scientific fields, and propose future
directions for integrating MAS into geoscientific data processing pipelines. In this
Perspective, we show how MAS can fundamentally improve data accessibility,
promote cross-disciplinary collaboration, and accelerate geoscientific discoveries.
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Introduction

Geoscience data archives, which serve as curated digital infrastructures for the systematic
storage and distribution of Earth and environmental datasets, have grown to enormous scales,
with large repositories such as PANGAEA, NASAs Earth Observing System Data and
Information System (EOSDIS), NOAA’s National Centers for Environmental Information
(NCEI), and the Copernicus Climate Data Store (C3S) collectively hosting millions of
heterogeneous datasets and several petabytes of data (Kobler et al., 1995; Felden et al., 2023).
For example, PANGAEA alone contains more than 400,000 datasets derived from a variety of
observational platforms ranging from shipboard expeditions and sediment cores to global
climate model outputs (Felden et al., 2023). Despite this scale, data citation remains low, with
over 93% of datasets being uncited (Robinson-Garcia et al., 2016). At the core of this issue with
data reuse are inadequate metadata standards, non-uniform data formats, and incomplete
documentation (Gil et al., 2016). As a result, countless datasets remain underutilized or
completely absent from scientific publications, resulting in missed opportunities for
scientific discovery.

These challenges of managing and utilizing complex, heterogeneous datasets extend far
beyond geosciences, impacting a wide array of scientific disciplines, where similar issues with
data formats and metadata persist (Zhang and Zhao, 2015; Schnase et al., 2016; Pal et al., 2020).
Large Language Models (LLMs), with their ability to parse unstructured data and reason
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across domains, provide a robust foundation for addressing these
challenges (Bauer et al., 2024). LLMs have become powerful tools for
information retrieval and analysis in various scientific fields (Guo
et al,, 2024). Recent Generative Pre-trained Transformer (GPT)
models use advanced techniques like reinforcement learning and
chain-of-thought reasoning (Wei et al., 2022). They excel at complex
scientific problems, even surpassing PhD-level experts on tough
benchmarks (Rein et al., 2023; Guo et al., 2025). These models can
now perform multi-step reasoning, breaking down complex problems
into manageable subtasks and synthesizing information from vast
knowledge bases. Moreover, they can operate with tools and execute
commands, expanding their problem-solving capabilities (Paranjape
et al.,, 2023). These advanced capabilities suggest that LLM-driven
hold
data management.

approaches tremendous  promise for  geoscience

A further evolution of LLM is expected in an agent-based mode,
where models function as autonomous agents capable of performing
tasks without constant human guidance, relying on tools, databases,
internal memory and other resources (Guo et al., 2024). In this
context, an agent is an LLM-based system that can perceive the
environment, reason about the information it receives, and take
actions to achieve specific goals. Such agents are often used
collaboratively in a divide-and-conquer approach, deploying multiple
specialized agents that can solve complex analytical problems as a
group (Qian et al., 2023). This is particularly relevant in geosciences,
where the diversity of data formats and the need for domain-specific
expertise are significant challenges. By working together, these agents
can efficiently handle heterogeneous datasets, bridge gaps between
different branches of geoscience, and provide researchers with more
holistic insights.

Single-agent and chat-completion approaches have already shown
practical benefits in geosciences. Retrieval-augmented techniques
(RAG; Lewis et al, 2020) which enable language models to
dynamically access and incorporate information from external
knowledge bases, have particularly enhanced domain-specific
accuracy in climate science. For example, RAG approaches with
curated climate reports have improved domain-specific QA tasks
derived from Intergovernmental Panel on Climate Change (IPCC)
documents (Vaghefi et al., 2023). Similarly, efforts such as “ClimSight”
now provide climate projection information to non-specialist users by
integrating LLMs with climate report data and model runs (Koldunov
and Jung, 2024; Kuznetsov et al., 2025). Recent advances in RAG
techniques have moved beyond simple document retrieval,
incorporating multi-level retrieval mechanisms and knowledge graphs
to enhance contextual understanding (Edge et al., 2024). These
developments in retrieval-based systems are rapidly evolving and
promise more sophisticated and accurate interactions with domain-
specific knowledge bases.

Furthermore, several groups have explored ways to adapt general-
purpose LLMs to the geosciences by further training them on large
domains of geoscientific data. Notable work includes K2 (Deng et al.,
2024) and GEOGALACTICA (Lin et al., 2023), which introduced new
benchmarks and datasets for geoscience-specific tuning, as well as
OceanGPT (Bi et al., 2023), which targets oceanographic tasks, and
ClimateGPT (Thulke et al., 2024), which is fine-tuned on climate-
related data.

Tool integration is a central technical feature of LLM based agents
(Guo et al,, 2024). Instead of relying solely on an LLM’s internal
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weights, LLM agents leverage tool wrappers, dynamic function calls,
and API endpoints to execute domain-specific operations (Gim et al.,
2024). In the geosciences, this integration has enabled the creation of
specialized systems tailored to complex data and analysis needs. For
example, Chen et al. proposed “GeoAgent,” a specialized LLM-based
framework for geospatial data analysis that integrates a code
interpreter, static analysis, and RAG (Chen et al,, 2024). Another
common use of single-agent systems with tool integration is in the
application of search capabilities (Sun et al., 2023). For geosciences, an
illustrative example is LLM-Find (Ning et al., 2025), which focuses on
geospatial data extraction by providing LLMs with iterative debugging
capabilities to retrieve spatial datasets (e.g., OpenStreetMap,
weather APIs).

Although these projects have advanced LLM fine-tuning and the
use of RAG and tools for geoscience challenges, no multi-agent
frameworks have yet been developed that are tightly integrated with
underlying geoscience databases.

Emergence of the MAS

The transition from single-agent systems to multi-agent systems
(MAS) is driven by the inherent complexity and heterogeneity of
scientific workflows (Guo et al, 2024), which is particularly
characteristic of the field of geosciences. While single-agent
approaches can handle specific, well-defined tasks, they often struggle
with interdisciplinary queries that require specialized knowledge
across diverse data formats (e.g., NetCDE, CSV, seismic data) and
domains. A monolithic agent architecture can become brittle when
attempting to incorporate the breadth of tools and domain knowledge
necessary (Guo et al., 2024).

Attempting to manage the vast array of required tools within a
single agent often leads to “tool overload,” which increases the
computational cost of token usage and decreases accuracy, as the
model struggles with complex decision-making, potentially increasing
hallucinations or tool misuse (Shen, 2024). MAS architectures justify
their added complexity by offering specialization, modularity, and
robustness. By deploying specialized agents, each equipped with
domain-specific tools and knowledge bases, MAS can mimic the
collaborative dynamics of human research teams (Qian et al., 2023),
allowing for a divide-and-conquer approach to complex data
challenges, which is essential for managing the diversity found in
repositories like PANGAEA.

In such systems, each agent operates under predefined sets of
instructions, and is equipped with domain-specific reasoning
modules, customized knowledge databases, and direct interfaces to
external tools and computational sandboxes (Guo et al., 2024).
Advanced coordination strategies, frequently organized in hierarchical
or graph-based flows, enable these agents to exchange intermediate
results, negotiate optimal workflows, and iteratively refine partial
outputs through chain-of-thought reasoning and reflection (Agashe
et al., 2024; Pan et al,, 2024). While MAS have shown impressive
results in other domains, including collaborative code-generation in
software engineering (Qian et al., 2023; Hong et al., 2023), coordinated
planning in multi-robot systems (Mandi et al., 2023), modeling of
complex societal interactions (Park et al., 2023), and strategic
reasoning in game simulation (Wang et al., 2023), no integrated MAS
solution has yet been applied to geoscientific data archives.

frontiersin.org


https://doi.org/10.3389/frai.2025.1674927
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Pantiukhin et al.

Nevertheless, initial MAS prototypes for geoscience-related tasks
have begun to emerge. For example, ShapefileGPT (Lin et al., 2024)
demonstrated a two-agent LLM framework for automating GIS
shapefile processing, where a planner agent delegates spatial subtasks
to a worker agent via a specialized function library. Another project,
GeoLLM-Squad (Lee et al., 2025), introduced a multi-agent paradigm
to remote sensing workflows by separating an orchestration agent
from multiple domain-specific sub-agents, using open-source
frameworks such as AutoGen to integrate modular API toolchains,
interactive map Uls, intent-based tool selection, and workflow storage.

In practice, MAS architectures grounded in LLMs can span a wide
spectrum of organizational structures, ranging from a single
coordinating supervisor to fully autonomous “swarm” networks that
collaborate without centralized control (Guo et al., 2024). Centralized
systems rely on a top-level planner or “supervisor” agent (Qian et al.,
2023) that breaks down tasks, delegates them to specialized sub-agents
(e.g., retrieval, analytical, data transformation, validation), and then
synthesizes final outputs. This approach, exemplified by hierarchical
frameworks such as HuggingGPT (Shen et al., 2024), ensures a clear
command-and-control mechanism, simplifies quality checks, and
promotes consistent workflow management.

By contrast, decentralized models draw inspiration from social
systems and swarm intelligence, letting each LLM agent operate more
independently with local memory and goals, leading to emergent
behaviors and robust parallelization (Huang et al., 2024). Hybrid
approaches combine both strategies—for instance, dynamic
orchestration via a transient “lead” agent while other agents freely
negotiate tasks or refine each other’s outputs, mirroring human team
dynamics (Huang et al., 2024).

One of the advantages of MAS is the ability for multiple agents to
simultaneously use specialized tools, each solving different
components of a complex problem. Examples might include invoking
geospatial libraries such as Geospatial Data Abstraction Library
(GDAL) for coordinate transformation, using NetCDF (Rew and
Davis, 1990) or xarray (Hoyer and Hamman, 2017) to parse and
aggregate spatiotemporal data cubes, and running specialized Python
or R scripts for statistical analysis. Agents can perform iterative
refinement steps (Madaan et al., 2024), re-checking results against
data integrity constraints, filtering outliers using robust statistical
thresholds, or querying uncertainty quantification modules that assess
the credibility of results. This tool ecosystem allows MAS to move
beyond static text generation, facilitating a closed-loop interaction
model where data retrieval, pre-processing, quality control, analysis,
and visualization occur under the guidance of autonomous, domain-
aware agents. Reflection and self-critique loops can be implemented
by designating a “validator” agent that routinely inspects outputs for
internal consistency, methodological rigor, and adherence to
community standards. Such approaches use iterative improvement
pipelines that break down instructions into smaller steps, critique
initial results, and apply further improvements (Ferraz et al., 2024).

The agent ecosystem is heterogeneous and includes various
specialized agents-such as retrieval agents, analytical agents, data
conversion agents, and reporting agents-that work together to
accomplish various data management tasks (Guo et al., 2024).
Retrieval agents incorporate retrieval-augmented generation (RAG)
techniques, coupling embeddings from domain-specialized language
models with vector databases that index geoscientific literature,
vocabularies, and reference datasets (Lewis et al., 2020). Analytical
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agents may run topological anomaly detection on bathymetric grids,
apply wavelet transforms to paleoclimate proxies, or compute
ensemble mean biases in Coupled Model Intercomparison Project
(CMIP)—class 2016).
Transformation agents handle unit conversions, project datasets onto

climate model runs (Eyring et al,
common spatial grids, or standardize attribute names. Reporting
agents synthesize results into structured outputs, annotate data
lineage, and cite relevant publications. RAG-based knowledge
infrastructures leverage curated metadata schema and persistent
semantic stores that retain cross-session memory, allowing MAS to
gradually refine a hypothesis or revisit previously unexplained
anomalies. Iterative reasoning loops that incorporate domain feedback
can detect subtle teleconnections in ocean-atmosphere systems,
illuminate previously unrecognized correlations in coastal

sedimentary records, or integrate high-resolution satellite
measurements with legacy chemical tracers to map the evolution of
marine biogeochemical cycles.

In the context of applying MAS to geoscience tasks, MAS can
mimic the dynamics of interdisciplinary research teams, where
specialists contribute their expertise, as has been done in software
engineering (Qian et al., 2023). This synergy is essential for tackling
challenges in Earth sciences, from predicting the response of ocean
circulation to future warming scenarios to detecting subtle geologic
signals of hazard precursors in tectonically active regions. The
integration of specialized agents, robust tool usage layers, RAG-based
semantic indexing, and adaptive architectural principles would establish

MAS as advanced computational platforms for geoscientific discoveries.

PANGAEA GPT: MAS architecture for
geoscientific data discovery

To illustrate how the guiding principles described earlier can
be put into practice, we propose a multi-agent system (MAS)
architecture specifically designed for geoscience data management—
focusing on large and diverse repositories such as PANGAEA (Felden
etal., 2023). Based on our experience developing PANGAEA GPT—an
open-source, LLM-driven multi-agent framework built upon the
LangChain and LangGraph libraries (publicly available at github.com/
CliDyn/pangaeaGPT, with a demo video at 10.5281/zenodo.15399454
and testable at huggingface.co/spaces/CliDyn/pangaeagpt) we illustrate
how a centralized orchestration approach, where a supervisor agent
directs domain-specific sub-agents (e.g., in oceanography, biology and
geology), can be effectively implemented in geoscience contexts. This
modular architecture allows the supervisor to spawn sub-agents on
demand, adapting the system’s capabilities to the unique demands of
each query. By referencing PANGAEA as a prime example of a
heterogeneous database with unconventional formats and challenging
metadata, we demonstrate how such a system can handle complex data
workflows and provide robust reporting (Figure 1).

We chose a centralized orchestration approach, where the
supervisor agent serves as the command-and-control node for the
entire pipeline, handling sub-task delegation, resource allocation, and
consolidation of final results among specialized agents (Figure 1). The
system supports the dynamic creation of specialized agents based on
the tasks assigned to it. Upon receiving user requests, the supervisor
agent constructs agent subgraphs tailored to specific subdomains—
oceanography, geology, climatology, ecology, or others—depending
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FIGURE 1

Conceptual framework multi-agent system (MAS) for geo-scientific data discovery.
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on the nature of the query. Each agent operates with localized memory
buffers for context retention, set of tools and retrieval-augmented
generation (RAG) capabilities that draw upon curated knowledge
sources. Such a system is designed to efficiently search through diverse
data collections, perform contextual analyses, produce high-quality
visualizations, and ultimately generate comprehensive documentation.

In addition to assigning tasks, the supervisor agent handles
memory and manages information flow across the system (Figure 1).
Based on our experience running PANGAEA GPT, a multi-tier
memory approach (storing short-term data in active memory and
long-term data in a searchable database) was particularly effective for
long-running sessions (Liu N. et al., 2024; Liu A. et al., 2024). Each
agent runs locally and, after finishing its cycle, sends outputs back to
the supervisor. To avoid overloading, the supervisor monitors resource

Frontiers in Artificial Intelligence

usage, summarizes logs into short blocks, and then moves them into
the long-term RAG database. Short-term context remains in the
model’s direct context window, while extended data or partial results
are stored in a vector database, retrievable on demand. This setup—
short-term context paired with a stable long-term store-supports
multi-step exploration without sacrificing critical details, and lowers
computational costs during elaborate sessions.

Ensuring reliability and scientific accuracy
In scientific contexts, the propensity of LLMs to hallucinate or

propagate misinformation poses a significant risk (Kalai et al.,
2025; Huang et al., 2025). PANGAEA GPT employs a multi-layered
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strategy to ensure reliability and compensate for the lack of deep,
inherent geoscience knowledge in foundational LLMs. The core
principle is Tool-Augmented Generation. The system is designed
such that agents act primarily as orchestrators of deterministic
than
novel interpretations.

tools rather generators of scientific data or

A key foundation of this architecture is the mandatory use of
external tools to address domain-specific analysis needs (Figure 1).
Upon deployment, each agent is provided with a dedicated
“sandbox” containing domain-specific software, pre-installed
packages, and necessary ancillary data (e.g., bathymetry, seafloor
topography maps, multispectral satellite imagery, ocean color data,
paleoclimate proxy records, atmospheric reanalysis fields).
Analytical agents must use established libraries (e.g., xarray,
GDAL, pandas) within these sandboxes to parse and analyze the
actual data retrieved from repositories. The code executed by the
agents is fully transparent and re-runnable by the user, ensuring
verifiable results. This ensures that results are derived from the
datasets and established scientific methods, rather than fabricated
by the LLM.

Furthermore, the extensive use of Retrieval-Augmented
Generation (RAG) grounds the agents’ reasoning in factual
information (Lewis et al., 2020). Agents do not rely solely on the
internalized knowledge of the LLM. The agent’s operational
environment includes a RAG-accessible repository of domain-
specific literature, sample visualizations, statistical analyses, and
validated workflows. These features enhance the agent’s accuracy
in answering user queries, reduce hallucinations by providing
reliable domain references and best practice processing pipelines,
and shorten reflection cycles by enabling rapid retrieval of
reliable examples.

To further enhance accuracy, we implement specialized
Reflection and Validation Modules (Shinn et al., 2023). In our
PANGAEA GPT implementation, agents critically evaluate their
outputs by invoking these modules. This includes statistical
validation and the use of Visual Question Answering (VQA)
modules to inspect visualizations. For instance, they can confirm
whether unit scales match geoscientific norms or use VQA to
ensure that depth axes are correctly reversed in oceanographic
plots. By flagging suspicious metadata entries or unusual variable
usage, these agents act as quality-control gates at each major step
(data retrieval, analysis, and visualization), guiding the agent
through iterative refinements until the final outputs meet the
required quality standards.

Limitations and challenges

While the MAS approach offers significant potential, it is crucial
to acknowledge the current limitations and challenges associated with
deploying these systems in geoscientific research.

The PANGAEA GPT framework, as presented in this
Perspective, is a proof-of-concept. It currently lacks rigorous,
quantitative empirical validation comparing its performance (e.g.,
success rates, efficiency) against traditional data discovery
methods. A major challenge we encountered while deploying
PANGAEA GPT, and a significant hurdle for the field generally, is
verifying the correctness and relevance of multi-agent LLM
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outputs in the face of highly varied geoscientific data. Unlike
software engineering, which typically uses standardized test suites
or automated Quality Assurance (QA) workflows (Jimenez et al.,
2023), Earth science has only a few domain-specific benchmarks
that accommodate specialized terminologies and heterogeneous
data (Bi et al., 2023; Zhang et al., 2024). This gap necessitates a
human-in-the-loop evaluation framework (LangChain, Inc, 2025),
where domain experts provide the crucial validation that
automated benchmarks cannot yet offer. Ultimately, the goal of
these systems is not to achieve full automation, but rather to serve
as powerful assistants that accelerate discovery by augmenting
expert judgment.

Another significant issue is the lack of any “imaging
benchmark” that covers the range of visualization practices. This is
further complicated by the fact that different programming
languages are commonly used; ecologists or biologists often rely on
R for plots (Gao et al., 2025), while oceanographers tend to prefer
Python or Matlab. This diversity translates into an equally broad
spectrum of plot types, from distribution maps and cross-sectional
charts to correlation matrices, each governed by domain-specific
conventions that generic validators rarely catch. The diversity of
data types and visualization practices across geosciences
complicates the development of universal validation metrics. A
thorough evaluation constitutes a substantial research effort and is
the focus of a planned future study. While a universal benchmark
for LLM validation remains an important goal, our work indicates
that domain-focused modules, like those implemented in
PANGAEA GPT, detailed
imaging tasks.

are essential, particularly for

The implementation of MAS also introduces significant
LLM
concurrently is computationally expensive, particularly when using

computational overhead. Running multiple agents
high-parameter commercial models. This may present accessibility
barriers for researchers or institutions with limited resources.
While this cost must be weighed against the significant benefit of
reduced “time-to-science” (accelerating data discovery and initial
analysis), the trade-off remains a key consideration. Architectural
optimizations, such as the multi-tier memory approach used in
PANGAEA GPT (Liu N. et al., 2024; Liu A. et al., 2024), help
manage token usage, but future work must explore the use of
smaller, specialized LLMs to reduce the operational footprint.
Furthermore, the rapid advancement of high-capability open-
source models (Bai et al., 2023; Liu N. et al., 2024; Liu A. et al.,
2024) offers a cost-effective alternative, allowing these systems to
be deployed on local or institutional hardware, significantly
reducing the operational footprint.

Discussion and outlook

Looking forward, the integration of MAS systems into
geoscientific research opens up entirely new opportunities for
revitalizing previously underutilized historical data as well as more
recently generated geoscientific data sources. Autonomous agent
networks could systematically explore large repositories, identifying
and summarizing historical datasets that have remained underutilized.
By combining database-search agents with domain-specific expert
analytic agents, this approach can help re-explore entire historical
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databases and interpret understudied collections. Ultimately, such a
system may facilitate renewed engagement with valuable historical
data and potentially give rise to new discoveries.

Another potentially promising direction is the use of MAS
systems to assist in expedition planning. In the domain of shipping
and commercial sectors, LLMs are already being proposed for
planning to optimize routes and enhance safety (Pei et al., 2024). A
potential MAS structure could be envisioned in which one agent first
requests historical expedition data (taken directly from PANGAEA or
other repositories), another agent checks current satellite products and
climate forecasts, and yet another agent integrates predicted weather
conditions and ocean currents. Together, these specialized agents
would generate individualized expedition plans that optimize time
spent at stations, for example, by coordinating dive schedules and
sampling activities based on dynamic environmental factors. Such
adaptability can streamline logistics and mitigate risks, particularly in
remote or high-latitude regions prone to rapid weather changes,
ultimately improving both the cost-effectiveness and safety of scientific
expeditions. Additionally, the increasing use of Autonomous
Underwater Vehicles (AUVs) in modern observatories (Wynn et al.,
2014) makes MAS particularly attractive for operating such fleets
during expeditions. These systems could control the AUVs, manage
real-time data collection and transmission to repositories like
PANGAEA, and use the analyzed data to dynamically re-optimize the
AUVS routes, thereby enhancing the overall efficiency and adaptability
of scientific missions.

A more radical idea would be to create a self-sufficient structure
of autonomous, wandering chains of agents. One of the most
far-reaching goals for MAS in geosciences is the formation of
“wandering;” self-organizing systems of agents that continuously
explore repositories, generating and testing new hypotheses without
direct human guidance. These autonomous agent networks could
continuously explore the scientific data landscape within repositories,
suggesting new directions for research. Relying on unsupervised
anomaly detection routines, they would be able, for example, to detect
unexpected signals in real-time global seismic data or satellite ocean
color imagery, thereby revealing potential new phenomena or hazard
precursors. At the same time, a supervisor agent can spawn
subordinate agents to propose mechanistic explanations for each
anomaly, linking them to known processes. If the system would find
plausible but unconfirmed signals, such as a region of unusual
phytoplankton bloom, it could trigger additional analyses or domain-
expert agents to investigate further, eventually communicating the
summarized results to human scientists for more in-depth validation.
Over time, this feedback loop could significantly shorten the time
between discovery and research action, accelerating environmental
insights that might otherwise remain buried in massive data stores.
Such a self-governing swarm of agents could directly serve both
experts and the general public, democratizing access to research data
and broadening the scope of communication.
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