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Shape modeling of longitudinal
medical images: from
diffeomorphic metric mapping to
deep learning

Edwin Tay*, Nazli Tümer† and Amir A. Zadpoor†

Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of
Technology (TU Delft), Delft, Netherlands

Living biological tissue is a complex system, constantly growing and changing
in response to external and internal stimuli. These processes lead to remarkable
and intricate changes in shape. Modeling and understanding both natural and
pathological (or abnormal) changes in the shape of anatomical structures is
highly relevant, with applications in diagnostic, prognostic, and therapeutic
healthcare. Nevertheless, modeling the longitudinal shape change of biological
tissue is a non-trivial task due to its inherent nonlinear nature. In this review,
we highlight several existing methodologies and tools for modeling longitudinal
shape change (i.e., spatiotemporal shape modeling). These methods range
from diffeomorphic metric mapping to deep-learning based approaches (e.g.,
autoencoders, generative networks, recurrent neural networks, etc.). We discuss
the synergistic combinations of existing technologies and potential directions for
future research, underscoring key deficiencies in the current research landscape.
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1 Introduction

“Form follows function,” although originally a perennial maxim coined by architect
Louis Sullivan in reference to pragmatic architectural design, it has been adopted by the
biomedical engineering community in reference to nature and its adaptability (Sullivan,
1896; Russell et al., 2000). This phrase is often used in reference to natural materials, which
have optimized their shape and structures over millennia of evolution and adapted to their
specialized tasks (Wegst et al., 2014). While studies have investigated both form and its
effect on function (Libonati and Buehler, 2017; Wang Y. et al., 2020), how it follows remains
nebulous. In particular, the way in which the shapes of anatomical structures change
over time has long interested the biomedical engineering community, dating back to and
even predating the seminal works of Darwin (2009) and Thompson (1992). Modeling and
predicting the evolving characteristics of anatomical geometry is relevant, with applications
for clinical diagnoses, prognoses, and interventional treatments. Therefore, uncovering the
underlying processes governing shape change of anatomical structures over time remains
a highly relevant and developing domain of research.

Longitudinal changes in the shapes of anatomical structures are relevant in a myriad
of clinical applications, especially for early diagnosis and disease prognosis (Figure 1).
Developmental bone growth, for example, is a highly complex process wherein deficiencies
or deviations from nominal standards could result in long-term health ramifications
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FIGURE 1

(A) Longitudinal phase contrast imaging of 3D cell cultured cervical cancer spheroids (Muniandy et al., 2021)*. (B) Neurodegradation of brain
structure with progression of AD, from healthy to moderate AD (top to bottom). Adapted from Pasnoori et al. (2024)*. (C) Longitudinal MRI imaging of
the morphogenesis of a femur during the embryonic and fetal periods. Figure adapted from Suzuki et al. (2019)*. *Images obtained from referenced
sources and licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

(Parfitt et al., 2000; Weaver and Fuchs, 2014). Some examples
of such disorders include but are not limited to developmental
hip dysplasia, osteogenesis imperfecta, scoliosis, and clubfoot
(Morcuende and Weinstein, 2003). Early diagnosis could enable
non-surgical treatments. Therefore, accurate ways of quantifying
normal development and identifying abnormal variations is
paramount (Semler et al., 2019; Marzin and Cormier-Daire, 2020;
Newsome et al., 2016). Another example is Alzheimer’s disease
(AD), one of the most common age-related neurodegenerative
diseases (Scheltens et al., 2021). Commonly used techniques for
early diagnosis of AD, such as neuropsychological tests, are
unreliable and cerebrospinal-fluid biomarker measurements are
intrusive and costly (Alberdi et al., 2016). In contrast, novel
techniques examining structural brain changes from MRI can
diagnose AD early and pre-symptomatically, while also informing
future prognoses (Mueller et al., 2005; Pegueroles et al., 2016;
Blinkouskaya and Weickenmeier, 2021). Yet another example is
tumor growth, wherein growth rates and tumor sizes inform
cancer severity and prognoses (Clark, 1991; Morikawa et al., 2011;
Kuroishi et al., 1990). Thus, developing spatiotemporal growth

models of tumors has been a long-standing field of research,
ranging from early simplified deterministic 1-D models to more
complex probabilistic simulations (Adam, 1986; Jiang et al., 2005;
Rejniak and Anderson, 2010; Gerlee, 2013; Benzekry et al., 2014).
While not an exhaustive list, these examples demonstrate the wide-
ranging applications and clinical relevance of developing robust
spatiotemporal shape modeling tools and methodologies.

Early spatiotemporal shape modeling can be linked to
morphometrics, wherein researchers attempted to analyze
biological shape variation using statistical methods. Generally
speaking, researchers analyzed variations of common anatomical
landmarks across a population (Slice, 2007). These analyses
examined variations in the coordinates of landmarks themselves,
distances or relative angles between them, or metrics calculated
from a combination thereof (Rohlf, 1990; Slice, 2005; Bookstein,
1982). In the femur, for example, measurements such as the whole
femur length, diaphyseal length, subtrochanteric anteroposterior
and mediolateral diameters, anteroposterior physeal angles, alpha
angle, and vertical diameter of the femoral head are some of the
measurements used to characterize femoral anatomy (Toogood
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et al., 2008; Wescott, 2005; Rissech et al., 2008). These methods,
however, are time-consuming and landmark placement can
be unreliable, inconsistent, and fail to capture holistic spatial
arrangement. Developments in computer vision and mathematical
modeling tools have led to the development of computational
anatomy (CA) (Miller et al., 1997; Grenander and Miller, 1998;
Miller, 2004). Therein, the concept of shape manifolds and
diffeomorphic transformations became central in describing
anatomical shape variability over time. These tools have developed
greatly in recent years. Furthermore, with the advent of deep
learning (DL), novel methodologies have surfaced. Outlining
available methodologies along with their strengths, weaknesses,
and potential synergies is, thus, required.

In this review, we seek to highlight and discuss alternative
techniques, methodologies, and tools used to model the changing
shape of anatomical structures over time. For simplicity and due to
the varied terminologies found in the literature, we use the terms
spatiotemporal shape modeling and longitudinal shape models
interchangeably. We also focus mainly on the techniques and tools
themselves as opposed to their clinical applications. However, we
highlight applications as necessary to enhance the descriptive value
of the presented concepts. We also neglect exhaustive discussions
on these methods’ mathematical background and derivations, and
instead refer the readers where necessary. We do, however, provide
some further mathematical detail surrounding the discussed
techniques in the accompanying supplementary document which
is organized in parallel to the main text. Here, we refer to shape
in both a geometric sense (i.e., a set of points in n-dimensional
Euclidean space (Rn) with defined connections) and also in the
intuitive sense of a visual boundary defining an object of interest
within an image. This is important as both definitions play a role
in the differing techniques we explore. A relatively similar review
was carried out by Harie et al. (2023), however they explicitly
focused on growth modeling and mainly discussed DL-based
generative networks. In contrast, this review focuses on shape
change over time in general, thus encompassing both growth and
alternative biological processes (e.g., degeneration). Furthermore,
this review does not focus exclusively on DL-based methods and
also covers alternatives. This review begins with a discussion
on diffeomorphisms and large deformation diffeomorphic
metric mapping (LDDMM) framework, the most common early
framework for spatiotemporal shape modeling. Then, we discuss
deep learning-based tools, focusing on autoencoders, generative
adversarial networks, recurrent neural networks, transformers, and
diffusion models. Finally, we discuss the strengths and drawbacks
of each tool generally, highlighting similarities and potential
synergies. We also speculate on potential future outlooks and
directions for research into spatiotemporal shape modeling.

2 Large deformation diffeomorphic
metric mapping

Of the many ways to describe variations in shapes in biology,
a longstanding idea was first proposed by Thompson in his
influential work “On Growth and Form” in 1917 (Thompson,
1992). Therein, he argued that variations in the shapes of biological
organisms can be best described by geometrical transformations.

This pioneering theory formed the basis for CA decades later
with the development of computer vision and mathematical tools.
In essence, CA assumes that individual shapes are described as
diffeomorphic transformations of an underlying reference shape.
As, in principle, an infinite number of diffeomorphisms can
act on a reference shape, sets of diffeomorphisms can then be
considered as an infinite dimensional manifold (Marsland and
Sommer, 2020). Accordingly, all the possible variations of a
given shape can be represented within these manifolds, which
are termed as “shape spaces” (Kendall, 1984; Monteiro et al.,
2000; Rohlf, 2000). These manifolds can then be enriched with
Riemannian metrics which enable quantitative comparison of
these shapes and further mathematical operations (Younes, 2010;
Miller et al., 2002; Miller, 2004). This constitutes the basis
for large deformation diffeomorphic metric mapping (LDDMM)
framework (Glaunès et al., 2008; Durrleman et al., 2014). Wherein,
variations of anatomical shape in a population are described
via diffeomorphisms acting on an underlying reference template.
These diffeomorphisms then make up the shape space, an
infinite dimensional Riemannian manifold describing all possible
variations of a shape in a population. The LDDMM framework can
then be extended further for longitudinal shape modeling as we
will discuss.

2.1 Geodesics

For an initial reference shape y0 and target shape y1, a
diffeomorphism φ1 exists which can be applied to transform the
former to the latter (Figure 2A). Following the convention of Bône
et al. (2020a), we denote this as y1 = φ1�y0. These diffeomorphisms
φt can be difficult to obtain and describe, especially for complex
shapes and deformations. Nevertheless, Miller et al. (2006)
demonstrated that these complex deformations could be succinctly
described by utilizing the principle of conservation of momentum
(Vaillant et al., 2004). Specifically, by discretizing them as Gaussian
convolutions g of p momentum vectors mt = m(1)

t , ..., m(p)
t ∈ R

d

acting over a set of corresponding control points ct = c(1)
t , ..., c(p)

t ∈
R

d (Figure 2A). Nevertheless, solutions for φt are non-unique
due to the infinite-dimensional nature of the underlying shape
space manifold. Thus, the geodesic, that is the diffeomorphism
requiring the least amount of deformational energy (Figure 2B),
is utilized (Miller et al., 2002; Durrleman et al., 2014). Of note
is that the geodesics’ control points and momenta are also fully
determined by their initial values (see Supplementary material S1.1
for further detail). This is particularly notable as, then, the system
of initial momenta and control point locations S0 = {c0, m0}, fully
parametrize the entire flow of diffeomorphisms.

2.2 Geodesic regression

In representing each shape in a longitudinal dataset as
a diffeomorphism of a template shape, the challenge remains
in establishing the relationships between each shape. This is
particularly important as deriving any underlying relationships
between different shapes and independent variables (i.e., time)
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FIGURE 2

(A) An illustration of diffeomorphisms [φ1, ..., φN] acting on a baseline reference shape y0 to transform it to a shape within a dataset [y1, ..., yN]. A
diffeomorphism constitutes p momentum vectors mt acting on a similar number of control points ct. (B) Diffeomorphisms within the LDDMM
framework lie on a Riemannian manifold M. The shortest paths (i.e., geodesics) connecting the reference shape and other shapes are used to
describe the transformation and are determined based on minimal deformational energy.

is essential for spatiotemporal shape modeling. Acquiring these
relationships via standard regression techniques, for instance, is
non-trivial due to the non-Euclidean structure of the Riemannian
manifolds of diffeomorphisms. Nonetheless, Fletcher proposed
an extension of standard linear regression to be applicable in
a manifold-based setting, termed geodesic regression (Fletcher,
2011; Thomas Fletcher, 2012). Their technique was then developed
further for a variety of applications, but the developments of
Fishbaugh et al. (2013) and Fishbaugh et al. (2017) for use
in longitudinal shape modeling are of particular interest for
our purposes.

In detail, for a longitudinal dataset of shapes with N number of
observations in the time range [t0, tN ], shape change over time is
taken as a baseline shape y0 being continuously deformed at each
time point t by a corresponding diffeomorphism φt (Figure 3A).
In principle, φt should lead to the baseline shape morphing to
completely match the observed shape yt = φt � y0. However, in this
context of estimating a holistic group-average geodesic (Figure 3B),
we note that a diffeomorphism instead leads to an estimation of

the observed shape at time t instead (ŷt = φt � y0). A regression
criterion can then be expressed as follows (Equation 1) (Fishbaugh
et al., 2013, 2017).

E(y0, S0) =
N∑

i=1

1
2γ 2 ||(φti � y0) − yti ||2 + L(S0), (1)

where, L(S0) represents a regularity term for the time-varying
deformation, determined by the kinetic energy of the control
points at S0 (Supplementary Equation S3). γ 2 represents a term
used to balance the importance between the data and regularity
terms. Thus, given a dataset of longitudinal shapes, during the
minimization of Equation 1 the baseline shape y0, initial control
point locations c0, and initial momenta m0 are the parameters
which are estimated. This general form of geodesic shape regression
was then developed further to incorporate both shape and image
data based on a weighted joint optimization routine (Fishbaugh
et al., 2014). Their multimodal approach demonstrated improved
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FIGURE 3

(A) Each shape in a longitudinal dataset of N shapes spanning [t0, tN] can be described with a corresponding diffeomorphism at time t, φt, acting on
reference shape y0. These diffeomorphisms are obtained from the estimation of an underlying group-average geodesic. Thus, the action of φt on y0

leads to an estimate for the corresponding shape ŷt (B) Each diffeomorphism lies on a Riemannian manifold M, and an underlying group-average
geodesic, which describes the trajectory of diffeomorphisms, can be estimated via geodesic regression.

performances as opposed to exclusive shape or image approaches.
Nevertheless, optimization schemes to solve for the underlying
geodesic regressions are computationally expensive, especially for
large-scale image datasets. Recently, Ding et al. (2019) have
also proposed methods to enhance their speed and effectiveness
using DL. They demonstrated that the use of encoder-decoder
networks with GPU acceleration could increase computation
speeds, enabling the scaling up of studies toward larger datasets
encompassing more subjects or longer timescales. Developments
notwithstanding, these methods were limited to single subject
regressions; geodesic regression up to this point has mainly
captured spatiotemporal variability of only single subjects, thus
these methods were extended further to capture populations and
their intervariabilities.

2.3 Hierarchical models

While geodesic regression can describe an object’s longitudinal
trajectory over time, it is insufficient to describe the longitudinal
characteristics of multiple objects in a large dataset (Figure 4A).
Thus, the LDDMM framework was further extended toward
hierarchical models. Early work done by Muralidharan and Fletcher
(2012) could estimate an underlying groupwise mean geodesic
based on individual geodesics (Figure 4B). They did this with a
least squares estimation of the underlying mean geodesic, using
Sasaki metrics to compare individual trends. This was developed
further by Singh et al. (2015) as a generalization of hierarchical
linear models to a manifold-based setting. Schiratti et al. (2017)
took a slightly different modeling approach, wherein they first
found the underlying group average spatiotemporal trajectory and
represented individual trajectories within the dataset as space
and time transformations of this group-average. This approach

offers more flexibility as, unlike the former approach, it is not
heavily dependent on initial time point choice, easing time
reparametrization. Bone et al. (2018) and Bône et al. (2020a)
developed this approach further for shape data within the LDDMM
framework specifically.

Briefly, the hierarchical generative longitudinal models of Bone
et al. (2018) and Bône et al. (2020a) rely on exp-parallelization
(ExpPvi

γ ) and a time warp function (ψi) to account for individual
spatial and temporal differences respectively (Equation 2). Exp-
parallelization essentially offers a tool to define parallel curves
on a manifold whilst retaining the underlying structure (Schiratti
et al., 2015, 2017). This enables us to define individual trajectories
traversing the manifold as a variation of a group average.
A time warp, on the other hand, accounts for the temporal
characteristics of each individual’s trajectory (i.e., onset time, and
rate of progression).

ExpPvi
γ [ψi(ti,j)] � y0

iid∼Nε(yi,j, σ 2
ε )

where |ψi : t → αi · (t − τi) + t0 (2)

|vi = Conv(c0, mi), mi = A0,m⊥
0
· si

In turn, each component of the model (Equation 2) is as
follows. A prediction for shape observation j of subject i, yi,j
is modeled as a noisy estimate with variance σ 2

ε . yi,j itself is
predicted as a diffeomorphic transformation of a baseline reference
shape y0 transformed by an underlying group average geodesic
γ space-shifted by exp-parallelization to match an individual’s
trajectory vi. The time warp function ψi accounts for temporal
characteristics, where αi denotes progression rate, τi is onset time,
and t0 is the reference time. vi accounts for the individuals’ spatial
variability and, in essence, is Supplementary Equation S2 with some
additional constraints. Namely, the momenta mi are obtained from
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FIGURE 4

(A) A dataset of various shapes spanning [t0, tN] can be described as diffeomorphic transformations of an underlying baseline template shape y0. (B)
Individual shape trajectories can be modeled by individual geodesic regressions, which can be used to estimate a group-average geodesic or
vice-versa (i.e., group-average geodesic used to estimate individual trajectories).

a mixing matrix A0,m⊥
0

and q source parameters si = s(1)
i , ..., sq

i . Note
that the mixing matrix serves to project the source parameters into
the higher dimensional momentum space (see Bone et al., 2018;
Bône et al., 2020a for further detail). The parameters to be estimated
which define individual trajectories are modeled as independent
samples from normal distributions:

αi
iid∼N[0,+∞](1, σ 2

α )

τi
iid∼N (t0, σ 2

τ )

si
iid∼N (0, 1)

(3)

Taken together, a mixed effects model can be defined for the
gathered parameters. Fixed effects, which account for parameters
affecting the trajectories of all the subjects, can be denoted as θ =
(θ1, θ2). Where, θ1 = (t0, στ , σα , σε) and θ2 = (y0, c0, m0, A0).
The random effects zi account for variations for each subject,
where zi = (αi, τi, si). This nonlinear multi-parameter optimization
task is computationally complex and expensive and relies on
a multi-step calibration, personalization, and simulation scheme
detailed further in Bône et al. (2020a). In brief, it utilizes a
novel Monte Carlo Markov Chains-Stochastic Approximation

Expectation Maximization-Gradient Descent (MCMC-SAEM-GD)
algorithm detailed further in the reference.

2.4 Applications and further works

Overall, the use of hierarchical models provides us with a
structured framework to characterize longitudinal data, both on an
individual and group level. The use of a group-average trajectory
enables us to quantify the variation of an individual’s progression
from a normative scenario (Kim et al., 2017). This also has the
potential for prognostic benefits. For example, Cury et al. (2016)
could detect shape changes in the thalamus of patients suffering
from dementia 10 years prior to clinical symptoms by comparing
healthy and diseased spatiotemporal trajectories. Bône et al.
(2017) have demonstrated the use of exp-parallelization and time
reparametrization to transport a population average trajectory onto
new subjects. Thus, they demonstrated that population-average
normative trajectories can be leveraged to predict trends in shape
change or disease progression for new, unseen subjects. Similarly,
Koval et al. (2018) implemented a manifold-based hierarchical
model but in the context of graph networks. Specifically, they
derived a population-based estimate for cortical atrophy dynamics
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and demonstrated the capability to characterize patient-specific
atrophy dynamics. They further extended this work to account
for multimodal data such as biomarker levels and cognitive
impairment scores to develop a comprehensive spatiotemporal
atlas of Alzheimer’s disease (Koval et al., 2021). This method of
integrating the use of biomarkers (i.e., genetic and clinical factors)
alongside imaging has gained traction and not only demonstrates
soundness in and of itself (Dalca et al., 2015) but also has the
potential to enhance the predictive capacity of existing frameworks
with multimodality. Couronne et al. (2019) further demonstrated
the efficacy of multimodal models in the context of Parkinson’s
disease prognosis. Utilizing both imaging and neurophysiological
test score data, they demonstrated the robustness and efficacy of
multimodality to improve predictive performance.

Nevertheless, the hierarchical model framework is still being
developed further to refine its modeling efficacy and integrate
newer technological developments. As opposed to modeling
correlations along a manifold as quasi-linear in the manner of
geodesics, Hanik et al. (2022) proposed to utilize generalized
Bézier curves to model nonlinear relationships with the rationale
that many biological processes are nonlinear (e.g., cardiac
motion). Their initial work demonstrated the potential for
extending this principle further and potentially decomposing
longitudinal trends (i.e., disease progression) into different
components of a nonlinear curve, enabling more granular
analyses. Hong et al. (2019) also investigated the effects of
subject-specific characteristics by including multivariate intercept
models in their formulation of a hierarchical geodesic model.
Debavelaere et al. (2020) developed a methodology to investigate
datasets with heterogeneous populations (i.e., a dataset with
diverging longitudinal dynamics). They developed an unsupervised
algorithm that is able to detect clusters of subgroups within a
dataset and differentiate their trajectories, accounting for diverging
or converging trajectories from a population normal. Gaudfernau
et al. (2023) also extended the LDDMM framework via multiscale
representations of images and demonstrated improved results on
fetal brain growth estimation, a comparatively more difficult task.
Furthermore, the advent of DL has led to augmentations of the
LDDMM framework due to its increased computational efficiency
of processing large datasets (Yang et al., 2023; Ben Amor et al.,
2023). Bône et al. (2019) demonstrated the use of autoencoders to
learn an atlas and class of diffeomorphisms that describe a dataset
of shapes and meshes. They further extended their work to also
account for the texture (i.e., appearance) of images (Bône et al.,
2020b). Pathan and Hong (2018) also demonstrated the potential
of using DL to learn vector momenta utilized in the LDDMM
framework. Other novel developments include the utilization of
implicit neural representations (INRs) (Sitzmann et al., 2020).
Dummer et al. (2023) demonstrated the potential of using INRs to
extend the LDDMM framework toward increased robustness and
resolution independence.

To surmise, the LDDMM framework is a powerful tool for
representing and modeling a dataset of shapes. Assuming an
underlying template shape, the LDDMM framework represents
individual shapes as diffeomorphic transformations of this
template. These diffeomorphisms lie on an infinite dimensional
Riemannian manifold, thus relying on geodesic regression

and parallel transport tools to estimate the longitudinal
trajectories traversing the underlying data manifold. Hierarchical
models can then be utilized to model differing spatiotemporal
trajectories of a population, capable of estimating population
average spatiotemporal trajectories and also quantifying intra
and inter-individual differences. Whilst, in recent years, the
proliferation of DL-based techniques has seemingly eclipsed
LDDMM-based techniques, the framework is continuously
developing. In fact, many of the developments seek to utilize
DL tools to accelerate the framework and increase its efficacy.
LDDMM methods are readily available in several software packages
and applications such as Deformetrica (Bône et al., 2018), Leaspy
(https://leaspy.readthedocs.io/en/stable/), and Morphomatics
(Ambellan et al., 2021).

3 Deep learning

In medical imaging, DL-based solutions have pushed the state-
of-the-art further for a variety of tasks. From image segmentation,
disease diagnosis, and prognosis to synthetic image synthesis, DL
represents a powerful paradigm for the future of medical image
analysis (Shen et al., 2017; Wang T. et al., 2020). In this section, we
highlight alternative network architectures that have been utilized
for spatiotemporal shape modeling.

3.1 Autoencoders

Autoencoders (AEs) are a neural network (NN) architecture
consisting of an encoder and decoder module (Figure 5A). This
architecture, in principle, seeks to compress data to a low-
dimensional latent space, reducing them to r number of latent

FIGURE 5

(A) Autoencoder structure consisting of an encoder (θE) which
translates an input image xi into a vector of latent variables zr. A
decoder (θD) then attempts to reconstruct input data x̂i from zr. (B) A
variational autoencoder consists of similar components, however θE

maps xi instead to deterministic parameters zμ and zσ which
describe a probabilistic distribution. These are then used to obtain zr

and similarly decoded.
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variables, zr. These latent variables themselves can then be utilized
for other tasks as they represent, in essence, a compressed low-
dimensional representation of higher-dimensional data. Thus,
the weights of the encoder θE and decoder θD modules are
learned to accurately de-construct input data down into a latent
representation and re-construct them into the original input
data, respectively (Lopez Pinaya et al., 2020). The objective when
training an AE is then to minimize the loss function Lrec,
which takes the form of a dissimilarity function or reconstruction
loss, to find θE and θD (Equation 4). Details on the loss
function and structuring of regularization can be found in the
Supplementary material S2.1.

minL(θE, θD) = min
θE ,θD

N∑

i=1

Lrec(xi, x̂i)

where x̂i = θD(θE(xi))

(4)

A variation of AEs is variational autoencoders (VAEs) which
are similar but treat encoding and decoding in a probabilistic
manner (Figure 5B) (Rezende et al., 2014). Instead of directly
mapping input data to latent variables, VAEs map input
data to probabilistic distributions of their corresponding latent
variables. Briefly, θE maps input data to deterministic parameters,
mean zμ(x) and standard deviation zσ (x), which describe an
underlying probabilistic distribution (usually Gaussian) of the
latent space. These deterministic parameters are then injected with
stochasticity sampled from a fixed normal distribution, where
� denotes a Hadamard product (Equation 5). This configuration
is necessary to preserve the stochasticity within the latent
space while enabling gradient-based backpropagation during
training (Ehrhardt and Wilms, 2022). In turn, the loss function
(Equation 4) is now modified to consider both reconstruction
quality and regularity of the latent space (Equation 6). The
latter is usually represented by a Kullback-Leibler divergence,
detailed elsewhere (Ehrhardt and Wilms, 2022). Overall, a
probabilistic treatment of latent variables and the spaces they
inhabit leads to more structured, compact, and continuous latent
spaces. This, in turn, leads to a smoother sampling of latent
variables for generative processes and representation learning
in general.

z = zμ(x) + zσ (x) � ε with ε ∼ N (0, 1) (5)

LVAE = Lrec + LKL (6)

AEs, VAEs, and variations thereof have many applications in
generative frameworks and tasks involving reduced dimension
representations of high dimensional data such as images. The
strengths of these architectures in modeling complex data within
low-dimensional representations could lend themselves well to
capturing the complex nonlinearities inherent in longitudinal
datasets. Latent variables and the spaces they inhabit have
been utilized as parameters to be fit to existing models. Sauty
and Durrleman (2022) utilized a VAE to learn latent variables
representing images within a longitudinal dataset. These latent
variables are then fitted to a linear longitudinal mixed-effects

progression model similar to those of the LDDMM framework.
Chadebec and Allassonnière (2023) utilized normalizing flows
to model latent variables representing spatiotemporal data, thus
imposing temporal structure onto the latent space. Kapoor
et al. (2025) presented MRExtrap, a framework wherein they
utilize linear models to model latent variables extracted from
a regularized AE. Their framework successfully estimated
longitudinal trajectories via a progression rate variable, from
a single scan, based on population and subject-specific priors
which can be updated dynamically with new data. Nevertheless,
as latent variables lack any specific underlying physical meaning,
developments in techniques to identify what these variables
represent have also been made. Mouches et al. (2021) utilizes
an invertible latent space disentanglement module within an
autoencoder framework to determine latent variables that affect
age-related changes. Isolated age-related latent variables can
then be varied, with age-unrelated components kept constant, to
simulate the aging of a particular individual. Following a similar
vein, Zhao et al. (2021) utilized a cosine-based loss function to
disentangle brain age from image representation. They did so
with a self-supervised learning methodology, optimizing the
correspondence between the “directionality” of latent variables
in the latent space and physical developmental trajectories.
As opposed to fitting models to latent variables themselves,
structuring the latent space during training via conditional priors
or regularization is a common and effective technique. He et al.
(2025) developed a conditional VAE architecture capable of
predicting follow-up MRI scans of the human brain. Ong et al.
(2024) incorporated the use of linear mixed models as conditional
priors on the latent space of VAEs. Chen et al. demonstrated the use
of orthogonality mixed-effects constraints to structure the latent
space of an autoencoder. Their method could robustly identify
both global and local longitudinal trajectories, with enhanced
classification outcomes (Chen et al., 2025).

Overall, AEs and VAEs represent powerful tools for reducing
high-dimensional data into a low-dimensional latent space,
efficiently encapsulating longitudinal data into compressed latent
variables. Nevertheless, latent variables and their spaces are
solely reduced dimension representations of the original input
data (Ehrhardt and Wilms, 2022); latent variables have no
underlying physical meaning. For example, the distribution of
latent variables has been shown to be affected by training
parameters, demonstrating their capricious nature (Lapenda et al.,
2020). Thus, latent variables cannot be considered spatiotemporal
variables. However, rational structuring and regularization to
ensure that latent spaces are enriched with physical meaning
can lead to better outcomes. Another point of concern is that
both AEs and VAEs generally treat latent spaces and variables
in a Euclidean manner, when in fact research has shown that
a manifold-based approaches may be more prudent (Connor
et al., 2021). These problems remain active fields of research, with
solutions such as regularization and explicitly structuring latent
spaces deterministically being continually developed (Tschannen
et al., 2018; Ghosh et al., 2020). Nonetheless, existing works
for spatiotemporal shape modeling demonstrated the potential
applicability for autoencoders and learned latent variables to model
longitudinal trajectories.
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FIGURE 6

A generative adversarial network (GAN) architecture consists of a
generator (θG) which creates synthetic data (x̂i) resembling real data
(xi). A discriminator (θDsc) then attempts to differentiate real vs. “fake”
synthetic data. Both θG and θDsc are jointly trained so that the former
generates increasingly realistic images while the latter is able to
discriminate real vs. fake data better.

3.2 Generative adversarial networks

Generative Adversarial Networks (GANs) are neural network
architectures first proposed by Goodfellow et al. (2014). In
principle, they consist of generator θG and discriminator θDsc
networks being trained simultaneously (Figure 6). Therein, the
former is trained to create new synthetic images, whilst the latter
is trained to detect if an image is real or fake. In detail, θG maps
random input variables ν (sampled from a prior distribution p(ν))
to the data space in an attempt to generate data x̂G resembling data
from a real dataset xr . In turn, both types of data are fed into θDsc,
whereby θDsc is trained to determine if data is real or fake. The
objective function used to train both networks simultaneously is
then a minimax problem (Equation 7).

min
θG

max
θDsc

V(θG, θDsc) = Ex∼pdata(xr)[log D(x)]

+ Ez∼p(ν)[log(1 − D(G(ν)))] (7)

This architecture is very powerful, as the adversarial training
configuration leads to the generator module being capable of
generating realistic synthetic images that are indistinguishable from
real data (Wang K. et al., 2017; Gui et al., 2023). Trained generators
are then useful for many applications. In the context of medical
imaging, examples include image synthesis, segmentation, and
classification, among others (Yi et al., 2019). Many variants exist,
and more are continually being developed, for which the reader
is referred to other papers for further details (Jabbar et al., 2021).
In the context of spatiotemporal shape modeling, GANs represent
a powerful tool. Similar to previously discussed AEs and VAEs,
their generative capacity can potentially be utilized to capture the
underlying spatiotemporal trajectories.

Elazab et al. (2020) used a stack of 3D GANs to predict
brain tumor growth. Specifically, with an input image and
physiological feature maps, a generator predicted a brain scan
at the proceeding time point whose accuracy was evaluated
by a discriminator. Their results outperformed contemporary
methods but relied on stacking and training consecutive GANs,
which is computationally inefficient. Alternatively, Zhang et al.
(2017) utilized GANs to uncover the underlying data manifold of

longitudinal progression for face aging. They first encode images
to latent vectors, which are concatenated with age-related feature
vectors and then mapped onto a manifold. Discriminators ensure
regularized latent vector generation and image realism of the
generators. Based on this, Ravi et al. (2019) developed a 2D
framework to model age-related brain degeneration in the context
of Alzheimer’s diagnosis. They incorporated further voxel-based
and region-level constraints which acted as biological constraints
to model Alzheimer’s progression, leading to improved prognoses.
They developed this work further to examine 3D MRIs for a
more holistic view of the brain (Ravi et al., 2022). Utilizing a 3D
training consistency mechanism and a super-resolution module led
to a full 4D model of brain aging without a loss in anatomical
detail. Following the same principle of temporal embedding
within a latent space, Schön et al. (2023) similarly implemented
a GAN-based network for embedding temporal directionality
in generators. Alternative GAN architectures have also been
investigated. Wasserstein GANs (WGANs) utilize Wasserstein
distances as a loss function as opposed to regularly used Jensen-
Shannon divergence (Arjovsky et al., 2017). This architecture leads
to more stable training outcomes and was utilized by Wegmayr
et al. (2019) as a recursive generator model to predict time steps
in brain aging. Combined with a classifier network, they present a
framework for both predicting aged brain images and Alzheimer’s
prognosis, outperforming standard methods. In StyleGAN and
derivatives thereof, the principle of style transfer and additional,
intermediate latent spaces is utilized to improve generator
architectures and disentangle latent space components and their
effects on synthesized images (Karras et al., 2019, 2020; Fetty
et al., 2020). Han et al. (2022) developed a framework for image-
based osteoarthritis prognosis using StyleGAN as the generative
architecture. This enabled them to construct the underlying
manifold of longitudinal knee aging, and furthermore, they
demonstrated that their model outperforms human radiologists in
early diagnosis of osteoarthritis. Similarly, Gadewar et al. (2023b)
and Gadewar et al. (2023a) utilized StarGAN-v2, a similar style-
based generator architecture, to predict aging in structural MRIs of
the brain.

In short, GAN-based architectures and adversarial training
represent powerful tools for spatiotemporal shape modeling.
In particular, discriminators support the structuring and
regularization processes so that the latent space of generator
modules is physically meaningful, similar to previously discussed
regularized AEs. While GANs have their own challenges in terms
of training stability, mode collapse, convergence, and image
fidelity, continual developments in training schemes, architectures,
and loss functions have led to continuous improvements (Yi
et al., 2019; Gui et al., 2023; Saxena and Cao, 2021). Generators
with well-defined and structured latent spaces, and rational
generative processes enable us to predict growth trajectories.
Said structuring of latent spaces is facilitated by discriminators
and loss functions, which allow us to ensure smooth latent
spaces that are temporally consistent and valid. In essence, in
helping structure latent spaces, discriminators implicitly define the
underlying manifold of spatiotemporal shape progression. Similar
to previously discussed AEs, this structuring process ensures
that latent spaces and variables therein can be endowed with
meaningful physical characteristics.
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FIGURE 7

A recurrent neural network (RNN) is trained along a sequence of
time points t. Based on input (xt) and output data (yt), a hidden state
(ht) is continuously updated using context units.

3.3 Recurrent neural networks

Recurrent neural networks (RNNs) are a type of NN that are
used to model sequential data such as a time series (Lipton et al.,
2015; Salehinejad et al., 2018; Staudemeyer and Morris, 2019).
They do so by considering data along a whole sequence’s trajectory
during training and inference; RNNs are designed explicitly with
features that connect and consider data inputs across longitudinal
sequences by maintaining memory (i.e., a hidden internal state ht
which is continually updated at each time point t). Early RNNs
utilized simple “context units,” which are units independently
connected to nodes in the hidden layer of an NN (Figure 7) (Elman,
1990). These context units are then updated along steps in a data
sequence via activation functions as the RNN is trained along
a sequence. These simple context units were then developed to
more complex long short-term memory (LSTM) cells to address
practicalities surrounding network training (further details in
Supplementary material S2.2).

Thus far, LSTMs have been used for natural language
processing or other tasks examining relatively low-dimensional
data. In the context of images and CNNs, LSTMs have been
adapted for image inputs in the form of the convolutional
LSTM (ConvLSTM) (Shi et al., 2015). ConvLSTM is able to
capture temporal information and dependencies in a sequence of
images while ensuring that spatial information is preserved during
encoding. This has led to its use and marked effectiveness in video
prediction tasks (Lotter et al., 2016; Lu et al., 2017).

In the context of longitudinal medical imaging, RNNs have
improved the outcomes of segmentation (Gao Y. et al., 2018) and
disease stage classification tasks (Santeramo et al., 2018; Gao L.
et al., 2018; Cui and Liu, 2019; Ouyang et al., 2021; Ding et al.,
2023). In explicitly modeling shape change using ConvLSTMs
and its derivatives, however, RNNs have seen comparatively less
uptake potentially due to the significantly high GPU memory
requirements (Ma et al., 2022). Some studies nevertheless utilize
RNNs as components within larger frameworks to avoid this
obstacle. For example, Pathan and Hong used LSTMs to predict
the vector momentum sequences to deform a longitudinal baseline
image in an LDDMM framework (Pathan and Hong, 2018). This
approach leverages the effectiveness of the LDDMM framework
to predict changes over time without loss of detail and the
computational efficiency of DL. Louis et al. (2019) utilized RNNs

to encode longitudinal trajectories into a latent space. These
encoded trajectories are then decoded to construct the manifold
and the Riemannian metrics lying on this manifold. Ma M. et al.
(2023) utilized ConvLSTMs alongside a transformer in a “growth
prediction module” to predict tumor growth. They demonstrated
that utilizing both components in a unified module leads to better-
predicted growth morphologies. Zhang et al. (2020) extended the
ConvLSTM framework with the goal of modeling spatiotemporal
sequences (ST-ConvLSTM). Their ST-ConvLSTM units learn both
temporal and spatial dependencies in a sequence; for a 3D image
slice, ST-ConvLSTM learns both the changes over time for that slice
and accounts for the adjacent slices.

To surmise, RNNs represent a powerful network architecture
for capturing temporal dependencies within a longitudinal dataset.
Nevertheless, the issue of high GPU memory requirements for
imaging data persists. This particular requirement precludes the
use of RNNs for longitudinal shape modeling. Nevertheless, Ma
et al. (2022) and Ma Z. et al. (2023) sought to address this
by developing multi-scale RNN frameworks, which demonstrably
improve performance with much lower GPU memory costs. Chen
et al. (2024) demonstrated the use of signed distance function-based
representations with ConvLSTMs to predict longitudinal changes
in the shape of vestibular schwannoma. They demonstrated a proof
of concept for using signed distance functions, which could address
issues of large memory requirements of conventional ConvLSTMs
operating directly on images. All in all, developments in using
LSTMs for medical imaging datasets are relatively recent and have
yet to be fully investigated in the context of longitudinal medical
image shape modeling.

3.4 Transformers

Transformers are a relatively recent development in DL.
Originally designed for natural language processing (NLP) tasks
(Vaswani et al., 2017), they utilize a novel attention mechanism
based on saliency, which can capture long-range dependencies
in data sequences. The architecture was later developed further
specifically for image data with the Vision Transformer (ViT)
framework (Dosovitskiy et al., 2020). In any case, transformer
networks rely firstly on tokenization of input data (Figure 8)
(Shamshad et al., 2023; Islam et al., 2024; Torralba and Isola, 2024).
This process essentially entails subdividing input data into “tokens,”
wherein each token is passed to an attention module where they
can be used to calculate an attention score (further details in
Supplementary material S2.3)

These tokenized representations and attention modules are
then integrated into various NN architectures and can be
configured for many applications, especially in medical image
analysis (Azad et al., 2024). In particular, the capability to capture
long-range dependencies and focus on salient features across long
input sequences could potentially be applicable for predicting shape
changes over time sequences.

In the context of longitudinal shape modeling, the use of
transformers are still relatively unexplored. Sarasua et al. (2021)
was one of the first to apply transformers to model longitudinal
shape trajectories. They forecasted the change in the shape of
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FIGURE 8

(A) A Visual Transformer (ViT) architecture tokenizes an input image by first delineating it into smaller patches. Each patch is then linearly projected
and embedded alongside its positional data before being fed into a transformer encoder. (B) A transformed encoder layer takes the embedded image
patches as tokens and uses them within a multi-head attention-based encoder layer. Figure inspired by existing work of Dosovitskiy et al. (2020).

meshes of the left hippocampus in an encoder-decoder-style
architecture utilizing a bidirectional transformer encoder. They
extended this work further by explicitly embedding Alzheimer’s
cognitive impairment scores and utilizing pre-trained transformers
(Sarasua et al., 2022). The latter method revolved around freezing
most layers of a pre-trained transformer and fine-tuning it on
a selected task to decrease the number of trainable parameters
(Lu et al., 2021). The former method of embedding cognitive
scores was also similarly utilized by Xia et al. (2021) to synthesize
longitudinal brain images. With an input baseline brain image,
their transformer architecture embeds a health state and age
progression to synthesize changes over time. To improve the quality
of their predicted progressions, they trained their networks in
an adversarial manner with additional loss functions to preserve
subject identity. Wang et al. (2022) developed a comprehensive
transformer-based framework to predict tumor growth. Their
so-called static-dynamic framework utilizes a transformer-based
module to first encode and enhance high-level features of detected
tumors. Then, a transformer-based growth estimation module
is employed to predict growth based on the aforementioned
extracted features.

Nevertheless, applications of transformers for longitudinal
shape modeling is still in its relative infancy. Advances in
transformer architectures, such as incorporating multi-scale
convolutions for enhanced time-series prediction, could
potentially be applied to imaging data as well (Wang and
Guan, 2023). However, there are a number of caveats to the
enhanced performance of transformer-based networks (Li et al.,
2023). Firstly, the nature of the transformer architecture leads
to lower degrees of inductive bias, necessitating larger amounts
of training data for better performance. This could potentially
be addressed with pre-training as demonstrated by Lu et al.
(2021), but nevertheless remains a consideration. Furthermore,
training transformer architectures is computationally expensive,
requiring significant computing resources, especially if applied to
3D volumetric medical imaging. In fact, a relatively high number

FIGURE 9

Illustration of forward and inverse diffusion process for diffusion
models.

of studies in the field are focused on reducing this computational
burden (Xia and Wang, 2023). This heightened computational
resources required thus present a barrier, prohibiting widespread
development and applications to new data. Early studies have
already demonstrated promising results, and transformer
architectures could present a future avenue for spatiotemporal
shape modeling.

3.5 Diffusion models

Diffusion models (DMs) are a type of generative DL
architecture similar to aforementioned GANs and AEs. In contrast,
however, DMs function on the principle of noise addition and
removal (Fuest et al., 2024; Croitoru et al., 2023; Kazerouni et al.,
2023); DMs consist of forward and inverse processes, wherein noise
is added onto input data in successive steps, and the resulting noise
is reversed to reform the input data (Ho et al., 2020) (Figure 9).
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These processes are Markovian in nature, and the forward
process is generally handcrafted (i.e., manually chosen or optimized
for). The inverse process, however, is what is learned by the
network. In detail, the process is a Markov chain which starts from
a data distribution q(x0) and a sequence of T steps corrupting it
to N (0, 1), a Gaussian distribution, with Markov diffusion kernels
q(x|xt−1) (Equation 8).

q(x1, x2, ..., xT |x0) =
T∏

t=1
q(xt|xt−1)

q(xt|xt−1) = N (xt;
√

1 − βtxt−1, βtI) (8)

Where βt is the variance of noise and I is the identity matrix.
The reverse denoising process is what is learned by the model,
that is inverting the diffusion process and turning the latent noise
variable pθ (xt) back into the data distribution pθ (x0) parameterized
by θ (Equation 9).

p(x0, x1, ..., xT−1|xT) =
T∏

t=1
pθ (xt−1|xt)

pθ (xt−1|xt) = N (xt−1;μ0(xt , t), σ 2
0 (xt , t)I)

p(xt) = N (xT; 0, I)

(9)

Where, σ 2
0 (xt , t) is variance at step t and μ0(xt , t) is the mean

of the Gaussian distribution. Thus, from a randomly sampled noise
vector, novel samples can be generated (for further mathematical
detail, readers are referred to Fuest et al., 2024; Croitoru et al., 2023;
Kazerouni et al., 2023).

DMs have led to state-of-the-art high resolution visual
generative networks (Rombach et al., 2021; Dhariwal and Nichol,
2021), and existing works have demonstrated the potential for use
in a variety of spatiotemporal modeling tasks (Yang et al., 2024;
Rühling Cachay et al., 2023). Yoon et al. (2023) demonstrated
the use of a sequence-aware diffusion model (SADM) to generate
longitudinal medical images. Their framework utilized a sequence-
aware transformer as the conditional module for a diffusion
model, demonstrating effective data generation capabilities for
longitudinal 3D medical imaging sequences, even with missing
data. Litrico et al. (2025) utilized patient metadata and age
gaps to condition their diffusion model, demonstrating effective
results. Lozupone et al. (2025) took an alternative approach,
wherein they applied the diffusion process to a compressed latent
representation of their images as opposed to the images themselves.
This approach enables computationally efficient processing of 3D
medical imaging and demonstrated impressive results on disease
classification and temporal trajectory prediction. Puglisi et al.
(2025) followed a similar approach in their Brain Latent Progresion
(BrLP) framework. Alongside training a DM to operate on latent
variables, they further condition it with additional patient metadata
and anatomical measures. Operating within their wider framework,
they demonstrate state-of-the-art results in trajectory prediction.

While a promising avenue of development, DMs are still a
developing field with many deficiencies to be addressed. Namely,
a main issue is with computational efficiency (Croitoru et al.,
2023; Guo et al., 2023). The multi-step noising and denoising

processes takes more computational time and resources compared
to other generative networks, precluding potential real-time
diagnostic applications. Training these networks also requires
considerable computational resources which potentially surpass
the requirements of alternative networks. Whilst developments in
improving efficiency of DMs have been made, it is still a growing
field of interest (Shen et al., 2025). Furthermore, to ensure the
validity of generated data, auxiliary networks such as ControlNet
and variants thereof have been developed to enhance the tractability
of DMs’ generative processes (Zhang et al., 2023; Yang et al.,
2025). Integration of DMs into wider frameworks such as those
incorporating attention-based mechanisms has also demonstrated
to be effective, and further developments could also be promising
(Wu and Gong, 2024).

3.6 Limitations of deep learning
approaches

Although the presented DL techniques have led to great strides
forward in the state-of-the-art of spatiotemporal shape modeling,
several challenges persist. These challenges hinder the widespread
adoption of DL both in general and medical image analysis
specifically. Thus, practitioners should be aware that DL cannot be
simply considered a panacea for their tasks.

Firstly, DL models are inherently “black boxes” (Castelvecchi,
2016): while their outputs might be accurate, valid, and valuable
according to many objective metrics, the inscrutability of how
these outputs arise is a predominant concern. The opaque
nature of how trained models arrive at their solutions engender
doubts regarding trustworthiness due to the lack of explainability
(Li et al., 2022; Xu and Yang, 2025). Especially for medical
applications, interpretability and understanding is paramount.
In modeling the progression of diseases for example, both
for observational and prognostic applications, developing an
understanding of the phenomena being modeled can be more
important than the final model output itself (Young et al.,
2024). Thus, efforts have been made to increase the explainability
of these models and increase levels of trust with clinical end
users (Singh et al., 2020). For example, a popular technique
for image classification is via class activation maps (Teng
et al., 2022). This visualization technique essentially highlights
the specific discriminative image regions which influence final
classification output. Many alternative methods exist such as
utilizing accompanying language models to provide elaborative
textual explanations (i.e., captions) describing visual results
(Patrício et al., 2023). Schutte et al. (2021) also demonstrated the
use of StyleGAN to generate counterfactual images as an alternative
illustrative means of increasing interpretability.

Another concern is the implicit biases embedded into trained
DL models. As DL models generally have no underlying physical
grounding, their overall performance is entirely dependent on the
quality of input training data and susceptible to biases or errors
in the data itself (the garbage in, garbage out principle) (Geiger
et al., 2021). This is related to the disproportionate prevalence of
White, Educated, Industrialized, Rich, and Democratic (WEIRD)
datasets in the field of behavioral sciences (Henrich et al.,
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2010). This is an issue given that while WEIRD populations
do not represent the global norm, they are overrepresented in
academic research. This is also an underlying problem with
DL and available training data. Septiandri et al. found that a
majority of datasets utilized by researchers at two AI-focused
conferences were WEIRD. This could risk under-representing less
privileged populations, impeding equal availability of state-of-the-
art models or even leading to harmful outcomes (Mihalcea et al.,
2025). For example, Puyol-Antón et al. (2021) and Puyol-Antón
et al. (2022) demonstrated clear racial biases in segmentation
models, attributed to training data composition. Nevertheless, they
demonstrated the use of several alternative strategies to address
this bias such as training separate population-specific models and
ensuring population-balanced training data. Regardless of specific
strategies, practitioners should be cognizant of this issue for all
DL applications, including spatiotemporal shape modeling, and
actively work to address and mitigate these biases.

Domain shift is yet another significant barrier to widespread
adoption of DL. Simply put, domain shift refers to dissimilar
training and target datasets of a DL model, leading to a lack
of generalizability (Guan and Liu, 2022). Especially for medical
image analysis, domain shift is an underlying issue and arises
from several issues. For example, MRI and X-ray data gathered
from different centers examining similar structures can exhibit
differences due to differing scanners or acquisition protocols.
These differences, while seemingly negligible, greatly degrade
downstream performance on trained models (Guo et al., 2024;
Pooch et al., 2020). In histopathological data as well, data acquired
from different scanners or subject to different pre-processing steps
also exhibit degraded downstream performance (Stacke et al.,
2019). Nevertheless, addressing this issue (i.e., domain adaptation)
remains an active field of research and an underlying consideration
to develop robust DL models (Guan and Liu, 2022; Singhal et al.,
2023).

Lastly, an unavoidable consideration for many practitioners
is the resource requirements for DL. State-of-the-art networks
are continually growing in size and complexity, and require an
unsustainably increasing amount of compute resources to train
(Thompson et al., 2020). Whilst algorithmic improvements to
decrease these compute costs for training are being developed,
this remains a problem for widespread adoption (Bartoldson
et al., 2023). End users of trained models could also encounter
high computational costs for model inference, depending on their
size and complexity. Higher compute requirements also generally
translate to higher monetary costs to access said resources.
Similarly, methods are being developed to address efficiency from
a monetary as opposed to a compute standpoint (Klemetti et al.,
2023). Nevertheless, these requirements could present a simple
but significant barrier to resource-limited practitioners seeking to
develop or train models further.

4 Discussion and conclusions

Several approaches for spatiotemporal shape modeling of
anatomical structures were discussed in this review. Rapid
developments in the field, especially in recent years, have been
fueled by advancements in DL and are set to only continually

progress further. Nevertheless, the works found in the existing
literature have been mainly focused on incremental developments
in methodology or applications of novel new tools. This is in
contrast with applying already developed tools to existing or novel
clinical challenges. This seeming reluctance of the medical imaging
community toward application-based research could stem from a
multitude of reasons, but a simple lack of data could be the main
factor, as we will discuss shortly. Deficiencies notwithstanding, in
this section, we will discuss key concepts of spatiotemporal shape
modeling uncovered from our review. We will then outline several
key barriers to further research in the field before speculating on
future research directions.

4.1 Nonlinear shape manifolds

From our review, it is clear that anatomical shape variation is
highly nonlinear. This nonlinearity is further compounded by the
additional nonlinear dynamics of growth and changing biological
structures over time, leading to an intricate and complex outlook.
Thus, the best-suited models for spatiotemporal progression are
those that lie on non-Euclidean manifolds as they best capture this
inherently high dimensional problem. A potential reason for this
could be the manifold hypothesis, wherein it is postulated that
all high-dimensional data lie on an embedded low-dimensional
manifold (Fefferman et al., 2016; Narayanan and Mitter, 2010).
The task of spatiotemporal shape modeling can then be reduced
to identifying and characterizing these manifolds, either implicitly
or explicitly. The LDDMM framework discussed in Section 2, for
example, explicitly seeks to uncover spatiotemporal trajectories
of diffeomorphisms traversing across a manifold. DL techniques
discussed in Section 3 also implicitly benefit from manifolds, as the
efficacy of DL techniques has been attributed to their capability to
uncover and disentangle underlying the manifolds of complex data
(Brahma et al., 2016).

In contrast to manifold-based techniques, several works
do exist that have attempted to extend linear (PCA-based)
statistical shape models toward spatiotemporal shape models.
These, however, fall short when compared to LDDMM and
DL-based solutions as they effectively only serve to compare
differences across and interpolate between time points as opposed
to true longitudinal forecasting (Hamarneh and Gustavsson, 2004;
Kasahara et al., 2018; Binte Alam et al., 2020; Saito et al., 2019). Due
to their reliance on landmarks, these methods do not effectively
work if anatomies significantly change over time, as is the case,
especially in early development. Furthermore, they are incapable
of separating groupwise vs. individual developmental trends, nor
are they capable of effective data imputation (Adams et al., 2023).
Therefore, while these methods might be effective for comparing
shape variation across time points, they are not as effective for shape
trajectory forecasting as manifold-based methods.

Comparatively, manifold-based techniques are more effective
as the longitudinal trajectories traversing the shape space yield
an effective description of shape variation over time. LDDMM
techniques offer a structured framework to describe shape
variation, and furthermore, the geodesic trajectories themselves
are clinically relevant as they offer prognostic and diagnostic
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utility. When utilized within a hierarchical model that incorporates
many trajectories for a population average, new trajectories can
be estimated for unseen data, which could offer prognostic
significance. Furthermore, trajectories can be compared using
relational transport operators to diagnose if a trajectory is irregular
compared to population averages. Similarly, DL methods mostly
operate directly on medical imaging data with convolutional
networks. This allows us a way to extract hidden features from
images which could also influence spatiotemporal trajectories,
otherwise lost during parameterization processes necessary for
LDDMM or PCA-based models. In encoding networks especially,
the latent space encompassed by these extracted latent variables
can be structured to construct a physically meaningful underlying
spatiotemporal manifold. The inductive capacity of DL methods
with such structured latent spaces is then superior to linear
methods, capable of imputing missing data and predicting
spatiotemporal trajectories.

4.2 Paucity of longitudinal datasets

Another clear deficiency is the lack of large, open-source,
and high-quality longitudinal imaging datasets. Existing datasets
used in studies are generally small, in-house, cover a short
time span, and are limited to very specific clinical conditions
(Table 1). This is, of course, understandable as it is extremely
difficult to gather longitudinal data. Issues such as participant
attrition (Young et al., 2006) and ethical concerns (Tinker
et al., 2009) are just two examples of difficulties that hamper
the execution of effective studies. An exception to this is the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database,
which is a large multimodal database of longitudinal biomarker
and neuroimaging data tracking the progression of AD (Jack et al.,
2008). This dataset is particularly outstanding due to its size and
comprehensiveness, leading to many studies covered in this review
validating their methods on the ADNI dataset. Nevertheless, this
dataset remains unique and standout compared to others. This
paucity of longitudinal datasets, especially for medical imaging,
impairs the efficacy of both LDDMM and DL techniques covered
in this study.

DL techniques are notoriously data hungry, with larger
dataset sizes contributing significantly toward improved efficacy of
networks (Sun et al., 2017; Cho et al., 2015). While techniques such
as transfer learning (Alzubaidi et al., 2020) and data augmentation
(Mumuni and Mumuni, 2022) seek to ameliorate this issue, it
remains pervasive. Conversely, whilst the LDDMM framework
is comparatively not as data-hungry, sufficiently sized datasets
are also essential. Adequately sized and diverse datasets are vital
to ensure that the estimated population average trajectories are
reflective of the entire population. Solutions such as GAN-based
frameworks discussed in Section 3.2 are shown to be helpful
in addressing the issue of data paucity. Therein, generative
processes and adversarial training frameworks can increase the
generalizability of networks. The latter is particularly useful as the
adversarial process assists in regularizing and structuring the latent
space, implicitly learning the underlying spatiotemporal manifold.
Nonetheless, the lack of datasets presents another issue of validity.

In essence, the impressive performance on specific datasets could
be a function of the dataset and not the frameworks themselves.
Thus, exploring their efficacies on additional anatomical structures
and imaging modalities is also prudent. Initiatives to compile
multimodal datasets to train and test frameworks in a challenge-like
style such as the Medical Segmentation Decathlon (MSD) could be
warranted to ensure that future developments in methodology are
sufficiently valid (Antonelli et al., 2022).

Nevertheless, longitudinal datasets, be it open-source or in-
house, remain scarce. Gathering additional longitudinal data
remains the most ideal option, however the aforementioned
practical difficulties in data gathering present a significant barrier.
In the medium to long term, additional initiatives resembling
ADNI could be warranted to gather high-quality, longitudinal,
multi-center data for other diseases and disorders benefiting from
spatiotemporal shape analyses. Furthermore, these data should be
multi-modal, encompassing both imaging and also biomarker data
as these have been shown to work synergistically when incorporated
into joint frameworks, improving their efficacy. In the meantime,
efforts to compile existing data into a large open-source database
could be more warranted. This could resemble, for example, the
aforementioned MSD. Nonetheless, the impetus to gather and
unite such datasets is lacking, especially in the face of general
(un)willingness to openly share rare datasets (Tedersoo et al., 2021).
Furthermore, medical imaging datasets face strict international
data privacy regulations (Lo, 2015; Phillips, 2018). Regulations
such as General Data Protection Regulation (GDPR) and the
Health Insurance Portability and Accountability Act (HIPAA) are
compounded with ethical concerns and additional practicalities
such as ensuring patient anonymity (Lo, 2015; Larson et al., 2020;
Banja et al., 2021). Overall, these considerations are non-trivial and
present significant barriers to nurturing a culture of open science
for spatiotemporal shape modeling.

4.3 Comparison of methods

This review focused on two main avenues for spatiotemporal
shape modeling, including the LDDMM framework and varying
DL approaches. Each strategy presents distinct advantages and
disadvantages as we will discuss (Table 2).

From the computational complexity viewpoint, the state-of-
the-art LDDMM approaches we describe can be computationally
expensive. Even with parallelized processing utilizing both CPU
and GPU, moderately sized data require up to a day of compute
time (Bône et al., 2020a). As discussed in Section 3.6, state-of-
the-art DL approaches (e.g., transformers, diffusion models, etc.)
also require extensive computational resources for training and
potentially inference. Nevertheless, as briefly discussed in the same
section, decreasing the cost of training and inference is an active
field of research and heavily architecture-dependent.

On interpretability, the LDDMM framework is based on a clear
underlying mathematical framework. The uncovered underlying
longitudinal trajectories generally present directly interpretable and
understandable outputs. Especially with regards to the discussed
hierarchical models, which explicitly separate population-level
and individual-level variations, the overarching findings taken

Frontiers in Artificial Intelligence 14 frontiersin.org

https://doi.org/10.3389/frai.2025.1671099
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Tay et al. 10.3389/frai.2025.1671099

TABLE 1 A summary of several longitudinal medical imaging datasets.

Name Anatomy Modality Age range Number of
subjects

Repeated
measurements

Youngest Oldest

OASIS-2 Brain MRI 60 96 150 ≤5

OASIS-3 Brain MRI 42 95 1,378 ≤7

HABS-HD Brain MRI 40 92 3,838 ≤3

Harvard aging brain study Brain MRI 62 90 >290 ≤3

ADNI-4 Brain MRI 55 90 >2,400 ≤6

UK Biobank Brain MRI 44 87 >5,000 ≤2

Whole body DXA ≥5,156

Abdomen MRI ≥113,65

Heart MRI ≥5,100

MCSA Brain MRI 30 89 1,802 Unknown

OASIS, Open Access Series of Imaging Studies; HABS-HD, Health and Aging Brain Study-Health Disparities; ADNI, Alzheimer’s disease neuroimaging initiative; MCSA, Mayo clinic study of
aging.

TABLE 2 Comparison of approaches for spatiotemporal shape modeling.

Aspect LDDMM approach Deep learning
approaches

Temporal
modeling

Explicit via diffeomorphic
trajectories and time warping

Implicit through network
architecture (RNNs,
transformers) or latent space
structuring

Data
requirements

Moderate—Can work with
smaller datasets due to
strong priors

High—Generally require
large datasets for good
performance

Computational
complexity

High—Requires iterative
optimization for hierarchical
models, computationally
expensive geodesic
calculations

High for training, moderate
for inferences; varies by
architecture (transformers
>RNNs >CNNs)

Scalability Limited—Struggles with
large datasets, optimization
becomes prohibitive

Good—Naturally handles
large datasets

Interpretability High—Explicit mathematical
framework, geodesics have
geometric meaning,
trajectories directly
interpretable

Low—Black box nature,
latent variables lack physical
meaning, requires post-hoc
interpretability methods

Clinical
applicability

Strong for trajectory analysis,
population vs individual
variation assessment

Strong for end-to-end tasks
(e.g., prediction) and
multimodal data integration

as immediately interpretable by clinical end users. In contrast,
DL models are “black boxes” with opaque decision processes as
previously discussed in Section 3.6.

For clinical translation, both approaches offer benefits for
different applications. The LDDMM framework allows us to
elucidate upon the underlying mechanisms of shape change
over time by presenting us with a foundation to separate and
study both population and individual dynamics mathematically.
In contrast, DL demonstrates superior performance for specific
tasks such as prediction or imputation via well-regulated
generative architectures. Furthermore, DL models can extract

hidden features from imaging data which are not specifically
accounted for, compared to an explicit mathematical model for
example. Nevertheless, as the decision-making process is opaque
without additional post-hoc techniques to increase interpretability,
it remains difficult to directly apply to a clinical setting as
previously discussed (Section 3.6). Thus, the clinical translatability
of both approaches is heavily dependent on the end-user and
their requirements, be it end-to-end tasks (e.g., classification,
segmentation, etc.) or understanding and characterization.

4.4 Future outlook and directions

In this review, we focused mainly on the development of
LDDMM and DL-based techniques. We did so because these
were considered the most versatile for generalizable spatiotemporal
shape modeling. This is opposed to alternative methods seeking
to model shape changes of specific anatomical structures over
time from a mechanistic standpoint. For example, many early
works on spatiotemporal shape modeling of tumors attempted
to develop models uncovering the underlying mechanistic cause
and effects governing their growth (Jarrett et al., 2018). Similar
works also exist focusing on cardiac tissue remodeling (Wang
V. Y. et al., 2017) and bone remodeling (Kameo et al., 2020).
Whilst these varied mechanistic models are inherently different,
they generally revolve around shape change as a consequence of
mechanical and biochemical stimuli or a combination thereof.
Thus, these models seek to uncover the underlying formulae
governing these interactions and their relationships. This is in
contrast with the LDDMM framework, which operates solely
from a geometric perspective in uncovering the trajectories of
diffeomorphic transformations. In other words, the LDDMM
framework does not explicitly consider the underlying physical
laws governing the biological processes that lead to the resulting
shape changes. Therefore, this approach potentially neglects
key information that may affect how reflective the LDDMM
approach is in said processes and, therefore, its accuracy. Similarly,
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DL techniques are opaque, often referred to as black boxes
(Castelvecchi, 2016). Therein, the model layers, in effect, operate on
hidden features uncovered during training processes. These have,
in principle, no physical meaning and are not always explainable,
engendering issues of trust and validity.

A compromise and potential future direction of research is
via physics-informed neural networks (PINNs) (Cuomo et al.,
2022). Therein, the strengths of DL to process large datasets are
utilized to solve underlying physical equations that describe the
physics of a system. PINNs are particularly useful even, for example,
to uncover underlying dynamics of systems that were previously
obscured under high dimensional nonlinear data (Lagergren et al.,
2020). Tajdari et al. (2021) and Tajdari et al. (2022) demonstrated
the applicability of PINN principles within frameworks to model
the longitudinal progression of adolescent idiopathic scoliosis,
outperforming traditional methods. While their works were mainly
concerned with the mechanistic effects of loading on spinal
outcomes, their efficacy also lends itself to potential benefits for
spatiotemporal shape modeling. Nevertheless, PINNs remain an
unexplored avenue and warrant further study.

Another developing field is utilizing and exploiting causality in
the form of causal deep learning. In essence, causality and structural
causal models (SCMs) seek to capture and model the chain of
causality and inter-variability of multivariate systems (Peters et al.,
2017; Pearl, 2013; Pearl et al., 2016). This is useful as it enables
us to interrogate models to obtain counterfactuals (i.e., if X was
different, what is the effect on Y? Or more relevantly, “How would
injury A affect bone development of pediatric subject B?”). For
spatiotemporal shape modeling specifically, this could be used to
obtain predictions of shape change over time as a counterfactual
from existing data. Traditional methods relied on a system of
structural equations with computation graphs, but this precluded
the use of higher dimensional data such as images. In recent
years, several studies have explored extending SCMs toward being
supported by DL [i.e., Deep Structural Causal Models (DSCMs)],
enabling the use of hidden features identified via DL (Lore et al.,
2018; Pawlowski et al., 2020; Berrevoets et al., 2023). Zhou et al.
(2023) reviewed the synergistic capabilities of generative models
and causality, specifically highlighting the applicability of the latter
in enhancing the interpretability of generative processes. Further
works such as by Reinhold et al. (2021) demonstrated the capability
of DSCMs to generate counterfactual brain MRIs of patients with
multiple sclerosis. They were able to manipulate demographic and
disease covariates and observed their effects on MRI imaging in a
novel proof-of-concept. Rasal et al. (2022) further extended DSCMs
toward shape modeling, specifically 3D meshes, demonstrating
the extendability and scalability of the principle toward more
complex data types. Nevertheless, the field is still in its relative
infancy, with further developments and refinements in the DSCM
framework potentially leading to enhanced efficacy for longitudinal
shape modeling.

In terms of direct clinical translation, spatiotemporal shape
modeling is yet to be fully explored. Existing works covered in
this review highlighted, for example, capabilities to stratify patient
cohorts both temporally and by subtype (Young et al., 2024; Puglisi
et al., 2025). This has the potential capability to enhance the efficacy
of clinical trials, for example, by enabling more precise targeting of

treatments. To our knowledge, use of longitudinal data modeling
is still relatively theoretical and whilst research has projected its
utility, direct translations to clinical practice remain difficult as
is the case for most biomedical research (Finney Rutten et al.,
2024). For our specific context of spatiotemporal shape modeling,
our proposed application scenarios (Section 1) are also simply
hypothetical at this juncture. Nevertheless, the clinical applicability
of spatiotemporal shape modeling remains an unexplored yet
promising research domain.

In summary, this paper mainly reviewed the LDDMM
framework and DL-based techniques for longitudinal shape
modeling. Both achieve their remarkable state-of-the-art
performance as they function on similar principles of uncovering
the underlying nonlinear spatiotemporal data manifold. Whilst
promising, the LDDMM framework is computationally expensive
and inefficient due to the exhaustive optimization procedure
necessary to calculate smooth and invertible diffeomorphisms.
It, nevertheless, demonstrates strong capabilities to establish
hierarchical models that differentiate individual and population-
level temporal trajectories. Conversely, DL-based techniques
are powerful but data-hungry and lack underlying physical
meaning. Network architectures have been developed to predict
shape changes in anatomical structures. Nevertheless, the
underlying data manifolds and spatiotemporal trajectories
governing these predictions are obscured by the “black box”
nature of DL architectures. This affects the interpretability
of these predictions, especially if the longitudinal trajectories
themselves are important. Nevertheless, the capability of DL
architectures to identify hidden features from input images
and implicitly map the underlying data manifolds denote their
importance for spatiotemporal shape modeling. State-of-the-art
developments in DL such as via foundation models, highly
sophisticated pre-trained feature extractors which can extract
rich representations from data, are also a promising direction
of exploration (Ma et al., 2024; van Veldhuizen et al., 2025;
Homayounfar et al., 2026). Our review highlights that hybrid
techniques that amalgamate both approaches’ strengths are more
desirable. Furthermore, frameworks incorporating multi-modal
data improved generalizability. Thus, further works should
not neglect the utility of auxiliary data (e.g., biomarker levels,
demographic information, etc.). Many studies discussed in our
review utilized multimodal data, in LDDMM, DL, and hybrid
frameworks. Thus, multimodality represents a clear path forward
for state-of-the-art development (Nakach et al., 2024). Finally,
we theorize that utilizing mechanistic models in a manner
similar to PINNs or structured causal frameworks could also
further improve the predictive capacities of future spatiotemporal
shape models.
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