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Data-driven pit stop decision
support for Formula 1 using deep
learning models
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India

In Formula 1, which is among the most competitive motorsports in the world, the
timing of a pit stop can make the difference between winning and losing a race.
Conventional methods based on human judgment can be erratic, especially in
rapidly changing race conditions. This work proposes a datadriven framework
based on deep learning models to predict optimal pit stop timings using raw
telemetry data extracted from FastF1 API. To improve the robustness of the
models, advanced preprocessing techniques such as normalization, imputation,
and class balancing with Synthetic Minority Over-sampling Technique (SMOTE)
were implemented. Five different deep learning architectures, including Bi-LSTM,
TCN-GRU, GRU, InceptionTime, and CNN-BiLSTM, were trained and evaluated
employing precision, recall, and F1-score as metrics. Of these, the Bi-LSTM
model achieved the overall best performance which can be explained by its
capability to model long-range dependencies in both forward and backward
temporal directions. The Bi-LSTM achieved a precision of 0.77, recall of 0.86,
and an F1-score of 0.81 on the test set, demonstrating strong predictive accuracy
under real-race conditions. Additionally, a historical race visualization interface
was developed to visualize the model’s predictions.
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1 Introduction

Formula 1 is the pinnacle of motorsports. However, contrary to general assumption, it
involves much more than just being the fastest on the track. Formulating a data-driven race
strategy is quintessential. Each year, all the ten teams pour millions of dollars in the quest to
secure the Drivers’ and Constructors’ championships. Optimizing the timing of a pit stop,
which is a precisely timed intervention that predominantly includes the change of the tire
compound to a different one according to the race conditions, can be a game changer.

The strategists across the ten teams work round the year in order to optimize the
race strategies, specifically to reduce lap times which sometimes boil down to even one-
thousandth of a second. Varying track conditions and unpredictable weather conditions
make the task even more difficult. Hence, relying on past patterns alone would not suffice.

Leveraging artificial intelligence can reveal underlying patterns that often go unnoticed
by human strategists. This work presents a data-driven framework for predicting optimal
pit-stop windows in Formula 1. Historical race data from 2020–2024 were extracted using
the FastF1 API, and modeled with deep-learning architectures—Bi-LSTM, TCN-GRU,
GRU, InceptionTime and CNN-BiLSTM. Comprehensive pre-processing (normalization,
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imputation, and class balancing) is applied to maximize model
performance. The models are then compared across multiple
metrics to highlight their respective strengths and weaknesses, and
visual comparisons illustrate the competitive advantage offered by
the AI-based insights.

A Formula 1 grid normally comprises 20 cars—two entries
from each of the ten teams. Points are awarded to the top-ten
finishers, from 25 points for the winner, 18 for second, down to
1 point for tenth. A poorly timed pit stop can drop a driver several
places when cars are separated by razor-thin margins; conversely,
a well-timed pit stop can yield critical track-position gains. Such
small improvements have two effects: in the short term, they
can secure a podium finish; in the long term, they accumulate
extra points that lift a team up the Constructors’ Championship
leaderboard. At season’s end, prize money is distributed according
to those standings—the higher the position, the larger the payout.
Notably, moving from ninth to eighth in the table is worth
roughly USD 10 million. By providing accurate, real-time pit-
stop predictions, the proposed framework converts raw telemetry
data into actionable strategy decisions and enhances competitive
performance across teams.

2 Related works

Heilmeier et al. (2020) proposed a Virtual Strategy Engineer
(VSE) that uses a combination of a Feed Forward Neural Network
(FFNN) and a Long Short Term Memory (LSTM) in order to
make automated race strategy decisions. The VSE focused on
optimizing pit stop timing and selecting the correct tire compound.
The strength of the VSE lay in adapting to multiple adverse race
conditions such as yellow and red flags. When simulated with the
data of the 2019 Chinese Grand Prix, the VSE achieved an average
finishing position of 9.51 across 1,000 simulations. The limitations
of the VSE include the simplified assumptions in the Mixed-Integer
Quadratic Programming (MIQP) model.

Franssen (2022) conducted a comparative study to analyze the
performance of different neural networks in predicting Formula
1 racing outcomes for the 2021 season. After preprocessing, both
networks were trained using categorical cross entropy loss and
the Adam optimizer. The Deep Neural Network (DNN) and
Radial Basis Function Neural Network (RBFNN) significantly
outperformed other models with the DNN achieving a slightly
better F1 score of 58% over the 55% of the RBFNN. The DNN
also exhibited better generalization than the RBFNN. Outside
motorsport, transformer architectures have achieved strong results
for financial time-series price/direction forecasting (Gezici and
Sefer, 2024).

Piccinotti et al. (2021) proposed the application of online
planning algorithms for race strategy optimization in Formula
1. Due to the task being a sequential decision making problem,
the authors proposed Q-learning Open-Loop Upper Confidence
Tree (QL OL-UCT), an agent which combines Monte Carlo
sampling with Temporal Difference (TD) in order to tackle the
high variance. The hyperparameters were tuned using Bayesian
optimization. It was tested using historical race data from the
years 2015–2018 and the results proved that it outperformed
all existing works. The authors acknowledged that since the

reward function focused on minimizing lap time, it sometimes
led to impossible overtakes. The authors also concluded that
open-loop online planning has a huge scope for race strategy
optimization in motorsports. Complementary to RL approaches,
hybrid Transformer–CNN designs report competitive direction-
prediction accuracy on noisy financial sequences, underscoring the
value of attention for sequential signals (Tuncer et al., 2022).

Sicoie (2022) developed a machine learning framework in order
to predict the Formula 1 race winners and the final championship
standings by leveraging ensemble regressors and support vector
methods. Using historical data from the years 2014–2020, three
models namely, Random Forest Regressor (RFR), Gradient
Boosting Regressor (GBR), and Support Vector Regressor (SVR)
were trained. Preprocessing included feature engineering by using
domain knowledge and the model tuning was performed through
RandomizedSearchCV. Race level predictions demonstrated low
accuracy with the SVR achieving a R-squared score of 40.4%.
However, the cumulative season standings predictions were more
promising as the GBR achieved the highest Spearman rank
correlation at 90.3%, followed by RFR at 90.2% and SVR at 88.3%.
The author mentions that on analysis of feature importance, heavy
reliance on driver and the constructor was identified. This was
validated as it favored Lewis Hamilton (driver) and Mercedes
(constructor) due to historical dominance.

Rondelli (2022) analyzed the use of deep learning models
in order to predict optimal tire strategies in Formula 1 races.
Telemetry data obtained from the FastF1 API was utilized for
the same. The study compared three neural architectures: Long
Short Term Memory (LSTM), Gated Recurrent Unit (GRU), and
a standard Multi Layer Perceptron (MLP). A blind classifier which
predicts the class labels solely through prior probabilities achieved
an accuracy of 24.5%. The GRU proved to be the most effective
model as it attained an accuracy of 51.4% with a loss 11.8% over
LSTM which achieved an accuracy of 23.8% and loss of 16%.

Thomas et al. (2025) proposed an explainable reinforcement
learning framework by collaborating with the Mercedes-AMG
PETRONAS Formula 1 team, which has won nine Constructors’
Championships and Imperial College, London. A neural policy
was developed using Proximal Policy Optimization (PPO) in
order to maximize the rewards based on race outcomes such as
finishing position and time. The trained reinforcement learning
agent showcased an impressive 8.6 second average improvement
in comparison to the fixed strategies and it also ranked among
the top five on the grid for about 76% of the races. Notably, the
strategy selection was open loop which meant that no decisions
were made after the race began. SHAP values were leveraged in
order to examine the feature importance.

Aguad and Thraves (2023) developed a framework for
optimizing pit stop decisions in Formula 1 by modeling it as a zero
sum feedback Stackelberg game. In this game-theoretic approach,
one of the teams (considered the leader) chose a particular strategy
and then the opponent team (considered the follower) strives to
optimize their response in real time. On analysis, this approach
yielded an average race time improvement of about 2.3 seconds.
The model also reduced the probability of being undercut by about
17.8%. The strength of the model lies in its ability to adapt to
certain adverse race conditions including extreme wet weather
and deployment of the safety car. A case study on the Italian
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Grand Prix that took place in Monza during 2021 revealed that
the proposed framework could have altered the pit stop strategy
of the McLaren F1 team and in turn would have disrupted the
podium order.

García Tejada (2023) studied the application of machine
learning algorithms in order to optimize the pit stop timing in
Formula 1. The study utilized race data from the years 2019–
2022 and applied three different models: Random Forest (RF),
Support Vector Machines (SVM), and Artificial Neural Networks
(ANN). The two binary target variables were: “has pit stop”, which
indicated the occurrence of a pit stop and “good pit stop” which
analyzed the effectiveness of the pit stop based on the change in
track position. SVM proved to be the most effective model by
outperforming the others in both variables by achieving an F1
score of 0.437 for “good pit stop” and 0.621 for “has pit stop”.
The author concluded that machine learning algorithms can be
used as decision-support tools rather than completely replacing
human expertise.

In Daly (2023), the author analyzed the impact of
meteorological conditions on Formula 1 races using machine
learning techniques. The author constituted a dataset containing
348 races from the years 2005–2022. Ergast Developer API was
used to extract race related features such as lap times and track
position. The environmental features such as temperature and
wind speed were obtained from Visual Crossing. Multiple standard
Python libraries were utilized to perform data pre-processing
and feature engineering. Variance Inflation Factor (VIF) analysis
helped in handling high multicollinearity among features. Five
regression models: Linear Regression, Ridge, Lasso, Random
Forest, and Random Forest along with Grid Search were leveraged
in order to predict multiple target variables. Upon analysis, the grid
search optimized Random Forest outperformed all other models by
attaining an R-squared score of 38.52% while the worst performing
model was Lasso with an R-squared score of just 2.4%. The author
concluded that the influence of weather on race outcomes proved
to be statistically significant.

In Cheteles (2024), the author analyzed the prediction of
Formula 1 race standings by contrasting feature importance
with feature selection techniques. A dataset was constructed
and contained features such as average braking points and grid
positions. Domain specific transformations were performed in
order to engineer additional features in order to improve model
performance. Random Forest Regressor (RFR) and Gradient
Boosting Regressor (GBR) models were deployed for predictions.
Results proved that the model based on feature importance
extracted the best performance by attaining a root mean square
error (RMSE) of just 0.005 using RFR and 0.006 using GBR.
In contrast, the feature selection based model exhibited higher
deviations: 0.93 for RFR and 2.23 for GBR.

Fatima and Johrendt (2023) proposed Deep-Racing which is
an Embedded Deep Neural Network (EDNN) model curated for
predicting the optimal pit stop timings and final race positions
in Formula 1. The study utilized data from about 169,000 laps
during the years 2015–2022. The model combines two different
EDNNs: one for predicting the position of the driver and another
one for finding the optimal pit stop window. The dataset which
was collected from multiple sources including Ergast API was

subjected to pre-processing that included outlier filtering and
feature imputation. All the features that possessed more than
85% pair-wise correlation were subsequently removed. The EDNN
which predicted the driver ranks achieved an RMSE value of 2.05
and an R-squared value of 0.39 on the test set. Similarly, the model
for the pit stop prediction demonstrated a precision of 0.56, recall
of 0.83, and an overall F1 score of 0.67. Related work in market
prediction also shows that attention-driven transfer learning over
visual/sequence attributes can be effective (Pala and Sefer, 2024).

In the paper by Menon et al. (2024), the authors performed
a data-driven analysis of historical Formula 1 telemetry data in
order to uncover the proportional impact of driver skill against
constructor performance on race outcomes. An extensive dataset
from multiple sources was constituted and contained data which
spanned over 70 years (1951–2021). The authors used a hybrid
framework by leveraging linear regression modeling along with
Monte Carlo simulations in order to forecast the race standings.
The model resulted in a R-squared value of 0.88 which concluded
that 88% of the variance in race outcomes can be traced back to
the constructor. Therefore, in the modern era of Formula 1, the
performance of the cars outweighed the skill set of the drivers. The
authors also recommend using the model in multi-agent sports like
MotoGP and WEC.

Pontin (2023) explored the potential of integrating artificial
intelligence for optimization of race strategy in motorsports. The
author proposed the development of an AI based race strategy
assistant. Tire performance was evaluated based on the data
collected from simulated driver in the loop (DIL) sessions. Upon
extensive analysis, the author found that the 1-stop strategy (Soft–
10 laps, Medium–17 laps), resulted in better lap times than a 2-stop
strategy (Soft–10, Soft–10, Medium–13). The final component of
the framework involved automating the race strategy execution via
an artificial neural network (ANN). The dataset which the network
was trained on suffered from high class imbalance due to which
customized class weights were applied.

Class imbalance is a common challenge faced in classification
tasks such as motorsport telemetry prediction. Class imbalance
happens when few classes are underrepresented in comparison
to other classes. In order to tackle the problem, Chawla et al.
(2002) proposed the Synthetic Minority Over-sampling Technique
(SMOTE). Instead of replicating the minority class instances,
SMOTE creates synthetic samples by interpolating between existing
minority class samples and their k-nearest neighbors. Leveraging
SMOTE for pit stop window optimization might be beneficial as it
ensures that the models are not biased toward dominant patterns.

Despite extensive research into optimizing race strategies and
anticipating pit stops for Formula 1, several gaps remain. A
lot of the existing literature focuses on static or fixed strategies
and tends to ignore dynamic real-time adaptations dependent
on changing race conditions. Therefore, the development of an
interpretable, adaptive, and context-aware pit stop prediction
framework is urgently needed that robustly copes with class
imbalance, utilizes multimodal telemetry, and generalizes well
across seasons and circuits. Figure 1 provides a comprehensive
overview of these machine learning paradigms, highlighting
their key strengths and weaknesses in the context of pit-stop
strategy.
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FIGURE 1

Overview of machine-learning approaches with key strengths and weaknesses for pit-stop strategy.

3 Background

A modern Formula 1 car can exceed 375 km/h in its bid to
cross the checkered flag first. All teams operate under stringent
technical, sporting, and financial regulations enforced by the
Fédération Internationale de l’Automobile (FIA) (2024). Each
season features more than twenty Grands Prix at iconic yet distinct
circuits—including Silverstone (United Kingdom), Monza (Italy),
and Marina Bay (Singapore)—with the lap count chosen so that the
total race distance is approximately 305 km. tire strategy is a critical
performance lever. The sole tire supplier, Pirelli, offers five dry-
tire compounds (C1–C5, hardest to softest); three are nominated
for each event and designated hard, medium, and soft. Track
surface, ambient temperature, and expected degradation guide the
selection, and under normal dry conditions every team must use at
least two different dry compounds during the race.

3.1 Formula 1 pit stop dynamics

There is a huge team behind every lightning-quick pit stop that
unfolds in Formula 1, generally consisting of around 23 members
known as the pit crew members. Their roles vary, from tire gunners,
who are in charge of operating the wheel gun to remove and fix
the wheel nut, to the pit release coordinator, who gives the signal
for the car to be released back on to the track after a successful
pit stop. Upon receiving approval from the strategists, the race
engineer instructs the driver to initiate standard pit stop protocols.
Then, the driver has to confirm their approval by pressing the pit
confirm button, which is present on the steering wheel. Pressing
the pit button limits the maximum speed of the car to 80 km/h
consistent with the regulations of the FIA. The drivers are then

required to carefully align their cars within the designated pit box
for their team. Subsequently, the car is lifted with the help of
hydraulics to replace the old tires. Aerodynamic adjustments to
the front and rear wing might also be performed by the pit crew if
necessary. While other motorsports such as IndyCar and NASCAR
allow for refueling of the cars during pit stops, Formula 1 banned
it in 2010, citing safety concerns. Once the tires are secured, the
gantry light turns green, which is a go-ahead signal for the driver.
Then, the driver proceeds to exit the pit lane to go back to the
race track. The FIA mandates the use of at least two different tire
compounds during each dry weather race, which means that a
team must perform at least one mandatory pit stop. In the modern
day, a Formula 1 pit crew takes, on average, anywhere from two
to five seconds for a pit stop with the record being achieved by
McLaren, which took 1.80 seconds to service Lando Norris’ car
during the 2023 Qatar Grand Prix. Pit stops can also be utilized
to serve penalties for race regulation violations, and the pit crew is
refrained from performing any activity on the car during this time.

3.2 Types of pit stop strategies

Multiple technical factors have an impact on the pit stop
strategy of the teams. One among those is the concept of “clean
air” which refers to undisturbed flow of air over the aerodynamical
portions of the car. The strategists in the pit-wall always try to send
their drivers on track into a zone of clean air after a pit stop to
gain maximum advantage over their rivals. However, “dirty air”
decreases the effectiveness of the front wing of the car and leads
to under-steer issues. Thermal degradation is another important
factor as drivers tend to lose grip if their tires are hotter than the
optimal tire temperature range. Also, front and rear tire balance
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is crucial as each track might stress either of them excessively than
the other. The race engineers also keep a keen eye on the brake wear
data and g-force telemetry to evaluate tire degradation to decide the
optimal pit stop window. The two most common pit stop strategies
that are used by modern Formula 1 teams are the “Undercut” and
“Over-cut”. A driver undercuts the rival when they pit earlier than
expected in order to gain an advantage by leveraging a fresher set
of tires with no wear. In contrast, a driver over-cuts the rival by
delaying the pit stop to gain track position by taking advantage of
the clean air in the circuit while the rival pits for newer tires.

3.3 Interventions by race control during
the race

The Race Director, who is a part of the Race Control, is
responsible for conducting the race in adherence to the FIA
regulations and also ensures that the race proceeds in a safe manner.
Race Officials, also called Marshals are stationed around the circuit
to ensure that the track is devoid of any debris, and also recover and
clean up the crashed cars from the track. More importantly, they
communicate with the drivers through a few standardized flags to
warn them of potential hazards on the track. A few of the significant
flags include, the Yellow Flag, which is waved to signal danger on
the track. Once it is waved, drivers are expected to slow down and
are prevented from overtaking other cars. In a few cases, a double
yellow flag might be waved in order to signify a serious accident.
When a red flag is shown, it indicates a temporary suspension of
the session due to extreme weather conditions or a track blockage
due to a very serious accident. Under a red flag, the cars must
significantly slow down and enter the pit lane until Race Control
deems it safe to race again.

Generally, these flags are accompanied by the deployment of
a Safety Car or a Virtual Safety Car. The Safety Car is a special
type of car deployed on the track to slow down the other cars on
the track. All the drivers need to follow the Safety Car in a single-
file formation until the track is cleared. The Safety Car acts as the
pilot car at the front, while all other drivers are prevented from
overtaking it. The race can resume once the Safety Car returns back
into the pit lane. Alternatively, instead of deploying a physical car
on the track for minor incidents, the Virtual Safety Car is deployed.
The term “VSC” is displayed on the FIA light panels to indicate
its deployment. Drivers are then required to reduce their speeds
by 40% and maintain a specific time between the cars in front of
them. Interestingly, the teams have an opportunity for a strategic
masterstroke during these interventions, as pitting under the yellow
or red flag minimizes the time loss when compared to pitting during
the regular course of the race, since all the cars are moving at a
significantly slower pace.

4 Methodology

4.1 Factors affecting pit stop strategy

1. Driver and Driver Number: There always exists a skill gap
between drivers, as each of them manage their tires differently.

2. Team: The set of strategists and race engineers in each team are
essential for communication between the team and the driver
on track. They receive and analyze valuable feedback from the
driver and instruct the driver to follow the desired strategy.

3. Track Position: The position of the driver in the race plays a
huge role in deciding the tire strategy and hence is a major
factor in deciding the pit stop timing.

4. Lap Number: The remaining number of laps is crucial in
deciding the optimal tire strategy.

5. tire Stint: Indicates the number of different tire compounds
used by the driver during the race. The stint number remains
the same until the driver pits and increases after they pit. In
F1, a stint is the duration a driver stays on a particular tire
compound before making a pit stop to switch to a new one.

6. tire Life: It represents the number of completed laps with a
specific tire compound and helps to understand the trends in
tire degradation, as shown in Figure 2.

7. Track Status: Indicates whether there are any hazardous
incidents on track. Teams generally tend to take advantage of
these situations, to reduce the time lost while performing their
pit stops.

8. tire Compound: Since each tire compound provides varying
grip levels and undergoes different levels of degradation, teams
are required to make the right strategy call keeping the race
situation in mind. As shown in Figure 3, the tire compound
usage pattern indicates a strategic bias in compound selection
throughout the race.

9. Event Name: Represents the location of the race track. It is a
highly important parameter as each track location is different
from the other and tailoring the strategy according to the
specific track provides a competitive edge.

10. Laptime (in seconds): Monitoring the lap times of drivers
is critical to observe any irregularities in tire degradation.
Significant decrease in lap times might force teams to pit their
drivers earlier than planned.

4.2 Data preprocessing

The dataset for this research was constructed by
programmatically querying the FastF1 Python library. FastF1
is an open-source tool that serves as an API wrapper for
accessing and parsing the rich, high-frequency data generated
during F1 race weekends. It sources its information directly
from the official Formula 1 live-timing data feeds, ensuring
a high degree of accuracy and reliability. Unlike static, pre-
compiled datasets, FastF1 provides the flexibility to extract a
wide array of synchronized data streams, which was essential for
building the feature set for our deep learning models. A function
get_races(year) is defined in order to return a DataFrame
that contains data about both the lap times and the weather. All
data rows containing “intermediate”, “wet” or “unknown” tires
were dropped. The rationale for this decision is that pit stop
strategies under dry conditions (using hard, medium, or soft tires)
are primarily driven by predictable factors like tire degradation,
stint length, and track position, which are ideal for modeling. In
contrast, pit stops involving wet or intermediate tires are almost
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FIGURE 2

Tire degradation trend showing the standardized lap time against tire life for HARD, MEDIUM, and SOFT compounds. All compounds exhibit
significant performance improvement initially, followed by gradual degradation, with softer compounds degrading more rapidly.

entirely reactive to sudden and unpredictable weather changes. In
these scenarios, the decision to pit is dictated by the immediate
wetness of the track and driver feedback, not by the long-term
strategic patterns our models are designed to learn. Including
these laps would introduce significant noise and unpredictability,
undermining the model’s ability to learn the underlying patterns
of strategic pit stops. The distribution shown in Figure 3 confirms
that these tire types represent a small minority of the overall laps.
Attributes such as AirTemp and Humidity were omitted due to
their low significance in predicting the target attribute.

The attributes Time and LapTime were converted into
seconds to enable numerical computations. The final eight races
of 2024 were utilized for testing, whereas the others were
considered as training data. A thorough data integrity analysis was
conducted prior to model training, revealing a limited amount
of missing data across three key attributes. The continuous
variables, LapTime_Seconds and Position, contained 1,675
and 117 missing values, respectively. Having a total dataset
size of 99,928 laps, these figures represent 1.68% and 0.12%
of the data for each attribute respectively, likely resulting from
sensor transmission errors or invalidated laps. Additionally,
the categorical Track_Status column, which indicates race
conditions such as “Yellow Flag” or “Safety Car”, contained 23
null values, representing a negligible 0.02% of the data. Given that
the vast majority of a race is conducted under normal, “Clear”
conditions (Track Status “1”), these null values were imputed using
the mode of the column.

For the continuous Position and LapTime_Seconds
attributes, a two-stage preprocessing pipeline was implemented
to handle missing values and normalize the data. First, both

attributes were normalized using StandardScaler. This initial
step was critical because the chosen imputation method, K-Nearest
Neighbors, is a distance-based algorithm. Normalization rescales
the features to have a mean of 0 and a standard deviation of 1,
ensuring that features with vastly different scales (e.g., lap times in
seconds vs. track position from 1 to 20) contribute equally to the
distance metric used for finding the “nearest neighbors”. Without
this step, the feature with the larger scale would disproportionately
influence the imputation. Following normalization, the missing
values were imputed using the K-Nearest Neighbors (KNN)
Imputer with a hyperparameter of k = 5. This method was chosen
for its ability to provide a contextually aware estimate by analyzing
the five most similar laps in the normalized feature space. This
multivariate approach preserves the complex relationships within
the data far more effectively than simpler methods like mean
imputation. This entire process was designed to prepare the data
for model training without deleting any rows, which would have
disrupted the sequential integrity of the time-series data essential
for our recurrent models.

The attribute CumulativeTimeStint was added in order
to track the time taken by drivers in each of their stints which
enabled a better understanding of the tire wear. Subsequently, the
attributes DriverAheadPit and DriverBehindPit were
added to indicate whether the drivers in front and the back have
pitted. Figure 4 illustrates the impact of the DriverAheadPit
attribute, highlighting its influence on pit stop decisions based on
the behavior of preceding drivers. Stint changes were taken into
consideration to avoid incorrect pit stop tracking. Finally, the data
was sorted to ensure sequential ordering before proceeding with
model building.
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FIGURE 3

Distribution of tire compound types used in the dataset. The majority of laps were driven on hard and medium compounds, with softer or wet
compounds being less frequent.

FIGURE 4

Impact of the preceding driver’s pit decision on pit stop probability. The likelihood of a driver pitting increases significantly when the driver
immediately ahead has already pitted, indicating strategic influence and team coordination in pit stop decisions.

The addition of attributes, namely delta_laptime and
race_progress_fraction proved to be crucial for analysis.
delta_laptime indicated the difference in lap time when
compared to the previous lap. race_progress_fraction
indicated the current progress of the driver in the race by taking
into the account the total number of laps. One-Hot Encoder was
leveraged in order to convert the categorical columns Compound,

Driver, Team, and EventName into binary. The target attribute
HasPitStop contained binary values in which, one represents a
pit made by the driver and zero represents no pit stop. As illustrated
in Figure 5, the original dataset exhibited a significant class
imbalance. Before resampling, the dataset contained 88,299 non-
pit stop instances (class 0) and only about 3131 pit stop instances
(class 1). This represents a split where pit stop laps account for less
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FIGURE 5

Class distribution before and after applying SMOTE. The minority class (Has Pitstop = 1) is synthetically balanced with the majority class to address
the data imbalance and improve generalization.

than 3.5% of the total data. To address this imbalance, which could
bias the model toward the majority class, we applied the Synthetic
Minority Over-sampling Technique (SMOTE). After SMOTE, the
minority class (HasPitStop = 1) was up-sampled to match the
majority class, resulting in a perfectly balanced dataset of 88,299
instances for each class, ready for model training.

4.3 Proposed deep learning models

4.3.1 Bi-LSTM
Long Short-Term Memory (LSTM) networks are a special type

of Recurrent Neural Networks (RNNs) which are designed in order
to eliminate the vanishing gradient problem while storing long
term dependencies. Unlike other RNNs which fail in retaining
historical patterns, LSTMs are effective in capturing the long
term dependencies as they leverage gates that control information
transfer. The gates allow the network to either selectively retain or
selectively forget. Information loss associated with uni-directional
processing of data is prevalent in LSTMs. To evade this problem,
Bidirectional LSTMs (Bi-LSTM) can be leveraged as it processes the
information in both forward and backward direction. It provides a
huge advantage as the model is able to study both from the past and
the future time steps. This dual nature offers improved predictive
power when compared to traditional models.

Bi-LSTMs are equipped to handle the dynamic nature of the
telemetry data of motorsports such as Formula 1. The study
uses a Bi-LSTM model with 3 layers (256, 128, and 64 LSTM
units respectively) along with a fully connected dense layer which
contains a sigmoid activation function. The overall 3D architecture
of the Bi-LSTM model, including its layered structure and flow of
data through the network, is illustrated in Figure 6. In order to
optimize convergence, training was performed with early stopping
and learning rate reduction. Additionally, an optimal classification
threshold was computed from the precision recall curve which
enabled better F1-score alignment.

Every LSTM unit contains the following four gates:

• Input Gate (it) - This gate decides the information that needs
to be stored.

• Forget Gate (ft) - This gate decides the amount of past
information that needs to be forgotten.

• Cell Candidate (c̃t) - Contains the information about the new
candidate.

• Output Gate (ot) - Controls the amount of exposure of the cell
state as output.

The mathematical representations include:

• Input gate: Determines the influence of new input on the
memory (Hochreiter and Schmidhuber, 1997).

it = σ (Wixt + Uiht−1 + bi) (1)

• Forget gate: Controls the retention of past memory content.

ft = σ (Wf xt + Uf ht−1 + bf ) (2)

• Candidate cell state: Proposes new content to be added to
the memory.

c̃t = tanh(Wcxt + Ucht − 1 + bc) (3)

• Cell state update: Combines past and candidate content for
memory update.

ct = ft � ct−1 + it � c̃t (4)
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FIGURE 6

Architecture of the proposed Bi-LSTM model. The network consists of three stacked Bi-LSTM layers with decreasing hidden units (256, 128, 64),
followed by a dense layer and a sigmoid activation for binary classification. Dropout and recurrent dropout are applied after each recurrent layer to
enhance generalization and reduce overfitting.

• Output gate: Regulates how much memory affects the
current output.

ot = σ (Woxt + Uoht−1 + bo) (5)

• Hidden state: Final output of the cell for the current time step.

ht = ot � tanh(ct) (6)

• Bidirectional output: Concatenation of forward and backward
hidden states (Graves et al., 2013).

hbi
t = concat(hforward

t , hbackward
t ) (7)

The variables used in the above equations describe the internal
mechanisms of a Bi-LSTM network. At each time step t, the
input vector xt consists of relevant race telemetry features such as
lap time, tire compound, and stint number. The hidden state ht
represents the short-term memory that is updated at every time
step, while the cell state ct stores long-term information across
the sequence. The input gate it determines how much of the new
candidate value c̃t should be added to the cell memory. The forget
gate ft decides which parts of the previous cell state ct−1 should be
retained. The output gate ot controls the amount of memory that is
passed to the hidden state. Weight matrices W and U are trainable
parameters that apply transformations to the current input and
previous hidden state, respectively, while b∗ represents the bias
terms. The functions σ (·) and tanh(·) are used to introduce non-
linearity. Element-wise multiplication is denoted by �. Finally, hbi

t
is the concatenated output from both the forward and backward
LSTM passes, enabling the model to utilize full temporal context
from both directions. The optimized hyperparameter configuration
used for training the Bi-LSTM model is shown in Table 1.

Figure 7 illustrates the complete workflow of the proposed pit
stop prediction model, showcasing each stage from raw telemetry
preprocessing and SMOTE-based oversampling to Bi-LSTM model
training, testing, and validation using a historical race visualization

TABLE 1 Hyperparameter settings for BiLSTM model.

Hyperparameter Value

Sequence length (timesteps) 10

Number of layers 3 Bidirectional LSTM layers

LSTM units 256 → 128 → 64

Dropout rates 0.2, 0.3, 0.3

Recurrent DROPOUT RAtes 0.2, 0.2, 0.2

Optimizer Adam

Learning rate 5 × 10−4

Loss function Binary Crossentropy

Batch size 32

Epochs 50 (with Early Stopping)

Early stopping patience 5 epochs

ReduceLROnPlateau patience 3 epochs

Learning rate reduction factor 0.5

Minimum learning rate 1 × 10−6

Class weights {0: 1.0, 1: 3.0}

Oversampling strategy SMOTE (sampling_strategy = 1.0)

Validation split 20% (Stratified)

interface. This race visualization interface is created using the
Drivers position data and Track data for each event, which
are obtained from the same FastF1 library to visually simulate
the actual race movements and position changes of all drivers
throughout the race.

4.3.2 TCN–GRU
The specialty of the TCN-GRU model is that it brings

together the Temporal Convolutional Networks (TCN) with Gated
Recurrent Units (GRU). By doing this, it combines both recurrent
and convolutional architectures in order to perform sequential data
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FIGURE 7

Workflow of the proposed pit stop prediction model using Bi-LSTM.
The pipeline includes preprocessing, SMOTE-based oversampling,
time-series conversion, training, and simulation by visualizing the
race event.

modeling. Stable training is guaranteed by the residual connections
as they enhance the gradient flow while the TCN portion effectively
captures the long range dependencies. Subsequently, the GRU layer
is crucial for selectively retaining the required sequence data. This
approach also eliminates the disadvantages of traditional recurrent
models such as very slow training times and short term dependency
biases. Additionally, including dropout regularization and stratified
validation reduces the risk of overfitting.

The mathematical representations of TCN-GRU include:

• Dilated causal convolution for extracting long-range patterns
(Hewage et al., 2020):

yt =
k−1∑
i=0

xt−d·i · wi + b (8)

• Update gate: controls balance between past state and new
input (Yu et al., 2023):

zt = σ (Wzxt + Uzht−1 + bz) (9)

• Reset gate: determines influence of past hidden state:

rt = σ (Wrxt + Urht−1 + br) (10)

• Candidate hidden state: encodes new content:

h̃t = tanh(Whxt + Uh(rt � ht − 1) + bh) (11)

• Final hidden state: merges past memory and new candidate:

ht = (1 − zt) � ht−1 + zt � h̃t (12)

• Binary cross-entropy loss function for optimization
(Goodfellow et al., 2016):

L = − 1
N

N∑
i=1

[
yi log(ŷi) + (1 − yi) log(1 − ŷi)

]
(13)

In this model, xt denotes the input vector at time step t,
while d and k represent the dilation factor and kernel size used
in the convolutional layer to capture long-range dependencies. The
weights wi and bias b are learnable parameters of the TCN. In the
GRU block, zt and rt are the update and reset gates, regulating
how past information influences the current state. The hidden state
ht , previous state ht−1, and candidate state h̃t define the memory
dynamics. W and U are weight matrices applied to the input and
hidden layers, with b∗ as biases. The functions σ and tanh are
activation functions, and � indicates element-wise multiplication.
The loss L computes the binary classification error over predictions
ŷi and true labels yi.

4.3.3 GRU
The Gated Recurrent Unit (GRU) is a more powerful

adaptation of RNNs as it is designed in a manner that overcomes
the limitations of traditional RNNs while being a lightweight
alternative to LSTMs. The GRU would be an effective model as it
is curated to analyze important temporal dependencies as in the
case of pit stop prediction. The strength of the GRU model rests
in the presence of gating mechanisms which control the flow of
information and decide what to retain. GRUs also excel in handling
imbalanced datasets in scenarios like pit stop prediction where the
number of regular laps is significantly higher than the pit stop
laps. The GRU-based model in this study shares the same gating
mechanisms as detailed in Yu et al. (2023).

4.3.4 InceptionTime
While the Inception models were originally designed for image

processing predominantly, the InceptionTime model extends their
use case to time series classification. The InceptionTime model
leverages multiple convolutional branches with varying kernel sizes
in order to capture patterns. The residual connections play a huge
role in stabilizing training. The model also filters out irrelevant
changes in the data. The InceptionTime model also uses Global
Average Pooling (GAP) in place of fully connected layers to
reduce overfitting. Since each of the F1 track venues are unique,
InceptionTime model might come in handy as it has the ability to
capture patterns at different scales.

The mathematical representations of InceptionTime include
(Fawaz et al., 2020):

• 1D convolution for feature extraction over time windows:

yi =
k−1∑
j=0

xi+jwj + b (14)
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• Residual connection for stabilizing deep architecture:

F(x) = f (x) + x (15)

• Global average pooling across time steps for each feature map:

zc = 1
T

T∑
t=1

xt,c (16)

In the equation for yi, the input sequence is denoted by xi,
and the convolution filter weights are represented by wj, applied
over a window of size k. The term b refers to the bias added after
the convolution. The function F(x) = f (x) + x defines a residual
connection, where f (x) is the output of a transformation applied
to the input x, allowing the original input to be added directly to
the result. In the final equation, zc represents the average value
computed over the time dimension T for each feature channel c,
which is used in global average pooling to reduce the temporal
dimension before classification.

4.3.5 CNN-BiLSTM
The CNN-BiLSTM is a hybrid model that combines the

spatial pattern gathering capabilities of the Convolutional Neural
Networks (CNNs) along with sequential dependency capturing
abilities of the Bidirectional Long Short-Term Memory networks
(BiLSTM). The CNNs can be trained to capture the short-term
dependencies in time-series inputs. Subsequently, the features are
fed to the BiLSTM layers in order to be processed in both forward
and backward directions. The strength of the model lies in its ability
to capture both local variations (using the CNN layer) and long
range trends (using BiLSTM layers). This dual capability is crucial
for improving the model generalization.

The mathematical representations of CNN-BiLSTM include:

• 1D convolution to extract local patterns from input sequence
(Zhang et al., 2023):

ht = ReLU(W ∗ xt : t+k−1 + b) (17)

• Max pooling to reduce dimensionality and retain dominant
features (Zhang et al., 2023):

hpool
t = max(xt , xt+1, . . . , xt+p−1) (18)

• Forward and backward LSTM passes to learn temporal
dependencies (Hochreiter and Schmidhuber, 1997):

−→
ht = LSTM(xt ,

−−→
ht−1),

←−
ht = LSTM(xt ,

←−−
ht+1) (19)

• Bidirectional hidden state concatenation (Graves et al., 2013):

hbi
t = [

−→
ht ,

←−
ht ] (20)

• Final dense layer with sigmoid activation for binary prediction
(Zhang et al., 2023):

ŷ = 1
1 + e−(Wh+b) (21)

In these equations, xt refers to the input feature vector at
time step t, and W, b are the weight and bias of the convolution
kernel. The operator ∗ denotes 1D convolution, and ReLU is the
activation function applied afterward. Max pooling hpool

t selects
the highest value within a local region of the input. In the Bi-
LSTM layer,

−→
ht and

←−
ht are the forward and backward hidden

states, which are concatenated to form hbi
t . Finally, ŷ is the

output probability produced by a sigmoid-activated dense layer for
binary classification.

4.4 Model architecture, training, and
hyperparameter configuration

To ensure a robust and transparent comparison, a systematic
and consistent methodology was applied for the selection,
configuration, and training of all deep learning models.

4.4.1 Rationale for a data-driven deep learning
approach

For this study, a purely data driven methodology using deep
learning was selected over model based approaches, such as game
theory or simulation based optimization, for three primary reasons.
Firstly, deep learning models can learn complex, non-linear
patterns directly from high dimensional telemetry data without
requiring explicit and often simplified assumptions about the
underlying race dynamics (e.g., tire degradation curves, opponent
rationality) that are necessary for game-theoretic models. Secondly,
the Formula 1 environment is highly non-stationary due to
evolving regulations and car technologies. A data-driven model
trained on recent data can adapt to these changes more fluidly
than a formal model requiring recalibration. Finally, deep learning
architectures are inherently scalable to the vast amount of time
series data available, allowing them to capture subtle predictive
signals that might be intractable to formalize in a traditional
optimization framework. While game theory provides a powerful
lens for strategic reasoning, our focus is on building a predictive
support tool that learns directly from observed race behavior.

The five deep learning architectures were deliberately selected
to represent a diverse and complementary set of state-of-the-
art techniques for time-series classification. Each architecture
possesses a unique inductive bias, making it well suited to capturing
different types of patterns inherent in sequential Formula 1
telemetry data.
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• Recurrent Architectures (Bi-LSTM and GRU): These models
are the canonical choice for sequence modeling. The
Bidirectional Long Short-Term Memory (Bi-LSTM) network
was selected for its proven ability to learn long-range temporal
dependencies. Its gated memory cells allow it to selectively
retain information over long periods, which is essential
for modeling cumulative effects like tire degradation. The
Gated Recurrent Unit (GRU) was included as a strong,
computationally efficient alternative.

• Hybrid Architectures (CNN-BiLSTM and TCN-GRU):
These models were chosen to leverage the synergy
between convolutional and recurrent layers. CNN-Bi-
LSTM uses 1D convolutions to extract local motifs
(e.g., sharp changes in lap time) before Bi-LSTM layers
model their long-term sequential impact. The TCN-GRU
uses a Temporal Convolutional Network with dilated
convolutions to efficiently capture patterns across multiple
time scales.

• State-of-the-Art Time-Series Classifier (InceptionTime): This
architecture was included as a benchmark to evaluate our
recurrent and hybrid models against a leading, non-recurrent
architecture specifically designed for time-series classification.
InceptionTime has demonstrated strong performance across
numerous benchmark datasets, making it a suitable point
of comparison.

4.4.2 Model configuration and hyperparameter
tuning

To ensure a scientifically valid and fair comparison, a highly
controlled experimental setup was established. Each of the
five architectures was individually optimized during a systematic,
empirical tuning process. Although we experimented with different
learning rates, class weights, and SMOTE strategies for each model,
we found that the configuration presented here consistently yielded
the best performance across the board. This finding allowed
for a direct and unbiased comparison of their architectural
merits, as performance differences could be confidently
attributed to model structure rather than variations in the
training protocol.

These shared training parameters, used for all five models, were
as follows:

• Optimizer: Adam
• Learning Rate: 5 × 10−4

• Loss Function: Binary Crossentropy
• Batch Size: 32
• Data Handling: A sampling_strategy of 1.0 was used for

SMOTE, supplemented by class weights of {0: 1.0, 1: 3.0}
during training. A stratified 20% validation split was used for
all models.

The key differentiators in our experiment were therefore the
model architectures themselves. The final, optimized architecture
for our proposed model, Bi-LSTM, is detailed in Table 1. The
individually tuned architectures for the four comparative models
are described below:

• GRU: Comprised of three stacked Bidirectional GRU layers
with decreasing units (256 → 128 → 64), followed by two
Dense layers (64 → 32).

• TCN-GRU: A hybrid model consisting of a single Temporal
Convolutional Network block (64 filters, kernel size 3)
followed by a single GRU layer with 64 units.

• CNN-BiLSTM: A hybrid model beginning with a 1D
Convolutional layer (64 filters, kernel size 3) and a MaxPooling
layer, followed by two stacked Bidirectional LSTM layers (128
→ 64).

• InceptionTime: The standard architecture was used, with
its internal depth and filter sizes determined through the
empirical tuning process.

All models were designed to process input sequences with
a length of 10 timesteps. To provide a more comprehensive
evaluation, particularly given the class imbalance inherent in the
dataset, model performance was assessed not only using precision,
recall, and F1-score but also with Specificity, Balanced Accuracy,
ROC-AUC (Area Under the Receiver Operating Characteristic
Curve), and AUC-PR (Area Under the Precision-Recall Curve).
This expanded set of metrics allows for a nuanced understanding
of each model’s ability to handle both the majority (no pit stop) and
minority (pit stop) classes.

4.4.3 Training protocol and convergence criteria
A standardized training protocol was used for all models

to ensure a fair and controlled comparison, with the specific
optimizer and loss function for each model detailed in Table 1.
The training duration was capped at a maximum of 50 epochs.
Actual convergence was managed dynamically using two Keras
callbacks whose parameters, listed in the tables, were held
constant across all experiments. Early Stopping served as the
primary mechanism to prevent overfitting by halting the training
if the monitored loss did not improve for a patience of
five epochs. Concurrently, ReduceLROnPlateau facilitated finer-
grained convergence by reducing the learning rate if the loss
plateaued. As noted in the tables, the specific metric monitored
(val_loss or loss) was tailored to whether a validation set was used
for that particular model’s optimal configuration.

4.4.4 Evaluation metrics
To provide a robust and quantitative assessment of model

performance, particularly given the significant class imbalance
in the pit stop prediction task, a comprehensive set of evaluation
metrics was employed. These metrics are derived from the
confusion matrix, which categorizes predictions into four
distinct outcomes:

• True Positives (TP): The number of laps correctly identified
as a pit stop (HasPitStop = 1).

• True Negatives (TN): The number of laps correctly identified
as a non-pit stop (HasPitStop = 0).

• False Positives (FP): The number of non-pit stop laps
incorrectly classified as a pit stop (Type I error).
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• False Negatives (FN): The number of pit stop laps incorrectly
classified as a non-pit stop (Type II error).

Based on these components, the following metrics
were calculated.

4.4.4.1 Precision
Measures the accuracy of positive predictions. It answers the

question: “Of all the laps the model predicted as a pit stop, what
fraction were actual pit stops?”

Precision = TP
TP + FP

(22)

4.4.4.2 Recall (sensitivity or true positive rate)
Measures the model’s ability to identify all actual

positive instances. It answers the question: “Of all the
actual pit stops that occurred, what fraction did the model
correctly identify?”

Recall = TP
TP + FN

(23)

4.4.4.3 F1-score
The harmonic mean of Precision and Recall.

It balances the trade-off between the two metrics,

TABLE 2 Model-wise performance on minority class (HasPitStop = 1).

Model Precision Recall F1-score Specificity Balanced accuracy

Bi-LSTM 0.77 0.86 0.81 0.992 0.93

TCN-GRU 0.74 0.81 0.77 0.991 0.90

GRU 0.70 0.80 0.74 0.989 0.89

InceptionTime 0.77 0.65 0.71 0.994 0.82

CNN-BiLSTM 0.76 0.61 0.67 0.994 0.80

FIGURE 8

Model-wise comparison of precision, recall, and F1-score for the minority class (HasPitStop = 1). Bi-LSTM achieves the highest F1-score, followed
by TCN-GRU and GRU, indicating its robustness in pit stop prediction.

TABLE 3 Model performance with 95% confidence intervals (CI).

Model F1-score CI for F1-score Balanced accuracy (BA) CI for BA

Bi-LSTM 0.81 [0.791, 0.832] 0.926 [0.905, 0.941]

TCN-GRU 0.77 [0.750, 0.795] 0.900 [0.881, 0.918]

GRU 0.74 [0.725, 0.770] 0.890 [0.839, 0.903]

InceptionTime 0.71 [0.682, 0.735] 0.824 [0.801, 0.849]

CNN-BiLSTM 0.67 [0.642, 0.698] 0.801 [0.776, 0.824]

Bold values indicate the best-performing model for the corresponding metric.
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providing a single score that is particularly useful for
imbalanced datasets.

F1-Score = 2 × Precision × Recall
Precision + Recall

= 2TP
2TP + FP + FN

(24)

4.4.4.4 Specificity (true negative rate)
Measures the model’s ability to correctly identify all negative

instances. It complements Recall.

Specificity = TN
TN + FP

(25)

TABLE 4 Pairwise statistical comparison of models using McNemar’s test
(p-values).

Comparison p-
value

Statistically significant?
(α = 0.05)

Bi-LSTM vs. TCN-GRU 0.042 Yes

Bi-LSTM vs. GRU 0.003 Yes

Bi-LSTM vs. InceptionTime < 0.001 Yes

Bi-LSTM vs. CNN-BiLSTM < 0.001 Yes

4.4.4.5 Balanced accuracy
The arithmetic mean of Recall and Specificity. It is robust

to class imbalance as it evaluates performance equally across
both classes.

Balanced Accuracy = Recall + Specificity
2

= 1
2

(
TP

TP + FN
+ TN

TN + FP

)
(26)

4.4.4.6 Area under the receiver operating characteristic
curve (ROC-AUC)

Evaluates the model’s discriminative ability across all
classification thresholds. The ROC curve plots the True
Positive Rate (Recall) against the False Positive Rate (1 -
Specificity). An AUC of 1.0 indicates a perfect classifier, whereas
an AUC of 0.5 reflects a model performing no better than
random chance.

4.4.4.7 Area under the precision–recall curve (AUC-PR)
Summarizes the trade-off between Precision and Recall

across varying thresholds. It is often more informative
than ROC-AUC when handling highly imbalanced datasets,

FIGURE 9

Combined Precision-Recall curves for all evaluated models. The area under the PR curve (AUC-PR) is a robust metric for imbalanced classification.
The Bi-LSTM model demonstrates the best performance with the highest AUC-PR.
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as it emphasizes the performance of the minority class
(pit stops).

4.4.5 Computational environment
To ensure full reproducibility of our results, all experiments

were conducted within a consistent and clearly defined
computational environment.

• Hardware: All model training and evaluation were performed
on a system equipped with a high-performance NVIDIA A100
GPU with 80 GB of VRAM. The host system included multiple
virtual CPUs and 125 GB of system RAM.

• Software and Libraries: The experimental framework was
built on Python (v3.9). The deep learning models were
implemented using the TensorFlow (v2.11.0) framework with
its integrated Keras API. Data manipulation, preprocessing,
and evaluation were handled using the Pandas (v1.5.2),
NumPy (v1.23.5), and Scikit-learn (v1.2.1) libraries. Class
imbalance was addressed using the imblearn (v0.10.1) library.
All final models and scalers were saved to disk using the native
Keras .h5 format and joblib, respectively.

5 Results

The study employed five deep learning models to comparatively
analyze their performance on predicting pit stops in Formula 1 on
the test set reported for the minority class (HasPitStop = 1). To
account for the significant class imbalance in the test set, which has
only 3% of pit stop occurrences, performance was analyzed using
a comprehensive suite of metrics including Precision, Recall, F1-
Score, Specificity, and Balanced Accuracy, as detailed in Table 2.
The Bi-LSTM model demonstrated superior overall performance,
achieving the highest F1-Score (0.81), Balanced Accuracy (0.93),
and Recall (0.86), indicating its robust capability in correctly
identifying the rare pit stop instances. The trade-offs between
precision, recall, and the resulting F1-score for each model are
visually summarized in Figure 8.

TABLE 5 Bi-LSTM confusion matrix on test set (threshold = 0.5277).

Actual\predicted No Pitstop (0) Has Pitstop (1)

No Pitstop (0) 8,171 66

Has Pitstop (1) 35 216

FIGURE 10

Combined Receiver Operating Characteristic (ROC) curves for all models. The Area Under the Curve (ROC-AUC) measures a model’s ability to
distinguish between classes. While all models perform well, the Bi-LSTM achieves the highest score, indicating superior discriminative power.
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To rigorously validate our findings, we computed 95%
confidence intervals for key performance metrics using 1,000
bootstrap resamples of the test set, with the comprehensive
results summarized in Table 3. As shown in the table, the
Bi-LSTM model not only achieved the highest F1-score
(0.81) and Balanced Accuracy (0.926) but also exhibited
tight confidence intervals, indicating stable and superior
performance. Notably, the 95% confidence interval for the
Bi-LSTM’s F1-score [0.791, 0.832] does not overlap with
those of the GRU, InceptionTime, or CNN-BiLSTM models.
This pattern also holds for Balanced Accuracy. This provides
strong evidence that the Bi-LSTM’s superior performance
is not due to random statistical variation. The confidence
interval for the TCN-GRU model shows only a minor overlap,

suggesting its performance is competitive and warrants direct
statistical comparison.

To formalize this comparison, we conducted pairwise
McNemar’s tests between the Bi-LSTM model and all other
architectures. The resulting p-values are presented in Table 4.
The results from the McNemar’s tests confirm the conclusions
drawn from the confidence intervals. At a significance level
of α = 0.05, the Bi-LSTM model’s predictive performance is
statistically superior to all other models evaluated. The comparison
with the TCN-GRU model yielded a p-value of 0.042, which, while
significant, indicates a smaller performance margin compared to
the other models. The highly significant p-values (< 0.001) in the
comparisons against GRU, InceptionTime, and CNN-BiLSTM
underscore a substantial and reliable performance gap.

FIGURE 11

Race visualization interface for the 2025 Chinese Grand Prix. The visualization tool allows users to control playback speed, seek through frames, and
view animated driver positions from the historical race data.
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There are several reasons why the Bi-LSTM model performs
significantly better than the baseline. First, its tendency to learn
from temporal dependencies in both past and future directions
makes it particularly powerful at modeling sequential lap data
where decisions are influenced by developing trends including
tire degradation, stint length, and track conditions. Furthermore,
Bi-LSTM can handle sequences of variable length, which is
consistent with the varying number of laps between pits across races
and drivers.

The trade-off between precision and recall for all models is
visualized in the Precision-Recall (PR) curves shown in Figure 9.
This plot confirms the superiority of the Bi-LSTM model, as its
curve dominates the others by maintaining high precision over a
wider range of recall values. The performance of all models is well
above the “No-Skill” baseline, which is determined by the class
prevalence, indicating that all architectures learned meaningful
predictive patterns. The PR curve is particularly informative for
imbalanced datasets, as it evaluates a model’s ability to identify
minority class instances without being skewed by the large number
of true negatives(no pit stop). Figure 10 displays the Receiver
Operating Characteristic (ROC) curves. While all models achieve
high ROC-AUC scores, which can be optimistically skewed by
the large true negative rate in imbalanced datasets, these results
nonetheless confirm strong overall classification capability. The Bi-
LSTM model again leads with the highest ROC-AUC score of 0.988.
Table 5 shows the confusion matrix of the Bi-LSTM model on the
test set with a threshold of 0.5277, reflecting the classification results
across pit stop predictions.

The historical race visualization interface is an analytical tool
designed to replay and examine past Formula 1 race events using
actual, real-world telemetry data. Unlike simulation tools that
generate hypothetical scenarios, this interface provides a faithful
reconstruction of historical races, animating the positions and
movements of all drivers on the track throughout the event, which

are available in FastF1 API. To demonstrate the model’s practical
performance, this interface was used to generate visualizations for
the 2025 Chinese Grand Prix and the 2024 Singapore Grand Prix.
The performance shown in Figure 11 corresponds to the 2025
Chinese Grand Prix data, where the model achieved an accuracy
of 70.59%, a recall of 92.31%, and an F1-score of 80%. Figure 12
showcases driver-wise comparison of predicted and actual pit stops
across race laps, highlighting prediction accuracy using color coded
dots. The confusion matrix for the Bi-LSTM model on the Chinese
Grand Prix is shown in Table 6, which indicates strong prediction
accuracy on pit stop instances.

The 2024 Singapore Grand Prix results depicted in Figure 13
effectively demonstrate the historical race visualization interface’s
ability to visualize drivers navigating around the challenging
Marina Bay Street Circuit. As shown in Figure 14, a color-coded
comparison of predicted pit stops against actual stops provides
insight into each driver’s performance, distinguishing accurate
forecasts from false positives and negatives. As summarized in
Table 7, the model’s confusion matrix for the race confirms its
strong predictive reliability, correctly identifying 22 pit stop laps as
well as 1135 non pit stop laps.

6 Conclusion

This study presents a deep-learning framework that predicts
Formula 1 pit-stop timings directly from telemetry. After rigorous

TABLE 6 Confusion matrix for the 2025 Chinese Grand Prix.

Actual\predicted Pred 0 Pred 1

Actual 0 1,019 10

Actual 1 2 24

FIGURE 12

Predicted vs actual pit stops for each driver in the 2025 Chinese Grand Prix. Orange colored markers represent correctly predicted pit stops, blue
markers denote predictions without actual pits, and red markers indicate actual pit stops missed by the model.
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FIGURE 13

Race visualization interface for the 2024 Singapore Grand Prix. The interface visualizes driver positions on the Marina Bay Street Circuit using FastF1
telemetry data, with options to control playback speed and seek through race frames.

data-pre-processing and a comparative evaluation of several
network architectures, the bidirectional LSTM proved most
effective at capturing race dynamics. Integrated with an interactive
historical race visualization interface, the model supplies real-time
insights to support strategic decision-making.

Current constraints include limited access to high-fidelity
telemetry and frequent regulatory changes during the season.
Even so, the framework demonstrates the practical value of AI-
driven decision support and offers a solid foundation for future
motorsport applications.

7 Limitations and future scope

While this study demonstrates the potential of deep learning
models to predict Formula 1 pit stop timings from publicly available

telemetry data, several limitations must be acknowledged. These
limitations primarily concern the impact of evolving regulations
and the generalizability of models trained on public vs. proprietary
team data. Addressing these challenges will be crucial for enhancing
the external validity and practical applicability of future research.

7.1 Impact of evolving regulations

A significant challenge for any predictive model in Formula
1 is the sport’s constantly evolving regulatory landscape. The
Fédération Internationale de l’Automobile (FIA) frequently
introduces changes to sporting and technical regulations that
can substantially alter pit stop strategies. For instance, recent
seasons have seen modifications to tire allocation, the introduction
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FIGURE 14

Predicted vs actual pit stops for each driver in the 2024 Singapore Grand Prix. Orange colored markers represent correctly predicted pit stops, blue
markers denote predictions without actual pits, and red markers indicate actual pit stops missed by the model.

TABLE 7 Confusion matrix for the 2024 Singapore Grand Prix.

Actual\predicted Pred 0 Pred 1

Actual 0 1,135 7

Actual 1 3 22

of sprint races with different pit stop rules, and even circuit-
specific mandates, such as the new rule for the 2025 Monaco
Grand Prix requiring two mandatory pit stops to increase
strategic variability.

These regulatory shifts can render historical data less
representative of current and future race conditions. A model
trained on data from a period with a single mandatory pit stop,
for example, may not generalize well to a season where multiple
stops are required or where new tire compounds with different
degradation characteristics are introduced. The dynamic nature of
these rules means that predictive models must be continuously
retrained and validated against the most recent data to maintain
their accuracy and relevance.

7.2 Generalizability of models trained on
publicly available data

Another key limitation of this study is its reliance on publicly
available telemetry data, such as that provided by the FastF1 API.
While this data is extensive, it represents only a fraction of the high-
fidelity, real-time information available to the teams themselves.
Formula 1 teams have access to proprietary data streams from
hundreds of sensors on their cars, providing granular insights
into tire temperature, brake wear, fuel load, and real-time car
performance. This proprietary data allows teams to build much

more sophisticated and accurate predictive models for pit stop
optimization. Models trained on public data, therefore, may not
capture the full complexity of the decision-making process on the
pit wall. For example, a sudden increase in tire temperature or
unexpected degradation that would trigger a pit stop for a team
might not be visible in the public data stream. This discrepancy can
lead to a model that is well-calibrated to the patterns in the public
data but fails to predict pit stops that are triggered by factors only
visible in the proprietary data.

7.3 Additional avenues for future research

The current model performs a binary classification (pit or
no pit). A natural extension is a multi-class model that not
only predicts if a pit stop is optimal but also recommends the
ideal tire compound to switch to (e.g., Hard, Medium, or Soft),
turning it into a more comprehensive decision support tool. A
Reinforcement Learning framework could learn optimal pit stop
policies by optimizing for long-term rewards (e.g., final race
position or championship points) through simulation, potentially
discovering counter-intuitive but highly effective strategies that
are not apparent in historical data.Furthermore, a particularly
promising direction for future research is the development of
hybrid models. Such models could integrate the explicit strategic
reasoning of game theoretic frameworks to model opponent
interactions with the robust pattern recognition capabilities of deep
learning models to process high dimensional telemetry data. This
could lead to a decision support system that is both strategically
aware and empirically grounded. Also, the proposed system is not
restricted to just Formula 1 as there are multiple other motorsports
where pit stops play an essential role in race strategy. These include
but are not limited to MotoGP, NASCAR, IndyCar and Endurance
racing events such as the twenty-four hours of LeMans.
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