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This Perspective explores the transformative potential of multi-agent systems 
(MAS) powered by Large Language Models (LLMs) in the geosciences. Users of 
geoscientific data repositories face challenges due to the complexity and diversity 
of data formats, inconsistent metadata practices, and a considerable number of 
unprocessed datasets. MAS possesses transformative potential for improving scientists’ 
interaction with geoscientific data by enabling intelligent data processing, natural 
language interfaces, and collaborative problem-solving capabilities. We illustrate 
this approach with “PANGAEA GPT,” a specialized MAS pipeline integrated with the 
diverse PANGAEA database for Earth & Environmental Science, demonstrating how 
MAS-driven workflows can effectively manage complex datasets and accelerate 
scientific discovery. We discuss how MAS can address current data challenges in 
geosciences, highlight advancements in other scientific fields, and propose future 
directions for integrating MAS into geoscientific data processing pipelines. In this 
Perspective, we show how MAS can fundamentally improve data accessibility, 
promote cross-disciplinary collaboration, and accelerate geoscientific discoveries.
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Introduction

Geoscience data archives, which serve as curated digital infrastructures for the systematic 
storage and distribution of Earth and environmental datasets, have grown to enormous scales, 
with large repositories such as PANGAEA, NASA’s Earth Observing System Data and 
Information System (EOSDIS), NOAA’s National Centers for Environmental Information 
(NCEI), and the Copernicus Climate Data Store (C3S) collectively hosting millions of 
heterogeneous datasets and several petabytes of data (Kobler et al., 1995; Felden et al., 2023). 
For example, PANGAEA alone contains more than 400,000 datasets derived from a variety of 
observational platforms ranging from shipboard expeditions and sediment cores to global 
climate model outputs (Felden et al., 2023). Despite this scale, data citation remains low, with 
over 93% of datasets being uncited (Robinson-García et al., 2016). At the core of this issue with 
data reuse are inadequate metadata standards, non-uniform data formats, and incomplete 
documentation (Gil et  al., 2016). As a result, countless datasets remain underutilized or 
completely absent from scientific publications, resulting in missed opportunities for 
scientific discovery.

These challenges of managing and utilizing complex, heterogeneous datasets extend far 
beyond geosciences, impacting a wide array of scientific disciplines, where similar issues with 
data formats and metadata persist (Zhang and Zhao, 2015; Schnase et al., 2016; Pal et al., 2020). 
Large Language Models (LLMs), with their ability to parse unstructured data and reason 
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across domains, provide a robust foundation for addressing these 
challenges (Bauer et al., 2024). LLMs have become powerful tools for 
information retrieval and analysis in various scientific fields (Guo 
et  al., 2024). Recent Generative Pre-trained Transformer (GPT) 
models use advanced techniques like reinforcement learning and 
chain-of-thought reasoning (Wei et al., 2022). They excel at complex 
scientific problems, even surpassing PhD-level experts on tough 
benchmarks (Rein et al., 2023; Guo et al., 2025). These models can 
now perform multi-step reasoning, breaking down complex problems 
into manageable subtasks and synthesizing information from vast 
knowledge bases. Moreover, they can operate with tools and execute 
commands, expanding their problem-solving capabilities (Paranjape 
et al., 2023). These advanced capabilities suggest that LLM-driven 
approaches hold tremendous promise for geoscience 
data management.

A further evolution of LLM is expected in an agent-based mode, 
where models function as autonomous agents capable of performing 
tasks without constant human guidance, relying on tools, databases, 
internal memory and other resources (Guo et  al., 2024). In this 
context, an agent is an LLM-based system that can perceive the 
environment, reason about the information it receives, and take 
actions to achieve specific goals. Such agents are often used 
collaboratively in a divide-and-conquer approach, deploying multiple 
specialized agents that can solve complex analytical problems as a 
group (Qian et al., 2023). This is particularly relevant in geosciences, 
where the diversity of data formats and the need for domain-specific 
expertise are significant challenges. By working together, these agents 
can efficiently handle heterogeneous datasets, bridge gaps between 
different branches of geoscience, and provide researchers with more 
holistic insights.

Single-agent and chat-completion approaches have already shown 
practical benefits in geosciences. Retrieval-augmented techniques 
(RAG; Lewis et  al., 2020) which enable language models to 
dynamically access and incorporate information from external 
knowledge bases, have particularly enhanced domain-specific 
accuracy in climate science. For example, RAG approaches with 
curated climate reports have improved domain-specific QA tasks 
derived from Intergovernmental Panel on Climate Change (IPCC) 
documents (Vaghefi et al., 2023). Similarly, efforts such as “ClimSight” 
now provide climate projection information to non-specialist users by 
integrating LLMs with climate report data and model runs (Koldunov 
and Jung, 2024; Kuznetsov et al., 2025). Recent advances in RAG 
techniques have moved beyond simple document retrieval, 
incorporating multi-level retrieval mechanisms and knowledge graphs 
to enhance contextual understanding (Edge et  al., 2024). These 
developments in retrieval-based systems are rapidly evolving and 
promise more sophisticated and accurate interactions with domain-
specific knowledge bases.

Furthermore, several groups have explored ways to adapt general-
purpose LLMs to the geosciences by further training them on large 
domains of geoscientific data. Notable work includes K2 (Deng et al., 
2024) and GEOGALACTICA (Lin et al., 2023), which introduced new 
benchmarks and datasets for geoscience-specific tuning, as well as 
OceanGPT (Bi et al., 2023), which targets oceanographic tasks, and 
ClimateGPT (Thulke et al., 2024), which is fine-tuned on climate-
related data.

Tool integration is a central technical feature of LLM based agents 
(Guo et  al., 2024). Instead of relying solely on an LLM’s internal 

weights, LLM agents leverage tool wrappers, dynamic function calls, 
and API endpoints to execute domain-specific operations (Gim et al., 
2024). In the geosciences, this integration has enabled the creation of 
specialized systems tailored to complex data and analysis needs. For 
example, Chen et al. proposed “GeoAgent,” a specialized LLM-based 
framework for geospatial data analysis that integrates a code 
interpreter, static analysis, and RAG (Chen et  al., 2024). Another 
common use of single-agent systems with tool integration is in the 
application of search capabilities (Sun et al., 2023). For geosciences, an 
illustrative example is LLM-Find (Ning et al., 2025), which focuses on 
geospatial data extraction by providing LLMs with iterative debugging 
capabilities to retrieve spatial datasets (e.g., OpenStreetMap, 
weather APIs).

Although these projects have advanced LLM fine-tuning and the 
use of RAG and tools for geoscience challenges, no multi-agent 
frameworks have yet been developed that are tightly integrated with 
underlying geoscience databases.

Emergence of the MAS

The transition from single-agent systems to multi-agent systems 
(MAS) is driven by the inherent complexity and heterogeneity of 
scientific workflows (Guo et  al., 2024), which is particularly 
characteristic of the field of geosciences. While single-agent 
approaches can handle specific, well-defined tasks, they often struggle 
with interdisciplinary queries that require specialized knowledge 
across diverse data formats (e.g., NetCDF, CSV, seismic data) and 
domains. A monolithic agent architecture can become brittle when 
attempting to incorporate the breadth of tools and domain knowledge 
necessary (Guo et al., 2024).

Attempting to manage the vast array of required tools within a 
single agent often leads to “tool overload,” which increases the 
computational cost of token usage and decreases accuracy, as the 
model struggles with complex decision-making, potentially increasing 
hallucinations or tool misuse (Shen, 2024). MAS architectures justify 
their added complexity by offering specialization, modularity, and 
robustness. By deploying specialized agents, each equipped with 
domain-specific tools and knowledge bases, MAS can mimic the 
collaborative dynamics of human research teams (Qian et al., 2023), 
allowing for a divide-and-conquer approach to complex data 
challenges, which is essential for managing the diversity found in 
repositories like PANGAEA.

In such systems, each agent operates under predefined sets of 
instructions, and is equipped with domain-specific reasoning 
modules, customized knowledge databases, and direct interfaces to 
external tools and computational sandboxes (Guo et  al., 2024). 
Advanced coordination strategies, frequently organized in hierarchical 
or graph-based flows, enable these agents to exchange intermediate 
results, negotiate optimal workflows, and iteratively refine partial 
outputs through chain-of-thought reasoning and reflection (Agashe 
et al., 2024; Pan et al., 2024). While MAS have shown impressive 
results in other domains, including collaborative code-generation in 
software engineering (Qian et al., 2023; Hong et al., 2023), coordinated 
planning in multi-robot systems (Mandi et al., 2023), modeling of 
complex societal interactions (Park et  al., 2023), and strategic 
reasoning in game simulation (Wang et al., 2023), no integrated MAS 
solution has yet been applied to geoscientific data archives.
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Nevertheless, initial MAS prototypes for geoscience-related tasks 
have begun to emerge. For example, ShapefileGPT (Lin et al., 2024) 
demonstrated a two-agent LLM framework for automating GIS 
shapefile processing, where a planner agent delegates spatial subtasks 
to a worker agent via a specialized function library. Another project, 
GeoLLM-Squad (Lee et al., 2025), introduced a multi-agent paradigm 
to remote sensing workflows by separating an orchestration agent 
from multiple domain-specific sub-agents, using open-source 
frameworks such as AutoGen to integrate modular API toolchains, 
interactive map UIs, intent-based tool selection, and workflow storage.

In practice, MAS architectures grounded in LLMs can span a wide 
spectrum of organizational structures, ranging from a single 
coordinating supervisor to fully autonomous “swarm” networks that 
collaborate without centralized control (Guo et al., 2024). Centralized 
systems rely on a top-level planner or “supervisor” agent (Qian et al., 
2023) that breaks down tasks, delegates them to specialized sub-agents 
(e.g., retrieval, analytical, data transformation, validation), and then 
synthesizes final outputs. This approach, exemplified by hierarchical 
frameworks such as HuggingGPT (Shen et al., 2024), ensures a clear 
command-and-control mechanism, simplifies quality checks, and 
promotes consistent workflow management.

By contrast, decentralized models draw inspiration from social 
systems and swarm intelligence, letting each LLM agent operate more 
independently with local memory and goals, leading to emergent 
behaviors and robust parallelization (Huang et  al., 2024). Hybrid 
approaches combine both strategies—for instance, dynamic 
orchestration via a transient “lead” agent while other agents freely 
negotiate tasks or refine each other’s outputs, mirroring human team 
dynamics (Huang et al., 2024).

One of the advantages of MAS is the ability for multiple agents to 
simultaneously use specialized tools, each solving different 
components of a complex problem. Examples might include invoking 
geospatial libraries such as Geospatial Data Abstraction Library 
(GDAL) for coordinate transformation, using NetCDF (Rew and 
Davis, 1990) or xarray (Hoyer and Hamman, 2017) to parse and 
aggregate spatiotemporal data cubes, and running specialized Python 
or R scripts for statistical analysis. Agents can perform iterative 
refinement steps (Madaan et al., 2024), re-checking results against 
data integrity constraints, filtering outliers using robust statistical 
thresholds, or querying uncertainty quantification modules that assess 
the credibility of results. This tool ecosystem allows MAS to move 
beyond static text generation, facilitating a closed-loop interaction 
model where data retrieval, pre-processing, quality control, analysis, 
and visualization occur under the guidance of autonomous, domain-
aware agents. Reflection and self-critique loops can be implemented 
by designating a “validator” agent that routinely inspects outputs for 
internal consistency, methodological rigor, and adherence to 
community standards. Such approaches use iterative improvement 
pipelines that break down instructions into smaller steps, critique 
initial results, and apply further improvements (Ferraz et al., 2024).

The agent ecosystem is heterogeneous and includes various 
specialized agents-such as retrieval agents, analytical agents, data 
conversion agents, and reporting agents-that work together to 
accomplish various data management tasks (Guo et  al., 2024). 
Retrieval agents incorporate retrieval-augmented generation (RAG) 
techniques, coupling embeddings from domain-specialized language 
models with vector databases that index geoscientific literature, 
vocabularies, and reference datasets (Lewis et al., 2020). Analytical 

agents may run topological anomaly detection on bathymetric grids, 
apply wavelet transforms to paleoclimate proxies, or compute 
ensemble mean biases in Coupled Model Intercomparison Project 
(CMIP)—class climate model runs (Eyring et  al., 2016). 
Transformation agents handle unit conversions, project datasets onto 
common spatial grids, or standardize attribute names. Reporting 
agents synthesize results into structured outputs, annotate data 
lineage, and cite relevant publications. RAG-based knowledge 
infrastructures leverage curated metadata schema and persistent 
semantic stores that retain cross-session memory, allowing MAS to 
gradually refine a hypothesis or revisit previously unexplained 
anomalies. Iterative reasoning loops that incorporate domain feedback 
can detect subtle teleconnections in ocean–atmosphere systems, 
illuminate previously unrecognized correlations in coastal 
sedimentary records, or integrate high-resolution satellite 
measurements with legacy chemical tracers to map the evolution of 
marine biogeochemical cycles.

In the context of applying MAS to geoscience tasks, MAS can 
mimic the dynamics of interdisciplinary research teams, where 
specialists contribute their expertise, as has been done in software 
engineering (Qian et al., 2023). This synergy is essential for tackling 
challenges in Earth sciences, from predicting the response of ocean 
circulation to future warming scenarios to detecting subtle geologic 
signals of hazard precursors in tectonically active regions. The 
integration of specialized agents, robust tool usage layers, RAG-based 
semantic indexing, and adaptive architectural principles would establish 
MAS as advanced computational platforms for geoscientific discoveries.

PANGAEA GPT: MAS architecture for 
geoscientific data discovery

To illustrate how the guiding principles described earlier can 
be  put into practice, we  propose a multi-agent system (MAS) 
architecture specifically designed for geoscience data management—
focusing on large and diverse repositories such as PANGAEA (Felden 
et al., 2023). Based on our experience developing PANGAEA GPT—an 
open-source, LLM-driven multi-agent framework built upon the 
LangChain and LangGraph libraries (publicly available at github.com/
CliDyn/pangaeaGPT, with a demo video at 10.5281/zenodo.15399454 
and testable at huggingface.co/spaces/CliDyn/pangaeagpt) we illustrate 
how a centralized orchestration approach, where a supervisor agent 
directs domain-specific sub-agents (e.g., in oceanography, biology and 
geology), can be effectively implemented in geoscience contexts. This 
modular architecture allows the supervisor to spawn sub-agents on 
demand, adapting the system’s capabilities to the unique demands of 
each query. By referencing PANGAEA as a prime example of a 
heterogeneous database with unconventional formats and challenging 
metadata, we demonstrate how such a system can handle complex data 
workflows and provide robust reporting (Figure 1).

We chose a centralized orchestration approach, where the 
supervisor agent serves as the command-and-control node for the 
entire pipeline, handling sub-task delegation, resource allocation, and 
consolidation of final results among specialized agents (Figure 1). The 
system supports the dynamic creation of specialized agents based on 
the tasks assigned to it. Upon receiving user requests, the supervisor 
agent constructs agent subgraphs tailored to specific subdomains—
oceanography, geology, climatology, ecology, or others—depending 
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on the nature of the query. Each agent operates with localized memory 
buffers for context retention, set of tools and retrieval-augmented 
generation (RAG) capabilities that draw upon curated knowledge 
sources. Such a system is designed to efficiently search through diverse 
data collections, perform contextual analyses, produce high-quality 
visualizations, and ultimately generate comprehensive documentation.

In addition to assigning tasks, the supervisor agent handles 
memory and manages information flow across the system (Figure 1). 
Based on our experience running PANGAEA GPT, a multi-tier 
memory approach (storing short-term data in active memory and 
long-term data in a searchable database) was particularly effective for 
long-running sessions (Liu N. et al., 2024; Liu A. et al., 2024). Each 
agent runs locally and, after finishing its cycle, sends outputs back to 
the supervisor. To avoid overloading, the supervisor monitors resource 

usage, summarizes logs into short blocks, and then moves them into 
the long-term RAG database. Short-term context remains in the 
model’s direct context window, while extended data or partial results 
are stored in a vector database, retrievable on demand. This setup—
short-term context paired with a stable long-term store-supports 
multi-step exploration without sacrificing critical details, and lowers 
computational costs during elaborate sessions.

Ensuring reliability and scientific accuracy

In scientific contexts, the propensity of LLMs to hallucinate or 
propagate misinformation poses a significant risk (Kalai et  al., 
2025; Huang et al., 2025). PANGAEA GPT employs a multi-layered 

FIGURE 1

Conceptual framework multi-agent system (MAS) for geo-scientific data discovery.
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strategy to ensure reliability and compensate for the lack of deep, 
inherent geoscience knowledge in foundational LLMs. The core 
principle is Tool-Augmented Generation. The system is designed 
such that agents act primarily as orchestrators of deterministic 
tools rather than generators of scientific data or 
novel interpretations.

A key foundation of this architecture is the mandatory use of 
external tools to address domain-specific analysis needs (Figure 1). 
Upon deployment, each agent is provided with a dedicated 
“sandbox” containing domain-specific software, pre-installed 
packages, and necessary ancillary data (e.g., bathymetry, seafloor 
topography maps, multispectral satellite imagery, ocean color data, 
paleoclimate proxy records, atmospheric reanalysis fields). 
Analytical agents must use established libraries (e.g., xarray, 
GDAL, pandas) within these sandboxes to parse and analyze the 
actual data retrieved from repositories. The code executed by the 
agents is fully transparent and re-runnable by the user, ensuring 
verifiable results. This ensures that results are derived from the 
datasets and established scientific methods, rather than fabricated 
by the LLM.

Furthermore, the extensive use of Retrieval-Augmented 
Generation (RAG) grounds the agents’ reasoning in factual 
information (Lewis et al., 2020). Agents do not rely solely on the 
internalized knowledge of the LLM. The agent’s operational 
environment includes a RAG-accessible repository of domain-
specific literature, sample visualizations, statistical analyses, and 
validated workflows. These features enhance the agent’s accuracy 
in answering user queries, reduce hallucinations by providing 
reliable domain references and best practice processing pipelines, 
and shorten reflection cycles by enabling rapid retrieval of 
reliable examples.

To further enhance accuracy, we  implement specialized 
Reflection and Validation Modules (Shinn et  al., 2023). In our 
PANGAEA GPT implementation, agents critically evaluate their 
outputs by invoking these modules. This includes statistical 
validation and the use of Visual Question Answering (VQA) 
modules to inspect visualizations. For instance, they can confirm 
whether unit scales match geoscientific norms or use VQA to 
ensure that depth axes are correctly reversed in oceanographic 
plots. By flagging suspicious metadata entries or unusual variable 
usage, these agents act as quality-control gates at each major step 
(data retrieval, analysis, and visualization), guiding the agent 
through iterative refinements until the final outputs meet the 
required quality standards.

Limitations and challenges

While the MAS approach offers significant potential, it is crucial 
to acknowledge the current limitations and challenges associated with 
deploying these systems in geoscientific research.

The PANGAEA GPT framework, as presented in this 
Perspective, is a proof-of-concept. It currently lacks rigorous, 
quantitative empirical validation comparing its performance (e.g., 
success rates, efficiency) against traditional data discovery 
methods. A major challenge we  encountered while deploying 
PANGAEA GPT, and a significant hurdle for the field generally, is 
verifying the correctness and relevance of multi-agent LLM 

outputs in the face of highly varied geoscientific data. Unlike 
software engineering, which typically uses standardized test suites 
or automated Quality Assurance (QA) workflows (Jimenez et al., 
2023), Earth science has only a few domain-specific benchmarks 
that accommodate specialized terminologies and heterogeneous 
data (Bi et al., 2023; Zhang et al., 2024). This gap necessitates a 
human-in-the-loop evaluation framework (LangChain, Inc, 2025), 
where domain experts provide the crucial validation that 
automated benchmarks cannot yet offer. Ultimately, the goal of 
these systems is not to achieve full automation, but rather to serve 
as powerful assistants that accelerate discovery by augmenting 
expert judgment.

Another significant issue is the lack of any “imaging 
benchmark” that covers the range of visualization practices. This is 
further complicated by the fact that different programming 
languages are commonly used; ecologists or biologists often rely on 
R for plots (Gao et al., 2025), while oceanographers tend to prefer 
Python or Matlab. This diversity translates into an equally broad 
spectrum of plot types, from distribution maps and cross-sectional 
charts to correlation matrices, each governed by domain-specific 
conventions that generic validators rarely catch. The diversity of 
data types and visualization practices across geosciences 
complicates the development of universal validation metrics. A 
thorough evaluation constitutes a substantial research effort and is 
the focus of a planned future study. While a universal benchmark 
for LLM validation remains an important goal, our work indicates 
that domain-focused modules, like those implemented in 
PANGAEA GPT, are essential, particularly for detailed 
imaging tasks.

The implementation of MAS also introduces significant 
computational overhead. Running multiple LLM agents 
concurrently is computationally expensive, particularly when using 
high-parameter commercial models. This may present accessibility 
barriers for researchers or institutions with limited resources. 
While this cost must be weighed against the significant benefit of 
reduced “time-to-science” (accelerating data discovery and initial 
analysis), the trade-off remains a key consideration. Architectural 
optimizations, such as the multi-tier memory approach used in 
PANGAEA GPT (Liu N. et  al., 2024; Liu A. et  al., 2024), help 
manage token usage, but future work must explore the use of 
smaller, specialized LLMs to reduce the operational footprint. 
Furthermore, the rapid advancement of high-capability open-
source models (Bai et al., 2023; Liu N. et al., 2024; Liu A. et al., 
2024) offers a cost-effective alternative, allowing these systems to 
be  deployed on local or institutional hardware, significantly 
reducing the operational footprint.

Discussion and outlook

Looking forward, the integration of MAS systems into 
geoscientific research opens up entirely new opportunities for 
revitalizing previously underutilized historical data as well as more 
recently generated geoscientific data sources. Autonomous agent 
networks could systematically explore large repositories, identifying 
and summarizing historical datasets that have remained underutilized. 
By combining database-search agents with domain-specific expert 
analytic agents, this approach can help re-explore entire historical 
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databases and interpret understudied collections. Ultimately, such a 
system may facilitate renewed engagement with valuable historical 
data and potentially give rise to new discoveries.

Another potentially promising direction is the use of MAS 
systems to assist in expedition planning. In the domain of shipping 
and commercial sectors, LLMs are already being proposed for 
planning to optimize routes and enhance safety (Pei et al., 2024). A 
potential MAS structure could be envisioned in which one agent first 
requests historical expedition data (taken directly from PANGAEA or 
other repositories), another agent checks current satellite products and 
climate forecasts, and yet another agent integrates predicted weather 
conditions and ocean currents. Together, these specialized agents 
would generate individualized expedition plans that optimize time 
spent at stations, for example, by coordinating dive schedules and 
sampling activities based on dynamic environmental factors. Such 
adaptability can streamline logistics and mitigate risks, particularly in 
remote or high-latitude regions prone to rapid weather changes, 
ultimately improving both the cost-effectiveness and safety of scientific 
expeditions. Additionally, the increasing use of Autonomous 
Underwater Vehicles (AUVs) in modern observatories (Wynn et al., 
2014) makes MAS particularly attractive for operating such fleets 
during expeditions. These systems could control the AUVs, manage 
real-time data collection and transmission to repositories like 
PANGAEA, and use the analyzed data to dynamically re-optimize the 
AUVs’ routes, thereby enhancing the overall efficiency and adaptability 
of scientific missions.

A more radical idea would be to create a self-sufficient structure 
of autonomous, wandering chains of agents. One of the most 
far-reaching goals for MAS in geosciences is the formation of 
“wandering,” self-organizing systems of agents that continuously 
explore repositories, generating and testing new hypotheses without 
direct human guidance. These autonomous agent networks could 
continuously explore the scientific data landscape within repositories, 
suggesting new directions for research. Relying on unsupervised 
anomaly detection routines, they would be able, for example, to detect 
unexpected signals in real-time global seismic data or satellite ocean 
color imagery, thereby revealing potential new phenomena or hazard 
precursors. At the same time, a supervisor agent can spawn 
subordinate agents to propose mechanistic explanations for each 
anomaly, linking them to known processes. If the system would find 
plausible but unconfirmed signals, such as a region of unusual 
phytoplankton bloom, it could trigger additional analyses or domain-
expert agents to investigate further, eventually communicating the 
summarized results to human scientists for more in-depth validation. 
Over time, this feedback loop could significantly shorten the time 
between discovery and research action, accelerating environmental 
insights that might otherwise remain buried in massive data stores. 
Such a self-governing swarm of agents could directly serve both 
experts and the general public, democratizing access to research data 
and broadening the scope of communication.
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