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HED-Net: a hybrid ensemble
deep learning framework for
breast ultrasound image
classification

Soumya Sara Koshy, L. Jani Anbarasi*, Modigari Narendra and
Rabindra Kumar Singh

School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India

Introduction: Breast cancer, one of the most life-threatening diseases that
commonly affects women, can be effectively diagnosed using breast ultrasound
imaging. A hybrid deep learning based ensemble framework combining the
effectiveness of different convolutional neural network models has been
proposed for breast ultrasound image classification.

Methods: Three distinct deep learning models, namely, EffcientNetB7,
DenseNet121, and ConvNeXtTiny, have been independently trained on breast
ultrasound image datasets in parallel to capture complementary representations.
Local features are extracted using EffcientNetB7 through depthwise separable
convolutions, whereas structural details are preserved by DenseNet121 utilizing
dense connectivity. Global spatial relationships are modeled using ConvNeXtTiny
via large kernel operations. Diverse local, global, and hierarchical features
extracted with respect to multiple perspectives are integrated into a high-
dimensional unified representation from which non-linear decision boundaries
are learned utilizing XGBoost as the feature fusion classifier. Additionally, a soft
voting ensemble method averages the predicted probabilities of the individual
convolutional network architectures.

Results: The model was evaluated using the BUSI dataset, the BUS-UCLM
dataset, and the UDIAT dataset. The accuracy, precision, recall, F1 score, and
AUC values obtained on the BUSI data set are 88.46%, 88.49%, 88.46%, 88.457%,
and 95.38%, respectively. On the BUS-UCLM dataset, the corresponding values
are 90. 51%, 90. 56%, 90. 51%, 90. 51%, and 96. 23%, respectively. The accuracy,
precision, recall, F1 score, and AUC values obtained on the UDIAT dataset
are 96.97%, 100.00%, 90.91%, 95.24%, and 99.17%, respectively. The decision-
making capability of the model has been highlighted using SHAP and Grad-
CAM visualizations, further improving the interpretability and transparency of the
model, and making it more robust for breast ultrasound image classification.
Discussion: The HED-Net framework exhibits significant potential for clinical
application by enhancing diagnostic accuracy and decreasing interpretation
time, particularly in resource-limited environments where expert radiologists are
in short supply.

KEYWORDS

breast cancer, classification, ConvNextTiny, convolutional neural network,
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1 Introduction

Breast cancer is a deadly disease commonly affecting women,
and the complete prevention of breast cancer remains a challenge
throughout the world. Breast cancer is a condition in which
breast cells grow uncontrollably and become tumors. If left
undetected, the tumors can spread throughout the body and
become fatal. Breast cancer mortality can be considerably reduced
with early detection. Various imaging modalities have been utilized
for the diagnosis of breast cancer; the most commonly used
one without radiation is ultrasound imaging, in which sound
waves are used to capture breast images. Ultrasound imaging is
particularly used to examine dense breast tissue (Madjar, 2010).
Various computer-aided design techniques have been successfully
developed for the detection and classification of breast cancer. Deep
learning techniques, which automatically extract features, have
been successfully applied in the efficient identification of breast
cancer in recent years. Deep learning has become an effective tool
for cancer detection and prognosis prediction (Tufail et al., 2021).
These technological advancements have not only proven effective
in breast cancer detection but have also significantly influenced
various medical fields, including reproductive health (Khan et
al., 2024), underscoring the transformative potential of artificial
intelligence in healthcare.

Existing breast ultrasound image classification methods pose
various challenges, including (i) low contrast ultrasound images
making it difficult to delineate lesion boundaries and internal
structure, (ii) ultrasound images are operator dependent, resulting
in uneven image quality, (iii) visual resemblance between
benign and malignant images which makes it tedious for even
experts to differentiate between the two classes, and (iv) class
imbalance in datasets. The interpretability of deep learning models
remains a crucial issue. Most of the deep learning models are
considered as a black box whose internal workings remain elusive.
Socioeconomic factors and family history substantially influence
breast cancer awareness and preventive practices, especially in
resource-constrained environments (Karmakar et al., 2025). This
highlights the significance of creating CAD systems that are
versatile and accessible in various clinical contexts.

To address these limitations, a hybrid deep learning based
method that combines deep learning and machine learning
methods has been proposed for the classification of breast
ultrasound images. Three distinct convolutional neural network
(CNN) architectures, EfficientNetB7 (Tan and Le, 2019),
DenseNet121 (Huang et al, 2017), and ConvNeXtTiny (Liu
et al, 2022) have been employed that facilitate the extraction
of complementary features from different perspectives, thereby
aiding the model to distinguish better between benign, malignant,
and normal images. EfficientNetB7 with depthwise convolutions
and compound scaling property captures local features and fine-
grained patterns. Multi-scale hierarchical features are extracted via
dense connections in DenseNet121, whereas with ConvNeXtTiny,
global spatial relationships are modeled. The extracted features
are fused, which improves discriminative capacity by integrating
representations from multiple models. The gradient boosted tree
model XGBoost is used for the classification of fused features.
XGBoost was selected for feature-level fusion because of its
resilience with heterogeneous, high-dimensional data and its
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impressive clinical efficacy in recent ensemble learning frameworks
(Bilal et al., 2024). The soft voting ensemble method is also
implemented, in which the predicted probabilities from the
three architectures are averaged. The explainable Al is used to
untangle the decision-making mechanism of the proposed deep
learning model. The proposed model has been made interpretable
and transparent by integrating Shapley Additive exPlanations
(SHAP) (Lundberg and Lee, 2017) and gradient weighted class
activation mapping (Grad-CAM) (Selvaraju et al., 2017). Grad-
CAM produces spatial heatmaps that emphasize the areas of
the ultrasound image most significant for the prediction. This
enables radiologists to ascertain if the network concentrates on
clinically significant structures, such as lesion borders, hence
enhancing confidence in the classification results. SHAP offers
quantitative feature-level attributions, facilitating both global and
local comprehension of the contributions of different features
to a prediction. Collectively, these methodologies reconcile the
disparity between black box predictions and clinical reasoning by
correlating model outputs with visual and feature-based evidence,
thereby assisting radiologists in verifying Al-assisted diagnoses
and enhancing the integration of CAD systems into practical
workflows. The significance of model interpretability in clinical
environments is underscored by current research in other medical
fields. Ahmad et al. (2024) integrated tree-based SHAP explainable
Al into their epileptic seizure detection system, highlighting the
increasing agreement that transparent AI decision making is
essential for clinical implementation.
The primary contributions of this study are as follows:

e A multiperspective feature extraction approach utilizing three
separate CNN architectures to capture feature representations
at multiple scales and levels of abstraction.

e The high-dimensional feature fusion is implemented by
concatenating deep CNN architectures to generate a unified
representation space.

e A gradient-boosted decision tree classifier (XGBoost) is
utilized to learn nonlinear relations within the combined
feature space.

e A probabilistic ensemble fusion method using soft voting is
applied to integrate predictions and enhance generalization
across various tumor subtypes.

e Model interpretability is enhanced through Grad-CAM
visualizations and SHAP value analysis, ensuring the
transparency and clinical trustworthiness of the model.

The remainder of the article is structured as follows. The
literature on the classification of breast ultrasound images is
reviewed in Section II. The proposed ensemble learning framework
for classifying breast ultrasound images is covered in Section III
Experimental results and discussions are presented in Section IV.
Section V concludes the article.

2 Related works

Several techniques have been put forth to classify ultrasound
images of the breast. A deep learning technique using the enhanced
ResNet50 was proposed by Gupta et al. (2023) for classifying
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breast ultrasound images with a 97.8% accuracy rate. F1 score,
precision, and recall obtained were 98.44%, 99.21%, and 97.68%,
respectively. This method depends on a single CNN and does not
provide interpretability, hence constraining clinical applicability.
An ensemble network based on fuzzy ranks has been proposed by
Deb and Jha (2023) for the detection of breast cancer. The model
makes use of four distinct base learners in order to benefit from
the predictions produced by the base learners DenseNet, VGG-
Net, Inception, and Xception. Using the ImageNet dataset, the base
learners’ initial layer weights are pre-trained. A publicly accessible
BUSI is used to refine the last five layers. The final classification
is based on the fuzzy rank of the predictions made by the basic
learners and obtained an accuracy of 85.23 % 2.52%. Despite the
integration of several learners, the technique exhibits restricted
generalization.

Nasiri-Sarvi et al. (2024) proposed a Mamba-based architecture
for classifying ultrasound images of the breast in which the long-
range processing power of vision transformers is combined with the
inductive bias of a convolutional neural network. The method was
evaluated using the BUSI dataset and dataset B with 163 ultrasound
images and obtained accuracy values of 95.28 + 1.89% and 87.50
+ 12.08%, respectively. However, the imbalance in the dataset
is not considered, and no visual interpretation of the model has
been provided. Alotaibi et al. (2023) proposed a transfer learning
method based on VGG-19, and the model was evaluated using
three datasets, namely, KAIMRC with 5693 images (Almazroa
et al.,, 2022), BUSI dataset with 780 images, and Dataset B with
162 images (Yap et al, 2017). A pre-processing scheme with
three phases, including RGB fusion, ROI highlighting, and noise
filtering utilizing a block matching 3D filtering algorithm, was
analyzed, resulting in enhanced classification. The model obtained
an accuracy of 87.8% on the BUSI dataset, and the accuracy
obtained on the KAIMRC dataset was 85.2%. The model does
not integrate ensembling and visualization techniques for model
interpretation.

Meng et al. (2024) presented an ensemble method for the
classification of ultrasound images of the breast by integrating a
convolutional neural network and a transformer, which optimized
the predictions and improved the accuracy. The CNN model
was employed to retrieve local features, and global features
were extracted using a transformer. The visual interpretations
of the predictions are provided using Score CAM. The model
is evaluated using the BUSI dataset alone and obtained an F1
score of 98.72% and an accuracy of 98.70%. Jabeen et al. (2022)
suggested a technique that uses transfer learning to train a pre-
trained DarkNet-53 model and extracts features from the global
average pooling layer. The best features are extracted using the
Reformed Gray Wolf (RGW) and Reformed Differential Evaluation
(RDE) optimization techniques. The model was evaluated using
an augmented BUSI dataset and obtained an accuracy of 99.1%.
The model was evaluated using only a single dataset, and no
clinical explanation of the model is provided. Yadav et al. (2024)
performed breast ultrasound image classification using modified
ResNet-101 and obtained accuracy, precision, F1-score, and recall
values of 97.43%, 98.55%, 97.56%, and 96.77%, respectively, on
the BUSI dataset. The model is based on a single architecture
without ensembling.
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Wei et al. (2024) proposed a Multi Feature Fusion Multi
Task model that includes a Contextual Lesion Enhancement
Perception (CLEP) module. The model is validated using two
publicly accessible datasets, namely, BUSI and MIBUS (Lin et al.,
2022), and obtained an accuracy of 95% on the BUSI dataset. The
accuracy obtained on the MIBUS dataset was 87.4%, demonstrating
generalizability concerns. Ayana et al. (2022) proposed a multistage
transfer learning algorithm where transfer learning from an
ImageNet pre-trained model to cancer cell line microscopic images
is further used as a pre-trained model for transfer learning on breast
cancer ultrasound images. Three pretrained models—ResNet50,
InceptionV3, and EfficientNetB2—as well as three optimizers—
Stochastic Gradient Descent (SGD), Adagrad, and Adam—were
analyzed in the model. The model was tested on two distinct
datasets and achieved test accuracies of 99 £ 0.612% and 98.7
+ 1.1% for the ResNet50-Adagrad-based model on the Mendeley
dataset and MT-Small-dataset, respectively. An ensemble method
utilizing Xception and MobileNet models was proposed by Islam
et al. (2024) for the detection and classification of breast cancer.
The method achieved a moderate accuracy of 85.69% on the
UDAIT dataset and 87.82% on the BUSI dataset. The gradient class
activation technique was utilized to clearly illustrate the model’s
decision-making process.

Dar and Ganivada (2024) proposed a method utilizing
MobileNet for feature extraction, and the relevant features from
the extracted features were selected using a genetic algorithm.
An ensemble method that combined decision tree, random forest,
gradient boost methods, and K nearest neighbor using a weighted
voting scheme was used to classify breast ultrasound images. The
method was evaluated using BUSI and UDIAT breast ultrasound
image datasets and obtained accuracy values of 96.53% and 97.51%,
respectively. However visual interpretation of the model was not
provided.

Kalafi et al. (2021) introduced a technique for classifying breast
cancer images that uses an attention module in the modified VGG-
16 architecture. An ensemble loss function combining binary cross-
entropy with the logarithm of the hyperbolic cosine loss is used
in the proposed method. The model was evaluated on a single
combined dataset alone. The breast ultrasound Dataset B, with 163
images, is merged with the dataset collected at University Malaya
Medical Centre (UMMC) with 276 images. The method obtained
an accuracy of 93% and an F1 score of 94%.

An explainable machine learning pipeline for the binary
categorization of breast ultrasound images was proposed by
Rezazadeh et al. (2022). This pipeline uses first and second-order
features taken from the ultrasound image’s region of interest to train
an ensemble of decision trees. The proposed method is evaluated
using the single BUSI dataset and obtained an accuracy of 91% and
an F1 score of 93%.

Moon et al. (2020) proposed a method in which three different
convolutional neural network architectures, viz. DenseNet,
VGGNet, and ResNet are integrated for the diagnosis of breast
cancer and obtained sensitivity, accuracy, specificity, precision,
AUC, and F1 score of 92.31%, 94.62%, 95.60%, 90%, 0.9711,
and 91.14%, respectively, for the BUSI dataset. The sensitivity,
accuracy, specificity, precision, AUC, and F1 score obtained for a
private dataset were 85.14%, 91.10%, 95.77%, 94.03%, 0.9697, and
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89.36%. An image fusion method was also employed. The private
dataset was obtained from Seoul National University Hospital
(SNUH, Korean) (Ahmad et al., 2022). The visual interpretability
of the model was not provided.

Ahmad et al. (2022) proposed a hybrid method utilizing
AlexNet and gated recurrent unit (AlexNet-GRU) model for the
detection and classification of breast cancer and obtained precision,
accuracy, specificity, and sensitivity of 98.10%, 99.50%, 97.50%,
and 98.90% on the Pcam dataset. The method was evaluated only
on a single dataset without assessing multiclass classification. The
latest developments in breast cancer diagnoses have progressively
investigated imaging modalities beyond conventional RGB images.
Hyperspectral imaging is an innovative image processing approach
that addresses the limitations of conventional image processing,
which evaluates images across multiple wavelength bands (Leung
et al, 2024). Machine learning methods, including Support
Vector Machines and Convolutional Neural Networks, can
proficiently utilize the enhanced spectral signatures present

TABLE 1 Comparison of breast ultrasound image classification methods.

10.3389/frai.2025.1672488

in Hyperspectral Imaging. Himel et al. (2024a) integrated
a generative adversarial network with a feature fusion-based
ensemble technique and a weighted average-based ensemble
technique for breast ultrasound image classification. The method
was evaluated using BUSI, UDIAT, and the Thammasat dataset
and obtained an accuracy of 99.7%, F1 score of 99.7%, and AUC
score of 99.9%. However, a visual interpretation of the model was
not provided.

The various breast ultrasound image classification methods are
summarized in Table 1.

3 Proposed methodolgy

The proposed HED-Net architecture presents an advanced
deep learning architecture for the multiclass classification of breast
ultrasound images into benign, malignant, and normal classes via
multimodel integration and ensemble methods.

References

Gupta et al. (2023)

Method used

Transfer learning based on ResNet50

Pros

High accuracy, feature extraction utilizing residual
connections

Constraints

Single model without ensembling, restricted
model interpretability

Deb and Jha (2023)

Fuzzy rank-based ensemble network

Utilizes the features from multiple CNNs,
visualization of the decision process

Low performance, Evaluation on a single
dataset

Nasiri-Sarvi et al.
(2024)

Mamba-based architecture

Captures long-range dependencies, better
representation learning, evaluated across multiple
datasets

Imbalance in the dataset is not taken into
account, no visualization of the decision
process

Alotaibi et al.
(2023)

Transfer learning based on VGG 19

Extensive pre-processing to enhance model
prediction, generalized the model across multiple
datasets

Single model without ensembling, No
visualization of the model

Meng et al. (2024)

Ensemble model with improved Swin
transformer

integrates local and global features, and
visualization of the model is included

Evaluation on a single dataset, high complexity

Jabeen et al. (2022)

DarkNet-53-based deep learning and
fusion of the best selected features

Feature selection using optimization, high
accuracy

Evaluation on a single dataset, no clinical
explanation of the model

Yadav et al. (2024)

Modified ResNet-101

Deep residual learning, high accuracy

Single model without ensembling, evaluation
on a single dataset

Wei et al. (2024)

Multi-feature fusion multi-task CNN
model

Visual interpretation of the model, evaluated using
two datasets

decline in performance on MIBUS implies
generalizability concerns

Ayana et al. (2022)

Multistage transfer learning with three
pretrained models

Two-stage transfer learning, good performance on
multiple datasets

Absence of feature level fusion, limited
interpretability

Islam et al. (2024)

Ensemble deep CNN model

Integrating the strength of two deep learning
models, explainability using Grad-CAM

Moderate accuracy

Dar and Ganivada
(2024)

MobileNet, genetic algorithm, and
ensemble learning

Ensemble voting, good accuracy

No visualization of the model

Kalafi et al. (2021)

Modified VGG-16 with attention
module

Improved feature discrimination utilizing
attention mechanism, visual interpretation using
Score-CAM

Evaluated on a single dataset

Rezazadeh et al.
(2022)

Decision tree ensemble method

Model interpretability

Evaluated on a single dataset, manual
extraction of region of interest

Moon et al. (2020)

Ensemble-based CNN architecture with
image fusion method

evaluated on multiple datasets

No visual interpretability of the model.

Ahmad et al. (2022)

AlexNet-gated recurrent unit

High accuracy

Evaluated on a single dataset, only binary
classification can be done.
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3.1 HED-Net architecture

The HED-Net architecture is depicted in Figure 1. The
HED-Net architecture for breast ultrasound image segmentation
employs three complementary architectures, EfficientNetB7,
DenseNet121, and ConvNeXtTiny for extracting hierarchical
features from the breast ultrasound images. EfficientNetB7,
DenseNet121, and ConvNeXtTiny are used as the foundational
networks for our hybrid ensemble learning framework because
of their complementary representational abilities. EfficientNetB7
has exhibited exceptional performance in medical image analysis
by optimizing accuracy and parameter efficiency using compound
scaling. DenseNet121 was selected for its dense connectivity
mechanism, which alleviates vanishing gradients and enhances
feature reuse, rendering it suitable for capturing intricate structural
details in ultrasonic textures. ConvNeXtTiny, a contemporary
convolutional architecture influenced by transformer design
concepts, provides efficient computing while maintaining robust
global feature extraction capabilities, rendering it appropriate
for use in real-time or resource-limited settings. All three
backbone networks, namely, EfficientNetB7, DenseNetl21, and
ConvNeXtTiny, were initialized with weights pretrained on
ImageNet. This transfer learning methodology is critical due to the
small size of medical imaging datasets.

Numerous traditional CNN architectures, including VGG,
ResNet, Xception, MobileNet, and Inception, have been extensively
employed in medical imaging research. This study specifically

10.3389/frai.2025.1672488

concentrated on selecting models that provide complementary
and non-redundant feature extraction. Although VGG is simple
and extensively utilized, its substantial parameter size renders
it inefficient for medical imaging jobs with constrained data.
ResNet continues to serve as a robust baseline; nevertheless, its
feature representation significantly overlaps with that of DenseNet
and EfficientNet, and initial experiments revealed no notable
advantage over the chosen models. Xception and Inception
emphasize multi-scale feature extraction; however, they may lack
the hierarchical detail offered by DenseNet. MobileNet is optimized
for efficiency, potentially compromising the representational
capacity required for precise lesion classification. The combination
of EfficientNetB7 for global semantic features, DenseNet121 for
local structural details, and ConvNeXtTiny for efficient global
context modeling was anticipated to yield superior feature
complementarity compared to the exclusive use of ResNet or VGG.

The stacked feature representation method employed in this
study aligns with current medical imaging literature. Himel et
al. (2024b) integrated feature embeddings from two pretrained
CNN architectures (EfficientNetB7 and MobileNetV3Large)
within a multi-stage network for the detection of acute leukemia,
demonstrating that multi-branch feature fusion enhances
classification performance across diverse datasets. Recent research
indicates that integrating information from several convolutional
pipelines markedly enhances classification performance in
both medical and non-medical image domains. Himel and
Hasan (2025) introduced a width-scaled lightweight architecture

Input Breast Ultrasound Image(I;;)

Visualization

Parallel CNN Feature Extraction
DenseNet121 (D)

EfficientNetB7 (E)

0£(2560) 0p(1024)

Module

GRAD CAM

Ocr(768)

l

1 SHAP

Feature Concatenation
Fe =[0g 1| Op Il O¢r]

|

XGBoost Classifier

v

-/

Soft Voting Ensemble
Ogy = argmax(Pp, Py, Py)

l

[ Final Feature Prediction

—

[ Final Feature Prediction ]

FIGURE 1
Architecture of HED-Net.
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incorporating nested feature fusion and channel spatial attention
for the recognition of Bengali sign language, attaining state-
of-the-art outcomes using stacked feature representations.
Their methodology underscores the advantages of concurrent
convolutional operations and multiple-stage fusion, reinforcing
the rationale for incorporating EfficientNetB7, DenseNet121, and
ConvNeXtTiny into a cohesive ensemble framework.

The input ultrasound images (i) are fed to the three parallel
deep learning architectures. Fine-grained textures and homogenous
patterns are detected by EfficientNetB7. It processes the Iy with
compound scaled convolutional blocks enhanced by squeeze and

excitation to extract the feature map Of as shown in Equation (1).
O = Fe(Iy) (1

DenseNet121 maintains edge continuity for smooth boundaries
and speculated margins. Hierarchical features (Op) are extracted
from Iy via dense patterns as shown in Equation (2).

Op = Fp(Iy) (2)

ConvNeXtTiny advanced CNN architectures

integrated with transformer-inspired elements to extract Oct from

employs
Iy as given in Equation (3).
Ocr = Fcr(Iy) 3)

The Og, Op, and Ocr extracted from the global average pooling
layer of each of the CNNs are concatenated to form a unified feature
representation Fr as shown in Equation (4).

Frp = [Og || Op || Ocr] (4)

The concatenated features are fed to XGBoost for classification,
which classifies the input ultrasound images into benign,
malignant, and normal. Dominant modalities from each CNN
architecture are identified via feature importance analysis. The soft
voting ensemble method has also been implemented by combining
the predictions of the individual convolutional neural network
models by averaging their predicted probabilities.

3.2 Feature extraction

Each of the convolutional neural network architectures is
trained separately on the Iy to learn the hierarchical feature
representations from input data. Og, Op, and Ocr are extracted
from the global average pooling layer or pre-classification
layer of each model since it provides the most semantically
rich and high-level discriminative features suitable for fusion.
Local texture patterns, as well as global structural information,
which are essential for accurately classifying breast lesions, have
been captured.

3.2.1 EfficientNetB7

EfficientNetB7 is a convolutional neural network architecture
starting with a convolutional layer (C) followed by batch
normalization (BN) and Swish activation (S), transforming breast
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ultrasound images into a feature map of dimension (112 x 112 x 64)
as shown in Equation (5).

Zo = S (BN (C3x3(X))) (5)

A series of mobile inverted bottleneck blocks is incorporated
with the expansion phase (Z), depth-wise separable convolutions
(Zpw), and squeeze and excitation modules (Zs,) to enhance
channel-wise recalibration. These components are efficacious
for capturing precise differences in lesion morphology for
the classification of breast ultrasound images. The expansion
convolutions are given in Equation (6),

Zg = S (BN (C1x1(Z0))) (6)

Depthwise(Zpw) convolutions are given in Equation (7), where
DC represents depth-wise convolutions.

Zpw =S (BN (DC3><3 or 5><5(ZE))) (7)

Squeeze and excitation function (Zs;) is defined in
Equation (8).

Zsy = 0 (m2R(w1G (Zpw))) © Zpw (8)

where o is the sigmoid activation function, w; and w, are
the learnable weight matrices, R represents the ReLU activation
function, G represents global average pooling, and © denotes
element-wise multiplication. Channels are reduced to the output
dimension via projection as in Equation (9).

Zout = BN (Clxl (ZSE)) )

The model attains optimal performance by scaling its depth (d),
width (w), and input resolution (r), by utilizing a compound scaling
coeflicient, as given in Equation (10).

d=o"w=p" =Y (10)

For EfficientNetB7 the values are « = 1.2,8 = 1.1,y = 1.15
and ¥ = 7. The final stage of the model includes a 7 x 7 x 640
convolutional output followed by global average pooling(G) and 1
x 1 convolution for projecting the features into a 2560-dimensional
space as shown in Equation (11).

Or = Cix1 (G (Fcony)) € R¥ (11)

The feature vector from the global average pooling layer (Og) is
extracted for concatenation, before the application of the softmax
layer, since it contains high-level semantic representations of the
input image. The diverse feature learning of the model is preserved
by utilizing the pre-final feature vector of dimension 2560 as shown
in Equation (11). The architecture of the EfficientNetB7 is shown in
Figure 2.
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FIGURE 2
Architecture of EfficientNetB7.

3.2.2 DenseNet121

DenseNet121 is a deep learning architecture with dense
connectivity, where each layer within a dense block receives inputs
from all the preceding layers, strengthening gradient flow and
promoting efficient feature reuse. Breast ultrasound images of
dimension 224 x 224 x 3 initially undergo feature extraction via
7x7 convolutional layer followed by batch (BN), ReLU activation
(R), and 3x3 max pooling (M3x3) as shown in Equation (12).

Fpr = Msyx3 (R (BN (Crx7(X)))) (12)

The feature maps generated are processed through four
dense blocks containing 6, 12, 24, and 16 convolutional layers,
respectively. The output feature map of the ith layer in the current
dense block is generated by applying the composite function H to

the feature maps from the previous layers 0 to i — 1 in the same
dense block, as shown in Equation (13).

Dj = H; ([Do, Dy . ..., Di—1]) (13)
The composite function H; is given in Equation (14).
H;j = Csx3 (R (BN (Cix1 (R (BN(Y)))))) (14)

Y represents the concatenation of all the feature maps from
earlier layers in the dense block. Each dense block is followed by a
transition layer consisting of 1 x 1 convolutions and average pooling
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(A2x2), which performs downsampling and channel compression.
The functioning of the i’ transition layer is given in Equation (15).

Ti = Azx2 (Cix1 (R (BN(DY)))) (15)

The mid-level spatial and edge information is captured by
DenseNetl21, improving the generalization capability of the
classification model. The final feature map 7x 7 x 1024 from dense
block 4 (Dy4) is reduced to a 1024 dimensional vector via global
average pooling(G) as shown in Equation (16).

Op = G(Dy) € R (16)

This feature vector is further concatenated with the features
extracted from the EfficientNetB7 and ConvNeXtTiny to form a
feature representation for breast ultrasound image classification.
The DenseNetl21 assures significant feature reuse, alleviates
vanishing gradients, and improves interpretability via hierarchical
feature integration. The architecture of DenseNet121 is given in
Figure 3.

3.2.3 ConvNeXtTiny

ConvNeXtTiny is a transformer design inspired convolutional
neural network architecture with an initial 4 x4 convolutional layer,
which transforms the input images of dimension 224 x224x 3 into
non-overlapping patches of dimension 56x56 with 96 channels.
Layer normalization is applied to reduce internal covariance
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FIGURE 3
Architecture of DenseNet121.

shift and to control feature scaling across channels, thereby
facilitating quick convergence. Four stages of convNeXt blocks
with intermediate downsampling layers follow layer normalization
(O(LN)).

Each ConvNeXT block includes depthwise convolutions
(DC), layer normalizations (LN), GeLU activations (G), channel
compression, and dropout. The output of each block is fed back
to the input (I(CN)) via residual connections. The functioning of
each ConvNeXT block (O(CN;)is shown in Equation (17).

O(CN;) = (DCix1 (G (L (Csx3 (O(LN)))))) + I(CN)) ~ (17)

The first, second, and fourth block consists of three convNeXt
blocks each, and the third stage contains nine blocks. The
channel dimensions of the four stages are 96, 192, 384, and 768,
respectively, which are progressively doubled via downsampling,
which includes layer normalizations and 2x2 convolutions as

shown in Equation (18).
Fps = Cyx2 (L (DSin)) (18)

The 7x7x768 feature map from the fourth ConvNeXT
block(CNy) is subjected to global average pooling to extract a

Frontiersin Artificial Intelligence

compact representation of tumor characteristics as shown in
Equation (20).

Ocr = G(CN,) € R7®® (19)

The output feature vector from EfficientNetB7 (O) is fused

with feature vectors from DenseNet121 (Op) and ConVNeXtTiny

(Oc;) to form a unified feature representation for beast ultrasound

image classification. The architecture of ConvNeXtTiny is shown in
Figure 4.

3.3 XGBoost ensemble method

The fused feature vector of dimension 4,352 generated by
combining the feature vectors from the three CNN architectures
is fed to the gradient boosted decision tree learner (XGBoost)
(Liew et al., 2021), to learn complex decision boundaries for lesion
classification, as given in Equation (20).

y = XGBoost(Fr) (20)
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FIGURE 4
Architecture of ConvNeXtTiny.

y represents the class probability score for the benign, malignant,
and normal categories.

XGBoost is an ensemble method that constructs a chain of
decision trees with each successive tree correcting the errors of
its predecessors. The decision trees are built sequentially, and the
output of all the previous trees is combined additively as shown in
Equation (21),

K
= filx) (1)
k=1

where J; is the final predicted value, fi(x;) is the output of the Kt
tree, and K represents the number of trees. Trees are constructed

iteratively to minimize the error from previous trees. The objective
function for the XGBoost classifier is given in Equation (22).

K
00) =13 + Y_ Q(fi)

k=1

(22)

where I(y;, ;) is the categorical cross entropy loss function
calculating the difference between actual value and predicted value,
Q(fi) is the regularization term for reducing complex trees by
penalizing the number and size of leaves in the tree as given in
Equation (23).

A

J

Q) =yT+ w} (23)

T
=1

N | =

where y is the regularization parameter for controlling the
complexity of the tree, and T is the number of leaves in the
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tree. The squared weight of the leaves wj2 is penalized by the
parameter A. XGBoost uses the second Taylor expansion for
efficient optimization as in Equation (24).

IRED [g,f[(x,-) + %h,ftz(x,-)] + Q(fi) (24)

i=1
where g; and h; are the first (gradient) and second (Hessian)
derivatives of the loss function. At each node, the best split
is determined by calculating the information gain as given by
Equation (25).

1[ G G
2

G 2
Information Gain = — (GL + Gr) ] _
Hp + A

Hp + A H;p +Hrp+ A

(25)
where Gr, Gr are sums of gradients in left and right child
nodes, and Hj, Hg are sums of Hessians in left and right child
nodes. The XGBoost classifier makes final predictions based on the
concatenated features, and the feature importance is visualized to
understand which of the features from the various architectures
contribute most significantly to the model’s decision process.

3.4 Soft voting ensemble method

The soft voting aggregates the class probabilities predicted by
the EfficientNetB7, DenseNet121, and ConvNeXtTiny to generate
the final decision. Soft voting is an ensemble method in which the
probability scores for each of the base models for all the classes
are considered, and the weighted average of these probabilities is
computed to derive the final prediction.
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The probabilities predicted by each of the models, 1: procedure Input(Breast ultrasound image dataset
EfficientNetB7, DenseNetl21, and ConvNeXtTiny, for the Iy with class labels)
three classes B(benign), M(malignant), and N(normal) are 2: end procedure
averaged across the three models. Let pg, pg/l, and pg represent the 3: Pre-processing:
probabilities predicted by EfficientNetB7 for the benign, malignant, 4: Resize all images to 224 x 224 pixels.
and normal classes, respectively. The class with the maximum 5: Normalize pixel values to [@, 1].
average probability is selected as the maximum prediction. 6: Apply one-hot encoding for class labels.
Similarly, let pB, p¥, and pN denote the class probabilities 7: Dataset Partitioning:
predicted by DenseNet121, and pB, p¥, and pN be the class 8: Perform stratified 80:20 train—test split.
probabilities predicted by ConvNeXtTiny. The average probability 9: From the training set, allocate 20% as validation
for each class B (Pg), M(Py) and N(Py) across the three models data.
are calculated as given in Equations (26), Equation (27), and 10: Data Augmentation (Training Set Only):
Equation (28). 11: Apply random rotations (+£10°), width/height
B B B shifts (£10%), zoom (£10%) and horizontal flips.
I_’Bzw (26) 12: Preserve original labels after augmentation.
3 13: Feature Extraction using Three Pretrained CNNs:
M M M 14: Load pretrained EfficientNetB7, DenseNet121 and
Py = m (27) ConvNeXtTiny.
3 15: for each input image X do
N N 16: Extract feature vector O (X) from
Py = m (28) EfficientNetB7.
3 17: Extract feature vector Op(X) from DenseNet121.
The output prediction is given as the class with the maximum 18- Extract feature vector 0cr(X) from
average probability as given by Equation (29). ConvNeXtTiny .
Osy = arg max (PB>PM:13N) (29) 19: Form fused feature representation Fg(X) =
[O£(X) 11 0p(X) 11 OcT(X)].
The soft voting ensemble method integrates the advantages 20: end for
of multiple models by averaging their probabilistic predictions, 21: XGBoost Feature-Level Ensemble:
yielding more dependable and interpretable classifications for 22: Train an XGBoost classifier using
breast ultrasound images. {Fr(X), label(X)}.
The overall algorithm of the model is given in Algorithm 1. 23: Obtain predicted class probabilities y(X).
24: Soft Voting Output-Level Ensemble:
25: for each image X do
4 Experimental results 26: Obtain class probabilities from each CNN:
pe(X), pp(X), pe(X) .
In this section, the dataset used is described along with the data 27: Compute average class probability: P(X) =
pre-processing techniques. Training and testing criteria, along with £e(X)+pp X)+pe(X)
the data augmentation methods, are also explained. 28: Predict class with maximum probability:
Osv (X) =argmax(P(X)).
29: end for
4.1 Dataset description 30: Evaluation:
31: Evaluate models on the independent test set
Three breast ultrasound image datasets have been used to using:
evaluate the proposed method. With 780 images divided into 32: Accuracy, Precision, Recall, F1-Score, and AUC.
benign, malignant, and normal groups, the Breast Ultrasound 33: Generate confusion matrices and ROC curves.
Image Dataset (BUSI) (Al-Dhabyani et al, 2020) is the first 34: Model Interpretability (Post-hoc):
dataset used. The Breast Ultrasound Lesion Segmentation dataset 35: Compute SHAP values for XGBoost using fused
(BUS-UCLM) (Vallez et al., 2025), which consists of 683 images feature vectors Fr(X).
categorized into benign, malignant, and normal classes, is also used 36: Generate SHAP bar plots and summary dot plots for
to assess the approach. The third dataset used to assess the model each class.
is the UDIAT dataset (Yap et al., 2017) with 163 ultrasound images. 37: Apply Grad-CAM to the final convolutional layer
The benign class involves breast images with masses or lumps that of EfficientNetB7, DenseNet121, and ConvNeXtTiny.
are not cancerous, whereas the malignant class involves images 38: Overlay heatmaps on input ultrasound images to
with masses that are cancerous and can spread outside the breast, highlight important regions.

eventually affecting the whole body. The normal class consists of

non-cancerous images without masses or lumpS. Algorithm 1. HED-Net: hybrid ensemble classification framework.
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FIGURE 5
Images from three datasets (a) Benign, (b) Malignant, (c) Normal. (Top) BUSI, (Middle) BUS-UCLM, and (Bottom) UDIAT.

4.1.1 Breast Ultrasound Image dataset (BUSI)

The Breast Ultrasound Image dataset (BUSI) has been used
to evaluate the model. The dataset comprises 780 ultrasound
images obtained from 600 female patients, categorized into benign,
malignant, and normal classes. The dataset includes original as well
as ground truth images. This public dataset is extensively utilized
for research on breast lesion classification and segmentation. The
top row of the Figure5 shows sample benign, malignant, and
normal images from the BUSI dataset.

4.1.2 BUS-UCLM dataset

The BUS-UCLM dataset includes 683 images from 38 patients,
of which 174 images are benign, 90 are malignant, and 419
are normal. Ultrasound scans were acquired from 2022 to 2023,
utilizing the Siemens Acuson S2000 ultrasound system. Multiple
images were obtained for each patient, captured from distinct
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breast cross sections to guarantee thorough coverage of the area
of interest. The ground truth is provided as RGB segmentation
masks in separate files, where black denotes normal breast tissue,
green signifies benign tumors, and red represents malignant lesions.
The segmentation annotations given by expert radiologists facilitate
precise model training and assessment, rendering this dataset a
significant resource in the field of computer vision and public
health, enabling the development of models for distinguishing
between benign and malignant tumors in breast ultrasound images.
The sample images from the BUS-UCLM dataset are shown in the
middle row of the Figure 5.

4.1.3 UDIAT dataset

UDIAT dataset consists of 163 ultrasound images acquired
using the Siemens ACUSON Sequoia C512 system 17L5 HD linear
array transducer (8.5 MHz) from the UDIAT Diagnostic Centre of
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the Parc Tauli Corporation, Sabadell (Spain) in 2012. Out of the
163 cancerous images, 109 were benign images, and 54 were normal
images. The sample images from the UDIAT dataset are shown at
the bottom of the Figure 5.

4.2 Experimental setup

Google Colab notebooks, a cloud computing environment,
were used to complete the suggested job. For creating a deep neural
learning model, Google Colab provides a graphics processing unit
(GPU) and a tensor processing unit (TPU). This made it easier for
the deep learning model to be trained and run effectively. Table 2
shows the system configuration utilized for the experimentation of
the proposed HED-Net.

4.3 Data pre-processing and
augmentations

The images of the BUSI dataset are resized to 224x224 to
match the size of the convolutional neural networks. The image
pixels are normalized to the range of 0-1. One-hot encoding is
applied to convert class labels to categorical classes for multiclass
classification.

TABLE 2 Computer Configuration of the HED-Net.

ltem Configuration

10.3389/frai.2025.1672488

The BUS-UCLM dataset comprises 683 images along with their
ground truth RGB segmentation masks. The black masks indicate
normal breast tissues, green masks indicate benign lesions, and the
red masks indicate malignant lesions. The labels are extracted from
the masks based on color detection and are encoded using one-hot
encoding for multiclass classification.

Each of the BUSI, BUS-UCLM, and UDIAT datasets has been
split into training, validation, and testing subsets. A preliminary
80:20 stratified split was employed to acquire a blind test set
consisting of 156 images for BUSI, 137 images for BUS-UCLM,
and 33 images for UDIAT. Twenty percent of the remaining
training subset was allocated as a validation set to optimize model
hyperparameters and implement early stopping.

Various transformations have been applied to the images in the
BUSI and BUS-UCLM dataset to artificially improve their size. The
issue of class imbalance, frequently observed in medical datasets,
was addressed by the implementation of data augmentation
techniques (Haider et al, 2025). The methods used for data
augmentation include random rotations of up to 10 degrees, width
and height shifts of up to 10%, zoom variations of up to 10%,
and horizontal flips. The original label information of the images
is maintained to ensure consistency of the class assignments.
Additionally, nearest neighbor filling is used to address any gaps
introduced during augmentation. These modifications significantly
enhance the diversity of the training data, allowing the model
to generalize better to variations in lesion scale, orientation, and

TABLE 4 Training samples before and after data augmentation for each
dataset.

Dataset Approx.

augmented

Original Augmentation

factor

training

Processor Intel (R) Xeon (R) Gold 6230 CPU @2.10GHz samples samples
Graphics card NVIDIA Quadro RTX 5000 16 GB BUSI 499 15x = 7,485
Ram size 64 GB BUS-UCLM 436 15x ~ 6,540
Hard-disk size 2TB UDIAT 104 10x =~ 1,040

TABLE 3 Dataset partitioning for BUSI, BUS-UCLM, and UDIAT datasets.

Dataset Partition Malignant Normal
BUSI Original 780 437 210 133
Training 499 280 134 85
Validation 125 70 34 21
Test 156 87 42 27
BUS-UCLM Original 683 174 90 419
Training 436 111 57 268
Validation 110 28 15 67
Test 137 35 18 84
UDIAT Original 163 109 54 N/A
Training 104 70 34 N/A
Validation 26 17 9 N/A
Test 33 22 11 N/A

Values indicate the number of samples per class for training, validation, and testing subsets.
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FIGURE 6

Data augmentation on BUSI, BUS-UCLM, and UDIAT datasets. (Top three) BUSI, (Middle three) BUS-UCLM, and (Bottom two) UDIAT.
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position. Table 3 shows the dataset partitioning for training, test,
and validation subsets.

Training samples for BUSI, BUS-UCLM, and UDIAT datasets
are shown in Table 4. Augmentation is implemented on-the-
fly exclusively on the training set; the validation and test sets
remain unchanged.
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The top three rows of Figure6 demonstrate the data
augmentation techniques applied to benign, malignant, and normal
images in the BUSI dataset; the middle three rows of the Figure 6
show the results of the data augmentation in the BUS - UCLM
dataset. The data augmentation in the UDIAT dataset are shown
at the bottom of the Figure 6.
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TABLE 5 Hyperparameters for the proposed HED-Net model.

Model(s) Hyperparameter Value
EfficientNetB7, DenseNet121, Learning rate 1x107*
ConvNeXtTiny
Batch size 16
Epochs 15
Dropout rate 0.30
XGBoost n_estimators 100
learning_rate 0.10
max_depth 6
eval_metric mlogloss

4.4 Hyperparameter tuning

Table 5 illustrates the hyperparameters used during the training
of the deep neural networks and the XGBoost classifier. Deep
learning models were optimized with a learning rate of 1 x 1074, a
batch size of 16, and early stopping combined with learning rate
decrease callbacks to mitigate overfitting. All CNN models were
trained via the Adam optimizer.

The ROC curve and confusion matrix obtained for
EfficientNetB7, DenseNet121, and ConvNeXtTiny on the
BUSI dataset are shown in Figure 7. The ROC curve and confusion
matrix obtained for XGBoost and Soft Voting ensemble on the
BUSI dataset are shown in Figure 8.

4.4.1 Evaluation metrics

Various metrics used to evaluate the model include accuracy,
precision, recall, and F1-score. Accuracy is the ratio of the correctly
classified predictions to the total number of predictions made by
the model, as given in Equation (30).

Accuracy = P+ IN (30)
Y= TPy TN+ FP 1 EN

Precision is the ratio of the model’s true positive classifications
to the total positive classifications made by the model, as given by
Equation (31).

TP

oI G1)
TP + FP

Precision =
Recall or sensitivity is the ratio of actual positive predictions
that are correctly identified, as given by Equation (32).

TP
Recall = —— (32)
TP + FN

F1 score is the harmonic mean of precision and recall as given
in Equation (33).

2 x Precision x Recall
F1 Score = — (33)
Precision + Recall
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4.5 Performance evaluation

Breast ultrasound images are analyzed separately utilizing
three different CNN architectures (EfficientNetB7, DenseNet121,
and ConvNeXtTiny), subsequently employing two ensemble
methodologies (feature-level fusion with XGBoost and soft voting).
Comprehensive metric values for each model and dataset are
presented in Tables 6-8.

The optimal individual backbone on the BUSI dataset is
ConvNeXtTiny. The soft voting ensemble enhances classification
accuracy by approximately 2.2% (from 86.54% to 88.46%) and
results in a relative AUC increase of about 0.9% compared to
the optimal individual AUC. The feature-level XGBoost ensemble
surpasses the individual CNNs; however, soft voting is the most
precise configuration on BUSIL.

In the BUS-UCLM dataset, soft voting consistently surpasses all
individual backbones, yielding a relative accuracy enhancement of
approximately 3.3% in comparison to the highest-performing
(ConvNeXtTiny). The AUC
approximately 0.6% compared to the most robust single-

singular model increases by
network baseline, indicating that the probabilistic aggregation of
the three models produces better-calibrated predictions on this
more heterogeneous dataset.

The impact of ensembling is significantly more evident on
the UDIAT dataset. Soft voting yields an approximate 6.7%
enhancement in accuracy compared to the optimal individual
backbone and increases AUC by roughly 2.6%. Although the
XGBoost ensemble does not surpass the individual models in
accuracy on UDIAT, it is valuable for assessing feature importance
and enhances the output-level ensemble.

In all three datasets, the proposed HED-Net soft voting
strategy consistently enhances accuracy and AUC compared to its
individual backbones, demonstrating that the three architectures
offer genuinely complementary representations. The confusion
matrices and ROC curves in Figures 7-12 demonstrate that
ensembling diminishes both false negatives and false positives
compared to individual CNNs, which is essential in the context of
breast cancer screening.

Statistical
that Soft Voting yields genuine performance enhancements,

investigation with FDR correction indicated
demonstrating considerable improvement over EfficientNetB7
(p < 0.05) and notable trends of enhancement over other
individual models, confirmed by consistently superior probability
calibration. The HED-Net ensemble has approximately 99 million
parameters and necessitates around 0.198 billion FLOPs per
inference, in contrast to EfficientNetB7, which contains 64
million parameters and requires approximately 0.128 billion
FLOPs. This signifies a considerable rise in complexity (about
55% more FLOPs), although it remains computationally viable
for real-time clinical application on contemporary GPUs. The
enhancements in diagnostic precision and reliability justify this
additional expense, especially in environments with adequate
computational capabilities.

The results obtained for the models on the BUSI dataset are
given in Table 6, and the results obtained on the BUS-UCLM
dataset are given in Table 7. Table 8 shows the performance analysis
of various models on the UDIAT dataset.
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FIGURE 7
ROC Curve and Confusion Matrix on BUSI dataset (a, b) EfficientNetB7, (c, d) DenseNet121, and (e, f) ConvNeXtTiny in the classification of breast
ultrasound images into benign, malignant, and normal categories. The x-axis denotes the false positive rate, while the y-axis signifies the true positive
rate. Each colored line represents a distinct class: benign (blue), malignant (orange), and normal (green), with corresponding Area Under the Curve
values. The diagonal dashed line signifies the random classifier baseline (AUC = 0.5) (Test set size = 156).
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ROC curve and confusion matrix on BUSI dataset (a, b) XGBoost, (c, d) soft voting ensemble (Test set size = 156).
TABLE 6 Performance analysis of the various models on BUSI dataset.
Model Accuracy (%) Precision (%) Recall (%) F1 Score (%) AUC (%)
EfficientNetB7 78.85 79.77 78.85 79.14 92.56
DenseNet121 78.85 78.65 78.85 78.52 91.39
ConvNeXtTiny 86.54 86.64 86.54 86.39 94.55
XGBoost ensemble 87.18 87.29 87.18 87.00 93.01
Soft voting ensemble 88.46 88.49 88.46 88.45 95.38
Bold values indicate the best performing results for each evaluation metric among the compared models.
TABLE 7 Performance analysis of the various models on BUS-UCLM dataset.
Model Accuracy (%) Precision Recall (%) F1 Score (%) AUC (%)
EfficientNetB7 85.40 89.09 85.40 86.01 95.86
DenseNet121 78.83 78.37 78.83 78.26 90.22
ConvNeXtTiny 87.59 88.74 87.59 87.60 96.70
XGBoost ensemble 86.13 86.26 86.13 85.76 93.64
Soft voting ensemble 90.51 90.56 90.51 90.51 97.23

Bold values indicate the best performing results for each evaluation metric among the compared models.
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TABLE 8 Performance analysis of the various models on UDIAT dataset.

10.3389/frai.2025.1672488

Model Accuracy (%) Precision (%) Recall (%) F1 Score (%) AUC (%)
EfficientNetB7 90.91 100 72.73 84.21 96.69
DenseNet121 90.91 90 81.82 85.71 96.69
ConvNeXtTiny 87.88 88.89 72.73 80 94.21
XGBoost ensemble 84.85 100 54.55 70.59 86.36
Soft voting ensemble 96.97 100 90.91 95.24 99.17

Bold values indicate the best performing results for each evaluation metric among the compared models.

The ROC curve and confusion matrix obtained for
EfficientNetB7, DenseNet12l, and ConvNeXtTiny on the
BUSI dataset are shown in Figure 9. The ROC curve and confusion
matrix obtained for XGBoost and Soft Voting ensemble on the
BUSI dataset are shown in Figure 10.

The ROC curve and confusion matrix obtained for
EfficientNetB7, DenseNet121, and ConvNeXtTiny on the UDIAT
dataset are shown in Figure 11. The ROC curve and confusion
matrix obtained for XGBoost and Soft Voting ensemble on the
UDIAT dataset are shown in Figure 12.

4.6 Visualization using SHAP

SHAP (Shapley Additive exPlanations) analysis is employed
to improve the interpretability of the model by assessing
the contribution of each feature to the final prediction. The
deep features extracted from EfficientNetB7, DenseNetl21, and
ConvNeXtTiny are concatenated to a singular 4352 dimensional
vector and are fed to the XGBoost Classifier. SHAP values are
calculated utilizing a unified explainer developed over the trained
XGBoost ensemble method. The values are utilized to generate
bar plots as well as dot plots for benign, malignant, and normal
classes, highlighting the most significant feature per class and its
influence on predictions. The SHAP plot for malignant on the BUSI
dataset and BUS-UCLM is shown in Figure 13. The SHAP plot for
benign and malignant images on the UDIAT dataset is shown in
Figure 14.

4.7 Visualization using Grad-CAM

The Grad-CAM model demonstrates the visual interpretability
of the proposed HED-Net model by emphasizing the areas of
breast ultrasound images that significantly impacted each model’s
prediction. Grad-CAM is employed on the last convolutional
layer of EfficientNetB7, DenseNet121, and ConvexNet models.
The gradients of the predicted class score in relation to the
feature maps are calculated using representative test images for
the benign, malignant, and normal classes. These maps are then
weighted using the averaged gradients to create a heat map. The
generated heat maps are superimposed on the original images
to indicate the areas of focus for each model during decision-
making. The explainable model improves the model transparency
and dependability by verifying whether the predictions are based
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on pertinent tumor regions. The GRAD-CAM visualizations for
the benign, malignant, and normal classes on the BUSI dataset
are shown in the top three rows of Figure 15, and for the BUS-
UCLM dataset are shown in the middle three rows of the Figure 15.
The GRAD-CAM visualizations for the benign and malignant
classes on the UDIAT dataset are shown in the bottom two rows
of Figure 15.

4.8 A comparison of the state of the art
architectures with the HED-NET
architecture

Table 9 delineates the performance of HED-Net compared
to notable state-of-the-art methodologies on breast ultrasound
datasets. Recent methodologies utilizing singular, extensively
optimized  architectures or advanced transformer-based
frameworks on the BUSI dataset demonstrate exceptionally
high accuracies, frequently exceeding 97%. Conversely, HED-
Net emphasizes robustness across various datasets and delivers
competitive accuracy, attaining a notable AUC of 95.38%. In
comparison to transfer learning methods that lack ensemble
strategies, HED-Net enhances AUC by several percentage points
and provides a more equitable balance between accuracy and
probabilistic calibration.

In the BUS-UCLM dataset, which is infrequently utilized in
prior studies, HED-Net attains an accuracy of 90.51% and an AUC
of 97.23%. This signifies a distinct enhancement over the baseline
backbones and illustrates that the ensemble retains its superiority
when transitioning from a commonly utilized benchmark (BUSI)
to a more contemporary clinical dataset with varying acquisition
attributes.

On the UDIAT dataset, HED-Net achieves an accuracy nearing
the highest reported methods (exceeding 96%) while concurrently
delivering an exceptional AUC of 99.17%. The relative increase in
AUC compared to our most robust individual backbone on UDIAT
is approximately 2.6%, highlighting that the ensemble enhances
not only difficult classification decisions but also confidence
calibration, which is particularly critical in borderline or visually
ambiguous scenarios.

Although
marginally superior peak accuracies on individual datasets,
HED-Net consistent and  well-calibrated
performance across three distinct public datasets, yielding

some specialized architectures may attain

demonstrates
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FIGURE 9
ROC curve and confusion matrix on BUS-UCLM dataset (a, b) EfficientNetB7, (c, d) DenseNet121, and (e, f) ConvNeXtTiny (Test set size = 137).
relative enhancements over its constituent backbones of  SHAP-based explanations, HED-Net emerges as a robust
approximately 2% to nearly 7% in accuracy and up to and interpretable option for implementation in various

about 2.6% in AUC. When integrated with Grad-CAM and
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clinical settings.
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ROC curve and confusion matrix on BUS-UCLM dataset (a, b) XGBoost, (c, d) soft voting ensemble (Test set size = 137).
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5 Discussion

The HED-Net framework illustrates the effectiveness of hybrid
ensemble learning for classifying breast ultrasound images across
diverse datasets with differing characteristics. The performance
analysis uncovers several critical insights concerning model design,
generalization ability, and clinical relevance.

5.1 Ensemble effectiveness and
complementary feature extraction

The enhanced efficacy of the soft voting ensemble compared
to individual models highlights the importance of integrating
complementary architectures. EfficientNetB7, utilizing compound
scaling and depthwise separable convolutions, effectively captures
intricate local textures, which is particularly advantageous for
differentiating subtle morphological variations between benign
and malignant lesions. The dense connectivity of DenseNet121
enabled hierarchical feature reuse, maintaining structural details
and edge continuity essential for analyzing lesion boundaries.
ConvNeXtTiny, influenced by transformer architectures, offered
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strong global context modeling via large-kernel operations,
improving sensitivity to spatial relationships within the ultrasound
image. The 2.2-6.7% enhancements in accuracy of soft voting
compared to the optimal single model across datasets validate that
ensemble diversity diminishes variance and alleviates individual
model biases.

5.2 Generalization across datasets

The consistent performance of HED-Net across the BUSI,
BUS-UCLM, and UDIAT datasets underscores its generalization
ability. The model attained accuracies of 88.46%, 90.51%, and
96.97%, respectively, illustrating its adaptability to differences in
image acquisition protocols, ultrasound machine models, and
patient demographics. The BUS-UCLM dataset, characterized by
its superior resolution and intricate segmentation masks, enabled
the model to utilize structural annotations during training, yielding
robust performance despite its reduced size. On the UDIAT dataset
comprising solely benign and malignant classes, HED-Net achieved
an AUC of 99.17%, demonstrating exceptional discriminative
capability for binary classification tasks.
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ROC curve and confusion matrix on UDIAT dataset (a, b) XGBoost, (c, d) soft voting ensemble (Total test set size = 33).

5.3 Interpretability and clinical trust

The black box nature of deep learning models is a major
obstacle to clinical adoption that is addressed by the integration
of SHAP and Grad-CAM visualizations. Grad-CAM heatmaps
consistently emphasized clinically significant regions. SHAP
analysis that from EfficientNetB7 and
ConvNeXtTiny were predominantly influential in malignant

indicated features
classification, whereas DenseNet121 features were more significant
for benign cases. This indicates that malignant lesions are
more accurately defined by local texture irregularities and
global spatial deformations, while benign lesions display more
structured patterns.

6 Conclusion and future scope

A hybrid ensemble deep learning framework has been put
forth to accurately classify breast ultrasound images into three
categories: normal, malignant, and benign. The design integrates

Frontiersin Artificial Intelligence

EfficientNetB7, DenseNetl121, and ConvNeXtTiny to leverage
the complementary characteristics of various architectures.
EfficientNetB7 has superior computing efficiency and local
pattern extraction owing to its compound scaling and depthwise
convolutions. DenseNet121 enhances fine-grained feature learning
by its dense connectivity, facilitating feature reuse and enhancing
gradient flow. ConvNeXtTiny enhances architectural diversity
by utilizing larger kernel sizes to capture extensive spatial
relationships and employing contemporary convolutional designs.
Two ensemble methodologies, feature-level fusion utilizing
XGBoost and soft voting at the output stage, were employed for
classification. The feature-level ensemble method attained an
accuracy of 87.19% on BUSI and 86.13% on BUS-UCLM, whereas
the soft voting ensemble method enhanced the results to 88.46%
and 90.51%, respectively. To improve interpretability, SHAP and
Grad-CAM approaches were utilized, offering insight into the
decision-making process of the model and emphasizing clinically
significant tumor locations.

The HED-Net model, even though it exhibits great results,
has numerous drawbacks that require attention. The dependence
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FIGURE 13

SHAP analysis for the malignant classification on two different datasets. Plots (a) and (c) are SHAP bar plots for the BUSI and BUS-UCLM datasets,
respectively, which rank the top 20 features based on their average impact on the model's output. Plots (b) and (d) are the corresponding SHAP
summary (dot) plots, which illustrate both the direction and magnitude of a feature’s effect. Each dot represents a sample, with its horizontal position

showing the SHAP value and its color representing the feature's value.
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Grad-CAM Visualization by Model and Class (UDIAT)

Grad-CAM visualization on benign, malignant, and normal images on (Top three) BUSI, (Middle three) BUS-UCLM, and (Bottom two) UDIAT
datasets. Column 1 presents the actual ultrasound images; subsequent columns exhibit the equivalent heatmaps produced by EfficientNetB7,
DenseNet121, and ConvNeXtTiny, respectively. Warmer colors like red and yellow signify areas of significant model attention that most substantially
influenced the categorization decision, while cooler colors like blue denote minimal contribution.
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on publicly accessible datasets imposes limitations on sample
size, demographic variety, and imaging variability. The datasets
employed in this investigation are very small, and the class
imbalance can impact the model’s sensitivity and potentially
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diminish recall for clinically ambiguous lesions. The utilization of
numerous datasets aids in evaluating cross-dataset resilience, but
the images are derived from certain scanners, geographic areas, and
clinical methodologies, which may not adequately represent the
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TABLE 9 Comparison of the state-of-the-art architectures with the HED-Net architecture.

10.3389/frai.2025.1672488

References Dataset Accuracy(%) Precision(%) Recall(%) F1 Score(%) AUC
Gupta et al. (2023) BUSI 97.8 99.21 97.68 98.44 -
Deb and Jha (2023) BUSI 8523 £2.52 - - - -
Nasiri-Sarvi et al. (2024) BUSI 88.55 + 1.67 - - - 95.28 £ 1.89
Dataset B 87.50 £ 12.08 - - - 92.66 £ 9.07
Alotaibi et al. (2023) BUSI 87.8 80.8 83.8 83.8 0.9463
KAIMRC with 5693 images 85.2 75.8 76.4 76 0.9
Meng et al. (2024) BUSI 98.70 98.80 98.70 98.72 99.82
Jabeen et al. (2022) BUSI 99.1 99.1 99.08 -
Yadav et al. (2024) BUSI 97.43 98.55 96.77 97.56 -
Wei et al. (2024) BUSI 95.0 98.6 91.5 94.9 98.2
MIBUS 87.4 89.3 91.8 90.6 88.7
Ayana et al. (2022) Mendeley dataset 99% - 100 98.9 99.9
MT small dataset 98.7 £ 1.1% 97.4 96.6 98
Islam et al. (2024) BUSI 87.82 87.33 85.33 86 -
UDAIT 85.69 84 78 79.39 -
Dar and Ganivada (2024) BUSI 96.53 96.59 96.54 96.53 -
UDIAT 97.51 100 90.54 95.87 -
Kalafi et al. (2021) Dataset B (163 images) combined with 93 92 96 94 -
dataset obtained from UMMC (276
images)
Rezazadeh et al. (2022) BUSI 91 94 93 93 93
Moon et al. (2020) BUSI 94.62 90 92.31 91.14 97.11
SNUH 91.10 90 85.14 89.36 96.97
HED-Net BUSI 88.46 88.49 88.46 88.45 95.38
BUS-UCLM 90.51 90.56 90.51 90.51 97.23
UDIAT 96.97 100 90.91 95.24 99.17

heterogeneity found in extensive multi-institutional environments.
The HED-Net ensemble elevates computing demands owing to
the incorporation of three backbone networks and an additional
fusion layer.

Future research will concentrate on verifying HED-Net
using larger, multi-institutional datasets to guarantee scalability
and clinical dependability. In addition, expanding HED-Net to
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