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Technological developments and the impact of artificial intelligence (Al) are
omnipresent themes and concerns of the present day. Much has been
written on these topics but applications of quantitative models to understand
the techno-social landscape have been much more limited. We propose a
mathematical model that can help understand in a unified manner the patterns
underlying technological development and also identify the different regimes
in which the technological landscape evolves. First, we develop a model
of innovation diffusion between different technologies, the growth of each
reinforcing the development of the others. The model has a variable that
quantifies the level of development (or innovation, discovery) potential for a
given technology. The potential, or market capacity, increases via diffusion from
related technologies, reflecting the fact that a technology does not develop in
isolation. Hence, the growth of each technology is influenced by how developed
its neighboring (related) technologies are. This allows us to reproduce long-term
trends seen in computing technology and large language models (LLMs). We
then present a three-dimensional system of supply, demand, and investment
which shows oscillations (business cycles) emerging if investment is too high
into a given technology, product, or market. We finally combine the two models
through a common variable and show that if investment or diffusion is too high in
the network context, chaotic boom-bust cycles can emerge. These quantitative
considerations allow us to reproduce the boom-bust patterns seen in non-
fungible token (NFT) transaction data and also have deep implications for the
development of Al which we highlight, such as the arrival of a new Al winter.

KEYWORDS

Al winter, artificial intelligence, innovation diffusion, technology, chaos, networks,
simulation, market bubble

1 Introduction

In recent years, studies on innovation diffusion and technological development have
increasingly focused their attention on Al treating it as both a novel technological
trajectory and a test case for established theoretical frameworks (Gherhes et al., 2023;
Bertolotti and Mari, 2025). While foundational models, such as Rogers’ diffusion curve or
theories of technological paradigms, offer useful starting points (Rogers, 1962), AI presents
distinct challenges (Dahlke et al., 2024). Its general-purpose character, rapid and recursive
advancement, and interdependency between data infrastructure, computational power
and communication protocols complicate traditional assumptions about how technologies
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spread and evolve (Vargas and Muente, 2025). The diffusion
of Al is highly uneven (Madan and Ashok, 2023): rather than
following a single trajectory, Al development and uptake unfold
across multiple domains simultaneously, with feedback loops
between users, firms, and technical communities (Madubuko
and Chitsungo, 2024). Pre-existent dynamical models cannot
these
independent trajectories of adoption or linear market dynamics,
different from ATDs diffusion (Rogers, 1962; Bass, 1969; Hung and
Lai, 2016; Zhang et al., 2023). Given these novel dynamics that
AT development poses, we develop new models of innovation

adequately capture features: they assume relatively

diffusion that take these elements into consideration and are
applicable both to quantifying long-established trends within the
computing industry and to more recent developments.

In the theory of innovation diffusion and its models, one
of the focus is on individual consumers that buy and use the
products and how diffusion occurs in spreading awareness of the
goods (Singh and Aggarwal, 2022). In the present study, we depart
from this interpretation and try to understand how technological
innovation—considered as an expansion of the dimension of a
technological system other than the mere changes of its parameters,
that could be perceived by users and buyers as something new and
worth their interest (DeJong and de Vries, 2025), and consequently
leads to its diffusion - can spur other technologies to grow and
develop in the same manner. For example, the way it happened
with the introduction of the transistor, which catalyzed a whole
host of other technologies across the computing industry and
ultimately across all industries. Especially with the development
of each technology, the demand grows for related technologies,
either to be created or refined. This cycle can facilitate rapid,
even exponentially fast developments, such as has happened
with computing technology, see Figure 1a. We consider a deeper
understanding of these phenomena crucial to assess the behavior
of the AT market, with the explicit purpose of understanding under
which conditions a new Al winter could happen.

We begin with a model that aims to capture the dynamics of
innovation diffusion between technological products. In addition to
this mechanism we also aim to capture business dynamics, such as
the allocation of investment and the production of the technologies.
In this regard we introduce a second model that reproduces
the well documented pattern of business cycles (Benhabib and
Nishimura, 1979; Sterman, 2000). Finally, we merge the models
into a more complete representation of the market. A surprising
feature of the complete model is the emergence of transient chaos,
manifested through boom-bust dynamics in conditions of high
diffusion or investment.

These dynamics matter for understanding the current status
and the future of AL The model shows that uninterrupted
market expansion can engender perceptions of boundless potential,
thereby precipitating overinvestment, speculation, and fragility. In
the event of disillusionment, regulation, or stagnation, there is a risk
that these cycles may trigger a new AI winter. The implementation
of policy mechanisms to moderate investment, support openness,
and provide counter-cyclical funding has the potential to stabilize
long-term trajectories.

The structure of the paper is as follows. It begins with a review
of the relevant literature, followed by a detailed description of the
methodological approach. Each model is then introduced alongside
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its corresponding results, with the findings from the initial models
motivating the development of the subsequent ones. The paper
concludes with a comprehensive discussion of the results and the
final remarks.

2 Literature review

The theory of innovation diffusion is often framed and focused
on the adoption of a technology by consumers (Vishwanath and
Goldhaber, 2003), wherein a product is introduced, adoption
grows, matures and eventually declines. The Bass model (Bass,
1969) closely reflects the introduction and growth phases posited
by the theory by specifying the rate of adoption. There are
different extensions of the model, with some focused on capturing
the maturing and decline phases (Mahajan and Muller, 1996),
the impact of geography on the diffusion (Lengyel et al., 2020;
Di Lucchio and Modanese, 2024) or the different awareness
consumers might have of the good (Wang et al., 2006; Fibich and
Golan, 2023).

Innovation diffusion can be driven both by endogenous and
exogenous elements (Gasparin et al., 2019). Regarding endogenous
effects, the most relevant are feedback and product misperception
(Paich and Sterman, 1993), cultural barriers (Rolfstam et al.,
2011), the stock of human capital (Romer, 1990), and rational
herding derived from over-optimistic perspectives (Schaal and
Taschereau-Dumouchel, 2023), which can alone lead to aggregate
fluctuations and boom and bust cycles (Schaal and Taschereau-
Dumouchel, 2023). On the other hand, exogenous elements include
external disruptive elements (Roman, 2023b), such as the COVID-
19 pandemic (Jin et al., 2021), natural calamities (Miao and Popp,
2013), or wars (Brunk and Jason, 1981; Roman and Bertolotti,
2022).

As we will show later, combining innovation diffusion with
business cycle dynamics can lead to the emergence of chaos.
Chaos in data on technological innovation, such a time series
of patents, is usually determined by means of local Lyapunov
exponents (Hung and Lai, 2016; Zhang et al., 2023). The use of
patent data has revealed chaotic dynamics underlying industries
such semiconductors, software and biotechnology (Hung and
Tu, 2011). Business cycles (Kondratieff, 1979) have long been
studied in connection to the spread of innovation (Jenner, 1991;
Knell and Vannuccini, 2022) and how chaos can emerge from
their interaction (Houchin and MacLean, 2005; Stengers and
Prigogine, 2018). Prior empirical research has analyzed the role
of the organizational feedback loop in the emergence of chaos
in an innovation market (Hung and Lai, 2016), showing that
asynchronous updating of the innovation R&D strategy can prevent
the system evolution from turning into chaos (Zhang et al,
2023). The market’s information flow is often volatile in a way
that challenges conventional modeling assumptions (Brody et al.,
2011). Conversely, a fractal statistical-analysis approach, grounded
in chaos theory (Roman, 2021), can effectively provide a better
understanding the market’s nonlinear fundamental characteristics
(Ke et al., 2023; Bertolotti and Mari, 2023).

A possible example of this is the Cournot duopoly (Cournot,
1838), where, if the two firms has a sufficiently large cost
differential, the junction of the two non-linear optimal responses
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FIGURE 1

Evolution of (a) hardware performance in computing technologies (Rupp, 2021). The figure is generated independently from the original data
collected in 2010 by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten, showing long-term trends in transistor counts,
performance, frequency, power, and cores, and (b) software-driven progress in LLMs (Villalobos et al., 2024), illustrating the rapid acceleration of Al
capabilities. Technological growth through innovation diffusion in conditions of (c) high growth rates and low diffusion and inversely, low growth

rates and high diffusion, and (d) a single stock with higher growth rate.
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would lose stability and chaos could emerge in the long term (Puu,
1991), but chaotic behavior could be avoided in the specific case
where both firms share the same cost functions and owns no prior
expectations (Lamantia et al., 2022). The chaos in such system arises
from the increased sensitivity to behavioral parameters (i.e., the
production function) of the two firms (Bischi et al., 1999).

The spread of technological innovation is also affected by the
topological structure of the market network (Choi et al., 2010),
as happens with other diffusion phenomena (Dunbar, 2020). This
effect seems to be moderated by the strength of social interactions
(Delre et al., 2010; Kocsis and Kun, 2011), the existence of clusters
(Kocsis and Kun, 2011; Bohlmann et al., 2010), and network
properties such as centrality (Sisodiya, 2012; Chuluun et al., 2017)
and density (Chuluun et al, 2017). The phenomenon has also
been studied by means of computer simulation, especially to gain
a better understanding of feedback loop effects (Abrahamson and
Rosenkopf, 1997) and to take into consideration the effect of
individuals’ heterogeneity in the innovation diffusion (Bohlmann
etal., 2010).

Nevertheless, an agreement does not exist regarding the specific
effect of topology. This could be due to two reasons. First, the
same phenomenon was investigated by very different scientific
communities (Sznajd-Weron et al., 2013). As an example, recent
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work (Arieli et al., 2020) proposes a game-theoretical analytical
analysis where a small star-shaped network is analyzed. This
approach differs sharply from the one of the complex network
community (Newman, 2003b), that usually considers the Erddés—
Rényi structure (Erdos et al., 1960) as a baseline and compares it
with structures more adherent to real social networks (McCullen
et al.,, 2013), such as small-world (Watts and Strogatz, 1998) or
highly-clustered (Newman, 2003a) networks. Second, technological
innovation is a broad topic that could include elements different
from each other, even from a structural point of view (Gasparin
et al, 2019). Given that, it is not surprising that different
results emerge.

Despite the growth of AI applications across sectors, the
literature on the dynamics of AI diffusion remains surprisingly
underdeveloped. While conceptual frameworks abound, only a
limited number of studies offer formalized or quantitative diffusion
models specific to Al technologies (Heim, 2025). The Bass model
was used to explore the diffusion of Al-related patents across the
U.S. innovation ecosystem, integrating topic modeling to measure
the technological maturity of various Al domains over time (Lee
and Oh, 2020), showing that AI technologies exhibit heterogeneous
life cycles, with adoption trajectories highly sensitive to domain-
specific incentives. Rogers’ diffusion of innovation theory has also
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been adapted to the context of Al to investigate the adoption of
AT across four organizational groups—administrators, faculty, staff,
and students—within a U.S. higher education institution (Phillips,
2025), showing that AI adoption outpaces classical diffusion
benchmarks by a factor of 2.34. A similar epidemic-based spreading
model has been implemented using firm-level data, studying
over 380,000 enterprises in Germany, Austria, and Switzerland to
identify adoption mechanisms for AT and other digital technologies
(Dahlke et al., 2024). Finally, a System Dynamics model of AI
adoption in a specific context (a financial company) also exists
(Kumari et al., 2021).

3 Methods

In this work we introduce and study the behavior of three
models aimed at understanding the diffusion of technological
innovation. The study is theoretical in nature, focused on exploring
the dynamics of the innovation system, however we do aim to
capture some broad trends seen in empirical data, see Figures la,
b.! The main emphasis is on the dynamics of technology and
technological products with the aim of determining the regimes
where innovation diffusion and market mechanisms provide a
stable and reliable trajectory or where the opposite might occur.

3.1 Model overview

The three models introduced study the diffusion of
technological innovation in different and progressively more
sophisticated ways. The first model focuses on technological
diffusion with the aim to capture the basic features seen in the
development of computing technology and related sectors. A
core aspect of the model is the assumption that the dependence
between different technologies can be captured by a network,
which is a versatile tool in modeling socio-technical relationships
(Roman and Brede, 2017; Roman and Bertolotti, 2023). The second
model aims to quantify the business cycle that a given product
undergoes (Hallegatte et al., 2008). In this model, supply, demand
and investment are the variables of interest and the model is meant
to be general, showcasing the economic dynamics for any given
product. The specific functional forms in the model likely restrict
it in practice to certain industrial sectors, however its overall
architecture is intended to be prototypical and potentially adapted
for any problem of interest. Finally, the third model combines the
previous two models to provide insights into the market dynamics
of technologies or products.

For the network models, for simplicity, we assume that nodes
are homogeneous, namely the parameter values are the same
throughout the network, and we only focus on the emergent
dynamics due to the network features (Bertolotti and Roman, 2024;

1 These graphs include information on microprocessors (Rupp, 2021) and
LLMs (Villalobos et al., 2024; Senthilkumar and Menzies, 2024), and are either
generated independently or reproduced under CC BY 4.0. The NFTs data
consists of 6.1 million transactions collected mainly from the Ethereum and
WAX blockchains between June 23, 2017, and April 27, 2021 (Nadini et al.,
2021).
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Bertolotti et al., 2025). In the present study we report the results
for random regular graphs, but we have checked the robustness of
our findings across different degree distributions (star, scale-free)
and confirm consistency. The provided code includes options for
different topologies and allows for immediate testing.

For each model, we present and contrast the main dynamical
regimes; we identify the key parameters and their values that
characterize each behavior. Where appropriate, we compute the
bifurcation diagrams when varying the critical parameters. The
models we build are dynamical systems expressed as systems
of ordinary differential equations. These modeling tools are
appropriate to capture causal mechanisms (Sterman, 2000) and
how they manifest over time in the behavior of the variables of
interest, such as the supply, demand and investment stocks. We
hope that the gradual, piece-wise introduction of the different
components of the model, namely the pure diffusion, then the
business cycle and finally the full market structure, aids the
communication and understanding of the overall dynamics.

3.1.1 Pure diffusion model

Technological innovation follows an exponential growth
trajectory over time until a saturation point is reached (McNamee
and Ledley, 2017). At the saturation stage the performance metrics,
production or demand for technology stagnate. New technologies,
products or increased demand (e.g., from marketing or population
growth) can catalyze the development of older technologies and
lead to a new growth period (Yli-Renko and Autio, 1998).

This trend can be observed in the computing technologies, see
Figure la, where the typical power, frequency and single thread
performance are seen to have reached a plateau (or significant
slowdown from the previous decades). The transistor count
however has avoided this plateau due to an increase in the number
of cores. Even recent developments such as LLMs are susceptible to
this saturation dynamic, see Figure 1b.

So, we notice a dynamics where: (1) technological growth is
monotonic but not strictly as it, (2) can reach a plateau, and (3)
development in related technologies can stimulate growth again.
Given the dynamics described in (1) and (2) we propose that a given
technology grows logistically:

. Yi
i=ryi|1— =
J ry( ui)

1; = oRelu Z

neighbors k

(1)
Yk —Ji

In Equation 1 the variable y; can represent a given metric
of performance, the volume of production or the demand for
a given technology i (or product), while the variable u; is the
carrying capacity of the market for the given technology. The
dynamics of u in Equation 1 is given by a diffusion mechanism
that only promotes non-negative growth rates so that technological
development remains monotonic, as seen in Figure 1. The function
Relu(x) = x if x > 0 and zero otherwise.

The key parameters in the model are the individual growth rates
r; and diffusion rates o; of the different technologies. Figures lc, d
show the interplay and contrasting dynamics of different rates of
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growth and diffusion. For simplicity, we choose a common value
for r; = rand 0; = o. The dependence between technologies is
represented through an undirected graph wherein the neighbors of
a given technology are the closest related/impacted technologies.
The results shown in Figure 1 are for a random regular graph
which we consider to be representative of the dependency between
different technologies (Féray, 2018). The network has N = 10
nodes, with mean degree equal to 5, which means each technology
depends on average on the five closest related products. Similar
results hold for other values of N or of the average degree.

3.1.2 Business cycle model

Beyond the technological dynamics we focused on in the
previous section we need to account for economic factors that can
impact innovation. So, we propose a model of economic dynamics
consisting of a system of differential equations for the supply x,
the demand y and the investment z. Existing models in both the
business model of management domain and the business cycle
modeling literature are not well-suited to our goals. Models related
to Industry 4.0 and 5.0 are often highly specific or overly complex
(Lyneis, 2000; Degres et al., 2004; Manenzhe and Telukdarie,
2021; Medoh and Telukdarie, 2022; Velandia et al., 2023), and
do not reproduce emergent business cycles. Conversely, models
explicitly focused on business cycles tend to be structurally rich and
technically intricate, whereas our aim was to develop the simplest
possible model that still captures cyclical behavior (Chow and
Choy, 2009; Taniguchi et al., 2009; Billio and Petronevich, 2017;
Kroujiline et al., 2021).

The supply x and investment z are directly observable variables
as the monetary costs and the production of goods are tangible.
However, the demand y is not generally known and is often
unpredictable; there are innumerable examples of product launches
that have failed due to low demand (Victory et al., 2021), whereas
there is no generally established recipe for best-sellers in any
market (Bhardwaj et al., 2023). Efforts to replicate past successes
by formulaic approaches often fail, with numerous examples from
the movie industry, book sells, games, phones, PCs and other
products (Stokely, 2005). A product launch is often a gamble and
success (e.g., is in high demand) depends on consumer preferences,
existing niches and products, company reputation, marketing and
investment strategy (Hultink et al., 2000).

The business cycle model is given by:

X =bz —dx

y=ry (1 - L) —arxy (2)
Uo
Z =Xy —cz

The supply x is affected by two factors: the bz term implies
that supply grows in proportion to investment, while the —dx term
means that a supply boom leads to a subsequent decrease. While
the demand y is not generally known, we can assume that the
considered good is perishable or it can be consumed, so the demand
recovers over time due to a replenishment need. A simple example
is food consumption: after a meal the demand for food is fully
satisfied (so the demand drops to zero), whereas after a time the
demand recovers as we get more hungry. This dynamic can also
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be seen in the cyclic production of goods in series (e.g., cars), or
generations (e.g., game consoles) or versions (e.g., software) (Beraja
and Wolf, 2021).

The demand y satisfies an equation incorporating logistic
growth and a simple interaction such as the one appearing in the
Lotka-Volterra predation model. The logistic term ry(1 — y/u)
means that demand recovers over time (if no supply satisfies it).
The term —a;xy implies that the demand is met (so it decreases)
to the extent that supply encounters demand. If a product x has no
visibility to consumers (e.g., poor marketing) then it is unknown
and cannot meet demand, hence «; = 0. Similarly, if supply x is
low then demand is only slowly met. There are numerous possible
choices of functional forms for the interaction between supply and
demand (Huang et al., 2013), however the predator term xy is
one of the simplest options that gives realistic dynamics (such as
oscillations), while also taking into consideration the existence of
relationships between the modeled entities (buyers and sellers).

The investment z equation also has two parts. The term a,xy
signifies that investment increases if demand y is high or the market
is producing x in large volumes. Large investments are followed by
a decrease (Demirhan et al., 2005), hence the term —cz. In general
a1 # ay however for simplicity we assume equality o) = oy = «.
The rationale for this is that once a product successfully engages
with consumer demand (and so becomes profitable), then there’s
a strong market signal to increase investments in the product in
proportion to how much demand is being met (Condorelli and
Padilla, 2025), i.e. proportional to xy. For example, the success of
the iPhone spurred a huge investment and market increase in smart
phones (Mallinson, 2015).

3.1.3 Techno-landscape market model

Finally, we combine the two previous models to obtain a
dynamical system more adherent to how related technologies
evolve in response to each other and how market signals affect the
overall behavior of the network. The complete model is given by:

561' = bZ,‘ - dxi

yi = 1y <1 - %) — axy;
1

zZi = axiy; — Czj 3)

1; = oRelu Z

neighbors k

Yk — Vi

The supply x; and investment z; dynamics is the same as
Equation 2 applied to each node i (which is a technology or a
product). The demand and market capacity satisfy the dynamics
of Equation 1 except that now demand can be satisfied by supply
through the term —ax;y; term.

3.2 Experimental design

The with  the
DifferentialEquations library (version 7.16.1). The decision

models were implemented in Julia

regarding the programming code depends on the possibility
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TABLE 1 Parameter definitions and baseline values used in the diffusion
and market dynamics models.

Parameter Meaning Value
b Investment into supply rate 2.5 %1072
d Production decay rate 5x 1072
r Demand growth/recovery rate 1072
o Demand satisfaction rate 5x 1073
o) Investment allocation rate 5x 1073
c Investment decay rate 5x 1072
o Diffusion rate 1072
Xo Initial supply 1

Yo Initial demand 0—10
20 Initial investment 1

uo Initial market size 100

of facilitating faster computation than other popular languages
such as Python, providing a variety of libraries suitable for
scientific computing (Bezanson et al., 2017), and at the same time
maintaining high readability, which is important for replicability.
We solve the models using the 4th-order Runge-Kutta method
with a time step of 0.25.

The parameters, listed in Table 1, were chosen to illustrate the
typical behaviors exhibited by the models and are not intended to
be a faithful calibration to real systems. However, the structure of
the models and their qualitative behavior (steady states, oscillations,
chaos) in specific circumstances are meant to capture dynamics
similar to that seen in the real world, such as for technological
development and NFTs trends in transaction activity, see
Figures 1.

4 Results

4.1 Pure diffusion model

Firstly, as a common feature across different scenarios we
can see the general dynamics of the model, according to
which technologies grow but reach a saturation point. However,
due to higher development of other technologies the stagnated
technologies can restart growing. In Figure Ic we contrast two
cases: the first where the growth rate is set to a high value and the
diffusion rate is set to a low value, and the second is the opposite
situation, where the diffusion rate is higher and the growth rate is
lower. We notice that low growth rates and high diffusion rates lead
to sustained growth for a much longer time period compared to the
high growth/low diffusion case. In addition, a significantly higher
level of development is reached for all the technologies. To further
illustrate this point, in Figure 1d we only increased the growth
rate of a single technology and still notice a noticeable decline in
overall development.

Hence, somewhat surprisingly, high growth rates and low
diffusion lead to faster stagnation at a lower development level for
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the interconnected technologies. Implications of these dynamics
are expanded upon in the Discussion section.

4.2 Business cycle model

Figure 2 illustrates the dynamical behavior of the business cycle
model introduced in Equation 2. When the investment parameter
«a is below a critical threshold & < o, the system stabilizes at a
steady state, as shown in Figure 2a. However, increasing o beyond
this threshold induces persistent oscillations, as shown in panel
Figure 2b. Figure 2c shows these oscillations as a stable limit cycle in
phase space, while Figure 2d presents the bifurcation structure: the
system transitions from a stable fixed to a limit cycle as « increases.
Together, these dynamics demonstrate how excess investment can
destabilize markets, even in the absence of external shocks.

Depending on the parameter «, there are in total three

c
dynamical regimes of the system. Let ag = = 1073 and:
2]
&+ 3cd+ d?
+V e+ 6c3d + 112d? + 4c2dr + 6¢d’ + 4cdPr + d*
%e = 2bu0
=5x107° (4)

If & < g then the investment rate is too low and the demand is
not being satisfied, hence x = 0 and y is maximum, see Figure 2d.
If (e %))
equilibrium (fixed point), see Figure 2a. If @ > «, then sustained

< «@ < «a then the system reaches an interior stable

oscillations appear as a limit cycle, which can be interpreted as
business cycles (Benhabib and Nishimura, 1979), see Figure 2b.
Hence, when increasing the @ parameter the system undergoes a
supercritical Hopf bifurcation leading to stable limit cycle, seen in
Figure 2c. The critical value is given by ., which we determined
analytically in Equation 4.

4.3 Techno-landscape market model

The results of the simulation of the combined diffusion and
business cycles models are available in Figure 3. Specifically, it is
possible to observe that, depending on the o and o parameters,
we obtain two dynamical regimes: one where we get a stable fixed
point, see Figure 3a, and one where we obtain oscillatory behavior,
in Figure 3b. The single-node dynamics in Equation 2 shows either
a stable fixed point or a limit cycle with a clear periodicity, see
Figure 2. In the network case modeled by Equation 3, the dynamics
for higher values of either o or o is chaotic with boom-bust
cycles. This can be seen in Figure 3¢ where we plot the ratio
max(y) — min(y)

max(y)
the market. If the ratio is 0 then the maximum and minimum

where y is the average value of demands across

value coincide, which occurs in a steady state. If the ratio is 1, that
indicates large oscillations where the maximum is much larger than
the minimum. In Figure 3d we have included NFTs data whose
patterns over time resemble those in Figure 3b. We detail this
comparison in the Discussion section.
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5 Discussion

We have introduced and explored the behavior of three
models that illustrate different behavior as relating to technological
and business dynamics. On a more general perspective, all
the models we have presented are theoretical in nature;
nevertheless, they do reflect qualitative features seen in real
data (Epstein, 2008). The model is built upon functional relations
that assume causal links between the real-world properties
represented by the variables. Our aim was to reproduce observed
phenomena in a minimal way, providing a straightforward
cause-effect explanation. The simplicity of this explanation directly
reflects the deliberately elementary structure of the models
(Edmonds, 2017).

In particular, the dynamics of the pure diffusion model
reproduce the trends in technology, see Figures la, b. The pure
diffusion model can be thus considered representative of long-term,
large-scale growth of the entire computer industry (and similar to
other mature sectors) (Mukhopadhyay et al., 2009). On the other
hand, the second model introduces instead business cycles, a well-
known pattern in economic data (Kondratieff, 1979), and it aims
to generate such features in a simple manner. More specifically, we
observed a chaotic dynamics in the full market model, with a quite
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erratic behaviour that matches well the boom-bust patterns often
seen in NFTs data (Nadini et al., 2021). We can interpret this to
mean that investment or diffusion rates are high within the NFTs
market, consistent with the characteristic hype of it (Baklanova
et al, 2024). Beyond this qualitative match, the model suggests
that the observed NFT market dynamics can be understood as
a case of transient chaos, where repeated overshoots ultimately
lead to collapse. Also, it highlights the high sensitivity of the
system to small variations in investment or diffusion rates, a feature
consistent with the structural fragility of NFT markets; finally, the
comparison shows that while such digital markets unfold on much
shorter time scales, they share the same underlying mechanisms
observed in longer-term technological sectors. While there have
been other boom-bust events, notably the “.com” and AI winter of
the 80s (Menzies, 2003), the NFTs time scale is much shorter, which
facilitates data collection and more direct comparison. While the
results show that diffusion and investment may induce transient
boom-bust dynamics even in the absence of paradigm crises, we do
not suggest inevitability; rather, we delineate conditions in which
the likelihood of winters increases.

In general, a qualitative comparison can be drawn between
the simulated dynamics and the empirical datasets considered.
In the case of microprocessors, the plateau in single-thread
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data where the number of transactions serves as a proxy for demand

Market model (Equation 3) dynamics: (a) convergence to a steady state for @ = ap = 10~° and o = 103, (b) chaotic boom-bust cycles for @ = 1073
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performance and clock frequency, followed by renewed growth
through multicore architectures, mirrors the role of diffusion (u;)
in lifting stagnated trajectories (y;). For LLMs, phases of rapid
progress could be interrupted by compute or data bottlenecks,
after which advances in adjacent domains (e.g., data practices,
deployment infrastructure) effectively increase u; and enable the
next phase of expansion. What we observe now in the data is,
for obvious reason, the first part of this trend. Finally, NFTs
display highly asymmetric boom-bust cycles, with sharp collapses
and increasing amplitude in early stages, closely resembling the
transient-chaos regime of the model under high diffusion (o) or
investment ().

The following discussion now turn to an analysis of the
observed behavior of the three models.

Firstly, we considered a model for the diffusion of technological
innovation. The model demonstrates that, counter to common
business incentives, higher intrinsic growth rates may lead to
earlier stagnation unless diffusion mechanisms are in place,
when exogenous effects from outside the market are not taken
into consideration (Biswas et al., 2015). In particular, the high
growth/low diffusion scenario can be considered illustrative of a
market with strong endogenous incentives for corporate growth
(with more takeovers and mergers, hence fewer and bigger
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companies) and protective/restrictive legislation on intellectual
property rights (less sharing of knowledge, copyright and patent
rights persisting for long periods of time). An illustrative example
of this regime is the development of Al in the private market, which
can be structurally predisposed to unsustainable trajectories and
premature saturation. The low growth/high diffusion environment
is one where the growth of enterprises is not a priority and
knowledge sharing and diffusion of findings is favored, with open
practices regarding code, data and findings (Du et al., 2023). The
academic environment with universities and research institutes
more closely aligns with this regime than companies (Cheah et al.,
2020).

Secondly, we introduced a business cycle model whose
structure captures two aspects of economic dynamics. On one
hand, the evolution of production over time and the associated
costs are directly measurable and can be tracked (Sterman et al.,
2015). This informs the structure of the supply and investment
variables. However, the dynamics of demand, the way supply
satisfies it and the impact of marketing and investment strategies
are not directly observable or measurable and can vary drastically
across different industries (Islam and Scott, 2022; Abdulkareem
and Petersen, 2021). For example, in oil exploitation, short-term

production increases are prioritized (Costa Lima et al., 2010) while
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in the pharmaceutical and automotive industry investments and
returns are planned over the long-term (Montoya et al., 2010; Laabs
and Schiereck, 2010). In the case of Al, certain applications such as
language models exhibit rapid adoption (Polyportis, 2024; Hilling
et al., 2025) and the actual market signals are often driven by
hype cycles, investor sentiment, and speculative expectations rather
than grounded, measurable consumer needs (Kieffer et al., 2023;
LaGrandeur, 2023; Ahmadirad, 2024). Furthermore, the speed of
product iteration and the lack of standardized performance metrics
across use cases make it difficult to assess true demand saturation
or long-term value creation (Cavalcanti et al.,, 2024; Kwa et al,
2025), adding a layer of endogenous unpredictability. While the
proposed business cycle model has certain debatable elements
(depending on what industry is being considered), to the best of our
knowledge it represents the simplest three dimensional quadratic
system with realistic dynamics of supply, demand and investment.
As such, it can form both a research and pedagogical tool as it
allows for analytic treatment and furthermore, from an economics
perspective, it moves beyond the focus on market equilibrium to a
more dynamic picture (Buldu et al., 2019).

Lastly, we have build a model of diffusion of technological
innovation incorporating business dynamics. Provided that the
investment and diffusion rate parameters have lower values, as
in the bottom-left corner of Figure 3¢, then we arrive at a steady
state. However, in contrast to the pure diffusion model, there is an
initial overshoot followed by a decrease that eventually leads to the
equilibrium (Fenn, 1995), see Figure 3a. If the investment rate is
increased, then oscillations appear as in the simple business model,
but the critical threshold is now lower. Furthermore, keeping the
investment rate constant and increasing the diffusion rate also
leads to a boom-bust regime, where chaotic dynamics emerges
over time, see Figure 3b. However, the chaotic regime is transient
and eventually the demand collapses to zero (Nadini et al., 2021;
Roman, 2023a).

To make the instability explicit, Figure 4a reports two runs of
the networked market model (3) whose initial conditions differ by
a small perturbation of the demand state. The observable shown
% 2, 7i(t). Despite near-
identical starts, the trajectories separate rapidly when parameters

is the network average demand, y(t)

are in the boom-bust region of Figure 3¢ (e.g,a = 1073,0 = 5 x

10.3389/frai.2025.1671917

1073; cf. Figure 3b), indicating sensitivity to initial conditions. In
Figure 4b we quantify this by the standard two-trajectory estimate
of the (finite-time) Lyapunov exponent 1, obtaining a positive value
A
implies local exponential divergence of nearby trajectories, a

~

1073 over the time window shown. A positive exponent
hallmark of deterministic chaos, and is consistent with the irregular
boom-bust oscillations seen in Figure 3b. Together with the regime
map in Figure 3¢, these diagnostics support our characterization of
the high-o /high-« region as transiently chaotic.

We repeated the analysis of Figure 3 while keeping the number
of nodes N and the mean degree fixed, comparing (i) quasi-regular
graphs with a narrow, approximately Gaussian degree distribution
(e.g., random-regular) to (ii) hub-dominated networks with heavy-
tailed, power-law degree distributions (scale-free-like). The two-
regime picture in Figure 3¢ persists in both cases: a stable region
at low diffusion/investment and a boom-bust region with irregular
oscillations once coupling is strong enough. Degree heterogeneity
shifts the threshold: hub-dominated networks lower the transition
boundary in either o or «, so chaotic transitions appear at
weaker coupling. Intuitively, highly connected hubs synchronize
and amplify local booms, making the system more sensitive.

From a qualitative perspective, we can conceptualize
policy/managerial interventions as changes to the effective
network topology, both the baseline coupling o and the degree
heterogeneity. Open standards, interoperable interfaces, and
data portability increase connectivity while enabling many-to-
many links; when they disperse centrality (flattening the degree
distribution), they raise the threshold for boom-bust and moderate
cycle amplitude by limiting hub-driven amplification. By contrast,
platform consolidation or winner-take-most procurement
concentrates links on a few hubs, lowering the boundary in
Figure 3¢ and making chaotic transitions more likely. Consortia
and shared infrastructure can act as “bridges” that shorten paths
and improve coordination; designed to avoid single points of
control, they damp oscillations via risk-sharing and capacity
smoothing, whereas highly centralized consortia risk reproducing
hub-dominance effects.

The two regimes, of either approaching a steady state or chaotic,
can also be compared in terms of the market capacity u, looking at

how it evolves over time. In the stable regime the market capacity
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(a) Plot of demand averages with different initial conditions, which differ by 10=2. (b) Computation of Lyapunov exponent with a positive value of
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reaches a steady state as well, whereas in the chaotic case the
capacity keeps increasing. While the market capacity grows larger,
this does not imply boundless growth, rather it means that the
demand recovers quickly which spurs a new a rapid growth in
investment and supply; the race to satisfy the demand leads to a
boom and ultimately a bust. While the underlying market capacity
remains large it harbors an inherent volatility in any attempt to tap
into it: every subsequent boom is generally larger than prior ones
and similarly for the bust. This reflects an old adage (Tainter, 1988;
Wright, 2004): “Each time history repeats itself, the price goes up.”

These dynamics are particularly relevant when considering
the future of AI (Oosthuizen, 2022). The model shows that
a persistently growing market capacity does not equate to
sustainable development, and that it can create the illusion of
limitless opportunity, encouraging overinvestment and speculative
expansion (Bloom et al, 2020). As each cycle amplifies both
the boom and the bust, the system becomes increasingly
more fragile at each iteration. In such a context, a sudden
collapse in demand, driven by disillusionment, regulatory shocks,
or technological stagnation, could trigger a new AI winter
(Hendler, 2008). From a policy perspective, this calls for
mechanisms that moderate the pace of investment and enhance
diffusion across technological domains, which, due to short-term
economic and geo-political competition, is exactly the opposite
of what is happening right now. Reducing the investments rates,
support open standards, interoperability, and knowledge-sharing
practices may help distribute innovation. Moreover, counter-
cyclical public funding—supporting foundational research during
hype downturns—could stabilize long-term trajectories. Without
such interventions, the AI sector risks repeating the historical
pattern of overshoot and collapse, but with broader consequences
for economic stability, public trust, and innovation ecosystems.

Moreover, it is relevant to discuss the relationship between our
results and the AI Winter of the 1980s. While we acknowledge
that historical winters were not caused exclusively by economic
dynamics, but also by deeper cognitive and paradigmatic crises,
our model captures structural mechanisms that contributed to
the downturn and thus provides a complementary perspective.
First, our results show that excessive investment amplifies both
booms and busts. This hype-investment cycle echoes the surge
of expectations around expert systems (Gill, 1995), where heavy
industrial and governmental funding created unsustainable growth
that collapsed once limitations became clear. Second, we show
that high intrinsic growth combined with low diffusion accelerates
stagnation. In the 1980s, research was concentrated in a few firms
and laboratories (Grimson and Patil, 1987), with limited openness
and standardization (Phillips, 1999), reproducing the unsustainable
trajectories reflected in our model. Third, we highlight how
strong interdependencies across technologies can generate systemic
fragility: the AI ecosystem in the 80s was overly dependent on
a narrow symbolic paradigm (Nilsson, 2009), which made it
vulnerable when that paradigm faltered. Finally, our business
cycle model emphasizes the volatility of demand, shaped by
hype and reputation rather than stable needs. This mirrors the
speculative character of the expert systems market (Goldstein,
1995; Harmon, 2022), which collapsed once performance failed to
meet expectations.
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6 Conclusion

This study introduces a set of interconnected dynamical models
to better understand the diffusion of technological innovation and
the economic forces shaping its trajectory. By integrating models
of innovation diffusion, business cycles, and networked market
dynamics, we capture a range of behaviors from stable growth to
oscillatory and chaotic regimes.

More specifically, the results of the three models can be
summarized as follows. The pure diffusion model reproduces
the long-term stagnation and renewal cycles observed in mature
technologies, showing that higher intrinsic growth combined
with low diffusion leads to earlier stagnation, while lower
intrinsic growth combined with stronger diffusion mechanisms
supports longer and more sustainable development trajectories.
The business cycle model captures the transition from stability
to oscillations as investment surpasses a critical threshold,
reproducing the endogenous emergence of cycles well documented
in economic theory. Finally, the combined techno-landscape model
demonstrates that when both diffusion and investment rates are
high, transient chaotic boom-bust cycles appear. Importantly, this
behavior is robust to network topology, holding network size and
mean degree constant, the same two regime structure, namely a
stable regime at low diffusion and investment and an irregular
boom-bust regime once coupling is sufficiently strong, emerges in
both quasi-regular and hub-dominated networks. Higher degree
heterogeneity lowers the diffusion and investment thresholds for
chaos, as highly connected hubs synchronize and amplify local
booms, thereby increasing overall system sensitivity. This finding
is consistent with empirical patterns such as those observed in the
NFT market and suggests that structurally similar dynamics may
underlie technological fields such as Al

Notably, our findings suggest that high investment or diffusion
rates, typically seen as drivers of innovation, can lead instead
to instability and boom-bust dynamics. These outcomes mirror
real-world patterns in rapidly evolving sectors like NFTs and
raise caution for areas such as AI development, where hype and
aggressive funding often outpace sustainable growth. Our analysis
indicates that diminishing returns, architectural limits, and data
constraints may lead to a downturn in Al investments, echoing
structural patterns of past cycles. While not predictive in a temporal
sense, the model highlights generative mechanisms that make an
approaching “Al winter” structurally plausible, even if its timing
and severity remain uncertain. The connection with the historical
Al winter of the 1980s is particularly relevant: although that
downturn was also driven by deeper cognitive and paradigmatic
crises, our models capture complementary structural dynamics,
such as excessive investment, limited diffusion, and systemic
fragility, that reinforce the likelihood of collapse. From a broader
perspective, these insights carry implications for both research
and policy. Open standards, interoperability, and knowledge-
sharing practices can help mitigate premature stagnation by
strengthening diffusion, while counter-cyclical public funding may
stabilize long-term trajectories by supporting foundational research
during downturns. Future empirical work could further test these
mechanisms, for example by integrating maturity indicators such
as TRL, MRL, or CRL as dynamic inputs or calibration points, and
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by exploring the interaction of structural cycles with cognitive and
semantic aspects of Al development.

In conclusion, the models presented here provide a conceptual
foundation for understanding how technological diffusion and
investment interact to shape long-term trajectories. They highlight
that, under present conditions, a new Al winter is not inevitable
but remains structurally plausible. Recognizing and moderating
the underlying mechanisms may therefore be essential to fostering
more resilient technological ecosystems.
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