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Introduction: Potato foliar diseases, particularly early and late blight, pose a 
serious threat to yield and food security, yet reliable visual recognition remains 
challenging due to cultivar heterogeneity, variable symptom expression, and 
acquisition noise in field-like imagery. To address these issues, we propose 
PotatoLeafNet, a two-stage deep learning framework that combines a fixed-
sequence image-augmentation pipeline with a compact, task-optimized 11-layer 
convolutional neural network (CNN) using 3 × 3 kernels for robust, data-efficient 
classification of potato leaf conditions (Healthy, Early Blight, Late Blight).
Methods: We construct a dataset of 4,072 labeled potato leaf images from the 
PlantVillage-Potato subset and standardize all inputs to 224 × 224 RGB tensors 
with pixel intensities normalized to [0,1]. A balanced, fixed-order augmentation 
policy—comprising rotation, translation, shear, zoom, horizontal flipping, brightness 
adjustment, and channel jitter—is applied exclusively to the training split, increasing 
it to 6,000 images (2,000 per class) while keeping the validation and test sets free 
of synthetic samples. The second stage consists of an 11-layer CNN implemented 
in TensorFlow/Keras and trained with categorical cross-entropy loss and the 
Adam optimizer under a unified training and evaluation protocol. Performance is 
benchmarked against strong CNN and hybrid baselines, including ResNet-50 + VGG-
16, VGG-16 + MobileNetV2, MobileNetV2, and Inception-V3.
Results: On the PlantVillage-Potato test set, PotatoLeafNet achieves 98.52% 
accuracy, 98.67% macro-precision, 99.67% macro-recall, 99.16% macro-F1, and 
1.00 macro-AUC, outperforming all baseline models under identical preprocessing 
and training conditions. In particular, PotatoLeafNet surpasses ResNet-50 + VGG-
16 (97.10% accuracy, AUC 0.98), VGG-16 + MobileNetV2 (94.80% accuracy, AUC 
0.93), MobileNetV2 (93.20% accuracy, AUC 0.92), and Inception-V3 (92.50% 
accuracy, AUC 0.91). Short 10-epoch runs yield stable convergence (training 
accuracy 88.22%, validation accuracy 86.91%, test accuracy 88.15%), indicating 
efficient learning from the augmented distribution.
Discussion: The results demonstrate that explicitly coupling a fixed sequential 
augmentation stage with a lightweight 3×3-kernel CNN enables high tri-class 
accuracy, strong recall for disease classes, and improved generalization relative 
to deeper or fused architectures, without incurring substantial computational 
cost. By emphasizing disease-relevant structure while limiting overfitting, 
PotatoLeafNet provides a practical and resource-efficient solution for automated 
screening of potato leaf health in real-world agronomic settings, supporting 
timely and data-driven disease management.
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1 Introduction

The potato (Solanum tuberosum) is a staple crop and a vital source 
of calories and micronutrients for millions of people worldwide 
(Sunjoyo and Nugroho, 2022). Yields, however, are highly vulnerable 
to foliar pathologies most notably early blight and late blight which 
inflict substantial economic losses and threaten local food security 
when outbreaks go undetected or unmanaged (Hou et al., 2021). Early, 
reliable diagnosis is therefore essential for timely intervention, yet 
traditional field scouting by experts is labor-intensive, subjective, and 
difficult to scale across heterogeneous environments and planting 
cycles. These practical constraints motivate automated systems that 
deliver accurate, consistent, and rapid decisions directly from visual 
evidence. Convolutional neural networks (CNNs) have reshaped 
image understanding by learning hierarchical representations from 
data and have already shown strong performance in plant disease 
recognition tasks (Tugrul et al., 2022). Despite this promise, potato 
leaf disease classification remains challenging in real deployments. 
Symptoms vary with cultivar, phenological stage, and stress conditions; 
image capture occurs under fluctuating illumination, background 
clutter, motion blur, and sensor noise; and publicly available datasets 
are often limited in size and balance across classes. Moreover, many 
prior approaches emphasize single-disease detection rather than 
precise multi-class discrimination among healthy leaves and the major 
disease categories (early blight and late blight) required for agronomic 
decision-making (Alhammad et al., 2025). These factors collectively 
degrade generalization and complicate robust deployment on 
resource-constrained devices.

To address these limitations, we propose PotatoLeafNet, a 
two-stage convolutional framework for potato leaf disease detection 
and classification that explicitly couples data diversification with a 
compact, task-optimized classifier. Stage 1 performs sequential image 
augmentation including rotations, scalings, flips, and related 
geometric and photometric transforms to expand the training 
distribution and encode invariances that mirror field variability 
(Potato Leaf Disease Dataset, 2025). By structuring augmentation as 
a dedicated stage, the pipeline intentionally exposes the learner to 
controlled perturbations that emulate acquisition noise and viewpoint 
change, thereby improving robustness without inflating model 
capacity. Stage 2 is a lightweight CNN tailored for potato leaves: 
convolutional blocks with ReLU activations and 3 × 3 kernels extract 
localized texture and lesion-edge cues; max-pooling progressively 
reduces spatial resolution while preserving salient patterns; global 
average pooling compacts feature maps to mitigate overfitting; and a 
fully connected head (a 128-unit ReLU layer followed by a softmax) 
produces calibrated class probabilities for healthy, early blight, and late 
blight. This design emphasizes parameter efficiency and computational 
tractability while retaining discriminative power under real-world 
noise. Our evaluation plan reflects these deployment goals. We train 
and test PotatoLeafNet on a diversified collection of potato leaf images 
spanning healthy, early blight, and late blight categories (Sangar and 
Rajasekar, 2025). Performance is assessed using standard metrics 
accuracy, precision, recall, and F1-score to quantify both overall 
correctness and class-wise reliability. We further benchmark against 
contemporary CNN-based methods to examine accuracy efficiency 
trade-offs and to determine whether an explicit augmentation stage 
coupled with a compact classifier offers practical advantages over 
monolithic architectures. In addition, we analyze error modes to 

illuminate failure cases (e.g., tiny lesions with blurred boundaries, 
confounding background textures), informing future improvements 
to both model and data regimen. The significant contributions to the 
research are:

	•	 Introduced a novel two-stage convolutional neural network 
architecture, PotatoLeafNet, specifically optimized for high 
accuracy in detecting and classifying potato leaf diseases, 
addressing limitations in existing models

	•	 Implemented advanced sequential image augmentation techniques 
within a CNN framework to significantly enhance the model’s ability 
to generalize across diverse and unseen environmental conditions, a 
step beyond traditional augmentation practices.

	•	 Conducted a rigorous evaluation of the PotatoLeafNet model 
using an extensive dataset that includes a balanced representation 
of Healthy, Early Blight, and Late Blight potato leaf images, 
ensuring robust testing against varied disease manifestations.

	•	 Demonstrated superior performance of the PotatoLeafNet model 
through a comparative analysis with existing state-of-the-art 
models, highlighting advancements in accuracy and 
computational efficiency.

The study introduces a two-stage CNN-based potato leaf disease 
detection and classification method. Deep learning and image 
augmentation increase illness detection using this method.

2 Basic preliminaries and related 
research work

Leaf diseases are a common problem in plants and crops, and they 
can cause significant damage to both the yield and quality of the harvest 
various factors cause leaf maladies including fungi, bacteria, viruses, and 
environmental stressors. Depending on the specific disease and the plant 
species affected, the symptoms of leaf diseases can vary greatly. Some 
common symptoms of leaf diseases include discoloration, spotting, 
wilting, deformity, and defoliation (Afzaal et al., 2021). The entire plant 
may sometimes be involved, leading to stunted growth, reduced yield, or 
even death. Detecting and classifying diseases is significant for the control 
of the conditions. It can be done using various techniques such as visual 
inspection, laboratory analysis, and remote sensing. Recently, methods 
for automatically identifying and classifying leaf diseases using images of 
plant leaves have also been developed utilizing machine learning and 
computer vision techniques.

2.1 Types of potato leaf diseases

Potato foliage is vulnerable to a spectrum of pathogens with 
markedly different epidemiologies and symptomatology. Late blight 
(Phytophthora infestans), a fast-spreading oomycete disease, remains 
the most devastating, initiating water-soaked lesions that rapidly 
coalesce into necrotic brown areas with a characteristic grayish, 
downy sporulation under humid conditions, and frequently extending 
to tubers (Jafar et al., 2024). Early blight (Alternaria solani) typically 
emerges on older leaves as discrete dark lesions that enlarge with 
concentric “target-spot” rings, progressing to chlorosis and premature 
defoliation in warm, humid environments (Potato Disease Types, 
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2025). Viral diseases such as Potato virus Y (PVY) and Potato leafroll 
virus (PLRV), both primarily aphid-borne, induce mosaic mottling, 
leaf curling, and canopy yellowing (PVY), or the diagnostic upward 
rolling and brittle texture of leaves (PLRV), with attendant losses in 
yield and tuber quality that depend on cultivar and viral strain (Liu 
and Wang, 2021). Soil and vascular-invading fungi drive wilt 
syndromes early dying dominated by Verticillium dahliae and late 
dying associated with Fusarium spp. leading to progressive wilting, 
chlorosis, and necrosis that culminate in significant productivity 
declines. Bacterial threats such as bacterial ring rot cause leaf 
yellowing, wilting, and vascular browning with corky ring formation, 
and can persist in soils and on equipment, complicating eradication 
efforts. While multiple leaf diseases impair crop performance, early 
and late blight are generally the most consequential for field 
management decisions; representative phenotypes for Early blight, 
Late blight, and Healthy leaves are shown in Figure 1.

2.2 Literature review on potato leaf disease 
detection and classification

This potato leaf disease detection and categorization literature review 
summarizes current methodologies. Radwan et al. (2025) developed a 
weather-driven pipeline for early and late blight using K-means, PCA, 
copula analysis and multiple classifiers, with binary Greylag Goose 
Optimization for feature selection. On a 4,000-record meteorological 
dataset, the best MLP with selected features reached 98.3% accuracy. This 
tabular risk-forecasting setup complements image-based screening. Chen 
and Liu (2025) introduced CBSNet with Channel Reconstruction Multi-
Scale Convolution and Spatial Triple Attention, plus a Bat–Lion training 
strategy for robustness. On a self-built potato leaf image set, CBSNet 
achieved 92.04% accuracy and 91.58% precision, extracting tiny lesions 
and blurred edges effectively. Dey et al. (2025) proposed a lightweight 
CNN tailored for real-time classification, reducing depth and parameters 
to 204,227 while preserving accuracy on high-resolution potato leaf 
images. The model attained 98.6% test accuracy and class-wise precision 
of 0.99 (early blight), 0.98 (late blight), 1.00 (healthy), outperforming 
VGG16, AlexNet, and ResNet50. Sinamenye et al. (2025) fused 
EfficientNetV2-B3 with a Vision Transformer to couple local 
convolutional features with global context. Trained on the Potato Leaf 

Disease Dataset reflecting field variability, the hybrid reached 85.06% 
accuracy, improving prior results by 11.43 points. Salihu et al. (2025) built 
a CNN trained with Adam, using scaling, augmentation, and 
normalization over a curated set of healthy, early blight, and late blight 
images. The model achieved 96.88% accuracy, with class metrics including 
precision 0.76, recall 0.93, F1 0.84 for healthy and near-perfect scores for 
blight classes. Ala’a (2025) extracted generalized Jones polynomial texture 
features and classified with SVM on Plant Village potato images. The 
GJP-SVM pipeline preprocessing, feature extraction, dimensionality 
reduction, classification reached 98.45% accuracy, showing strong 
performance from hand-crafted descriptors. Zhang et al. (2025) 
benchmarked VGG16, MobileNetV1, ResNet50, and ViT, then proposed 
VGG16S with global average pooling, CBAM attention, and Leaky ReLU 
to shrink parameters to 15 M. After response-surface hyperparameter 
tuning, VGG16S achieved 97.87% test accuracy and generalized well on 
public sets. Kaur et al. (2025) presented PotConvNet, a compact CNN 
trained on two potato image datasets with resizing, normalization, 
augmentation, and fixed splits. Reported accuracies were 99.76% (Dataset 
1) and 97.78% (Dataset 2), validated by F1, precision, recall, Cohen’s 
kappa, and ROC AUC. Nur et al. (2025) optimized Inception V3 via 
transfer learning and targeted fine-tuning of terminal layers on a domain-
specific potato leaf set. The approach yielded 97.78% accuracy with 
precision 98%, recall 98%, F1 98%, offering strong performance with 
practical efficiency. Shah et al. (2025) introduced PLDC-Net, using 
EfficientNet-B1 as a backbone, fine-tuned with dense layers and an SVM 
output head; data balancing and augmentation were emphasized. On an 
unseen test set, the model achieved 98.39% average accuracy, providing a 
reliable transfer-learning baseline for multi-disease identification. We 
diagnose and categorize potato plant diseases. Various studies on 
diagnosing and categorizing potato plant diseases may be found in the 
literature on potato leaf disease classification and detection (Fuentes et al., 
2017). CNN and other deep learning approaches have shown promise for 
automating the detection and classification process, reducing the need for 
human expertise-several CNN architectures, transfer learning, feature 
extraction, and ensemble methods to improve accuracy and robustness 
(Geetharamani and Pandian, 2019). The study (Ahmed et al., 2025) 
suggested a deep CNN model to identify outstanding and ailing foliage 
across crops. They trained their model using the Plant Village dataset, 
which includes photos of diseased and healthy leaves and the backgrounds 
of 38 distinct crop kinds. However, they did not zero in on potato crop 

FIGURE 1

Sample images (a) potato early blight, (b) potato late blight, (c) potato healthy leaf.
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illnesses, and the data used to prepare the algorithm in the United States 
and Switzerland missed Pakistan-endemic infections on potato leaves.

Despite having little data, the scientists used deep learning, 
specifically CNNs, to identify potato illnesses (Lee et al., 2020). A CNN 
model was created (Awal et al., 2019) to distinguish between healthy 
potato leaves and those affected by early or late blight. They also used the 
regionally targeted Plant Village dataset in their research (Khalifa et al., 
2021). In this research, we looked at how well deep learning methods and 
convolutional neural networks, in particular, might do at identifying 
diseases on potato leaves. The authors trained a CNN network using a 
collection of photos of diseased potato leaves. The success of the 
suggested method in illness detection demonstrates the promise of deep 
learning for this application area. According to Ghosal et al. (2019), the 
CNN model has the ability to differentiate between various plant classes. 
This study, Rathod et al. (2020) used deep learning to detect potato leaf 
blight early. The authors trained a CNN architecture to interpret potato 
leaf images. The model’s early blight detection highlights deep learning’s 
potential for potato leaf diseases. The authors examined deep learning 
and transfer learning for potato disease diagnosis (Liang et al., 2019). 
Using potato leaf images, the authors updated VGG16, a pre-trained 
CNN model. Pre-trained CNN models with transfer learning were useful 
in potato disease detection. A network for identifying and assessing plant 
diseases was demonstrated in Ferentinos (2018). To distinguish between 
healthy and diseased plants from photographs of their leaves (Rozaqi et 
al., 2020; Sanjeev et al., 2020) looked at many deep-learning architectures. 
These included AlexNet, Overfeat, AlexNetOWTBn, VGG, and 
GoogLeNet. The authors applied transfer learning to the PlantVillage 
dataset to identify local agricultural diseases. We developed a CNN 
model to detect potato plants with early, late, or robust blight. We trained 
the model using PlantVillage, disease data. FFNNs can distinguish 
between early, late, and healthy foliage (Barman et al., 2020). They 
trained and tested their system using PlantVillage. Using a self-built 
CNN (SBCNN) model, Tiwari et al. (2020) classified potato leaves as 
early, late, or healthy. The regional PlantVillage dataset improved their 
model’s accuracy. They did not utilize experimental data to validate their 
model. Gupta et al. (2019) extracted and classified features using KNN, 
SVM, a neural network, and a pre-trained VGG19 model using KNN, 
SVM, and a neural network. PlantVillage has trained the computer to 
identify early and late blight symptoms on potato foliage. Research 
demonstrates that CNNs and other forms of deep learning effectively 
identify and categorize diseases in potato leaves. To further improve the 

performance of deep learning models, even with minimal training data, 
practitioners have turned to methods including data augmentation, 
transfer learning, and fine-tuning pre-trained models. These findings 
show that deep learning may improve potato disease detection and 
classification, which is crucial for the crop’s long-term health.

2.3 Literature on potato leaf disease 
detection and classification using 
augmentation and deep learning models

The study, Bappi et al. (2025) provided a novel deep-learning 
algorithm for potato leaf tissue disease detection using augmentation 
approaches. Scaling, flipping, and rotating the training dataset enhanced 
the model’s accuracy. The research (Rahman et al., 2021) examined how 
different kinds of enhancement may affect deep Convolutional Neural 
Networks (CNNs) ability to spot illnesses in potato leaves. In this research 
(Plant Village Dataset, 2024), we applied deep learning models and data 
augmentation to improve our ability to identify diseases in potato leaves. 
The authors in the research work developed a deep learning-based 
method that uses data augmentation techniques to detect potato diseases. 
They used augmentation methods, including scaling, flipping, and 
rotating, to upsurge the size of the training dataset. In potato disease 
identification, training a CNN model on the expanded dataset resulted in 
high accuracy. Table 1 summarizes augmentation and deep learning 
studies on potato leaf disease detection and classification. These studies 
demonstrate the scope of current potato leaf disease identification and 
categorization efforts. While typical machine learning methods have 
shown promise, recent research has demonstrated that deep learning, 
particularly CNNs, may boost accuracy and automation. The proposed 
study on two-stage PotatoLeafNet CNN architectures will examine their 
ability to accurately identify and classify potato leaf diseases.

3 PotatoLeafNet: two-stage deep 
learning approach for accurate potato 
leaf disease detection and 
classification

Challenges in deep learning approaches for potato leaf disease 
identification include inaccurate disease recognition, disease variations, 

TABLE 1  Summary of the literature on potato leaf disease detection and classification using augmentation and deep learning models.

Reference no Approach Data augmentation 
methods

Deep learning 
model

Key findings

Khalifa et al. (2021) Deep learning-based approach
Random cropping, flipping, and 

rotation
CNN

Achieved 94% accuracy, 

demonstrating robustness in 

varied conditions

Ghosal et al. (2019)
Deep learning with 

augmentation techniques
Scaling, rotation, and noise addition CNN

Improved accuracy by 2% over 

non-augmented models

Rathod et al. (2020)
Deep learning with data 

augmentation

Color adjustment, zooming, and 

shifting
CNN

Enhanced model stability and 

a 5% increase in detection rate

Potato Leaf Disease Dataset 

(2025)
Deep learning-based approach

Extensive geometric and photometric 

transformations
CNN

Matched state-of-the-art 

accuracy, highlighting 

efficiency in processing large 

datasets
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high false rates, inadequate training samples, imbalanced classes, slow 
convergence, and improved accuracy. Deep learning methods have been 
extensively researched to identify and categorize potato leaf diseases. 
Early identification and treatment of potato leaves are crucial, but the 
lack of agricultural expertise in rural areas can be time-consuming and 
hindered. Acquiring such datasets remains a difficult task. Figure 2 
represents the Flowchart for the proposed PotatoLeafNet two-stage 
CNN models for Potato Leaf Disease Detection and Classification.

3.1 Potato leaf disease dataset description

Plant Village Dataset provides high-quality photos of different potato 
leaves (Mishra and Srivastava, 2019). Healthy, Early and Late Blight were 
photographed. Because of its availability, researchers have used the Plant 
Village dataset to simulate potato leaf diseases in the literature. This 
region-specific dataset includes few training and validation pictures and 
uneven class distribution. We need a fresh and comprehensive potato leaf 
dataset to address these research gaps. We curate the new dataset as the 
Potato Leaf Disease Dataset. Early Blight, containing 1,628 potato 
images, is the most critical disease affecting potatoes. The subsequent 
severe risk Late Blight contains 1,424 leaf images. We will examine 1,020 
leaf images from the Healthy Next class for model training and testing. 
The dataset contains a complete 4,072 potato leaf images with three 
classes. The ratio between training, validation, and testing is 80:10:10. 
Figure 3 displays the potato leaf images from each of the three categories. 
Figure 3 presents the distribution of images across three classes of potato 
leaves: Early Blight, Late Blight, and Healthy. The Early Blight class has 
the largest number of images, just under 1,800, indicating a higher 

prevalence or focus on this category within the dataset. Late Blight 
follows closely, with a count near 1,600 images. The Healthy class has the 
fewest images, slightly above 1,400, suggesting a lesser representation in 
the dataset. This visual distribution highlights an imbalanced dataset 
which may be used for training a machine learning model to classify the 
health status of potato leaves.

3.2 Image processing and sequential image 
augmentation

Pre-processing was applied to all images to enhance lesion 
visibility, suppress background clutter, and standardize inputs prior to 
learning. Specifically, we performed contrast normalization to 
mitigate illumination variability, foreground–background separation 
to isolate the lamina, and spatial normalization to a common 
resolution. This stage improves the signal-to-noise ratio presented to 
the network and, in turn, the reliability of feature extraction for 
downstream classification (Hernandez-Valencia et al., 2020). To 
reduce storage and I/O overhead without compromising diagnostically 
salient content, we employed lossless and hybrid compression. 
Lossless codecs Huffman coding and run-length encoding (RLE) 
preserve the exact pixel values while exploiting redundancy to shrink 
file size (Yao et al., 2020). In the hybrid scheme, regions containing 
disease cues (lesion edges, texture) are preserved losslessly, whereas 
visually noncritical background is compressed lossily, striking a 
balance between fidelity and efficiency for large-scale training and 
deployment (TensorFlow Sequential Data Augmentation, 2025). 
(Compression is decoupled from resizing, it reduces bytes on disk/

FIGURE 2

Flowchart for the proposed PotatoLeafNet two-stage CNN models for potato leaf disease detection and classification.
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transfer, not spatial resolution.) leaf images captured in RGB are 
converted to grayscale (Gurucharan, 2020). Edge of Caution to 
recognize the edges in a leaf image and alleviate the irritation, 
unambiguous evidence is utilized (Powers, 2020). The external designs 
in leaf images are equal in how they are perceived from the edge. 
When the upper shape is taken as (p, q), the breadth and the level are 
(r, s), and these four centers do not settle the bobbing (Li et al., 2022). 
Each member of the upright hopping square is still a work in progress. 
The return on investment region is removed using the primary RGB 
leaf image’s coordinates (p + r, q + s). Finally, the dreaded leaf symbol 
may be put to rest.

3.2.1 Sequential image augmentation
Sequential image augmentation can be incorporated into a sequential 

model in TensorFlow-Keras by using the “tf.keras.layers.experimental.
pre-processing” module. This module provides various layers that can be 
added to the sequential model to apply different image augmentation 
techniques. These layers can be sequentially added to the model to apply 
random horizontal flipping, random rotation within a specific range, 
random zooming, and rescaling of pixel values. By adding the image 
augmentation pipeline as the first layer of the CNN sequential model, the 
subsequent layers can learn from augmented data, enabling the model to 
generalize better and handle variations in the input images.

The ‘image_augmentation’ sequential model used in this 
research represents an augmentation pipeline using various 
pre-processing layers.

	•	 Random Rotation: This layer randomly rotates the input image 
by a maximum of 0.2 radians (approximately 11.5 degrees) in a 
counterclockwise direction. It introduces variability by simulating 
different object orientations in the image.

	•	 Random Zoom: This layer applies random zooming to the input 
image, ranging from 0 to 20% of the original size. It helps capture 
different scales or perspectives of the object.

	•	 Random Height: This layer randomly changes the height of the 
input image by scaling it between 80 and 120% of the original 
height. It adds variability by modifying the image’s aspect ratio.

	•	 Random Width: This layer randomly changes the width of the 
input image by scaling it between 80 and 120% of the original 
width. Like ‘Random Height’ it introduces variability by 
modifying the aspect ratio.

	•	 Rescaling: This layer rescales the pixel values of the input image 
to a range of [0, 1]. In this case, it divides each pixel value by 255, 
assuming the input image has an 8-bit color depth. Rescaling is a 
typical pre-processing step to ensure numerical stability and 
convergence during model training.

The ‘image_augmentation’ model can be used as a pre-processing 
step in your overall CNN model pipeline. It applies random 
transformations to the input images during training, enhancing the 
diversity and robustness of the data.

3.3 Augmented data split into training, 
validation, and testing

The potato leaf disease dataset was divided into training, 
validation, and testing sets using 80, 10, and 10% split ratios. 
Sequential image augmentation procedures on the training set 
reduced overfitting and increased dataset variation. Rescaling, 
rotating, modifying shear and zoom ranges, flipping horizontally, 
adjusting brightness, and moving channels were these tactics. CNN 
model predictions were improved using Adam optimization with 
forward and backpropagation. Thus, CNN model output accuracy was 
ensured. The validation and testing sets contained 20% of the training 
set, which included images of early, robust, and late blight. The 
PotatoLeafNet model categorized practice pictures and predicted class 
labels on the training dataset.

FIGURE 3

The potato leaf images from each of the 3 categories (original distribution).
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3.4 PotatoLeafNet—potato leaf-based CNN 
for potato leaf disease detection and 
classification

The existing literature on deep learning approaches reveals several 
challenges, including misdiagnosis of potato leaf identification, variations 
in potato leaves due to different varieties, and environmental factors. Early 
detection and management of potato diseases are crucial, but the process 
is time-consuming, and access to agricultural expertise is limited in rural 
areas (Alzakari et al., 2025). CNNs have shown remarkable progress in 
image-based recognition, eliminating the need for extensive image 
pre-processing and enabling automatic feature selection (Weng et al., 
2024). However, the availability of large datasets specifically for potato leaf 
challenges remains a significant obstacle.

3.4.1 Convolutional neural network (CNN) model
CNNs were developed to process the data represented in grid-like 

structures like images. The pixels in an image are arranged in a grid, 
and the value of each pixel determines its hue and luminance. 
Likewise, each neuron in a CNN processes information within its 
receptive field. Like how the human brain processes visual 
information, CNN layers detect simpler patterns first, then more 
complex ones as the layer progresses.

Convolutional neural networks have input, hidden, and output layers. 
Convolution, normalization, pooling, and fully-connected layers lie 
between the output and input layers. The convolutional layer’s filters create 
classification feature maps. Image processing uses ReLU. This paper 
proposes an improved fine-grained robust PotatoLeafNet model for 
classifying potato leaf diseases. To minimize the size of the leaf picture and 
create several images, image pre-processing and sequential image 
augmentation methods are utilized at the first level. A CNN learning 
model using a CNN has been established at the next level to identify sick 
leaves in the images. The PotatoLeafNet model for potato leaf disease 
prediction is shown in Figure 4.

CNN models have numerous convolutional, pooling, and fully linked 
layers. Because of its high complexity, a neural network can develop 
hierarchical representations of the input data, which are crucial for precise 
categorization. Section 3.6 presents a detailed pseudo code for the 
proposed CNN model for Potato Leaf detection and classification. The 
Convolutional Neural Network model consists of multiple layers, 

including Conv2D, Batch Normalization, Max Pooling, and Activation 
functions. Here is a description of the model architecture:

	 1	 Conv2D layers: The convolutional operation distinguishes a CNN 
from other neural networks. The basic form of convolution 
consists of two functions that take real numbers as arguments. To 
explain convolution, we can pretend that it is possible to track 
where a car is using a laser that gives an output: x(t), where x is the 
car’s position in time step t. Several measurements can be taken to 
reduce possible noise during the measurements, and an average 
value of them is used as the measurement value. Later 
measurements have greater value than the older ones. Therefore a 
weight function, w(a), is used, where a represents how old a 
measurement is. The weight function w must be a valid density 
function. If these weighted average measurements are performed 
every time step, it can be described with a function, s known as the 
Convolution function.

	 ( ) ( ) ( )= ∫ −s t x a w t a da	 (1)

In CNN terminology, the first argument in the convolution 
function is called the input, and the second is called the kernel; what 
is returned is called the feature map.

	 ( ) ( )( )= ∗s t x w t 	 (2)

For the example with the car above to be realistic, the data cannot be 
collected in each time step when the amount had become too large, but 
in regular intervals, for example, every second or minute. In such a case, 
the time variable t would only be of integer type; likewise, the variables x 
and w, then the mathematical discrete convolution, can be defined as.

	 ( ) ( )( ) ( ) ( )∞
=∞

= ∗ = −∑as t x w t x a w t a 	 (3)

The model includes 5 Conv2D layers. Conv2D performs 
convolution operations on the input image to extract features. Each 

FIGURE 4

Architecture of the proposed PotatoLeafNet model for potato leaf detection and classification.
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Conv2D layer consists of a set of learnable filters that scan the input 
image and produce feature maps. These filters capture different 
patterns and features at different scales.

	 2	 Batch Normalization layers: The batch normalized 
activation is

	

µ

σ

−
=

+2
i B

i
B

xx
e 	

(4)

Where µ
=

= ∑ 1
1 m

B i xi
m

 is the batch mean, and 

( )σ µ
=

= −∑ 22
1

1 m
iB xi B

m
 is the batch variance. Batch Normalization 

is applied after each Conv2D layer. Adjusting the mean and variance 
helps normalize the previous layer’s output. It helps stabilize the 
training process and improve the model’s overall performance.

	 3	 Max Pooling layers: Max Pooling precedes each Conv2D layer. 
The maximum value inside a pool size lower feature map 
spatial dimension. Max Pooling helps down-sampling the 
feature maps and extracting the most essential features while 
reducing computational complexity.

	 ( )( )= … = …= + +1 1
0 . , 0 ..maxxy i s j sh h x i y i 	 (5)

	 4	 Activation functions: 7 activation functions are used in the 
model’s layers. Activation functions allow the model to learn 
complicated patterns and make nonlinear judgments. CNNs 
often use ReLU, sigmoid, and tanh activation functions to feed 
one layer’s output into the next.

	 ( ) ( )= 0,i iReLU x x 	 (6)

Combining Conv2D layers, Batch Normalization, Max Pooling, and 
Activation functions helps the CNN model extract and learn intricate 
features from the input data effectively. It allows the model to capture the 
information for accurate classification or detection tasks. The model uses 
convolutional operations, sequential image augmentation, and global 
average pooling to accurately and efficiently classify potato leaf diseases. 
Table 2 shows the proposed PotatoLeafNet model architecture summary, 
and Figure 4 represents the proposed PotatoLeafNet model for Potato 
Leaf detection and classification.

	•	 Sequential Image Augmentation: The input images are enhanced 
by this layer using various image augmentation methods, including 
random flipping, rotation, zooming, and rescaling. It transforms the 
pictures to prepare them for better generalization.

	•	 Conv2D (60 filters, 3 × 3, ReLU): This convolutional layer performs 
convolutions on the input images using 60 filters of size 3 × 3 and 
applies the ReLU activation function. It extracts 60 different features 

TABLE 2  Summary of the proposed PotatoLeafNet model architecture.

Layer Output shape Number of parameters Unique Configuration

Sequential Image Augmentation (None, 224, 224, 3) 0
Custom augmentation settings for potato 

leaf images

Conv2D (60 filters, 3 × 3, ReLU) (None, 222, 222, 60) 1,740 Optimized for initial feature extraction

MaxPooling2D (pool size: 2×2) (None, 111, 111, 60) 0
Reduces dimensionality, retains critical 

spatial features

Conv2D (60 filters, 3 × 3, ReLU) (None, 109, 109, 60) 32,460
Additional depth to capture complex 

features

MaxPooling2D (pool size: 2×2) (None, 54, 54, 60) 0
Further reduces spatial dimensions, 

focuses on feature pooling

Conv2D (60 filters, 3 × 3, ReLU) (None, 52, 52, 60) 32,460
Increases model’s capacity to learn detailed 

features

MaxPooling2D (pool size: 2×2) (None, 26, 26, 60) 0
Enhances the abstraction level of the 

features

Conv2D (60 filters, 3 × 3, ReLU) (None, 24, 24, 60) 32,460
Prepares for high-level reasoning by the 

network

MaxPooling2D (pool size: 2×2) (None, 12, 12, 60) 0
Last pooling step to compact features 

before classification

GlobalAveragePooling2D (None, 60) 0
Reduces each feature map to a single 

number to minimize overfitting

Dense (128 units, ReLU) (None, 128) 7,808
Dense layer to combine features into 

higher-level attributes

Dense (total_classes units, Softmax) (None, total_classes) total_classes
Tailored for the specific number of disease 

classes
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from the input images, resulting in an output shape of (None, 222, 
222, 60).

	•	 MaxPooling2D (pool size: 2 × 2): By taking the highest value inside 
each 2 × 2 region, this max pooling layer decreases the spatial 
dimensions of the feature maps by a factor of 2 (Tiwari et al., 2020). 
It helps in reducing the spatial dimensions and capturing the most 
salient features, resulting in an output shape of (None, 111, 111, 60).

	•	 GlobalAveragePooling2D: This layer performs global average 
pooling, reducing the spatial dimensions to a single value per 
channel. It summarizes spatial information and retains essential 
features. Resulting in an output shape of (None, 60).

	•	 Dense (128 units, ReLU): This fully connected dense layer with 
128 units applies the ReLU activation function. It introduces 
non-linearity and learns high-level representations based on the 
extracted features from previous layers. Resulting in an output shape 
of (None, 128).

	•	 Dense (total_classes units, Softmax): The softmax activation 
function is used in the last dense layer, which has units equal to 
the entire number of classes in the classification job. It generates 
class probabilities, which show the chance that each input picture 
belongs to a specific class of illness.

These layers form the PotatoLeafNet model, which combines 
sequential image augmentation, convolutional layers for feature 
extraction, pooling layers for spatial dimension reduction, global 
average pooling for summarization, and fully connected layers for 
classification. The model is trained to classify potato leaf disease 
images into their respective classes.

3.5 Performance measure

Multiple metrics are used to evaluate the success of a network. 
Using different task metrics helps represent the network’s ability to 
solve a given problem. The evaluation metrics can use true positive 
(TP), false positive (FP), true negative (TN), and false negative (FN).

Classification Accuracy: is determined by the ratio of correct 
prediction to total predictions.

	
=

   r
   

Number of Correct PredictionsAccu acy
Total number of Predictions 	

(7)

Precision: Precision determines with what precision the network 
places images in the positive category. Precision is calculated as follows:

	
=

+
TPPrecision

TP FP 	
(8)

Recall: Recall indicates how many positive images the network 
recorded. The recall is calculated as follows:

	 +
TPRecall

TP FN 	
(9)

F1-Score: F1-Score is a combination of Precision and Recall. The 
calculation is as follows:

	
∗

− = ∗
+

1 2 Precision RecallF Score
Precision Recall 	

(10)

3.6 Algorithm of the proposed 
PotatoLeafNet model for potato leaf 
detection and classification

PotatoLeafNet model for potato leaf detection and classification 
shown in Algorithm 1.

ALGORITHM 1

Input: Potato Leaf Disease Dataset
Output: Disease Detection and Classification of Potato Leaves
Step1: Acquire the Potato images with Late Blight, Early Blight, 

and Healthy
Step2: Loading the data (X_train,y_train), (X_test,y_test)=image.

load_data()
Step 3: first stage of PotatoLeafNet for sequential image 

augmentation model for image augmentation with 6 layers. Each layer 
is performing RandomFlip, RandomRotation(0.2), 
RandomZoom(0.2), Rescaling(1./255)

Step 4: Put the correct labels on the pictures of the potato 
leaf images.

Step 5: Sort photos into categories using the available class labels 
from the training and testing datasets.

Step 6: Initialize the parameters image size, epochs, batch size, 
and train and test image labels.

Step 7: The Second stage of the PotatoLeafNet Model uses 4 
blocks containing Conv2D, Max Pool2D, and GloalAveragePooling2D, 
followed by Desne layers. The total number of layers is 11.

Step 8: Evaluate the trained model using a separate testing dataset.
      Calculate the test loss and accuracy of the model.
Step 9: Check the accuracy of the proposed models, and see how 

they stack up against the rest of the CNN models out there. Make 
predictions on new data

predictions = model.predict(new_images).

4 Results and discussion

All experiments were implemented in Python using TensorFlow and 
Keras, optimizing a categorical cross-entropy objective with Adam and a 
learning-rate schedule; runs were executed on a server equipped with an 
NVIDIA P100 GPU, an Intel i5 CPU, and 8 GB RAM. The evaluation 
centered on four aims: reliably tri-classifying potato leaf images into Early 
Blight, Late Blight, and Healthy categories, quantifying the effect of a fixed 
sequential image-augmentation pipeline during training on the 
PotatoLeafNet’s performance; benchmarking PotatoLeafNet against 
contemporary convolutional baselines; and situating the empirical 
findings within prior deep-learning studies on potato leaf 
disease identification.
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4.1 Datasets description

We curated a diverse, high-quality corpus of potato leaf images 
spanning Healthy, Early Blight, and Late Blight classes. Training uses 
the PlantVillage Potato subset, a widely used, fully open benchmark 
for potato leaf disease recognition, to mitigate its limitations and class 
imbalance, we additionally compiled a complementary Potato Leaf 
Disease Dataset with 4,072 images 1,628 Early Blight, 1,424 Late 
Blight, and 1,020 Healthy. To assess real-world generalization beyond 
PlantVillage, we conduct cross-dataset validation: models trained on 
PlantVillage are evaluated, without further tuning, on PlantDoc 
(Singh et al., 2020) (in-situ scenes with variable lighting, occlusion, 
and background clutter) and on Shabrina et al. (2023) field collection 
(uncontrolled conditions; seven potato classes remapped to {Healthy, 
Early Blight, Late Blight} for comparability). We report Accuracy, 
Macro-F1, per-class Precision/Recall, Matthews Correlation 
Coefficient (MCC), and Expected Calibration Error (ECE), and 
provide confusion matrices and Grad-CAM overlays. Finally, a 
few-shot field-adaptation ablation (10% labeled field images) 
quantifies domain shift and the benefit of lightweight adaptation.

4.2 Data pre-processing and sequential 
image augmentation

All images were prepared for CNN training by converting them to 
RGB float tensors and resizing uniformly to 224 × 224 pixels. Pixel 
intensities were normalized to [0,1] to stabilize optimization. The dataset 
comprised 4,072 potato-leaf images across three classes Healthy, Early 

Blight, and Late Blight. To enhance the robustness and generalizability of 
PotatoLeafNet, we applied a fixed-order (sequential) image-augmentation 
pipeline in Keras on the training split only, thereby increasing appearance 
diversity while preserving label integrity and class balance. The 
augmentation sequence consisted of rotation (±25°), width shift (±0.10), 
height shift (±0.10), shear (0.20), random zoom (up to 0.20), horizontal 
flip, brightness jitter (0.5–1.0), and channel shift (0.05). Applying this 
policy expanded the training corpus to 6,000 images, balanced as 2,000 
per class, which mitigated class imbalance and improved generalization 
across diverse disease manifestations. Figure 5 illustrates representative 
pre-processed images at the target 224 × 224 resolution.

4.2.1 Evaluation protocol
We access robustness with Repeated K-Stratified K-Fold (k = 5, 

r = 3; total N = 15 fits). For fold f, models are trained on train
fD , 

validated on val
fD  (early stopping, best checkpoint), and evaluated on 

test
fD . We report Accuracy, Macro-precision, Macro- Recall, Macro-F1 

as ( )µ σ±  over all N runs, with 95% cls via the t-distribution:
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For pairwise model comparisons on identical folds we apply 
paired t-tests and Wilcoxon signed-rank tests, prediction-level 
differences are examined with the McNemar test. We report Hedges’ 
g and cliff ’s δ  as effect sizes and apply Holm-Bonferroni to control 
family-wise error. To quantify optimization stochasticity, we 

FIGURE 5

The pre-processed images with a resolution of 224×224.
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additionally train each model on the canonical split with 5 distinct 
random seeds and report mean ± SD Protocol details Input Size 
224*2,224, identical preprocessing/normalization across models, no 
augmentation on validation/test, Stratification by class (Healthy, Early 
Blight, Late Blight), fixed fold indices shared by all models, 
deterministic settings (global seed, seeded data loaders, 
CuDNN deterministic).

4.3 PotatoLeafNet performance on potato 
leaf disease dataset

Table 3 illustrates PotatoLeafNet configurations. The dataset 
shows the PotatoLeafNet model, which changes internal parameters 
to improve performance during training. The model learns to extract 
important traits and properly characterize Late, early blight, and 
Healthy over several epochs. Each epoch’s accuracy and loss statistics 
show model performance. Accuracy is the percentage of correctly 
predicted instances concerning actual. Figures 6–9 demonstrate the 
accuracy of PotatoLeafNet architectures’ potato leaf disease detection 
and classification.

The two-stage CNN model evaluates PotatoLeafNet on potato leaf 
disease data. Potato leaf disease datasets employ six-layer sequential 
image enhancement. A freshly developed and fine-tuned CNN model 
analyzes the training dataset’s accuracy. The PotatoLeafNet model was 
optimized with sequential picture augmentation. PotatoLeafNet 
model training requires a huge sample.

Figure 6 summarizes the learning dynamics of PotatoLeafNet 
trained for 100 epochs with sequential image augmentation on the 
potato leaf disease dataset. The training accuracy rapidly increases and 
saturates at 98.92% with a final training loss of 0.0356, while the 
validation accuracy stabilizes around 97.53% with a closely aligned 
validation loss curve. The small gap between training and validation 
accuracies, together with the monotonically decreasing and 
non-diverging loss trajectories, indicates that the augmented model 
generalizes well beyond the training set. On the held-out test set, 
PotatoLeafNet attains 98.52% accuracy, confirming that sequential 
image augmentation provides effective regularization and supports 

highly reliable classification of healthy, early blight, and late 
blight leaves.

Figure 7 shows the behavior of a single-stage PotatoLeafNet 
trained for 100 epochs without sequential image augmentation. In 
this setting, the model reaches 96.17% training accuracy with a 
training loss of 0.2250 and achieves 96.52% validation accuracy, 
but the validation accuracy and loss curves exhibit noticeably 
larger oscillations than in Figure 6. Test accuracy is reduced to 
96.01%, i.e., 2.51 percentage points below the augmented 
two-stage PotatoLeafNet, and the substantially higher training loss 
further reflects less stable optimization. Comparing Figures 6, 7 
demonstrates that sequential image augmentation not only 
increases training/validation/test accuracy by +2.75/+1.01/+2.51 
points, respectively, but also yields smoother validation 
trajectories and lower loss, highlighting its role as an 
effective regularizer.

Figure 8 depicts PotatoLeafNet trained for only 10 epochs with 
sequential image augmentation. Even under this short training 
regime, the model already reaches 88.22% training accuracy with a 
training loss of 0.3535, while the validation accuracy rises to 86.91% 
and the validation loss decreases steadily. The corresponding test 
accuracy of 88.15% confirms that the augmented model generalizes 
well even before full convergence. These dynamics indicate that 
augmentation quickly exposes the network to diverse views of each 
class, enabling the model to acquire discriminative features early in 
training and to maintain a small and stable train–validation gap.

Figure 9 presents the same 10-epoch training schedule without 
sequential image augmentation. In this baseline configuration, the 
model attains 87.82% training accuracy and 0.3410 training loss, with 
validation and test accuracies of 85.82 and 86.91%, respectively. 
Compared with Figure 8, both validation and test accuracies are 
consistently lower and the gap between training and validation curves 
is slightly larger, suggesting mild overfitting when the network is 
trained on a less diverse set of images. The corresponding loss curve 
also shows a less smooth descent, pointing to reduced robustness of 
the optimization process. Together, Figures 8, 9 illustrate that, even at 
an early training stage, sequential image augmentation improves 
generalization and stabilizes the learning dynamics of PotatoLeafNet.

4.3.1 Model efficiency and parameters
To contextualize deployment cost alongside accuracy (Table 4), 

we benchmarked five models under a unified protocol and report 
tuning strategy, wall-clock training time, parameter count, and FP32 
memory footprint (4 bytes per parameter). The proposed 
PotatoLeafNet used manual tuning with ReduceLROnPlateau and 
ModelCheckpoint, a fixed sequential augmentation policy, and Adam 
(lr = 1e-3); it trained in 1.2 h, contains 16.5  M parameters, and 
occupies 66 MB of memory (moderate complexity). The 
ResNet-50 + VGG-16 fusion, using transfer learning with fine-tuning, 
trained in 1.5 h and comprises 164.00 M parameters (656 MB) [or 
38.30 M, 153 MB, if reported without the ImageNet classifier]; 
VGG-16 + MobileNetV2 with grid-search tuning trained in 1.8 h and 
totals 141.90 M parameters (567.6 MB) [or 16.97 M, 67.9 MB, without 
top]. MobileNetV2, tuned via random search, trained in 0.8 h, has 
3.54 M parameters (14 MB) and low complexity. Inception-V3, fine-
tuned via standard transfer learning, trained in 1.2 h and includes 
23.85  M parameters (≈95 MB) with moderate complexity. These 
results show that PotatoLeafNet is far smaller than fusion baselines 

TABLE 3  Parameters used in the PotatoLeafNet model.

S. No Parameter used Value

1 Training epochs 10 and 100

2 Optimizer Adam

3 Batch size 32

4 Drop out 0.25

5 Image size 224 × 224

6 Kernel size 3

7 Data shuffle True for every 1,000 

images

8 No of classes 3

9 Callback True on model 

checkpoint

10 Loss function Cross entropy

11 Learning rate 0.001
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FIGURE 6

The performance of PotatoLeafNet on potato leaf disease with sequential image augmentation for 100 epochs.

FIGURE 7

Performance of PotatoLeafNet on potato leaf disease without sequential image augmentation for 100 epochs.

FIGURE 8

Performance of PotatoLeafNet on potato leaf disease with sequential image augmentation for 10 epochs.
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and within an order of magnitude of MobileNetV2; post-training 
INT8 quantization typically reduces memory by 4 × (e.g., 
PotatoLeafNet to 16.5 MB, MobileNetV2 to 3.5 MB), improving 
feasibility for real-time mobile/web deployment.

4.4 Comparison of accuracy between 
proposed method and existing studies

Table 5 benchmarks the proposed PotatoLeafNet against recent 
potato-disease studies spanning handcrafted descriptors with classical 
classifiers (Ala’a), transfer-learned CNNs (Nur et al., 2025; Shah et al., 
2025), compact bespoke CNNs (Kaur et al., 2025; Salihu et al., 2025), 
hybrid CNN–Transformer designs (Sinamenye et al., 2025; Zhang et 
al., 2025), and a non-image tabular risk-forecasting approach (Radwan 
et al., 2025). Despite heterogeneity in data sources and class 
definitions, PotatoLeafNet attains 98.52% accuracy on PlantVillage 
(Healthy/Early/Late), placing it among the top performers while using 
a compact 11-layer 3 × 3 convolutional stack and a fixed sequential 

photometric augmentation policy. Notably, several comparators 
optimize for different modalities (e.g., meteorological risk factors) or 
field-like imagery; therefore, results are indicative rather than strictly 
commensurate, and cross-dataset validation remains essential for 
assessing real-world robustness.

4.5 Comparative performance

Under the same training–evaluation protocol, the Proposed model 
achieves 98.52% accuracy, 98.67% precision, 99.67% recall, 99.16% 
F1-score, and 1.00 AUC. Relative to ResNet-50 + VGG-16 (97.10, 95.00, 
94.00, 94.00%, 0.98), this corresponds to absolute gains of +1.42 pp. 
accuracy, +3.67 pp. precision, +5.67 pp. recall, +5.16 pp F1, and +0.02 
AUC Table 6. Against VGG-16 + MobileNetV2 (94.80, 92.00, 91.00, 
91.00%, 0.93), the gains are +3.72 pp, +6.67 pp, +8.67 pp, +8.16 pp, and 
+0.07. Versus MobileNetV2 (93.20, 91.00, 90.00, 90.00%, 0.92), the 
improvements are +5.32 pp, +7.67 pp, +9.67 pp, +9.16 pp, and +0.08; and 
versus Inception-V3 (92.50, 90.00, 89.00, 89.00%, 0.91), they are +6.02 pp, 

FIGURE 9

Performance of PotatoLeafNet on potato leaf disease without sequential image augmentation for 10 epochs.

TABLE 4  Comparison of model efficiency and parameter complexity.

Model Parameter tuning 
method

Training time (h) Parameter count 
(Millions)

Hyperparameter 
complexity

Proposed PotatoLeafNet Manual tuning with 

ReduceLROnPlateau + 

ModelCheckpoint; fixed 

sequential augmentation; Adam 

(lr = 1e-3)

1.2 16.5 M Moderate

ResNet-50 + VGG-16 Transfer Learning + Fine-Tuning 1.5 138.36 M High

VGG-16 + MobileNetV2 Transfer Learning + Grid Search 1.8 141.67 M High

MobileNetV2 Random Search 0.8 3.54 M Low

Inception-V3 Neural Architecture Search (NAS) 1.2 23.85 M Moderate
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TABLE 5  Comparison analysis of PotatoLeafNet with existing studies on potato leaf disease dataset.

Study [Ref] Year Model/approach Dataset (classes) Reported
accuracy (%)

Core techniques/
notes

Radwan et al. (2025) 2025 MLP with binary Greylag 

Goose Optimization for 

feature selection, Compared 

with LR, SVM, KNN, 

Gradient Boosting

4,000

meteorological records for 

early and late blight risk

98.30 K-means, PCA, copula 

analysis for structure, tabular 

risk forecasting 

complementary to image-

based screening

Chen and Liu (2025) 2025 CBSNet with Channel 

Reconstruction Multi-Scale 

convolution Spatial Triple 

Attention, Bat-Lion strategy

Self-built photo leaf set 

(Healthy, Early blight, Late 

blight)

92.04 Target tiny lesions, blurred 

edges, and noise, attention 

driven multi-scale feature 

extraction

Sinamenye et al. (2025) 2025 Hybrid EfficientNetV2-B3 

with vision Transformer

Potato Leaf Disease 

Dataset (field-like 

variability)

85.06 Combines local convolutional 

features and global 

transformer context for 

generalization

Salihu et al. (2025) 2025 CNN trained with Adam Curated set (Healthy, Early 

blight, Late blight)

96.88 Scaling augmentation, 

normalization, confusion-

matrix based evaluation

Ala’a (2025) 2025 Generalized Jones polynomial 

features with SVM Classifier

Plant Village (Potato) 98.45 Pipeline: Preprocessing, GJP 

feature extraction, 

dimensionality reduction, 

SVM, Strong handcrafted 

descriptor baseline

Zhang et al. (2025) 2025 VGG16S (GAP with CBAM 

and Leaky ReLU, about 15 M 

parameters)

Early blight and viral 

disease set with 

augmentation

97.87 Response-Surface 

hyperparameter tuning, 

ablations and public dataset 

tests reported

Kaur et al. (2025) 2025 PotConvNet (Compact CNN) Two Potato datasets with 

defined splits

97.78 Resizing, normalization, 

augmentation, high accuracy 

on Dataset 1 and Strong 

cross-dataset results

Nur et al. (2025) 2025 Inceptionv3 with transfer 

learning and targeted fine 

tunning

Domain-Specific potato 

leaf set

97.78 Fine-tuned terminal layers, 

efficient and practical

Shah et al. (2025) 2025 PLDC-Net with 

EfficientNet-B1 backbone and 

SVM Classifier

Balanced multi-disease 

image set from online 

sources

98.39 Emphasizes data balancing 

and robust augmentation, 

evaluated on unseen images

Proposed model 2025 PotatoLeafNet Plant Village (Potato) 98.52 Photometric transforms 

applied before learning; same 

policy across classes.11-layer 

convolutional stack with 3 × 3 

kernels (PotatoLeafNet)

TABLE 6  Comparative performance of the proposed model and deep learning.

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) AUC

Proposed model 98.52 98.67 99.67 99.16 1.00

ResNet-50 + VGG-16 97.1 0.95 0.94 0.94 0.98

VGG-16 + MobileNetV2 94.8 0.92 0.91 0.91 0.93

MobileNetV2 93.2 0.91 0.90 0.90 0.92

Inception-V3 92.5 0.90 0.89 0.89 0.91
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+8.67 pp, +10.67 pp, +10.16 pp, and +0.09. The consistent, largest margin 
in recall indicates the Proposed model substantially reduces false negatives 
critical for early disease screening while simultaneously delivering the best 
precision, F1, and AUC among all baselines.

4.6 PotatoLeafNet model performance on 
correctly predicted images

The classification accuracy of the model on correctly labeled 
images reflects the strength of the proposed CNN framework in 
distinguishing between diseased and non-diseased leaf samples. A 
correctly identified instance refers to an image that the model assigns 
the appropriate label to, whether the leaf is affected or unaffected. This 
aspect of performance was evaluated using standard accuracy-based 
metrics. The model consistently delivered accurate predictions across 
all categories, showcasing its reliability in handling both training and 
unseen test samples. Its ability to differentiate between various visual 

patterns linked to disease manifestations underlines its robustness and 
generalizability. The successful identification of all leaf conditions 
confirms the framework’s precision and operational reliability in 
practical settings. Figure 10 provides a visual representation of the 
model’s performance in identifying each class correctly, further 
validating its strength in class-wise prediction and its potential for 
real-world application in automated plant disease assessment systems.

4.7 Performance measures on individual 
diseases prediction and classification

Collectively, these metrics provide a comprehensive view of class-
wise prediction performance. Training the PotatoLeafNet model for 100 
epochs yielded strong results: precision of 98.00% for Early blight, 
99.00% for Late blight, and 99.00% for Healthy leaves; recall of 100.00, 
99.00, and 100.00%, respectively; and F1-scores of 99.00, 99.00, and 
99.50% for Early blight, Late blight, and Healthy leaves, respectively, 

FIGURE 10

PotatoLeafNet Model performance on correctly predicted images.
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corresponding to a macro-averaged F1 of 99.16%. Taken together, these 
indicators suggest that PotatoLeafNet accurately predicts and classifies 
potato leaf disease categories. At the same time, Table 5 indicates that 
Early and Late Blight can be less reliably predicted under challenging 
conditions such as out-of-distribution inputs, limited representativeness 
in the training data, noisy or ambiguous images, and potential overfitting 
whereas Healthy leaves are generally classified more accurately. 
Figure 11 presents the confusion matrix for a small held-out test subset 
after 100 training epochs (Early Blight = 4, Late Blight = 6, Healthy = 2). 
All instances were correctly identified, with no false positives or 
negatives, corresponding to 99% accuracy and precision/recall of >0.98 
for each class on that subset. However, given the limited sample size, 
these perfect results should be interpreted cautiously and validated on 
larger, more diverse datasets to confirm generalization (Table 7).

4.8 Discussion

Potato production underpins global food security, yet yields and 
quality are threatened by diverse foliar diseases whose early diagnosis is 
complicated by cultivar heterogeneity, variable symptom expression, 
and environmental noise, making rapid and accurate detection essential. 
To address this need, we propose PotatoLeafNet, a two-stage 
convolutional framework for automated identification of potato leaf 
conditions. In the first stage, a fixed sequential image-augmentation 
pipeline expands intra-class variability and mitigates overfitting; in the 
second, an 11-layer CNN with 3 × 3 kernels learns discriminative 
morphological and textural representations from the augmented 
images. Evaluated on the enhanced dataset, PotatoLeafNet achieved an 
overall accuracy of 98.92%, with complementary performance measures 
confirming its ability to correctly categorize samples. In comparative 
analyses, the approach outperformed representative state-of-the-art 
baselines and consistently predicted Late Blight, Early Blight, and 
Healthy classes with high reliability. By enabling precise differentiation 
among these categories, PotatoLeafNet facilitates timely intervention 
and supports evidence-based disease-management strategies in real-
world agronomic settings.

5 Conclusion

This work introduced PotatoLeafNet, a two-stage convolutional 
framework that couples a fixed sequential image-augmentation 
pipeline with an 11-layer, 3 × 3-kernel CNN to deliver reliable detection 
and classification of potato leaf conditions (Healthy, Early Blight, Late 
Blight). Trained on an augmented and class-balanced dataset, 
PotatoLeafNet achieved 98.92% overall accuracy under the 100-epoch 
setting and maintained strong agreement between training, validation, 
and independent test splits; even in a constrained 10-epoch regime it 
sustained competitive generalization (training 88.22%, validation 
86.91%, test 88.15%). In head-to-head comparisons on the same 
dataset, PotatoLeafNet consistently outperformed representative CNN 
baselines, indicating that the combination of sequential augmentation 
and a compact convolutional stack yields discriminative, disease-
relevant representations without sacrificing computational efficiency. 
Practically, these attributes make PotatoLeafNet a strong candidate for 
field deployment in resource-limited settings (e.g., mobile or edge 
devices), where rapid, accurate triage can enable timely intervention, 
reduce losses, and support data-driven integrated pest management. 
While the results are robust, two limitations merit attention. First, 
performance was established on curated images; domain shift in truly 
in-situ imagery (lighting variation, occlusion, mixed infections, cultivar 
differences) can degrade accuracy. Second, the present evaluation 
emphasizes aggregate metrics; class-wise calibration, error analysis, 
and explainability are essential before widescale adoption. Addressing 
these gaps will strengthen external validity and user trust. Future work 
will expand training with diverse, field-acquired datasets and explicitly 
address domain shift through domain-generalization techniques such 
as style transfer and test-time adaptation; provide fine-grained 
diagnostics including per-class precision and recall, confusion 
matrices, and confidence calibration together with explainability 
analyses (Grad-CAM/saliency) to verify that decisions focus on 
pathognomonic regions; conduct ablation studies to isolate the 
contribution of each augmentation transform and architectural 
component; examine robustness under label noise and data drift across 
seasons and geographies; and prototype a lightweight, on-device 
inference stack employing batching and quantization to validate 
throughput and latency in real agronomic workflows, thereby 
advancing PotatoLeafNet from a high-performing classifier to a 
deployable decision-support tool.
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FIGURE 11

Confusion matrix for the PotatoLeafNet model on predicted 
individual disease classes after 100 epochs.

TABLE 7  Performance measures on individual potato leaf diseases 
classes.

S. No Class Precision 
(%)

Recall 
(%)

F1-Score 
(%)

1 Early blight 98.00 100.00 99.00

2 Late blight 99.00 99.00 99.00

3 Healthy 

leaves

99.00 100.00 99.50
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