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Background: Alzheimer’s disease and related dementias (ADRD) affect nearly five 
million older adults in the United States, yet more than half remain undiagnosed. 
Speech-based natural language processing (NLP) provides a scalable approach 
to identify early cognitive decline by detecting subtle linguistic markers that may 
precede clinical diagnosis.
Objective: This study aims to develop and evaluate a speech-based screening 
pipeline that integrates transformer-based embeddings with handcrafted linguistic 
features, incorporates synthetic augmentation using large language models 
(LLMs), and benchmarks unimodal and multimodal LLM classifiers. External 
validation was performed to assess generalizability to an MCI-only cohort.
Methods: Transcripts were obtained from the ADReSSo 2021 benchmark dataset 
(n = 237; derived from the Pitt Corpus, DementiaBank) and the DementiaBank 
Delaware corpus (n = 205; clinically diagnosed mild cognitive impairment [MCI] 
vs. controls). Audio was automatically transcribed using Amazon Web Services 
Transcribe (general model). Ten transformer models were evaluated under three 
fine-tuning strategies. A late-fusion model combined embeddings from the best-
performing transformer with 110 linguistically derived features. Five LLMs (LLaMA-
8B/70B, MedAlpaca-7B, Ministral-8B, GPT-4o) were fine-tuned to generate label-
conditioned synthetic speech for data augmentation. Three multimodal LLMs 
(GPT-4o, Qwen-Omni, Phi-4) were tested in zero-shot and fine-tuned settings.
Results: On the ADReSSo dataset, the fusion model achieved an F1-score of 
83.32 (AUC = 89.48), outperforming both transformer-only and linguistic-
only baselines. Augmentation with MedAlpaca-7B synthetic speech improved 
performance to F1 = 85.65 at 2 × scale, whereas higher augmentation volumes 
reduced gains. Fine-tuning improved unimodal LLM classifiers (e.g., MedAlpaca-
7B, F1 = 47.73 → 78.69), while multimodal models demonstrated lower 
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performance (Phi-4 = 71.59; GPT-4o omni = 67.57). On the Delaware corpus, 
the pipeline generalized to an MCI-only cohort, with the fusion model plus 
1 × MedAlpaca-7B augmentation achieving F1 = 72.82 (AUC = 69.57).
Conclusion: Integrating transformer embeddings with handcrafted linguistic 
features enhances ADRD detection from speech. Distributionally aligned LLM-
generated narratives provide effective but bounded augmentation, while current 
multimodal models remain limited. Crucially, validation on the Delaware corpus 
demonstrates that the proposed pipeline generalizes to early-stage impairment, 
supporting its potential as a scalable approach for clinically relevant early 
screening. All codes for LLMCARE are publicly available at: GitHub.

KEYWORDS

Alzheimer’s disease, mild cognitive impairment (MCI), large language models, data 
augmentation, transformers, natural language processing

1 Introduction

Alzheimer’s disease and related dementias (ADRD) pose a major 
public health challenge, affecting approximately five million 
individuals—11% of older adults—in the United States (Alzheimer's 
Association, 2013; Zolnoori et al., 2023). Despite national efforts, over 
half of patients remain undiagnosed and untreated (Boise et al., 2004; 
Tóth et al., 2018; National Institute on Aging, n.d.). With an expected 
13.2 million cases by 2050 (Nichols et al., 2017), the National Institute 
on Aging has prioritized the development of effective screening tools 
(National Institute on Aging, 2021; National Institute on Aging, n.d.). 
Meeting this need requires an interdisciplinary approach spanning 
neuroscience, data science, and speech-language pathology.

One promising direction involves leveraging natural language 
processing (NLP) to analyze spontaneous speech (Zolnoori et  al., 
2024a), which can reveal subtle cognitive changes often missed by 
traditional screening instruments. Early linguistic impairments—such 
as word-finding difficulties (Meilán et al., 2020; Aramaki et al., 2016), 
syntactic disorganization (Sung et  al., 2020), and reduced fluency 
(Meilán et al., 2020)—may be detectable through tasks like picture 
descriptions. Although speech-based screening has shown potential, 
progress is limited by scarce labeled clinical speech data and poor 
model generalizability across populations and clinical settings 
(Rashidi et al., 2025; Zolnoori et al., 2024b).

Transformer-based NLP models—particularly BERT (Devlin 
et al., 2018) and its variants—capture linguistic context well and have 
achieved strong results in classifying cognitive impairment in corpora 
such as DementiaBank (Lanzi et al., 2023). However, variations in 
fine-tuning protocols, validation sets, and downstream classifiers lead 
to inconsistent findings on how well these models encode linguistic 
markers of cognitive decline (see Table 4 in Appendix A as an example 
of this variation) (Zolnoori et al., 2023). Progress is further constrained 
by the small size of available speech datasets, which limits both model 
training and rigorous model validation.

Recent work suggests that large language models (LLMs), such as 
GPT-4 (OpenAI, 2023), can generate synthetic clinical data resembling 
real-world datasets. Compared to generative adversarial networks 
(Goodfellow et al., 2014), LLMs are more accessible and require less 
technical expertise. Yet, their effectiveness for downstream tasks varies. 
For instance, synthetic mental health interviews significantly improved 
ML-based depression detection (Kang et al., 2025), while only marginal 

gains were observed for named entity recognition in social 
determinants of health (e.g., Macro-F1 improvement <1%) (Guevara 
et al., 2024). In autism detection, synthetic data increased recall by 13% 
but reduced precision by 16% (Woolsey et al., 2024). These mixed 
results highlight that LLM-generated data must preserve linguistic 
complexity, align with real data distributions, and 
support generalization.

Beyond text, emerging multimodal LLMs extend these capabilities 
by jointly modeling language and audio inputs, enabling them to 
capture both what is said and how it is said—such as prosody (Peng 
et al., 2024). These acoustic-linguistic features may be critical in early 
cognitive impairment detection. However, their application in 
dementia research remains limited.

This study addresses these gaps through a multi-component 
design evaluated on two datasets: the ADReSSo 2021 benchmark, 
which includes participants across a range of cognitive impairment 
severity (from mild cognitive impairment [MCI] to severe dementia) 
versus cognitively healthy [controls], and the Delaware corpus, which 
is restricted to clinically diagnosed MCI versus controls.

1.1 Component 1: developing the screening 
algorithm

We systematically evaluated BERT-based and newer transformers 
(e.g., BGE) on the picture-description task to identify the optimal 
model for encoding linguistic cues. We then combined embeddings 
from the top-performing model with handcrafted features (e.g., lexical 
richness) to develop a screening algorithm, hypothesizing that 
integration would enhance detection accuracy.

1.2 Component 2: leveraging LLMs to 
generate synthetic speech

We evaluated state-of-the-art LLMs, including open-weight 
(LLaMA, MedAlpaca, Ministral) and commercial (GPT-4), to assess 
their ability to learn linguistic markers of cognitive impairment and 
generate synthetic speech faithful to patient language. We then tested 
whether augmenting training data with synthetic speech improved 
screening performance.
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1.3 Component 3: evaluation of LLMs as 
classifiers

We assessed the diagnostic capabilities of LLMs in zero-shot and 
fine-tuned settings to establish baseline and advanced benchmarks, 
examining whether model size and training improve classification 
compared to pre-trained transformers.

1.4 Component 4: evaluating multimodal 
LLMs for integrated speech and text 
analysis

We explored whether multimodal LLMs that jointly process 
linguistic and acoustic inputs improve detection of cognitive 
impairment compared to text-only models.

1.5 Component 5: validation on the 
Delaware corpus

Finally, we  validated the pipeline on the Delaware dataset, 
restricted to clinically diagnosed MCI versus controls, to assess 
generalizability beyond the mixed-severity cohort in ADReSSo 2021 
and to test the performance of Components 1–4  in early-stage 
cognitive impairment screening.

This study makes several contributions to speech-based ADRD 
detection. We systematically evaluate ten transformer architectures on 
the ADReSSo 2021 benchmark and show that combining transformer 
embeddings with 110 linguistic features in a late-fusion design 
improves generalization. We  introduce a controlled augmentation 
framework using distributionally aligned LLM-generated narratives, 
which enhances performance without compromising validity. We also 
benchmark unimodal and multimodal LLMs, demonstrating that 
well-tuned linguistic transformers remain competitive with large-scale 
LLMs. Finally, we validate the pipeline on the Delaware dataset, the 
first evaluation of this approach on clinically diagnosed MCI versus 
controls, providing evidence of generalizability to early-
stage impairment.

2 Method

2.1 Pipeline overview

Figure 1 illustrates the methodology for developing the screening 
algorithm using the fusion of pre-trained transformer model and 
handcrafted lexical features, process of synthetic text generation using 
state-of-the-art LLMs, and measuring the performance of both 
unimodal and multimodal LLMs as classifiers for ADRD detection.

2.2 Dataset and cohorts

We used the ADReSSo 2021 benchmark dataset, derived from 
DementiaBank’s Pitt Corpus and introduced as a standardized 
benchmark for dementia detection. The dataset includes 237 
participants performing the Cookie-Theft picture description and is 

divided into an official training set (166 participants) and an official 
test set (71 participants), balanced for age and gender. For model 
development, we further split the training portion into 116 training 
and 50 validation participants using stratified sampling, with all 
hyperparameter tuning performed on the validation set only. The final 
results are reported on the official ADReSSo 2021 test set, ensuring 
comparability with prior work.

Participant characteristics are summarized in Table  1. All 
individuals underwent comprehensive neuropsychological 
evaluations, including verbal tasks and the Mini-Mental State 
Examination (MMSE). Diagnoses were assigned by clinical specialists 
(neurologists and neuropsychologists) following full clinical 
assessments. All participants were older than 53 years, and females 
comprised more than 60% of each group. MMSE scores in the case 
group ranged from 7–28 (training), 3–27 (validation), and 5–27 (test), 
reflecting mild to severe cognitive impairment, while scores in the 
control group ranged from 24–30, consistent with normal cognition. 
On average, control participants produced more words and had 
shorter recordings than cases, consistent with expected language 
production differences in dementia.

2.2.1 Transcription and preprocessing
To avoid reliance on manual transcripts, we re-transcribed the 

audio data with Amazon Transcribe (general model). We minimized 
normalization (automatic grammar rewriting disabled), enabled 
disfluency/hesitation tokens and partial-word emission, and retained 
word-level timestamps. All study transcripts were produced with this 
configuration without human edits.

In prior benchmarking on the same audio against Amazon 
Transcribe (medical), Whisper-Large, and a fine-tuned wav2vec2, the 
Amazon general model achieved a competitive English Word Error 
Rate (WER) ≈ 13% and most faithfully preserved verbatim 
phenomena—fillers (“uh/um”), lexical repetitions, and fragmented/
partial words—compared with the alternatives. These cues are central 
to our feature extraction and fusion classifier.

2.3 Component 1: developing the 
screening algorithm using pre-trained 
transformer models and domain-related 
linguistic features

2.3.1 Linguistic transformers baselines
We systematically evaluated ten transformer models commonly 

cited in healthcare NLP literature to assess their ability to detect subtle 
linguistic cues indicative of cognitive decline. Leveraging attention 
mechanisms, transformers can identify disfluencies such as 
repetitions, syntactic errors, and filler words—key linguistic cues of 
cognitive impairment.

Our evaluation included five general-purpose models—BERT, 
DistilBERT (Sanh et al., 2019), RoBERTa (Liu et al., 2019), XLNet 
(Yang et al., 2019), BGE (Xiao et al., 2023), and Longformer (Beltagy 
et al., 2020)—pretrained on corpora like Wikipedia, BookCorpus, and 
online health forums. We also tested five domain-specific models—
BioBERT (Lee et al., 2020), BioClinicalBERT (Alsentzer et al., 2019), 
ClinicalBigBird (Li et al., 2022), and BlueBERT (Peng et al., 2019)—
trained on biomedical and clinical texts. We  hypothesized that 
domain-specific models may be  less sensitive to disfluent, 
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conversational speech, limiting their ability to capture 
nuanced impairments.

To evaluate fine-tuning strategies, we  tested three 
configurations: (i) no fine-tuning (frozen transformer as feature 
extractor), (ii) full fine-tuning (updating parameters of all layers), 
and (iii) last-layer fine-tuning (updating only the final transformer 
layer). The frozen model served as a baseline. Although full fine-
tuning can boost performance, it risks overfitting on small 
datasets. Last-layer tuning retains ~90% of the performance gain 
while preserving generalizable features and reducing 

computational cost. Fine-tuning intermediate layers (e.g., layers 
6–7 in BERT) was not pursued due to minimal added benefit and 
increased complexity.

Each transformer was paired with a two-layer multilayer 
perceptron (MLP) classifier. Embeddings were fed into the MLP with 
256 hidden units and a 0.4 dropout rate. For both full fine-tuning and 
last-layer fine-tuning approaches, models were trained using AdamW 
(batch size = 8, learning rate = 2 × 10−5, weight decay = 2 × 10−3) for 
50 epochs. We  selected the best-performing epoch based on the 
highest F1-score on the validation dataset. To reduce variance from 

FIGURE 1

Overview of the study’s methodology: (a) fusion model: automatic speech-recognition transcripts are transformed into deep transformer embeddings 
and merged with handcrafted linguistic features in a fully connected fusion layer; (b) generative synthetic data: GPT-4, LLaMA-8B/70B, MedAlpaca-7B, 
and Ministral-8B create additional transcripts that mirror the original distribution for augmenting the training dataset; (c) classification pipeline—zero-
shot and fine-tuning for unimodal and multimodal LLMs: Both unimodal and multimodal LLMs were evaluated in both zero-shot and fine-tuning 
regimes to assign “cognitively healthy” or “cognitively impaired” labels on a held-out test set.
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random initialization, each experiment was repeated five times with 
different seeds; Next, we reported the average F1-score on the held-out 
test set using the best validation epoch.

2.3.2 Handcrafted linguistic features
Transformer embeddings can detect linguistic patterns but often 

lack transparency. To improve interpretability, we  extracted 110 
handcrafted lexical features across four dimensions (Zolnoori et al., 
2023): (1) lexical richness was measured with established diversity 
metrics to gauge reliance on high-frequency vocabulary (Paganelli 
et al., 2003; Fraser et al., 2016; Meteyard et al., 2014); (2) syntactic 
complexity was assessed through part-of-speech tagging to reflect 
grammatical structure (Calzà et al., 2021; Khodabakhsh et al., 2015); 
(3) semantic coherence and fluency were quantified by measuring 
word repetition and filler words (Nicholas et al., 1985; Tomoeda et al., 
1996); (4) psycholinguistic cues were extracted using LIWC 2015, 
which groups commonly used words into 11 top-level categories (e.g., 
affective, social, cognition) relevant to cognitive decline (see 
Appendix B for details of these lexical features) (O’Dea et al., 2021; 
Burkhardt et al., 2021; Asgari et al., 2017; Collins et al., 2009; Glauser 
et al., 2020).

We built a lexical feature-based model using 110 lexical features 
as input and two-layer MLP with 64 hidden neurons, trained with 
AdamW (learning rate = 8 × 10−3, weight decay = 1 × 10−3) for up to 
50 epochs. We  selected the best-performing epoch based on the 
highest F1-score on the validation dataset. This allowed us to evaluate 
the standalone utility of handcrafted features.

2.3.3 Late fusion classifier
To combine the strengths of transformer representations and 

domain-informed features, we developed a fusion classifier (Figure 1). 
Embeddings from the top-performing transformer were passed 
through a two-layer MLP with 256 hidden units; linguistic features 
entered a separate two-layer MLP with 128 units. We applied a late 
fusion strategy by combining the two outputs using a learnable 
weighted sum. The fusion model was trained using AdamW (learning 
rate = 2 × 10−5, weight decay = 2 × 10−3) for 50 epochs. Each 
experiment was repeated five times with different random seeds. 

We report the mean and 95% confidence intervals of F1-score and 
AUC-ROC on the validation and test sets.

2.4 Component 2: LLM-based synthetic 
text for augmentation

To generate synthetic descriptions reflecting speech of cognitively 
impaired or cognitively healthy, we  adopted a label-conditioned 
language modeling framework, where each token is generated based 
on the prior context and the target label. This approach allows LLMs 
to learn and reproduce label-specific linguistic features—such as 
repetition or disfluency—that are critical for data augmentation in 
classification tasks.
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It is important to note that synthetic transcriptions were generated 
exclusively for training augmentation; all validation and test 
evaluations were conducted on real, held-out participants.

2.4.1 LLM models and tuning
We evaluated five LLMs spanning model sizes and training data: 

LLaMA 3.1 8B Instruct (Grattafiori et al., 2024): Balanced in size and 
quality, suitable for generating coherent narratives with class-specific 
variation (e.g., reduced vocabulary); MedAlpaca 7B (Han et al., 2025): 
A clinically fine-tuned model included to test whether exposure to 
biomedical language improves generation of patient-like language and 
terminology alignment; Ministral 8B Instruct (Mistral, 2024): Offers 
strong sentence-level coherence and low-latency inference, suitable for 

TABLE 1  Baseline demographic, cognitive, and speech characteristics of participants across training, validation, and test cohorts.

Attribute Train Validation Test

Case Control Case Control Case Control

Participants (N) 60 56 27 23 35 36

Gender (F/M) 39/21 37/19 19/8 15/8 21/14 23/13

Age (Mean ± Std) 69.33 ± 7.14 66.27 ± 6.81 70.59 ± 6.01 65.48 ± 4.72 68.51 ± 7.12 66.11 ± 6.53

Age range 53–79 54–80 60–80 56–74 56–79 56–78

MMSE (Mean ± Std) 17.80 ± 5.04 29.04 ± 1.13 16.63 ± 5.94 28.87 ± 1.22 18.86 ± 5.8 28.91 ± 1.25

MMSE range 7–28 26–30 3–27 26–30 5–27 24–30

Recording length (s), (Mean ± Std) 87.20 ± 48.35 68.98 ± 25.85 88.52 ± 43.27 68.25 ± 25.43 79.42 ± 36.79 66.35 ± 28.17

Recording length (s), range 35.26–268.49 22.79–168.61 39.91–219.5 26.16–121.47 28.39–150.15 22.35–135.68

Word count (Mean ± Std) 82 ± 43 114 ± 78 101 ± 55 111 ± 43 92 ± 57 111 ± 53

Word count range 22–189 21–523 31–284 54–197 27–256 45–243

Recording length is reported in seconds (s).
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generating fluent but compact narratives typical of non-cognitively 
impaired individuals; LLaMA 3.3 70B Instruct (Grattafiori et  al., 
2024): Used to evaluate whether increased model capacity improves 
simulation of complex or disorganized language patterns in cognitively 
impaired speech; GPT-4o (Hurst et al., 2024) (text-only mode): Used 
as a benchmark for fluency and coherence, capable of mimicking 
subtle disfluencies when prompted.

We fine-tuned open-weight LLMs (LLaMA 3.1 8B, MedAlpaca 
7B, Ministral 8B, and LLaMA 3.3 70B) using the Quantized 
Low-Rank Adapter (QLoRA) framework, which inserts 
lightweight adapters into frozen models to enable memory-
efficient training. We  tested LoRA ranks of 64 and 128, with 
scaling factors set to α = 2 × rank, and applied dropout rates of 0 
or 0.1 within adapter layers to mitigate overfitting. For LLaMA 3.1 
8B, MedAlpaca 7B, and Ministral 8B, adapters were inserted into 
all linear layers. For LLaMA 3.3 70B, model weights were 
quantized to 4-bit precision before fine-tuning, and adapters were 
placed only in the query, key, and value (QKV) projection layers 
to reduce memory usage. Other fine-tuning parameters for open-
weight LLMs included the PagedAdamW optimizer with mixed-
precision (float16) training, a cosine learning rate scheduler, and 
learning rates of 2e-4 or 1e-4. For GPT-4o, only batch size (16 or 
20) and learning rate multipliers (2.5 or 3) were tuned. All LLMs 
were trained for 10 epochs.

2.4.2 Prompt design and inference
For fine-tuning, we used prompts that incorporated label-specific 

linguistic cues—for example, “advanced sentence structures” for 
cognitively healthy (control) participants and “repetition and filler words” 
for cognitively impaired (case) participants. This improved the model’s 
ability to generate class-consistent outputs. However, relying on a single 
fixed prompt reduced transcription diversity and limited generalizability. 
To address this, we created 10 prompt variations that differed in the 
assigned role (e.g., “language and cognition specialist” vs. “speech 
pathologist”) while keeping task instructions consistent. With 116 training 
samples, each prompt was applied to about 11–12 samples, ensuring 
controlled variation without introducing excessive noise (see Figure 2).

For inference, we initially tested prompts that also included label-
specific cues, but these produced repetitive and unnatural outputs. To 
encourage more spontaneous and generalizable speech, we instead used 
neutral prompts, allowing models to rely on the linguistic patterns learned 
during fine-tuning (see Figure 2; also for more details about prompt 
engineering see Appendix C). Inference hyperparameters were tuned to 
balance coherence and diversity of generated text. We tested values for 
top-p (0, 0.9, 0.95, −1), top-k (40, 50), and temperature (0.5, 0.7, 0.9, 1.0, 
2.0). Optimal settings were: top-p = 0.95, top-k = 50, and temperature = 1 
for LLaMA-8B, LLaMA-70B, and MedAlpaca-7B; top-p disabled for 
Ministral-8B; and temperature = 1 for GPT-4o, consistent with OpenAI’s 
single-parameter guidance.

2.4.3 Synthetic data evaluation and scaling
Evaluation metrics for measuring the quality of the synthetic 

generated data included:

	 1.	 F1-score on validation dataset: For each LLM and fine-
tuning epoch, we generated a synthetic dataset (N = 116) 
using the inference prompt. We  then retrained the 

fusion-based screening algorithm on the combined original 
training data and synthetic data and measured its 
performance on the validation set. The highest F1-score 
determined the optimal configuration for each LLM. The 
optimal configuration for each LLM is presented in 
Table 5 in Appendix B.

	 2.	 BLEU (Papineni et al., 2002) and BERTScore (Zhang et al., 
2020): BLEU measured syntactic similarity by computing 
n-gram overlap (n = 1–4) between generated and reference 
transcriptions in the validation dataset, while BERTScore 
assessed semantic similarity using contextualized embeddings. 
These metrics provided additional insight into the extent to 
which the generated transcriptions preserved structural and 
semantic properties of original patient speech.

	 3.	 t-SNE (van der Maaten and Hinton, 2008) visualization: 
We applied t-SNE to sentence-level embeddings from synthetic 
data, original training set, the validation set, and the held-out 
test set to visualize overlap and distribution similarity in 
embedding space.

Using the best configuration for each LLM, we generated synthetic 
data at 1x to 5x the size of the original training 
set and measured the fusion-based screening model’s performance. This 
assessed whether larger volumes of synthetic text enhanced 
generalizability while preserving diagnostic cues.

2.5 Component 3: LLMs as classifiers 
(text-only)

We evaluated whether LLMs—LLaMA (variants), MedAlpaca, 
Ministral, and GPT-4—can classify transcripts as “Cognitively 
healthy” or “Cognitively impaired” both without task-specific training 
(zero-shot) and with fine-tuning.

2.5.1 Zero-shot prompting
To identify an effective prompt, we  tested several prompting 

formulations and selected one that: (a) assigns the model the role of 
a cognitive-and-language expert; (b) specifies that the input is a 
transcript of spontaneous speech; (c) instructs a binary decision 
(“cognitively healthy” vs. “cognitively impaired”); and (d) omits 
explicit linguistic cues, encouraging the model to rely on its internal 
reasoning and general language knowledge (see Appendix B for the 
exact prompt). For inference, open-weight models used 
temperature = 0 (deterministic outputs), and GPT-4 used 
temperature = 0.7 per platform guidance.

2.5.2 Fine-tuning
We also fine-tuned each LLM to classify transcripts as 

Healthy or ADRD. Unlike Component 2, where generation and 
inference prompts differed, here we  used the same prompt 
during fine-tuning and inference to promote stability and 
consistency. The hyperparameter search mirrored Component 2. 
Each model was trained for 10 epochs, and the best checkpoint 
was chosen by the highest validation F1-score. Final performance 
was reported on the held-out test set using F1-score, precision, 
and recall.
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2.6 Component 4: evaluating multimodal 
LLMs as classifiers

We evaluated three state-of-the-art audio–text multimodal models:

	 1.	 Qwen 2.5-Omni (Xu et al., 2025) (7B–8.4B parameters): an 
open-weight “Thinker-Talker” architecture that natively 
processes text, audio, image, and video, supporting real-time 
speech responses and full fine-tuning via Hugging 
Face checkpoints.

	 2.	 Phi-4-Multimodal (Abouelenin et al., 2025) (5.6B parameters): 
Microsoft’s successor to the Phi-series, unifying speech, vision, 
and language encoders into a single network, offering 

128 K-token context. We  used its open-weight version for 
domain-specific fine-tuning.

	 3.	 GPT-4o (“omni”): OpenAI’s flagship closed-weight 
model with sub-300 ms speech latency, capable of 
processing any mix of text, audio, image, and video. 
We tested it only in zero-shot mode due to unavailable API 
for fine-tuning.

We evaluated Qwen and Phi in both zero-shot and fine-tuning 
settings, whereas GPT-4o was assessed in zero-shot only. This design 
allowed comparison of joint acoustic-linguistic modeling against text-
only baselines and evaluation of the benefits of multimodal 
fine-tuning.

FIGURE 2

Prompt-engineering workflow for synthetic transcript generation and classification. Fine-tuning prompt: A role-specific instruction directs the LLM to 
describe the Cookie-Theft picture in spoken language, embedding class-defining cues—advanced syntax and fluent flow for cognitively healthy 
(healthy) speech, repetition and grammatical slips for cognitively impaired (ADRD) speech; Role templates: Ten expert personas (e.g., language-and-
cognition specialist, geriatric clinician, speech-language pathologist) provide prompt diversity while the task wording remains constant; data & cues: 
the prompt explicitly references the cookie-Theft image and the cognitive cues the model should express; output: each generated transcript is saved 
with its label (Healthy or ADRD); inference prompt: a neutral expert persona requests a transcript label without repeating class hints, encouraging the 
model to rely on patterns learned during fine-tuning.
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2.7 Component 5: external generalizability 
evaluation—DementiaBank Delaware 
corpus

We evaluated performance of the pipeline on the DementiaBank 
Delaware corpus, which includes three picture-description tasks 
(Cookie Theft, Cat Rescue, Rockwell), a Cinderella story recall, and a 
procedural discourse task from 205 English-speaking participants (99 
MCI, 106 controls). Labels were binary (clinically diagnosed MCI vs. 
control).

We applied a participant-level split (~60% train: n = 124; 
~20% validation: n = 40; ~20% test: n = 41), ensuring recordings 
from each individual appeared in only one partition. Initial 
experiments showed that Cat Rescue and Rockwell tasks provided 
limited discriminatory signals (based on F1 scores on the 
validation set). We therefore focused on Cookie Theft, Cinderella 
recall, and procedural discourse, which yielded stronger 
MCI-detection performance.

2.7.1 Screening algorithm with transformers and 
linguistic features

	(1)	 Pre-trained Transformer Baselines: We  fine-tuned four 
top-performing transformers on the ADReSSo dataset—
BERT, DistilBERT, Longformer, and BioBERT. Each 
transformer fed embeddings into a two-layer MLP classifier 
(256 hidden units; dropout = 0.4). Last layer of models was 
trained with AdamW (batch size = 8, learning rate = 2 × 10−5, 
weight decay = 2 × 10−3) for 50 epochs. The best epoch was 
selected by the highest F1-score on the validation set.

	(2)	 Fusion of Transformer Embeddings and Handcrafted 
Linguistic Features: Embeddings from the top-performing 
transformer were passed through a two-layer MLP (256 hidden 
units). Handcrafted linguistic features were processed by a 
separate two-layer MLP (64 hidden units). We applied late 
fusion via a learnable weighted sum of the two outputs. The 
fusion model was trained with AdamW (learning 
rate = 2 × 10−5, weight decay = 2 × 10−3) for 50 epochs.

2.7.2 LLM-based synthetic augmentation
	(1)	 Leveraging LLMs to generate synthetic data: we fine-tuned 

MedAlpaca-7B—the best model identified in ADReSSo—for 
data augmentation, using the same prompting strategy as for 
the ADReSSo dataset. MedAlpaca-7B was fine-tuned 
separately for each task, and synthetic samples were generated 
per task.

	(2)	 Assessing augmentation effects: we fine-tuned DistilBERT + 
linguistic features with 1 × and 2 × augmentation to evaluate 
the impact of LLM-generated synthetic data on MCI detection.

2.7.3 Text-based LLMs (unimodal) and multimodal 
(audio + text) LLMs classifier

2.7.3.1 Text-based LLMs
Since LLaMA 3.1 8B, LLaMA 3.3 70B, and GPT-4o emerged as the 

top three text-only LLMs on the ADReSSo 2021 dataset—achieving 
the best classification performance across both zero-shot and fine-
tuning strategies—we selected these models for external evaluation on 
the Delaware dataset.

2.7.3.2 Multimodal LLMs
For multimodal classification, we opted for GPT-4o (omni) and 

Phi-4, again applying both zero-shot and fine-tuning strategies, as 
these models demonstrated strong performance and robust handling 
of multimodal inputs.

3 Result

3.1 Component 1: developing the 
screening algorithm using pre-trained 
transformer models and domain-related 
linguistic features

3.1.1 Performance of transformer models
Figure 3A reports results for six general-purpose transformers 

and Figure  3B for four clinical/biomedical transformers, each 
evaluated under three strategies: no fine-tuning, last-layer fine-
tuning, and full fine-tuning. General-purpose models—particularly 
BERT and DistilBERT—improved substantially with last-layer fine-
tuning, with BERT achieving the highest test F1 = 82.76 ± 4.51 on the 
ADReSSo Benchmark. By contrast, full fine-tuning often degraded 
performance (notably for RoBERTa and XLNet), consistent with 
overfitting on a limited dataset. Clinical/biomedical models showed 
smaller gains across all strategies, and although ClinicalBigBird and 
BlueBERT benefited modestly from full fine-tuning, their F1 scores 
remained below those of general-domain models. Overall, these 
findings suggest that pretraining on general-domain text better 
captures conversational disfluencies relevant to cognitive impairment 
than pretraining on structured clinical text.

3.1.2 Performance of handcrafted linguistic 
features

The classifier using 110 handcrafted linguistic features, capturing 
lexical richness/diversity, syntactic complexity, discourse fluency, and 
psycholinguistic categories, performed well on the validation set 
(F1 = 81.29) but did not generalize to the held-out test set (F1 = 66.83), 
indicating limited robustness to unseen speakers (Table 2).

3.1.3 Performance of late fusion classifier
Combining fine-tuned BERT embeddings with the same feature 

set in a late-fusion architecture reduced the generalization gap, 
achieving F1 = 83.32 and AUC = 89.48 on the test set (validation: 
F1 = 78.17, AUC = 82.05). Relative to the linguistic-only model, 
fusion improved test F1 by 24.7% and AUC by 19.6% (Table  2). 
Compared with BERT alone, fusion yielded a 0.7% increase in F1 with 
a − 0.6% change in AUC (Table 2).

3.2 Component 2: LLM-generated 
synthetic text for augmentation

3.2.1 Per-model augmentation
Figure 4A shows validation F1 after retraining the fusion model 

with synthetic transcripts from each LLM on the ADReSSo Benchmark. 
MedAlpaca-7B achieved the highest score (81.02), surpassing the 
baseline fusion model (F1 = 78.17, Table 2). LLaMA-8B and GPT-4 
followed, while Ministral-8B provided modest gains and LLaMA-70B 
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performed lowest (77.21), indicating that increased model capacity did 
not yield more informative synthetic data. These findings suggest that 
clinically tuned models such as MedAlpaca-7B generate synthetic 
speech that more effectively reinforces class-specific linguistic patterns.

Figures 4B,C compare synthetic to real transcripts using semantic 
similarity (BERTScore) and lexical overlap (BLEU-1–4) for this 
benchmark. LLaMA-8B achieved the highest BERTScore (0.61), 
reflecting strong semantic alignment. GPT-4 and LLaMA-70B 
followed (≈0.58). Although LLaMA-70B attained the highest BLEU-1 
(0.87) and BLEU-2 (0.64), this did not translate into improved 
classification (Figure  4A). MedAlpaca-7B maintained a high 
BERTScore (0.59) and consistently outperformed GPT-4 on BLEU, 
indicating that capturing class-specific structure and semantics is 
more important than surface lexical overlap.

Figure 4D visualizes embeddings via t-SNE. Synthetic samples 
from MedAlpaca-7B and LLaMA-8B are interspersed with train, 
validation, and test data, consistent with their strong F1 and alignment 
metrics on this dataset. In contrast, GPT-4 and LLaMA-70B form 
distinct clusters, mirroring their lower semantic similarity, while 
Ministral-8B shows diffuse but less specific overlap. These patterns 
align with the performance differences observed in.

3.2.2 Scaling augmentation
Figure  5 evaluates the effect of augmentation scale for 

MedAlpaca-7B (Figure 5A) and GPT-4 (Figure 5B) on the ADReSSo 
benchmark. For GPT-4, a modest 1 × augmentation yielded a slight 
improvement in F1 (83.32 ± 2.78 → 84.14 ± 1.92), but performance 
declined at 2 × (80.76 ± 5.16) and fluctuated between 80–82 thereafter, 
consistent with t-SNE evidence of drift away from the real-speech 
manifold. In contrast, MedAlpaca-7B improved at 1 × (85.35 ± 1.96), 
peaked at 2 × (85.65 ± 1.64), and then declined with larger volumes 
(3 × = 81.87 ± 3.03; 4 × = 80.45 ± 4.36). These findings suggest that 
augmentation is beneficial only while synthetic data remains 
distributionally aligned, with effective limits of approximately 2 × for 
MedAlpaca-7B and 1 × for GPT-4 (for detailed results of 1 × to 
5 × augmentation for both LLMs, see Appendix D).

3.2.3 Operating characteristics before vs. after 
augmentation

Figure  6 compares the performance of the fusion model 
before (green) and after two-fold augmentation using 
MedAlpaca-7B synthetic speech (pink) on ADReSSo benchmark. 
The ROC curves (Panel a) remain nearly identical, with AUC 

TABLE 2  Performance comparison of BERT, linguistic feature-based, and fusion models on validation and test sets of the ADReSSo benchmark.

Models Validation F1, mean ± 
95%CI

Validation AUC, mean ± 
95%CI

Test F1, mean ± 
95%CI

Test AUC, mean ± 
95%CI

BERT 78.97 ± 1.84 80.55 ± 1.26 82.76 ± 4.51 90.03 ± 1.29

Linguistic features 81.29 ± 1.16 78.10 ± 1.41 66.83 ± 4.32 74.83 ± 1.48

Fusion model (BERT + 

linguistic features)
78.17 ± 1.29 82.05 ± 2.52 83.32 ± 2.78 89.48 ± 4.40

FIGURE 3

Performance of general-purpose and clinical-domain transformer models across fine-tuning strategies on the ADReSSo Benchmark. (A) F1-scores of 
six general-purpose models across three strategies: no fine-tuning, last-layer fine-tuning, and full fine-tuning. BERT and DistilBERT showed the largest 
gains with last-layer fine-tuning. (B) F1-scores of four clinical-domain models pretrained on biomedical and clinical corpora (e.g., PubMed, MIMIC-III). 
Performance gains were modest across all strategies, with overall F1-scores lower than those of general-purpose models.
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FIGURE 4

Evaluation of synthetic speech generated by LLMs for data augmentation on the ADReSSo benchmark. (A) Validation F1-scores of the fusion-based 
screening model after augmenting the training set with LLM-generated transcripts; (B) Semantic similarity of synthetic and human transcripts 
measured by BERTScore; (C) Lexical similarity evaluated using BLEU-1 to BLEU-4 scores; (D) visualization of the embedding space of original and 
synthetic narratives using t-SNE.
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improving marginally from 89.48 ± 4.40 to 89.56 ± 2.32, 
indicating stable overall discrimination. The precision–recall 
curve (Panel b) shows improved precision at lower recall levels, 
and the cumulative gains curve (Panel c) demonstrates enhanced 
early retrieval of positive cases, particularly between the 40–70% 
sample range. Panel d indicates that the positive-predictive-value 
profiles of the pre- and post-augmentation models overlap across 
most probability percentiles, with only a slight dip for the 
augmented model at lower thresholds, while Panel e shows closely 
matching sensitivity curves, together implying that the added 
synthetic data left PPV largely intact and fully preserved 
sensitivity. The prediction density plots further support these 
findings: before augmentation (Panel f ), class distributions 
overlapped considerably around the decision boundary, whereas 
after augmentation (Panel g), class 0 (cognitively healthy 
[control]) and class 1 (cognitively impaired [case]) predictions 

became more concentrated and more separable, with reduced 
uncertainty near the 0.5 threshold.

3.3 Components 3 and 4: text-based LLMs 
(unimodal) and multimodal (audio + text) 
LLMs classifier

As shown in Table 3, which reports F1-scores with 95% confidence 
intervals, in the zero-shot setting, the best performance among text-
only LLMs came from GPT-4o (F1-score = 73.05), followed closely by 
LLaMA 3.3 70B (72.93). For multimodal models, GPT-4o (omni) 
achieved 67.57, and Qwen 2.5 Omni reached 67.31.

With fine-tuning, all text-based LLMs improved. MedAlpaca-7B 
increased from 47.73 to 78.69 (improvement of 64.9%), and LLaMA 
3.1 8B from 68.54 to 81.08 (+18.3%). More modest gains were observed 

FIGURE 5

Effect of synthetic data volume on embedding structure and model performance. t-SNE plots show how synthetic narratives from MedAlpaca-7B 
(A) and GPT-4 (B) integrate with real data across 1 × to 5 × augmentation. MedAlpaca-7B remains aligned up to 2×, supporting peak F1 (85.7), while 
GPT-4 drifts after 1×, reducing effectiveness. Line plots show corresponding F1-scores of the fusion -based screening model on the held-out test 
dataset. The results are based on the ADReSSo benchmark.
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for LLaMA 3.3 70B (+10.2%) and GPT-4o (+3.1%). Among multimodal 
models, Phi-4 showed one of the strongest improvements overall 
(+76.3%), whereas Qwen 2.5 Omni declined substantially (−26.8%).

Overall, Table  3 demonstrates that fine-tuning provides the 
greatest benefit for smaller or domain-specific text models, while 
multimodal models remain inconsistent, with outcomes ranging from 
major improvements (Phi-4) to sharp declines (Qwen 2.5 Omni).

3.4 Component 5: external generalizability 
evaluation—DementiaBank Delaware corpus

3.4.1 Fusion of transformers and handcrafted 
linguistic features

Among the four transformers fine-tuned on the Delaware dataset, 
DistilBERT achieved the best performance (F1 = 66.02 ± 1.23). 

Integrating DistilBERT embeddings with handcrafted features in a late-
fusion classifier further improved results, yielding F1 = 68.05 ± 3.16 
and AUC = 62.90 ± 10.99.

3.4.2 LLM-based synthetic augmentation
Incorporating MedAlpaca-7B synthetic samples with the original 

data improved performance with 1 × augmentation (F1 = 72.82 ± 6.72; 
AUC = 69.57 ± 10.02). However, performance declined with 
2 × augmentation (F1 = 70.43 ± 2.27). These findings suggest that 
augmentation is beneficial only when synthetic data remains aligned with 
the real speech distribution, with effectiveness extending up to 
approximately 1 × for MedAlpaca-7B on the Delaware corpus.

3.4.3 Text-based and multimodal LLM classifiers
As shown in Table 4, among the text-only LLMs, GPT-4o achieved 

the highest improvement (+11.1%), while LLaMA 3.3–70B and 

FIGURE 6

Impact of MedAlpaca-7B synthetic data on screening model performance and prediction confidence on ADReSSo benchmark. Panels a–e compare 
the fusion-based screening model before (green) and after 2 × augmentation with MedAlpaca-7B synthetic speech (pink). ROC curves (A) show stable 
discrimination (AUC: 89.48 → 89.56). The precision–recall curve (B) shows improved precision at lower recall. Cumulative gains (C) indicate better 
early retrieval of positives (notably between 40–70%). PPV (D) and sensitivity (E) profiles remain nearly identical. Density plots (F,G) show that 
post-augmentation predictions are more concentrated and better separated across classes, with reduced uncertainty around the 0.5 threshold.

https://doi.org/10.3389/frai.2025.1669896
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Zolnour et al.� 10.3389/frai.2025.1669896

Frontiers in Artificial Intelligence 13 frontiersin.org

LLaMA 3.1–8B showed smaller gains. For multimodal models, Phi-4 
benefited most from fine-tuning (+17.6%). In contrast, GPT-4o 
(omni) was only evaluated in the zero-shot setting, as fine-tuning 
multimodal models was not possible through the API.

4 Discussion

This study systematically evaluated pretrained transformer models 
and handcrafted linguistic features to develop a fusion model for early 
detection of cognitive impairment using spontaneous speech from the 
ADReSSo 2021 benchmark dataset. Prior studies have explored 
transformers and linguistic features separately, but our work is among 
the first to comprehensively assess ten transformer architectures 
across fine-tuning strategies and integrate their embeddings with 110 
domain-informed linguistic features in a late-fusion design. Among 
the models tested, BERT with last-layer fine-tuning achieved the 
highest test performance (F1 = 82.76). Linguistic features alone 
showed strong internal validity (validation F1 = 81.29) but limited 
generalization (test F1 = 66.83), whereas the fusion of transformer 
embeddings and linguistic features improved robustness and achieved 
the strongest overall generalization (test F1 = 83.32).

Notably, BERT, one of the earliest transformer architectures, 
outperformed more recent and larger models. This result likely reflects 
both pretraining domain and dataset scale. BERT was trained on 
broad-domain English text that closely matches the conversational 
style of DementiaBank, while newer domain-specific models (e.g., 
BioBERT, ClinicalBERT) were optimized on biomedical 
documentation, which differs from spontaneous speech and is less 

effective at capturing disfluencies and syntactic irregularities. In 
addition, BERT’s smaller architecture was better suited to the limited 
dataset size, whereas larger LLMs such as LLaMA-70B or GPT-4o 
typically require far larger task-specific corpora to realize their 
advantages and risk overfitting when fine-tuned on small samples. 
These findings suggest that for speech-based dementia detection, 
alignment between pretraining data, model capacity, and dataset scale 
may be more important than architectural novelty or size.

Building on this foundation, we further evaluated five state-of-
the-art LLMs—LLaMA-3.3 8B, MedAlpaca, LLaMA-70B, Ministral, 
and GPT-4—and three leading multimodal models (text + speech) in 
both zero-shot and fine-tuned configurations. Zero-shot prompting 
allowed models to leverage latent knowledge of linguistic cues, 
whereas fine-tuning enabled adaptation to task-specific patterns. 
Substantial improvements followed fine-tuning, with the largest gains 
observed for MedAlpaca-7B (F1: 47.73 → 78.69), followed by 
LLaMA-8B and Ministral-8B, indicating that smaller open-weight 
models respond particularly well to targeted training. By contrast, 
multimodal LLMs underperformed, with Phi achieving the highest 
F1 = 71.59, suggesting that current audio–text architectures are not 
yet optimized for detecting cognitive-linguistic markers in 
spontaneous speech.

Training augmentation with LLM-generated transcripts was 
effective only when synthetic speech remained semantically and 
structurally aligned with real data. MedAlpaca-7B produced 
synthetic samples embedded within the real-data manifold (t-SNE 
overlap; BERTScore = 0.59), raising the fusion model’s validation F1 
from 78.17 to 81.02. The highest test F1 = 85.65 was achieved when 
synthetic data equaled twice the original training size; performance 

TABLE 3  Zero-shot versus fine-tuned F1 performance of unimodal (text-only) and multimodal LLM classifiers on official test of ADReSSo benchmark.

Model Zero-shot F1 (%), mean ± 95%CI Fine-tuned F1(%), mean ± 95%CI Improvement (%)

Unimodal (text)

LLaMA 3.1 8B Instruct 68.54 ± 2.1 81.08 ± 0.94 +18.3

MedAlpaca 7B 47.73 ± 1.03 78.69 ± 2.31 +64.9

Ministral 8B (2410) 66.58 ± 8.55 73.7 ± 3.08 +10.7

LLaMA 3.3 70B Instruct 72.93 ± 1.2 80.35 ± 1.92 +10.2

GPT-4o (2024-08-06) 73.05 ± 2.04 75.28 ± 0.95 +3.1

Multimodal

GPT-4o (omni) 67.57 ± 1.08 - -

Qwen 2.5-Omni 67.31 ± 0 49.3 ± 0 −26.8

Phi-4 40.6 ± 3.77 71.59 ± 0.83 +76.3

TABLE 4  Zero-shot versus fine-tuned F1 performance of unimodal (text-only) and multimodal LLM classifiers on held-out test set of Delaware.

Model Zero-Shot F1 (%), Mean ± 95%CI Fine-Tuned F1(%), Mean ± 95%CI Improvement (%)

Unimodal (text)

LLaMA 3.1 8B instruct 66.44 ± 1.54 68.23 ± 0.43 +2.7

LLaMA 3.3 70B instruct 61.7 ± 2.21 64.52 ± 0.65 +4.6

GPT-4o (2024-08-06) 60.47 ± 2.82 67.18 ± 1.4 +11.1

Multimodal

GPT-4o (omni) 60.23 ± 1.96 - -

Phi-4 55.76 ± 3.37 65.57 ± 0 +17.6
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declined with further augmentation (3 × −5×). LLaMA-8B and 
GPT-4 yielded smaller but stable improvements. In contrast, 
LLaMA-70B, despite strong lexical overlap (top BLEU scores), 
formed a separate embedding cluster and reduced performance to 
77.2. These results confirm that lexical similarity alone is insufficient; 
effective augmentation must preserve cognitively salient features—
such as repetition, disfluency, and syntactic errors—that carry 
diagnostic value. Thus, augmentation should be limited to volumes 
that maintain distributional alignment, accompanied by embedding-
space validation to avoid degrading signal quality.

External evaluation on the Delaware corpus, restricted to clinically 
diagnosed MCI vs. controls, provides strong evidence for early-stage 
screening. The late-fusion pipeline outperformed transformer-only 
and feature-only baselines, and limited augmentation with 
MedAlpaca-7B (1×) further improved performance, whereas larger 
augmentation (≥2×) introduced distributional drift and reduced 
gains. These findings, combined with stable ROC characteristics, 
indicate that augmentation is effective only within bounded scales and 
should be accompanied by embedding-space monitoring. Importantly, 
successful transfer to an MCI-only cohort demonstrates the pipeline’s 
generalizability beyond the mixed-severity ADReSSo benchmark, 
directly addressing concerns about disease severity and reinforcing its 
relevance for early detection. Future work should expand MCI 
samples across sites and incorporate standardized prompts with 
pre-specified calibration to improve transportability.

Recent regulatory advances underscore the growing relevance of 
multimodal screening. In May 2025, the FDA approved Fujirebio’s 
Lumipulse G pTau217/β-amyloid 1–42 (U.S. Food and Drug 
Administration, 2025) blood test for Alzheimer’s disease, offering a 
minimally invasive biomarker assay. While biologically informative, such 
tests do not reflect how cognitive decline manifests in everyday 
communication. Language changes—reduced fluency, disorganized 
sentences—often appear early and may signal real-world functional 
decline that biological tests cannot detect. Transformer models and LLMs 
offer a scalable solution by analyzing short voice recordings to identify 
subtle communication deficits. Their ability to detect linguistic cues offers 
a critical complement to biomarker testing (Zhang et al., 2025; Hosseini 
et al., 2025). Combining biological data with speech-based analysis may 
yield a fuller clinical picture, supporting earlier and more informed 
decisions on referrals, imaging, and intervention.

The potential of speech processing algorithms for cognitive screening 
in healthcare is significant, emphasizing the need for comprehensive 
research on its integration into clinical workflow (Azadmaleki et  al., 
2025). This calls for interdisciplinary studies to understand clinical 
facilitators and barriers, including compatibility with existing workflows, 
clinician attitudes, and operational challenges. It is essential to evaluate 
the technical, logistical, and financial viability of deploying speech-
processing tools in clinical settings, considering their fit with current 
practices and their ability to improve cognitive health assessments (Zhang 
et al., 2025). Overcoming these challenges by leveraging government 
support is essential for harnessing AI’s potential to advance patient care 
and outcomes for patients with cognitive impairment (Hosseini 
et al., 2025).

Some ASR systems normalize transcripts and suppress diagnostic 
cues (Zolnoori et al., 2024b; Taherinezhad et al., 2025). In our prior 
benchmarking on the Pitt audio, Amazon Transcribe (general) 
maintained a competitive English WER (~13%) and preserved 
verbatim cues (fillers, repetitions, fragmented/partial words) more 

reliably than other transcription systems (Amazon Whisper, 
wav2vec2). For real-world automatic screening pipeline, 
we recommend ASR settings that retain disfluencies/partial words and 
avoid grammar-rewriting post-processors, with periodic audits of cue 
rates and threshold recalibration as ASR systems evolve.

Research on digital linguistic biomarkers spans a continuum from 
handcrafted linguistic features to transformer-based text models, 
acoustic and multimodal approaches, and, more recently, LLM-centric 
methods (Ding et al., 2024; Martínez-Nicolás et al., 2021). On the 
DementiaBank “Cookie Theft” task, early transcript-only studies relied 
on feature sets indexing lexical richness/diversity, syntactic complexity, 
discourse coherence, and filler/repetition rates, establishing that 
language organization itself provides clinically informative signal 
(Lanzi et al., 2023; Guo et al., 2021). Building on this foundation, BERT 
and its derivatives applied to transcripts—typically with no tuning or 
last-layer fine-tuning—achieved performance in the range of ≈75–84 
(F1/accuracy), capturing disfluencies and local syntactic irregularities 
more effectively than purely hand-engineered sets (Balagopalan et al., 
2020; Qiao et al., 2021). Other transcript-based approaches explored 
within the same benchmark include stacking ensembles of linguistic 
complexity, disfluency features, and pretrained transformers (Qiao 
et al., 2021) (F1 ≈ 82), as well as functionals of deep textual embeddings 
enriched with silence-segment preprocessing and fusion model (Syed 
et al., 2021) (F1 ≈ 84.45). In parallel, acoustic and multimodal methods 
have combined prosodic or MFCC-based features with representations 
from speech transformers such as wav2vec 2.0 or Whisper, often using 
late or attention-based fusion with text embeddings. These systems 
commonly report performance in the ≈82–87 range, depending on the 
linguistic model, acoustic feature extraction, and fusion strategy (Lin 
and Washington, 2024; Pan et  al., 2021; Shao et  al., 2025). More 
recently, LLMs have been explored in zero-shot, few-shot, or fine-
tuned configurations for tasks such as dementia detection or disfluency 
scoring, although their clinical utility remains under investigation 
(Bang et al., 2024). Within this landscape, our BERT (last-layer fine-
tuned) achieved F1 = 82.76, matching or exceeding state-of-the-art 
LLM fine-tuning baselines; late fusion with handcrafted linguistic 
features increased performance to F1 = 83.32. With distribution-
aligned synthetic augmentation, the fusion model further improved to 
F1 = 85.65, surpassing all LLM and audio-LLM fine-tuning baselines 
in our evaluation.

4.1 Limitations

This study has several limitations. First, we focused primarily on 
textual representations of speech and did not include acoustic 
transformer models, such as Whisper or wav2vec 2.0, which may 
capture additional prosodic or phonatory cues relevant to cognitive 
impairment. Second, while we evaluated several leading unimodal and 
multimodal LLMs, the multimodal models were limited to those with 
open or partially accessible APIs, and we could not fully fine-tune 
closed models like Google Gemini. Third, our evaluation was 
restricted to English-language transcripts from a structured task, 
which may limit generalizability to more diverse or naturalistic speech 
settings. Finally, although we used standard metrics and t-SNE for 
embedding analysis, future work should incorporate more rigorous 
interpretability methods to examine which linguistic and acoustic 
features drive model predictions.
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5 Conclusion

This study demonstrates the potential of combining transformer-
based embeddings with handcrafted linguistic features to improve the 
early detection of cognitive impairment from spontaneous speech. By 
systematically evaluating a range of pretrained transformer models 
and LLMs—including both unimodal and multimodal architectures—
we identified configurations that maximize generalization and 
classification performance. Our results show that clinically tuned 
LLMs like MedAlpaca-7B not only adapt well to task-specific fine-
tuning but also generate synthetic speech that meaningfully augments 
training data when distributionally aligned with real speech. These 
findings support the use of speech-based AI tools as a scalable and 
interpretable complement to biomarker-driven approaches for 
dementia screening and highlight the need for continued development 
of linguistically sensitive, clinically integrated NLP models.

Future work will build on these findings by addressing current 
limitations. We plan to integrate acoustic transformer models (e.g., 
wav2vec 2.0, Whisper) to capture prosodic and phonatory cues, 
enhance multimodal development through open-weight models with 
distillation from closed systems, and extend evaluation to multilingual 
and naturalistic conversations through multi-site validation. We will 
also strengthen the augmentation pipeline by combining LLM-guided 
narrative generation with prosody-controllable text-to-speech (TTS) 
to produce distributionally aligned synthetic speech. In addition, 
we  aim to improve interpretability with feature attribution, 
psycholinguistic mapping, and fairness audits, providing insights into 
model decisions. Together, these efforts will help overcome current 
constraints and move this line of work toward practical, clinically 
useful screening tools.
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