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Background: Alzheimer's disease and related dementias (ADRD) affect nearly five
million older adults in the United States, yet more than half remain undiagnosed.
Speech-based natural language processing (NLP) provides a scalable approach
to identify early cognitive decline by detecting subtle linguistic markers that may
precede clinical diagnosis.

Objective: This study aims to develop and evaluate a speech-based screening
pipeline that integrates transformer-based embeddings with handcrafted linguistic
features, incorporates synthetic augmentation using large language models
(LLMs), and benchmarks unimodal and multimodal LLM classifiers. External
validation was performed to assess generalizability to an MCl-only cohort.
Methods: Transcripts were obtained from the ADReSSo 2021 benchmark dataset
(n = 237; derived from the Pitt Corpus, DementiaBank) and the DementiaBank
Delaware corpus (n = 205; clinically diagnosed mild cognitive impairment [MCI]
vs. controls). Audio was automatically transcribed using Amazon Web Services
Transcribe (general model). Ten transformer models were evaluated under three
fine-tuning strategies. A late-fusion model combined embeddings from the best-
performing transformer with 110 linguistically derived features. Five LLMs (LLaMA-
8B/70B, MedAlpaca-7B, Ministral-8B, GPT-40) were fine-tuned to generate label-
conditioned synthetic speech for data augmentation. Three multimodal LLMs
(GPT-40, Qwen-Omni, Phi-4) were tested in zero-shot and fine-tuned settings.
Results: On the ADReSSo dataset, the fusion model achieved an Fl-score of
83.32 (AUC = 89.48), outperforming both transformer-only and linguistic-
only baselines. Augmentation with MedAlpaca-7B synthetic speech improved
performance to F1 = 85.65 at 2 X scale, whereas higher augmentation volumes
reduced gains. Fine-tuning improved unimodal LLM classifiers (e.g., MedAlpaca-
7B, F1=4773 - 7869), while multimodal models demonstrated lower
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performance (Phi-4 = 71.59; GPT-40 omni = 67.57). On the Delaware corpus,
the pipeline generalized to an MCl-only cohort, with the fusion model plus
1 X MedAlpaca-7B augmentation achieving F1 = 72.82 (AUC = 69.57).

Conclusion: Integrating transformer embeddings with handcrafted linguistic
features enhances ADRD detection from speech. Distributionally aligned LLM-
generated narratives provide effective but bounded augmentation, while current
multimodal models remain limited. Crucially, validation on the Delaware corpus
demonstrates that the proposed pipeline generalizes to early-stage impairment,
supporting its potential as a scalable approach for clinically relevant early

screening. All codes for LLMCARE are publicly available at: GitHub.

KEYWORDS

Alzheimer's disease, mild cognitive impairment (MCIl), large language models, data
augmentation, transformers, natural language processing

1 Introduction

Alzheimer’s disease and related dementias (ADRD) pose a major
public health challenge, affecting approximately five million
individuals—11% of older adults—in the United States (Alzheimer's
Association, 2013; Zolnoori et al., 2023). Despite national efforts, over
half of patients remain undiagnosed and untreated (Boise et al., 2004;
Toth et al., 2018; National Institute on Aging, n.d.). With an expected
13.2 million cases by 2050 (Nichols et al., 2017), the National Institute
on Aging has prioritized the development of effective screening tools
(National Institute on Aging, 2021; National Institute on Aging, n.d.).
Meeting this need requires an interdisciplinary approach spanning
neuroscience, data science, and speech-language pathology.

One promising direction involves leveraging natural language
processing (NLP) to analyze spontaneous speech (Zolnoori et al.,
2024a), which can reveal subtle cognitive changes often missed by
traditional screening instruments. Early linguistic impairments—such
as word-finding difficulties (Meildn et al., 2020; Aramaki et al., 2016),
syntactic disorganization (Sung et al., 2020), and reduced fluency
(Meilan et al., 2020)—may be detectable through tasks like picture
descriptions. Although speech-based screening has shown potential,
progress is limited by scarce labeled clinical speech data and poor
model generalizability across populations and clinical settings
(Rashidi et al., 2025; Zolnoori et al., 2024b).

Transformer-based NLP models—particularly BERT (Devlin
etal, 2018) and its variants—capture linguistic context well and have
achieved strong results in classifying cognitive impairment in corpora
such as DementiaBank (Lanzi et al., 2023). However, variations in
fine-tuning protocols, validation sets, and downstream classifiers lead
to inconsistent findings on how well these models encode linguistic
markers of cognitive decline (see Table 4 in Appendix A as an example
of this variation) (Zolnoori et al., 2023). Progress is further constrained
by the small size of available speech datasets, which limits both model
training and rigorous model validation.

Recent work suggests that large language models (LLMs), such as
GPT-4 (OpenAl, 2023), can generate synthetic clinical data resembling
real-world datasets. Compared to generative adversarial networks
(Goodfellow et al., 2014), LLMs are more accessible and require less
technical expertise. Yet, their effectiveness for downstream tasks varies.
For instance, synthetic mental health interviews significantly improved
ML-based depression detection (Kang et al., 2025), while only marginal
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gains were observed for named entity recognition in social
determinants of health (e.g., Macro-F1 improvement <1%) (Guevara
etal., 2024). In autism detection, synthetic data increased recall by 13%
but reduced precision by 16% (Woolsey et al., 2024). These mixed
results highlight that LLM-generated data must preserve linguistic
complexity, align with real data distributions, and
support generalization.

Beyond text, emerging multimodal LLMs extend these capabilities
by jointly modeling language and audio inputs, enabling them to
capture both what is said and how it is said—such as prosody (Peng
etal,, 2024). These acoustic-linguistic features may be critical in early
cognitive impairment detection. However, their application in
dementia research remains limited.

This study addresses these gaps through a multi-component
design evaluated on two datasets: the ADReSSo 2021 benchmark,
which includes participants across a range of cognitive impairment
severity (from mild cognitive impairment [MCI] to severe dementia)
versus cognitively healthy [controls], and the Delaware corpus, which
is restricted to clinically diagnosed MCI versus controls.

1.1 Component 1: developing the screening
algorithm

We systematically evaluated BERT-based and newer transformers
(e.g., BGE) on the picture-description task to identify the optimal
model for encoding linguistic cues. We then combined embeddings
from the top-performing model with handcrafted features (e.g., lexical
richness) to develop a screening algorithm, hypothesizing that
integration would enhance detection accuracy.

1.2 Component 2: leveraging LLMs to
generate synthetic speech

We evaluated state-of-the-art LLMs, including open-weight
(LLaMA, MedAlpaca, Ministral) and commercial (GPT-4), to assess
their ability to learn linguistic markers of cognitive impairment and
generate synthetic speech faithful to patient language. We then tested
whether augmenting training data with synthetic speech improved
screening performance.
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1.3 Component 3: evaluation of LLMs as
classifiers

We assessed the diagnostic capabilities of LLMs in zero-shot and
fine-tuned settings to establish baseline and advanced benchmarks,
examining whether model size and training improve classification
compared to pre-trained transformers.

1.4 Component 4: evaluating multimodal
LLMs for integrated speech and text
analysis

We explored whether multimodal LLMs that jointly process
linguistic and acoustic inputs improve detection of cognitive
impairment compared to text-only models.

1.5 Component 5: validation on the
Delaware corpus

Finally, we validated the pipeline on the Delaware dataset,
restricted to clinically diagnosed MCI versus controls, to assess
generalizability beyond the mixed-severity cohort in ADReSSo 2021
and to test the performance of Components 1-4 in early-stage
cognitive impairment screening.

This study makes several contributions to speech-based ADRD
detection. We systematically evaluate ten transformer architectures on
the ADReSSo 2021 benchmark and show that combining transformer
embeddings with 110 linguistic features in a late-fusion design
improves generalization. We introduce a controlled augmentation
framework using distributionally aligned LLM-generated narratives,
which enhances performance without compromising validity. We also
benchmark unimodal and multimodal LLMs, demonstrating that
well-tuned linguistic transformers remain competitive with large-scale
LLMs. Finally, we validate the pipeline on the Delaware dataset, the
first evaluation of this approach on clinically diagnosed MCI versus
controls, evidence early-

providing of generalizability to

stage impairment.

2 Method
2.1 Pipeline overview

Figure 1 illustrates the methodology for developing the screening
algorithm using the fusion of pre-trained transformer model and
handcrafted lexical features, process of synthetic text generation using
state-of-the-art LLMs, and measuring the performance of both
unimodal and multimodal LLMs as classifiers for ADRD detection.

2.2 Dataset and cohorts

We used the ADReSSo 2021 benchmark dataset, derived from
DementiaBank’s Pitt Corpus and introduced as a standardized
benchmark for dementia detection. The dataset includes 237
participants performing the Cookie-Theft picture description and is
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divided into an official training set (166 participants) and an official
test set (71 participants), balanced for age and gender. For model
development, we further split the training portion into 116 training
and 50 validation participants using stratified sampling, with all
hyperparameter tuning performed on the validation set only. The final
results are reported on the official ADReSSo 2021 test set, ensuring
comparability with prior work.

Participant characteristics are summarized in Table 1. All
individuals underwent comprehensive  neuropsychological
evaluations, including verbal tasks and the Mini-Mental State
Examination (MMSE). Diagnoses were assigned by clinical specialists
(neurologists and neuropsychologists) following full clinical
assessments. All participants were older than 53 years, and females
comprised more than 60% of each group. MMSE scores in the case
group ranged from 7-28 (training), 3-27 (validation), and 5-27 (test),
reflecting mild to severe cognitive impairment, while scores in the
control group ranged from 24-30, consistent with normal cognition.
On average, control participants produced more words and had
shorter recordings than cases, consistent with expected language

production differences in dementia.

2.2.1 Transcription and preprocessing

To avoid reliance on manual transcripts, we re-transcribed the
audio data with Amazon Transcribe (general model). We minimized
normalization (automatic grammar rewriting disabled), enabled
disfluency/hesitation tokens and partial-word emission, and retained
word-level timestamps. All study transcripts were produced with this
configuration without human edits.

In prior benchmarking on the same audio against Amazon
Transcribe (medical), Whisper-Large, and a fine-tuned wav2vec2, the
Amazon general model achieved a competitive English Word Error
Rate (WER)=13% and most faithfully preserved verbatim
phenomena—fillers (“uh/um”), lexical repetitions, and fragmented/
partial words—compared with the alternatives. These cues are central
to our feature extraction and fusion classifier.

2.3 Component 1: developing the
screening algorithm using pre-trained
transformer models and domain-related
linguistic features

2.3.1 Linguistic transformers baselines

We systematically evaluated ten transformer models commonly
cited in healthcare NLP literature to assess their ability to detect subtle
linguistic cues indicative of cognitive decline. Leveraging attention
mechanisms, transformers can identify disfluencies such as
repetitions, syntactic errors, and filler words—key linguistic cues of
cognitive impairment.

Our evaluation included five general-purpose models—BERT,
DistilBERT (Sanh et al., 2019), RoBERTa (Liu et al., 2019), XLNet
(Yang et al., 2019), BGE (Xiao et al., 2023), and Longformer (Beltagy
etal.,, 2020)—pretrained on corpora like Wikipedia, BookCorpus, and
online health forums. We also tested five domain-specific models—
BioBERT (Lee et al., 2020), BioClinical BERT (Alsentzer et al., 2019),
ClinicalBigBird (Li et al., 2022), and BlueBERT (Peng et al., 2019)—
trained on biomedical and clinical texts. We hypothesized that
domain-specific models may be less sensitive to disfluent,
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FIGURE 1
Overview of the study’s methodology: (a) fusion model: automatic speech-recognition transcripts are transformed into deep transformer embeddings
and merged with handcrafted linguistic features in a fully connected fusion layer; (b) generative synthetic data: GPT-4, LLaMA-8B/70B, MedAlpaca-7B,
and Ministral-8B create additional transcripts that mirror the original distribution for augmenting the training dataset; (c) classification pipeline—zero-
shot and fine-tuning for unimodal and multimodal LLMs: Both unimodal and multimodal LLMs were evaluated in both zero-shot and fine-tuning
regimes to assign “cognitively healthy” or “cognitively impaired” labels on a held-out test set.

conversational speech, limiting their ability to capture
nuanced impairments.
To evaluate fine-tuning strategies, we tested three

configurations: (i) no fine-tuning (frozen transformer as feature
extractor), (ii) full fine-tuning (updating parameters of all layers),
and (iii) last-layer fine-tuning (updating only the final transformer
layer). The frozen model served as a baseline. Although full fine-
tuning can boost performance, it risks overfitting on small
datasets. Last-layer tuning retains ~90% of the performance gain
while features and

preserving  generalizable reducing
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computational cost. Fine-tuning intermediate layers (e.g., layers
6-7 in BERT) was not pursued due to minimal added benefit and
increased complexity.

Each transformer was paired with a two-layer multilayer
perceptron (MLP) classifier. Embeddings were fed into the MLP with
256 hidden units and a 0.4 dropout rate. For both full fine-tuning and
last-layer fine-tuning approaches, models were trained using AdamW
(batch size = 8, learning rate = 2 x 107, weight decay = 2 x 107*) for
50 epochs. We selected the best-performing epoch based on the
highest F1-score on the validation dataset. To reduce variance from
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TABLE 1 Baseline demographic, cognitive, and speech characteristics of participants across training, validation, and test cohorts.

Attribute Validation

Control Case Control Control
Participants (N) 60 56 27 23 35 36
Gender (F/M) 39/21 37/19 19/8 15/8 21/14 23/13
Age (Mean + Std) 69.33 £7.14 66.27 £ 6.81 70.59 +6.01 65.48 +£4.72 68.51 £7.12 66.11 £6.53
Age range 53-79 54-80 60-80 56-74 56-79 56-78
MMSE (Mean =+ Std) 17.80 £ 5.04 29.04+1.13 16.63 £ 5.94 28.87 £1.22 18.86 £ 5.8 2891 +1.25
MMSE range 7-28 26-30 3-27 26-30 5-27 24-30
Recording length (s), (Mean + Std) 87.20 + 48.35 68.98 + 25.85 88.52 +43.27 68.25 +25.43 79.42 +36.79 66.35 + 28.17
Recording length (s), range 35.26-268.49 22.79-168.61 39.91-219.5 26.16-121.47 28.39-150.15 22.35-135.68
Word count (Mean + Std) 82+43 114+ 78 101 +55 111 +43 92 +57 111 +53
Word count range 22-189 21-523 31-284 54-197 27-256 45-243

Recording length is reported in seconds (s).

random initialization, each experiment was repeated five times with
different seeds; Next, we reported the average F1-score on the held-out
test set using the best validation epoch.

2.3.2 Handcrafted linguistic features

Transformer embeddings can detect linguistic patterns but often
lack transparency. To improve interpretability, we extracted 110
handcrafted lexical features across four dimensions (Zolnoori et al.,
2023): (1) lexical richness was measured with established diversity
metrics to gauge reliance on high-frequency vocabulary (Paganelli
et al., 2003; Fraser et al., 2016; Meteyard et al., 2014); (2) syntactic
complexity was assessed through part-of-speech tagging to reflect
grammatical structure (Calza et al., 2021; Khodabakhsh et al., 2015);
(3) semantic coherence and fluency were quantified by measuring
word repetition and filler words (Nicholas et al., 1985; Tomoeda et al.,
1996); (4) psycholinguistic cues were extracted using LIWC 2015,
which groups commonly used words into 11 top-level categories (e.g.,
affective, social, cognition) relevant to cognitive decline (see
Appendix B for details of these lexical features) (O’Dea et al., 2021;
Burkhardt et al., 2021; Asgari et al., 2017; Collins et al., 2009; Glauser
et al., 2020).

We built a lexical feature-based model using 110 lexical features
as input and two-layer MLP with 64 hidden neurons, trained with
AdamW (learning rate = 8 x 107, weight decay = 1 x 10~?) for up to
50 epochs. We selected the best-performing epoch based on the
highest F1-score on the validation dataset. This allowed us to evaluate
the standalone utility of handcrafted features.

2.3.3 Late fusion classifier

To combine the strengths of transformer representations and
domain-informed features, we developed a fusion classifier (Figure 1).
Embeddings from the top-performing transformer were passed
through a two-layer MLP with 256 hidden units; linguistic features
entered a separate two-layer MLP with 128 units. We applied a late
fusion strategy by combining the two outputs using a learnable
weighted sum. The fusion model was trained using AdamW (learning
rate =2 x 107, weight decay=2x107°) for 50 epochs. Each
experiment was repeated five times with different random seeds.

Frontiers in Artificial Intelligence

We report the mean and 95% confidence intervals of F1-score and
AUC-ROC on the validation and test sets.

2.4 Component 2: LLM-based synthetic
text for augmentation

To generate synthetic descriptions reflecting speech of cognitively
impaired or cognitively healthy, we adopted a label-conditioned
language modeling framework, where each token is generated based
on the prior context and the target label. This approach allows LLMs
to learn and reproduce label-specific linguistic features—such as
repetition or disfluency—that are critical for data augmentation in
classification tasks.

C={Siyn|i=12,....M},

where each sequence Si = (w1, W), "WIT, ) is paired with a
cognitive status label Vi € {Case,Control} , our goal is to model the
conditional probability

T o ‘
Py(Silyi)= [P (WHWi,- . ->Wzl>1>}’i)
t=1

It is important to note that synthetic transcriptions were generated
exclusively for training augmentation; all validation and test
evaluations were conducted on real, held-out participants.

2.4.1 LLM models and tuning

We evaluated five LLMs spanning model sizes and training data:
LLaMA 3.1 8B Instruct (Grattafiori et al., 2024): Balanced in size and
quality, suitable for generating coherent narratives with class-specific
variation (e.g., reduced vocabulary); MedAlpaca 7B (Han et al., 2025):
A clinically fine-tuned model included to test whether exposure to
biomedical language improves generation of patient-like language and
terminology alignment; Ministral 8B Instruct (Mistral, 2024): Offers
strong sentence-level coherence and low-latency inference, suitable for
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generating fluent but compact narratives typical of non-cognitively
impaired individuals; LLaMA 3.3 70B Instruct (Grattafiori et al.,
2024): Used to evaluate whether increased model capacity improves
simulation of complex or disorganized language patterns in cognitively
impaired speech; GPT-40 (Hurst et al., 2024) (text-only mode): Used
as a benchmark for fluency and coherence, capable of mimicking
subtle disfluencies when prompted.

We fine-tuned open-weight LLMs (LLaMA 3.1 8B, MedAlpaca
7B, Ministral 8B, and LLaMA 3.3 70B) using the Quantized
Low-Rank Adapter (QLoRA)
lightweight adapters into frozen models to enable memory-
efficient training. We tested LoRA ranks of 64 and 128, with
scaling factors set to @ = 2 x rank, and applied dropout rates of 0

framework, which inserts

or 0.1 within adapter layers to mitigate overfitting. For LLaMA 3.1
8B, MedAlpaca 7B, and Ministral 8B, adapters were inserted into
all linear layers. For LLaMA 3.3 70B, model weights were
quantized to 4-bit precision before fine-tuning, and adapters were
placed only in the query, key, and value (QKV) projection layers
to reduce memory usage. Other fine-tuning parameters for open-
weight LLMs included the PagedAdamW optimizer with mixed-
precision (float16) training, a cosine learning rate scheduler, and
learning rates of 2e-4 or le-4. For GPT-4o, only batch size (16 or
20) and learning rate multipliers (2.5 or 3) were tuned. All LLMs
were trained for 10 epochs.

2.4.2 Prompt design and inference

For fine-tuning, we used prompts that incorporated label-specific
linguistic cues—for example, “advanced sentence structures” for
cognitively healthy (control) participants and “repetition and filler words”
for cognitively impaired (case) participants. This improved the model’s
ability to generate class-consistent outputs. However, relying on a single
fixed prompt reduced transcription diversity and limited generalizability.
To address this, we created 10 prompt variations that differed in the
assigned role (e.g., “language and cognition specialist” vs. “speech
pathologist”) while keeping task instructions consistent. With 116 training
samples, each prompt was applied to about 11-12 samples, ensuring
controlled variation without introducing excessive noise (see Figure 2).

For inference, we initially tested prompts that also included label-
specific cues, but these produced repetitive and unnatural outputs. To
encourage more spontaneous and generalizable speech, we instead used
neutral prompts, allowing models to rely on the linguistic patterns learned
during fine-tuning (see Figure 2; also for more details about prompt
engineering see Appendix C). Inference hyperparameters were tuned to
balance coherence and diversity of generated text. We tested values for
top-p (0, 0.9, 0.95, —1), top-k (40, 50), and temperature (0.5, 0.7, 0.9, 1.0,
2.0). Optimal settings were: top-p = 0.95, top-k = 50, and temperature = 1
for LLaMA-8B, LLaMA-70B, and MedAlpaca-7B; top-p disabled for
Ministral-8B; and temperature = 1 for GPT-4o0, consistent with OpenAT’s
single-parameter guidance.

2.4.3 Synthetic data evaluation and scaling
Evaluation metrics for measuring the quality of the synthetic
generated data included:

1. Fl-score on validation dataset: For each LLM and fine-

tuning epoch, we generated a synthetic dataset (N = 116)
using the inference prompt. We then retrained the
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fusion-based screening algorithm on the combined original
training data and synthetic data and measured its
performance on the validation set. The highest F1-score
determined the optimal configuration for each LLM. The
optimal configuration for each LLM is presented in
Table 5 in Appendix B.

2. BLEU (Papineni et al., 2002) and BERTScore (Zhang et al.,
2020): BLEU measured syntactic similarity by computing
n-gram overlap (n = 1-4) between generated and reference
transcriptions in the validation dataset, while BERTScore
assessed semantic similarity using contextualized embeddings.
These metrics provided additional insight into the extent to
which the generated transcriptions preserved structural and
semantic properties of original patient speech.

3. t-SNE (van der Maaten and Hinton, 2008) visualization:
We applied t-SNE to sentence-level embeddings from synthetic
data, original training set, the validation set, and the held-out
test set to visualize overlap and distribution similarity in
embedding space.

Using the best configuration for each LLM, we generated synthetic
data at 1x to 5x the size of the
set and measured the fusion-based screening model’s performance. This

original training
assessed whether larger volumes of synthetic text enhanced
generalizability while preserving diagnostic cues.

2.5 Component 3: LLMs as classifiers
(text-only)

We evaluated whether LLMs—LLaMA (variants), MedAlpaca,
Ministral, and GPT-4—can classify transcripts as “Cognitively
healthy” or “Cognitively impaired” both without task-specific training
(zero-shot) and with fine-tuning.

2.5.1 Zero-shot prompting

To identify an effective prompt, we tested several prompting
formulations and selected one that: (a) assigns the model the role of
a cognitive-and-language expert; (b) specifies that the input is a
transcript of spontaneous speech; (c) instructs a binary decision
(“cognitively healthy” vs. “cognitively impaired”); and (d) omits
explicit linguistic cues, encouraging the model to rely on its internal
reasoning and general language knowledge (see Appendix B for the
inference,

exact prompt). For open-weight models used

temperature =0 (deterministic outputs), and GPT-4 used

temperature = 0.7 per platform guidance.

2.5.2 Fine-tuning

We also fine-tuned each LLM to classify transcripts as
Healthy or ADRD. Unlike Component 2, where generation and
inference prompts differed, here we used the same prompt
during fine-tuning and inference to promote stability and
consistency. The hyperparameter search mirrored Component 2.
Each model was trained for 10 epochs, and the best checkpoint
was chosen by the highest validation F1-score. Final performance
was reported on the held-out test set using F1-score, precision,
and recall.
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Fine-tuning Prompt | 4s a language and cognition specialist, generate a realistic spoken monologue of someone describing the 'Cookie Theft’ image.
Healthy: Include advanced sentence structures, precise vocabulary, and an organized depiction of the scene.
ADRD: Include repeated segments, stumbling or halting speech, misplaced words, and sent:  fragment:
Label: {label (Healthy/ADRD)}
transcription: {Original Transcription in Training Data}
T e S T S T P S Ml ST FRY TN ST T G MRy g Lt o S :
: : Asal 1ige and cognition specialist, generate a realistic spoken ! A
: ' § monologue ' :
(R — = — s '
e @ As a specialist in cognitive health and communication, produce a ! |
e brief, spoken-style transcript i ]
1 [ = '
! E é;_ g;’ You are a neurocogninive researcher studying everyday speech. Craft | | E
[N a spoken-style transcript : '
. ' ED!) ! 1
8 ' § { As a researcher in cognitive-linguistic assessment, generate a spoken } . (Healthy: i
] " language transcript ’,' o @l '
: I,'_'_'_'L'_'_:'_'_'_'_'_'L'_'_'L'_'_'L"_Z'_".'_'_'_'l'_:'_'_'_'_'_'_'_"_'L'_'L'l'_'_'_'_'_\ o Coherent flow !
E : € [ You are an expert in Fogniﬁve assessments for older adults. Provide ] E : i Z:r::tacabu]my !
' ! =S a natural, conversational transcript : Label {label (Healthy/ADRD)} :
Wi u—é You are an expert in geriatric neuropsychology. Produce a short, ' "Cookie Theft" picture \ADRD: Transcription: {Original !
viv o8 speech-like narration i 3 Transcription} !
gl o8 ' o Filler words !
1y % You are a recagnized expert in geriatric Ianguage assessment. Create : * Repetition '
i VB a short, unpolished spoken transcript ' o Incomplete |
1 = 1 s,
! ' & Act as a clinician studying language use in older adults. Generatea || ° f;::;manml :
: i spoken transcript 0 i
B S e e T Tl R 2 D - :
HE A 4 i
' :‘?)E’ You are a specialized speech-l hol 1o on : '
: : o E health. Please create a short, spontaneous-sounding transcript : :
ENCNS ' :
R e LR L R L L L LR g '
D e i T T - i
' = ' '
ko You are an advanced language model trained in speech analysis for : :
e cognitive health. Create a sp ding explanati . :
AN oy ———————— 4 ]
(Y o '
(¢ J (4 J (1 J [ J !
' i L A L :
: Role Assignment Data Type Cognitive Status Clues LLM Outcome :
. ’
@ 2\
Inference Prompt You are an expert in cognitive health and language analysis. You will generate a spoken language
transcript of a person describing the '‘Cookie Theft’ picture. This should reflect spontaneous
speech rather than formal written text.
Label: {label (Healthy/ADRD)}
Transcription: {Generated Transcription}
\ Y,
FIGURE 2
Prompt-engineering workflow for synthetic transcript generation and classification. Fine-tuning prompt: A role-specific instruction directs the LLM to
describe the Cookie-Theft picture in spoken language, embedding class-defining cues—advanced syntax and fluent flow for cognitively healthy
(healthy) speech, repetition and grammatical slips for cognitively impaired (ADRD) speech; Role templates: Ten expert personas (e.g., language-and-
cognition specialist, geriatric clinician, speech-language pathologist) provide prompt diversity while the task wording remains constant; data & cues:
the prompt explicitly references the cookie-Theft image and the cognitive cues the model should express; output: each generated transcript is saved
with its label (Healthy or ADRD); inference prompt: a neutral expert persona requests a transcript label without repeating class hints, encouraging the
model to rely on patterns learned during fine-tuning.

2.6 Component 4: evaluating multimodal 128 K-token context. We used its open-weight version for
LLMs as classifiers domain-specific fine-tuning.
3. GPT-40 (“omni”): OpenAls flagship closed-weight
We evaluated three state-of-the-art audio-text multimodal models: model with sub-300 ms speech latency, capable of
processing any mix of text, audio, image, and video.
1. Qwen 2.5-Omni (Xu et al., 2025) (7B-8.4B parameters): an We tested it only in zero-shot mode due to unavailable API
open-weight “Thinker-Talker” architecture that natively for fine-tuning.
processes text, audio, image, and video, supporting real-time
speech responses and full fine-tuning via Hugging We evaluated Qwen and Phi in both zero-shot and fine-tuning
Face checkpoints. settings, whereas GPT-40 was assessed in zero-shot only. This design

2. Phi-4-Multimodal (Abouelenin et al., 2025) (5.6B parameters):  allowed comparison of joint acoustic-linguistic modeling against text-
Microsoft’s successor to the Phi-series, unifying speech, vision, ~ only baselines and evaluation of the benefits of multimodal
and language encoders into a single network, offering  fine-tuning.
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2.7 Component 5: external generalizability
evaluation—DementiaBank Delaware
corpus

We evaluated performance of the pipeline on the DementiaBank
Delaware corpus, which includes three picture-description tasks
(Cookie Theft, Cat Rescue, Rockwell), a Cinderella story recall, and a
procedural discourse task from 205 English-speaking participants (99
MCI, 106 controls). Labels were binary (clinically diagnosed MCI vs.
control).

We applied a participant-level split (~60% train: n = 124;
~20% validation: n = 40; ~20% test: n = 41), ensuring recordings
from each individual appeared in only one partition. Initial
experiments showed that Cat Rescue and Rockwell tasks provided
limited discriminatory signals (based on F1 scores on the
validation set). We therefore focused on Cookie Theft, Cinderella
recall, and procedural discourse, which vyielded stronger
MCI-detection performance.

2.7.1 Screening algorithm with transformers and
linguistic features

(1) Pre-trained Transformer Baselines: We fine-tuned four
top-performing transformers on the ADReSSo dataset—
BERT, DistilBERT, Longformer, and BioBERT. Each
transformer fed embeddings into a two-layer MLP classifier
(256 hidden units; dropout = 0.4). Last layer of models was
trained with AdamW (batch size = 8, learning rate =2 x 107,
weight decay = 2 x 107°) for 50 epochs. The best epoch was
selected by the highest F1-score on the validation set.

(2) Fusion of Transformer Embeddings and Handcrafted
Linguistic Features: Embeddings from the top-performing
transformer were passed through a two-layer MLP (256 hidden
units). Handcrafted linguistic features were processed by a
separate two-layer MLP (64 hidden units). We applied late
fusion via a learnable weighted sum of the two outputs. The
fusion model was trained with AdamW (learning

rate = 2 x 107, weight decay = 2 x 10~°) for 50 epochs.

2.7.2 LLM-based synthetic augmentation

(1) Leveraging LLMs to generate synthetic data: we fine-tuned
MedAlpaca-7B—the best model identified in ADReSSo—for
data augmentation, using the same prompting strategy as for
the ADReSSo dataset. MedAlpaca-7B was fine-tuned
separately for each task, and synthetic samples were generated
per task.

(2) Assessing augmentation effects: we fine-tuned DistilBERT +
linguistic features with 1 x and 2 x augmentation to evaluate
the impact of LLM-generated synthetic data on MCI detection.

2.7.3 Text-based LLMs (unimodal) and multimodal
(audio + text) LLMs classifier

2.7.3.1 Text-based LLMs

Since LLaMA 3.1 8B, LLaMA 3.3 70B, and GPT-40 emerged as the
top three text-only LLMs on the ADReSSo 2021 dataset—achieving
the best classification performance across both zero-shot and fine-
tuning strategies—we selected these models for external evaluation on
the Delaware dataset.
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2.7.3.2 Multimodal LLMs

For multimodal classification, we opted for GPT-40 (omni) and
Phi-4, again applying both zero-shot and fine-tuning strategies, as
these models demonstrated strong performance and robust handling
of multimodal inputs.

3 Result

3.1 Component 1: developing the
screening algorithm using pre-trained
transformer models and domain-related
linguistic features

3.1.1 Performance of transformer models

Figure 3A reports results for six general-purpose transformers
and Figure 3B for four clinical/biomedical transformers, each
evaluated under three strategies: no fine-tuning, last-layer fine-
tuning, and full fine-tuning. General-purpose models—particularly
BERT and DistilBERT—improved substantially with last-layer fine-
tuning, with BERT achieving the highest test F1 = 82.76 + 4.51 on the
ADReSSo Benchmark. By contrast, full fine-tuning often degraded
performance (notably for RoBERTa and XLNet), consistent with
overfitting on a limited dataset. Clinical/biomedical models showed
smaller gains across all strategies, and although ClinicalBigBird and
BlueBERT benefited modestly from full fine-tuning, their F1 scores
remained below those of general-domain models. Overall, these
findings suggest that pretraining on general-domain text better
captures conversational disfluencies relevant to cognitive impairment
than pretraining on structured clinical text.

3.1.2 Performance of handcrafted linguistic
features

The classifier using 110 handcrafted linguistic features, capturing
lexical richness/diversity, syntactic complexity, discourse fluency, and
psycholinguistic categories, performed well on the validation set
(F1 = 81.29) but did not generalize to the held-out test set (F1 = 66.83),
indicating limited robustness to unseen speakers (Table 2).

3.1.3 Performance of late fusion classifier

Combining fine-tuned BERT embeddings with the same feature
set in a late-fusion architecture reduced the generalization gap,
achieving F1 = 83.32 and AUC = 89.48 on the test set (validation:
F1=78.17, AUC = 82.05). Relative to the linguistic-only model,
fusion improved test F1 by 24.7% and AUC by 19.6% (Table 2).
Compared with BERT alone, fusion yielded a 0.7% increase in F1 with
a — 0.6% change in AUC (Table 2).

3.2 Component 2: LLM-generated
synthetic text for augmentation

3.2.1 Per-model augmentation

Figure 4A shows validation F1 after retraining the fusion model
with synthetic transcripts from each LLM on the ADReSSo Benchmark.
MedAlpaca-7B achieved the highest score (81.02), surpassing the
baseline fusion model (F1 = 78.17, Table 2). LLaMA-8B and GPT-4
followed, while Ministral-8B provided modest gains and LLaMA-70B
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performed lowest (77.21), indicating that increased model capacity did
not yield more informative synthetic data. These findings suggest that
clinically tuned models such as MedAlpaca-7B generate synthetic
speech that more effectively reinforces class-specific linguistic patterns.

Figures 4B,C compare synthetic to real transcripts using semantic
similarity (BERTScore) and lexical overlap (BLEU-1-4) for this
benchmark. LLaMA-8B achieved the highest BERTScore (0.61),
reflecting strong semantic alignment. GPT-4 and LLaMA-70B
followed (~0.58). Although LLaMA-70B attained the highest BLEU-1
(0.87) and BLEU-2 (0.64), this did not translate into improved
classification (Figure 4A). MedAlpaca-7B maintained a high
BERTScore (0.59) and consistently outperformed GPT-4 on BLEU,
indicating that capturing class-specific structure and semantics is
more important than surface lexical overlap.

Figure 4D visualizes embeddings via t-SNE. Synthetic samples
from MedAlpaca-7B and LLaMA-8B are interspersed with train,
validation, and test data, consistent with their strong F1 and alignment
metrics on this dataset. In contrast, GPT-4 and LLaMA-70B form
distinct clusters, mirroring their lower semantic similarity, while
Ministral-8B shows diffuse but less specific overlap. These patterns
align with the performance differences observed in.

10.3389/frai.2025.1669896

3.2.2 Scaling augmentation

Figure 5 evaluates the effect of augmentation scale for
MedAlpaca-7B (Figure 5A) and GPT-4 (Figure 5B) on the ADReSSo
benchmark. For GPT-4, a modest 1 x augmentation yielded a slight
improvement in F1 (83.32 £ 2.78 — 84.14 + 1.92), but performance
declined at 2 x (80.76 + 5.16) and fluctuated between 80-82 thereafter,
consistent with t-SNE evidence of drift away from the real-speech
manifold. In contrast, MedAlpaca-7B improved at 1 x (85.35 + 1.96),
peaked at 2 x (85.65 + 1.64), and then declined with larger volumes
(3 x =81.87 +3.03; 4 x = 80.45 + 4.36). These findings suggest that
augmentation is beneficial only while synthetic data remains
distributionally aligned, with effective limits of approximately 2 x for
MedAlpaca-7B and 1 x for GPT-4 (for detailed results of 1 x to
5 x augmentation for both LLMs, see Appendix D).

3.2.3 Operating characteristics before vs. after
augmentation

Figure 6 compares the performance of the fusion model
before (green) and after two-fold augmentation using
MedAlpaca-7B synthetic speech (pink) on ADReSSo benchmark.
The ROC curves (Panel a) remain nearly identical, with AUC
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Performance of general-purpose and clinical-domain transformer models across fine-tuning strategies on the ADReSSo Benchmark. (A) F1-scores of
six general-purpose models across three strategies: no fine-tuning, last-layer fine-tuning, and full fine-tuning. BERT and DistilBERT showed the largest
gains with last-layer fine-tuning. (B) F1-scores of four clinical-domain models pretrained on biomedical and clinical corpora (e.g., PubMed, MIMIC-III).
Performance gains were modest across all strategies, with overall F1-scores lower than those of general-purpose models.

TABLE 2 Performance comparison of BERT, linguistic feature-based, and fusion models on validation and test sets of the ADReSSo benchmark.

Models Validation F1, mean + Validation AUC, mean + Test F1, mean + Test AUC, mean +
95%ClI 95%Cl 95%Cl 95%Cl
BERT 78.97 +1.84 80.55+1.26 82.76 £ 4.51 90.03 +1.29
Linguistic features 81.29+1.16 78.10 £ 1.41 66.83 £4.32 74.83 £1.48
Fusion model (BERT +
78.17 £ 1.29 82.05 +2.52 83.32+2.78 89.48 + 4.40
linguistic features)
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FIGURE 4
Evaluation of synthetic speech generated by LLMs for data augmentation on the ADReSSo benchmark. (A) Validation F1-scores of the fusion-based
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measured by BERTScore; (C) Lexical similarity evaluated using BLEU-1 to BLEU-4 scores; (D) visualization of the embedding space of original and
synthetic narratives using t-SNE.
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FIGURE 5
Effect of synthetic data volume on embedding structure and model performance. t-SNE plots show how synthetic narratives from MedAlpaca-7B
(A) and GPT-4 (B) integrate with real data across 1 x to 5 X augmentation. MedAlpaca-7B remains aligned up to 2x, supporting peak F1 (85.7), while
GPT-4 drifts after 1%, reducing effectiveness. Line plots show corresponding F1-scores of the fusion -based screening model on the held-out test
dataset. The results are based on the ADReSSo benchmark.

improving marginally from 89.48 £4.40 to 89.56 *2.32,
indicating stable overall discrimination. The precision-recall
curve (Panel b) shows improved precision at lower recall levels,
and the cumulative gains curve (Panel c) demonstrates enhanced
early retrieval of positive cases, particularly between the 40-70%
sample range. Panel d indicates that the positive-predictive-value
profiles of the pre- and post-augmentation models overlap across
most probability percentiles, with only a slight dip for the
augmented model at lower thresholds, while Panel e shows closely
matching sensitivity curves, together implying that the added
synthetic data left PPV largely intact and fully preserved
sensitivity. The prediction density plots further support these
findings: before augmentation (Panel f), class distributions
overlapped considerably around the decision boundary, whereas
after augmentation (Panel g), class 0 (cognitively healthy
[control]) and class 1 (cognitively impaired [case]) predictions
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became more concentrated and more separable, with reduced
uncertainty near the 0.5 threshold.

3.3 Components 3 and 4: text-based LLMs
(unimodal) and multimodal (audio + text)
LLMs classifier

As shown in Table 3, which reports F1-scores with 95% confidence
intervals, in the zero-shot setting, the best performance among text-
only LLMs came from GPT-40 (F1-score = 73.05), followed closely by
LLaMA 3.3 70B (72.93). For multimodal models, GPT-40 (omni)
achieved 67.57, and Qwen 2.5 Omni reached 67.31.

With fine-tuning, all text-based LLMs improved. MedAlpaca-7B
increased from 47.73 to 78.69 (improvement of 64.9%), and LLaMA
3.1 8B from 68.54 to 81.08 (+18.3%). More modest gains were observed
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for LLaMA 3.3 70B (+10.2%) and GPT-40 (+3.1%). Among multimodal
models, Phi-4 showed one of the strongest improvements overall
(+76.3%), whereas Qwen 2.5 Omni declined substantially (—26.8%).
Overall, Table 3 demonstrates that fine-tuning provides the
greatest benefit for smaller or domain-specific text models, while
multimodal models remain inconsistent, with outcomes ranging from
major improvements (Phi-4) to sharp declines (Qwen 2.5 Omni).

3.4 Component 5: external generalizability
evaluation—DementiaBank Delaware corpus

3.4.1 Fusion of transformers and handcrafted
linguistic features

Among the four transformers fine-tuned on the Delaware dataset,
DistilBERT achieved the best performance (F1 =66.02+ 1.23).

Frontiers in Artificial Intelligence

Integrating DistilBERT embeddings with handcrafted features in a late-
fusion classifier further improved results, yielding F1 = 68.05 + 3.16
and AUC = 62.90 + 10.99.

3.4.2 LLM-based synthetic augmentation
Incorporating MedAlpaca-7B synthetic samples with the original
data improved performance with 1 x augmentation (F1 = 72.82 £ 6.72;
AUC =69.57 + 10.02). performance declined with
2 x augmentation (F1=70.43 +2.27). These findings suggest that
augmentation is beneficial only when synthetic data remains aligned with
the real speech distribution, with effectiveness extending up to
approximately 1 x for MedAlpaca-7B on the Delaware corpus.

However,

3.4.3 Text-based and multimodal LLM classifiers
As shown in Table 4, among the text-only LLMs, GPT-40 achieved
the highest improvement (+11.1%), while LLaMA 3.3-70B and
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TABLE 3 Zero-shot versus fine-tuned F1 performance of unimodal (text-only) and multimodal LLM classifiers on official test of ADReSSo benchmark.

Model Zero-shot F1 (%), mean + 95%ClI Fine-tuned F1(%), mean + 95%ClI Improvement (%)
Unimodal (text)

LLaMA 3.1 8B Instruct 68.54+ 2.1 81.08 +0.94 +18.3
MedAlpaca 7B 47.73+1.03 78.69 + 2.31 +64.9
Ministral 8B (2410) 66.58 + 8.55 73.7+3.08 +10.7
LLaMA 3.3 70B Instruct 7293 1.2 80.35 + 1.92 +10.2
GPT-40 (2024-08-06) 73.05 + 2.04 75.28 +0.95 +3.1
Multimodal

GPT-40 (omni) 67.57 £ 1.08 - -
Qwen 2.5-Omni 67.31%0 49340 -26.8
Phi-4 40.6+3.77 71.59 +0.83 +76.3

TABLE 4 Zero-shot versus fine-tuned F1 performance of unimodal (text-only) and multimodal LLM classifiers on held-out test set of Delaware.

Model Zero-Shot F1 (%), Mean + 95%ClI Fine-Tuned F1(%), Mean + 95%Cl Improvement (%)
Unimodal (text)

LLaMA 3.1 8B instruct 66.44 + 1.54 68.23 +0.43 +2.7

LLaMA 3.3 70B instruct 61.7 +221 64.52 % 0.65 +4.6

GPT-4o (2024-08-06) 60.47 + 2.82 6718+ 1.4 +11.1
Multimodal

GPT-40 (omni) 60.23 £ 1.96 - -

Phi-4 55.76 + 3.37 65.57 %0 +17.6

LLaMA 3.1-8B showed smaller gains. For multimodal models, Phi-4
benefited most from fine-tuning (+17.6%). In contrast, GPT-40
(omni) was only evaluated in the zero-shot setting, as fine-tuning
multimodal models was not possible through the API.

4 Discussion

This study systematically evaluated pretrained transformer models
and handcrafted linguistic features to develop a fusion model for early
detection of cognitive impairment using spontaneous speech from the
ADReSSo 2021 benchmark dataset. Prior studies have explored
transformers and linguistic features separately, but our work is among
the first to comprehensively assess ten transformer architectures
across fine-tuning strategies and integrate their embeddings with 110
domain-informed linguistic features in a late-fusion design. Among
the models tested, BERT with last-layer fine-tuning achieved the
highest test performance (F1 =82.76). Linguistic features alone
showed strong internal validity (validation F1 = 81.29) but limited
generalization (test F1 = 66.83), whereas the fusion of transformer
embeddings and linguistic features improved robustness and achieved
the strongest overall generalization (test F1 = 83.32).

Notably, BERT, one of the earliest transformer architectures,
outperformed more recent and larger models. This result likely reflects
both pretraining domain and dataset scale. BERT was trained on
broad-domain English text that closely matches the conversational
style of DementiaBank, while newer domain-specific models (e.g.,
BioBERT, ClinicalBERT)
documentation, which differs from spontaneous speech and is less

were optimized on biomedical
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effective at capturing disfluencies and syntactic irregularities. In
addition, BERT’s smaller architecture was better suited to the limited
dataset size, whereas larger LLMs such as LLaMA-70B or GPT-40
typically require far larger task-specific corpora to realize their
advantages and risk overfitting when fine-tuned on small samples.
These findings suggest that for speech-based dementia detection,
alignment between pretraining data, model capacity, and dataset scale
may be more important than architectural novelty or size.

Building on this foundation, we further evaluated five state-of-
the-art LLMs—LLaMA-3.3 8B, MedAlpaca, LLaMA-70B, Ministral,
and GPT-4—and three leading multimodal models (text + speech) in
both zero-shot and fine-tuned configurations. Zero-shot prompting
allowed models to leverage latent knowledge of linguistic cues,
whereas fine-tuning enabled adaptation to task-specific patterns.
Substantial improvements followed fine-tuning, with the largest gains
observed for MedAlpaca-7B (F1: 47.73 — 78.69), followed by
LLaMA-8B and Ministral-8B, indicating that smaller open-weight
models respond particularly well to targeted training. By contrast,
multimodal LLMs underperformed, with Phi achieving the highest
F1 =71.59, suggesting that current audio-text architectures are not
yet optimized for detecting cognitive-linguistic markers in
spontaneous speech.

Training augmentation with LLM-generated transcripts was
effective only when synthetic speech remained semantically and
structurally aligned with real data. MedAlpaca-7B produced
synthetic samples embedded within the real-data manifold (t-SNE
overlap; BERTScore = 0.59), raising the fusion model’s validation F1
from 78.17 to 81.02. The highest test F1 = 85.65 was achieved when
synthetic data equaled twice the original training size; performance
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declined with further augmentation (3 x —5x). LLaMA-8B and
GPT-4 yielded smaller but stable improvements. In contrast,
LLaMA-70B, despite strong lexical overlap (top BLEU scores),
formed a separate embedding cluster and reduced performance to
77.2. These results confirm that lexical similarity alone is insufficient;
effective augmentation must preserve cognitively salient features—
such as repetition, disfluency, and syntactic errors—that carry
diagnostic value. Thus, augmentation should be limited to volumes
that maintain distributional alignment, accompanied by embedding-
space validation to avoid degrading signal quality.

External evaluation on the Delaware corpus, restricted to clinically
diagnosed MCI vs. controls, provides strong evidence for early-stage
screening. The late-fusion pipeline outperformed transformer-only
and feature-only baselines, and limited augmentation with
MedAlpaca-7B (1x) further improved performance, whereas larger
augmentation (>2x) introduced distributional drift and reduced
gains. These findings, combined with stable ROC characteristics,
indicate that augmentation is effective only within bounded scales and
should be accompanied by embedding-space monitoring. Importantly,
successful transfer to an MCI-only cohort demonstrates the pipeline’s
generalizability beyond the mixed-severity ADReSSo benchmark,
directly addressing concerns about disease severity and reinforcing its
relevance for early detection. Future work should expand MCI
samples across sites and incorporate standardized prompts with
pre-specified calibration to improve transportability.

Recent regulatory advances underscore the growing relevance of
multimodal screening. In May 2025, the FDA approved Fujirebios
Lumipulse G pTau2l7/f-amyloid 1-42 (US. Food and Drug
Administration, 2025) blood test for Alzheimer’s disease, offering a
minimally invasive biomarker assay. While biologically informative, such
tests do not reflect how cognitive decline manifests in everyday
communication. Language changes—reduced fluency, disorganized
sentences—often appear early and may signal real-world functional
decline that biological tests cannot detect. Transformer models and LLMs
offer a scalable solution by analyzing short voice recordings to identify
subtle communication deficits. Their ability to detect linguistic cues offers
a critical complement to biomarker testing (Zhang et al., 2025; Hosseini
et al, 2025). Combining biological data with speech-based analysis may
yield a fuller clinical picture, supporting earlier and more informed
decisions on referrals, imaging, and intervention.

The potential of speech processing algorithms for cognitive screening
in healthcare is significant, emphasizing the need for comprehensive
research on its integration into clinical workflow (Azadmaleki et al,
2025). This calls for interdisciplinary studies to understand clinical
facilitators and barriers, including compatibility with existing workflows,
clinician attitudes, and operational challenges. It is essential to evaluate
the technical, logistical, and financial viability of deploying speech-
processing tools in clinical settings, considering their fit with current
practices and their ability to improve cognitive health assessments (Zhang
et al,, 2025). Overcoming these challenges by leveraging government
support is essential for harnessing AT’s potential to advance patient care
and outcomes for patients with cognitive impairment (Hosseini
etal., 2025).

Some ASR systems normalize transcripts and suppress diagnostic
cues (Zolnoori et al., 2024b; Taherinezhad et al., 2025). In our prior
benchmarking on the Pitt audio, Amazon Transcribe (general)
maintained a competitive English WER (~13%) and preserved
verbatim cues (fillers, repetitions, fragmented/partial words) more
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reliably than other transcription systems (Amazon Whisper,
wav2vec2). For real-world automatic screening pipeline,
we recommend ASR settings that retain disfluencies/partial words and
avoid grammar-rewriting post-processors, with periodic audits of cue
rates and threshold recalibration as ASR systems evolve.

Research on digital linguistic biomarkers spans a continuum from
handcrafted linguistic features to transformer-based text models,
acoustic and multimodal approaches, and, more recently, LLM-centric
methods (Ding et al., 2024; Martinez-Nicolas et al., 2021). On the
DementiaBank “Cookie Theft” task, early transcript-only studies relied
on feature sets indexing lexical richness/diversity, syntactic complexity,
discourse coherence, and filler/repetition rates, establishing that
language organization itself provides clinically informative signal
(Lanzi etal,, 2023; Guo et al., 2021). Building on this foundation, BERT
and its derivatives applied to transcripts—typically with no tuning or
last-layer fine-tuning—achieved performance in the range of ~75-84
(F1/accuracy), capturing disfluencies and local syntactic irregularities
more effectively than purely hand-engineered sets (Balagopalan et al.,
2020; Qiao et al., 2021). Other transcript-based approaches explored
within the same benchmark include stacking ensembles of linguistic
complexity, disfluency features, and pretrained transformers (Qiao
etal., 2021) (F1 ~ 82), as well as functionals of deep textual embeddings
enriched with silence-segment preprocessing and fusion model (Syed
etal., 2021) (F1 = 84.45). In parallel, acoustic and multimodal methods
have combined prosodic or MFCC-based features with representations
from speech transformers such as wav2vec 2.0 or Whisper, often using
late or attention-based fusion with text embeddings. These systems
commonly report performance in the ~82-87 range, depending on the
linguistic model, acoustic feature extraction, and fusion strategy (Lin
and Washington, 2024; Pan et al., 2021; Shao et al,, 2025). More
recently, LLMs have been explored in zero-shot, few-shot, or fine-
tuned configurations for tasks such as dementia detection or disfluency
scoring, although their clinical utility remains under investigation
(Bang et al., 2024). Within this landscape, our BERT (last-layer fine-
tuned) achieved F1 = 82.76, matching or exceeding state-of-the-art
LLM fine-tuning baselines; late fusion with handcrafted linguistic
features increased performance to F1=83.32. With distribution-
aligned synthetic augmentation, the fusion model further improved to
F1 = 85.65, surpassing all LLM and audio-LLM fine-tuning baselines
in our evaluation.

4.1 Limitations

This study has several limitations. First, we focused primarily on
textual representations of speech and did not include acoustic
transformer models, such as Whisper or wav2vec 2.0, which may
capture additional prosodic or phonatory cues relevant to cognitive
impairment. Second, while we evaluated several leading unimodal and
multimodal LLMs, the multimodal models were limited to those with
open or partially accessible APIs, and we could not fully fine-tune
closed models like Google Gemini. Third, our evaluation was
restricted to English-language transcripts from a structured task,
which may limit generalizability to more diverse or naturalistic speech
settings. Finally, although we used standard metrics and t-SNE for
embedding analysis, future work should incorporate more rigorous
interpretability methods to examine which linguistic and acoustic
features drive model predictions.
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5 Conclusion

This study demonstrates the potential of combining transformer-
based embeddings with handcrafted linguistic features to improve the
early detection of cognitive impairment from spontaneous speech. By
systematically evaluating a range of pretrained transformer models
and LLMs—including both unimodal and multimodal architectures—
we identified configurations that maximize generalization and
classification performance. Our results show that clinically tuned
LLMs like MedAlpaca-7B not only adapt well to task-specific fine-
tuning but also generate synthetic speech that meaningfully augments
training data when distributionally aligned with real speech. These
findings support the use of speech-based Al tools as a scalable and
interpretable complement to biomarker-driven approaches for
dementia screening and highlight the need for continued development
of linguistically sensitive, clinically integrated NLP models.

Future work will build on these findings by addressing current
limitations. We plan to integrate acoustic transformer models (e.g.,
wav2vec 2.0, Whisper) to capture prosodic and phonatory cues,
enhance multimodal development through open-weight models with
distillation from closed systems, and extend evaluation to multilingual
and naturalistic conversations through multi-site validation. We will
also strengthen the augmentation pipeline by combining LLM-guided
narrative generation with prosody-controllable text-to-speech (TTS)
to produce distributionally aligned synthetic speech. In addition,
we aim to improve interpretability with feature attribution,
psycholinguistic mapping, and fairness audits, providing insights into
model decisions. Together, these efforts will help overcome current
constraints and move this line of work toward practical, clinically
useful screening tools.
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