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PotatoLeafNet: two-stage
convolutional neural networks for
effective Potato Leaf disease
identification and classification

Girigula Durga Bhavani and
Mukkoti Maruthi Venkata Chalapathi*

School of Computer Science and Engineering (SCOPE), VIT-AP University, Amaravati, Andhra Pradesh,
India

Introduction: Potato foliar diseases, particularly early and late blight, pose a
serious threat to yield and food security, yet reliable visual recognition remains
challenging due to cultivar heterogeneity, variable symptom expression, and
acquisition noise in field-like imagery. To address these issues, we propose
PotatoLeafNet, a two-stage deep learning framework that combines a fixed-
sequence image-augmentation pipeline with a compact, task-optimized 11-layer
convolutional neural network (CNN) using 3 x 3 kernels for robust, data-efficient
classification of potato leaf conditions (Healthy, Early Blight, Late Blight).
Methods: We construct a dataset of 4,072 labeled potato leaf images from the
PlantVillage-Potato subset and standardize all inputs to 224 x 224 RGB tensors
with pixel intensities normalized to [0,1]. A balanced, fixed-order augmentation
policy—comprising rotation, translation, shear, zoom, horizontal flipping, brightness
adjustment, and channel jitter—is applied exclusively to the training split, increasing
it to 6,000 images (2,000 per class) while keeping the validation and test sets free
of synthetic samples. The second stage consists of an 11-layer CNN implemented
in TensorFlow/Keras and trained with categorical cross-entropy loss and the
Adam optimizer under a unified training and evaluation protocol. Performance is
benchmarked against strong CNN and hybrid baselines, including ResNet-50 + VGG-
16, VGG-16 + MobileNetV2, MobileNetV2, and Inception-V3.

Results: On the PlantVillage-Potato test set, PotatoLeafNet achieves 98.52%
accuracy, 98.67% macro-precision, 99.67% macro-recall, 99.16% macro-F1, and
1.00 macro-AUC, outperforming all baseline models under identical preprocessing
and training conditions. In particular, PotatoLeafNet surpasses ResNet-50 + VGG-
16 (97.10% accuracy, AUC 0.98), VGG-16 + MobileNetV2 (94.80% accuracy, AUC
0.93), MobileNetV2 (93.20% accuracy, AUC 0.92), and Inception-V3 (92.50%
accuracy, AUC 0.91). Short 10-epoch runs yield stable convergence (training
accuracy 88.22%, validation accuracy 86.91%, test accuracy 88.15%), indicating
efficient learning from the augmented distribution.

Discussion: The results demonstrate that explicitly coupling a fixed sequential
augmentation stage with a lightweight 3x3-kernel CNN enables high tri-class
accuracy, strong recall for disease classes, and improved generalization relative
to deeper or fused architectures, without incurring substantial computational
cost. By emphasizing disease-relevant structure while limiting overfitting,
PotatoLeafNet provides a practical and resource-efficient solution for automated
screening of potato leaf health in real-world agronomic settings, supporting
timely and data-driven disease management.

KEYWORDS

potato leaf diseases, convolutional neural networks, dual CNN, sequential image
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1 Introduction

The potato (Solanum tuberosum) is a staple crop and a vital source
of calories and micronutrients for millions of people worldwide
(Sunjoyo and Nugroho, 2022). Yields, however, are highly vulnerable
to foliar pathologies most notably early blight and late blight which
inflict substantial economic losses and threaten local food security
when outbreaks go undetected or unmanaged (Hou et al., 2021). Early,
reliable diagnosis is therefore essential for timely intervention, yet
traditional field scouting by experts is labor-intensive, subjective, and
difficult to scale across heterogeneous environments and planting
cycles. These practical constraints motivate automated systems that
deliver accurate, consistent, and rapid decisions directly from visual
evidence. Convolutional neural networks (CNNs) have reshaped
image understanding by learning hierarchical representations from
data and have already shown strong performance in plant disease
recognition tasks (Tugrul et al., 2022). Despite this promise, potato
leaf disease classification remains challenging in real deployments.
Symptoms vary with cultivar, phenological stage, and stress conditions;
image capture occurs under fluctuating illumination, background
clutter, motion blur, and sensor noise; and publicly available datasets
are often limited in size and balance across classes. Moreover, many
prior approaches emphasize single-disease detection rather than
precise multi-class discrimination among healthy leaves and the major
disease categories (early blight and late blight) required for agronomic
decision-making (Alhammad et al., 2025). These factors collectively
degrade generalization and complicate robust deployment on
resource-constrained devices.

To address these limitations, we propose PotatoLeafNet, a
two-stage convolutional framework for potato leaf disease detection
and classification that explicitly couples data diversification with a
compact, task-optimized classifier. Stage 1 performs sequential image
augmentation including rotations, scalings, flips, and related
geometric and photometric transforms to expand the training
distribution and encode invariances that mirror field variability
(Potato Leaf Disease Dataset, 2025). By structuring augmentation as
a dedicated stage, the pipeline intentionally exposes the learner to
controlled perturbations that emulate acquisition noise and viewpoint
change, thereby improving robustness without inflating model
capacity. Stage 2 is a lightweight CNN tailored for potato leaves:
convolutional blocks with ReLU activations and 3 x 3 kernels extract
localized texture and lesion-edge cues; max-pooling progressively
reduces spatial resolution while preserving salient patterns; global
average pooling compacts feature maps to mitigate overfitting; and a
fully connected head (a 128-unit ReLU layer followed by a softmax)
produces calibrated class probabilities for healthy, early blight, and late
blight. This design emphasizes parameter efficiency and computational
tractability while retaining discriminative power under real-world
noise. Our evaluation plan reflects these deployment goals. We train
and test PotatoLeafNet on a diversified collection of potato leaf images
spanning healthy, early blight, and late blight categories (Sangar and
Rajasekar, 2025). Performance is assessed using standard metrics
accuracy, precision, recall, and Fl-score to quantify both overall
correctness and class-wise reliability. We further benchmark against
contemporary CNN-based methods to examine accuracy efficiency
trade-offs and to determine whether an explicit augmentation stage
coupled with a compact classifier offers practical advantages over
monolithic architectures. In addition, we analyze error modes to
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illuminate failure cases (e.g., tiny lesions with blurred boundaries,
confounding background textures), informing future improvements
to both model and data regimen. The significant contributions to the
research are:

Introduced a novel two-stage convolutional neural network
architecture, PotatoLeafNet, specifically optimized for high
accuracy in detecting and classifying potato leaf diseases,
addressing limitations in existing models

Implemented advanced sequential image augmentation techniques
within a CNN framework to significantly enhance the model’s ability
to generalize across diverse and unseen environmental conditions, a
step beyond traditional augmentation practices.

Conducted a rigorous evaluation of the PotatoLeafNet model
using an extensive dataset that includes a balanced representation
of Healthy, Early Blight, and Late Blight potato leaf images,
ensuring robust testing against varied disease manifestations.
« Demonstrated superior performance of the PotatoLeafNet model
through a comparative analysis with existing state-of-the-art
highlighting
computational efficiency.

models, advancements in accuracy and

The study introduces a two-stage CNN-based potato leaf disease
detection and classification method. Deep learning and image
augmentation increase illness detection using this method.

2 Basic preliminaries and related
research work

Leaf diseases are a common problem in plants and crops, and they
can cause significant damage to both the yield and quality of the harvest
various factors cause leaf maladies including fungi, bacteria, viruses, and
environmental stressors. Depending on the specific disease and the plant
species affected, the symptoms of leaf diseases can vary greatly. Some
common symptoms of leaf diseases include discoloration, spotting,
wilting, deformity, and defoliation (Afzaal et al., 2021). The entire plant
may sometimes be involved, leading to stunted growth, reduced yield, or
even death. Detecting and classifying diseases is significant for the control
of the conditions. It can be done using various techniques such as visual
inspection, laboratory analysis, and remote sensing. Recently, methods
for automatically identifying and classifying leaf diseases using images of
plant leaves have also been developed utilizing machine learning and
computer vision techniques.

2.1 Types of potato leaf diseases

Potato foliage is vulnerable to a spectrum of pathogens with
markedly different epidemiologies and symptomatology. Late blight
(Phytophthora infestans), a fast-spreading oomycete disease, remains
the most devastating, initiating water-soaked lesions that rapidly
coalesce into necrotic brown areas with a characteristic grayish,
downy sporulation under humid conditions, and frequently extending
to tubers (Jafar et al., 2024). Early blight (Alternaria solani) typically
emerges on older leaves as discrete dark lesions that enlarge with
concentric “target-spot” rings, progressing to chlorosis and premature
defoliation in warm, humid environments (Potato Disease Types,
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FIGURE 1

Sample images (a) potato early blight, (b) potato late blight, (c) potato healthy leaf.

2025). Viral diseases such as Potato virus Y (PVY) and Potato leafroll
virus (PLRV), both primarily aphid-borne, induce mosaic mottling,
leaf curling, and canopy yellowing (PVY), or the diagnostic upward
rolling and brittle texture of leaves (PLRV), with attendant losses in
yield and tuber quality that depend on cultivar and viral strain (Liu
and Wang, 2021). Soil and vascular-invading fungi drive wilt
syndromes early dying dominated by Verticillium dahliae and late
dying associated with Fusarium spp. leading to progressive wilting,
chlorosis, and necrosis that culminate in significant productivity
declines. Bacterial threats such as bacterial ring rot cause leaf
yellowing, wilting, and vascular browning with corky ring formation,
and can persist in soils and on equipment, complicating eradication
efforts. While multiple leaf diseases impair crop performance, early
and late blight are generally the most consequential for field
management decisions; representative phenotypes for Early blight,
Late blight, and Healthy leaves are shown in Figure 1.

2.2 Literature review on potato leaf disease
detection and classification

This potato leaf disease detection and categorization literature review
summarizes current methodologies. Radwan et al. (2025) developed a
weather-driven pipeline for early and late blight using K-means, PCA,
copula analysis and multiple classifiers, with binary Greylag Goose
Optimization for feature selection. On a 4,000-record meteorological
dataset, the best MLP with selected features reached 98.3% accuracy. This
tabular risk-forecasting setup complements image-based screening. Chen
and Liu (2025) introduced CBSNet with Channel Reconstruction Multi-
Scale Convolution and Spatial Triple Attention, plus a Bat-Lion training
strategy for robustness. On a self-built potato leaf image set, CBSNet
achieved 92.04% accuracy and 91.58% precision, extracting tiny lesions
and blurred edges effectively. Dey et al. (2025) proposed a lightweight
CNN tailored for real-time classification, reducing depth and parameters
to 204,227 while preserving accuracy on high-resolution potato leaf
images. The model attained 98.6% test accuracy and class-wise precision
of 0.99 (early blight), 0.98 (late blight), 1.00 (healthy), outperforming
VGGI16, AlexNet, and ResNet50. Sinamenye et al. (2025) fused
EfficientNetV2-B3 with a Vision Transformer to couple local
convolutional features with global context. Trained on the Potato Leaf
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Disease Dataset reflecting field variability, the hybrid reached 85.06%
accuracy, improving prior results by 11.43 points. Salihu et al. (2025) built
a CNN trained with Adam, using scaling, augmentation, and
normalization over a curated set of healthy, early blight, and late blight
images. The model achieved 96.88% accuracy, with class metrics including
precision 0.76, recall 0.93, F1 0.84 for healthy and near-perfect scores for
blight classes. Ala’a (2025) extracted generalized Jones polynomial texture
features and classified with SVM on Plant Village potato images. The
GJP-SVM pipeline preprocessing, feature extraction, dimensionality
reduction, classification reached 98.45% accuracy, showing strong
performance from hand-crafted descriptors. Zhang et al. (2025)
benchmarked VGG16, MobileNetV1, ResNet50, and ViT, then proposed
VGG16S with global average pooling, CBAM attention, and Leaky ReLU
to shrink parameters to 15 M. After response-surface hyperparameter
tuning, VGG16S achieved 97.87% test accuracy and generalized well on
public sets. Kaur et al. (2025) presented PotConvNet, a compact CNN
trained on two potato image datasets with resizing, normalization,
augmentation, and fixed splits. Reported accuracies were 99.76% (Dataset
1) and 97.78% (Dataset 2), validated by F1, precision, recall, Cohens
kappa, and ROC AUC. Nur et al. (2025) optimized Inception V3 via
transfer learning and targeted fine-tuning of terminal layers on a domain-
specific potato leaf set. The approach yielded 97.78% accuracy with
precision 98%, recall 98%, F1 98%, offering strong performance with
practical efficiency. Shah et al. (2025) introduced PLDC-Net, using
EfficientNet-B1 as a backbone, fine-tuned with dense layers and an SVM
output head; data balancing and augmentation were emphasized. On an
unseen test set, the model achieved 98.39% average accuracy, providing a
reliable transfer-learning baseline for multi-disease identification. We
diagnose and categorize potato plant diseases. Various studies on
diagnosing and categorizing potato plant diseases may be found in the
literature on potato leaf disease classification and detection (Fuentes et al.,
2017). CNN and other deep learning approaches have shown promise for
automating the detection and classification process, reducing the need for
human expertise-several CNN architectures, transfer learning, feature
extraction, and ensemble methods to improve accuracy and robustness
(Geetharamani and Pandian, 2019). The study (Ahmed et al., 2025)
suggested a deep CNN model to identify outstanding and ailing foliage
across crops. They trained their model using the Plant Village dataset,
which includes photos of diseased and healthy leaves and the backgrounds
of 38 distinct crop kinds. However, they did not zero in on potato crop
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illnesses, and the data used to prepare the algorithm in the United States
and Switzerland missed Pakistan-endemic infections on potato leaves.
Despite having little data, the scientists used deep learning,
specifically CNN, to identify potato illnesses (Lee et al., 2020). A CNN
model was created (Awal et al., 2019) to distinguish between healthy
potato leaves and those affected by early or late blight. They also used the
regionally targeted Plant Village dataset in their research (Khalifa et al.,
2021). In this research, we looked at how well deep learning methods and
convolutional neural networks, in particular, might do at identifying
diseases on potato leaves. The authors trained a CNN network using a
collection of photos of diseased potato leaves. The success of the
suggested method in illness detection demonstrates the promise of deep
learning for this application area. According to Ghosal et al. (2019), the
CNN model has the ability to differentiate between various plant classes.
This study, Rathod et al. (2020) used deep learning to detect potato leaf
blight early. The authors trained a CNN architecture to interpret potato
leaf images. The model’s early blight detection highlights deep learning’s
potential for potato leaf diseases. The authors examined deep learning
and transfer learning for potato disease diagnosis (Liang et al., 2019).
Using potato leaf images, the authors updated VGG16, a pre-trained
CNN model. Pre-trained CNN models with transfer learning were useful
in potato disease detection. A network for identifying and assessing plant
diseases was demonstrated in Ferentinos (2018). To distinguish between
healthy and diseased plants from photographs of their leaves (Rozaqi et
al., 2020; Sanjeev et al., 2020) looked at many deep-learning architectures.
These included AlexNet, Overfeat, AlexNetOWTBn, VGG, and
GoogLeNet. The authors applied transfer learning to the PlantVillage
dataset to identify local agricultural diseases. We developed a CNN
model to detect potato plants with early, late, or robust blight. We trained
the model using PlantVillage, disease data. FFNNs can distinguish
between early, late, and healthy foliage (Barman et al., 2020). They
trained and tested their system using PlantVillage. Using a self-built
CNN (SBCNN) model, Tiwari et al. (2020) classified potato leaves as
early, late, or healthy. The regional PlantVillage dataset improved their
model’s accuracy. They did not utilize experimental data to validate their
model. Gupta et al. (2019) extracted and classified features using KNN,
SVM, a neural network, and a pre-trained VGG19 model using KNN,
SVM, and a neural network. PlantVillage has trained the computer to
identify early and late blight symptoms on potato foliage. Research
demonstrates that CNNs and other forms of deep learning effectively
identify and categorize diseases in potato leaves. To further improve the

10.3389/frai.2025.1668839

performance of deep learning models, even with minimal training data,
practitioners have turned to methods including data augmentation,
transfer learning, and fine-tuning pre-trained models. These findings
show that deep learning may improve potato disease detection and
classification, which is crucial for the crop’s long-term health.

2.3 Literature on potato leaf disease
detection and classification using
augmentation and deep learning models

The study, Bappi et al. (2025) provided a novel deep-learning
algorithm for potato leaf tissue disease detection using augmentation
approaches. Scaling, flipping, and rotating the training dataset enhanced
the model’s accuracy. The research (Rahman et al., 2021) examined how
different kinds of enhancement may affect deep Convolutional Neural
Networks (CNNs) ability to spot illnesses in potato leaves. In this research
(Plant Village Dataset, 2024), we applied deep learning models and data
augmentation to improve our ability to identify diseases in potato leaves.
The authors in the research work developed a deep learning-based
method that uses data augmentation techniques to detect potato diseases.
They used augmentation methods, including scaling, flipping, and
rotating, to upsurge the size of the training dataset. In potato disease
identification, training a CNN model on the expanded dataset resulted in
high accuracy. Table 1 summarizes augmentation and deep learning
studies on potato leaf disease detection and classification. These studies
demonstrate the scope of current potato leaf disease identification and
categorization efforts. While typical machine learning methods have
shown promise, recent research has demonstrated that deep learning,
particularly CNNs, may boost accuracy and automation. The proposed
study on two-stage PotatoLeafNet CNN architectures will examine their
ability to accurately identify and classify potato leaf diseases.

3 PotatolLeafNet: two-stage deep
learning approach for accurate potato
leaf disease detection and
classification

Challenges in deep learning approaches for potato leaf disease
identification include inaccurate disease recognition, disease variations,

TABLE 1 Summary of the literature on potato leaf disease detection and classification using augmentation and deep learning models.

Reference no Approach Data augmentation Deep learning Key findings
methods model
Achieved 94% accuracy,
Random cropping, flipping, and
Khalifa et al. (2021) Deep learning-based approach CNN demonstrating robustness in
rotation
varied conditions
Deep learning with Improved accuracy by 2% over
Ghosal et al. (2019) Scaling, rotation, and noise addition CNN
augmentation techniques non-augmented models
Deep learning with data Color adjustment, zooming, and Enhanced model stability and
Rathod et al. (2020) CNN
augmentation shifting a 5% increase in detection rate
Matched state-of-the-art
Potato Leaf Disease Dataset Extensive geometric and photometric accuracy, highlighting
Deep learning-based approach CNN
(2025) transformations efficiency in processing large
datasets
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Flowchart for the proposed PotatoLeafNet two-stage CNN models for potato leaf disease detection and classification.

high false rates, inadequate training samples, imbalanced classes, slow
convergence, and improved accuracy. Deep learning methods have been
extensively researched to identify and categorize potato leaf diseases.
Early identification and treatment of potato leaves are crucial, but the
lack of agricultural expertise in rural areas can be time-consuming and
hindered. Acquiring such datasets remains a difficult task. Figure 2
represents the Flowchart for the proposed PotatoLeafNet two-stage
CNN models for Potato Leaf Disease Detection and Classification.

3.1 Potato leaf disease dataset description

Plant Village Dataset provides high-quality photos of different potato
leaves (Mishra and Srivastava, 2019). Healthy, Early and Late Blight were
photographed. Because of its availability, researchers have used the Plant
Village dataset to simulate potato leaf diseases in the literature. This
region-specific dataset includes few training and validation pictures and
uneven class distribution. We need a fresh and comprehensive potato leaf
dataset to address these research gaps. We curate the new dataset as the
Potato Leaf Disease Dataset. Early Blight, containing 1,628 potato
images, is the most critical disease affecting potatoes. The subsequent
severe risk Late Blight contains 1,424 leaf images. We will examine 1,020
leaf images from the Healthy Next class for model training and testing.
The dataset contains a complete 4,072 potato leaf images with three
classes. The ratio between training, validation, and testing is 80:10:10.
Figure 3 displays the potato leaf images from each of the three categories.
Figure 3 presents the distribution of images across three classes of potato
leaves: Early Blight, Late Blight, and Healthy. The Early Blight class has
the largest number of images, just under 1,800, indicating a higher
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prevalence or focus on this category within the dataset. Late Blight
follows closely, with a count near 1,600 images. The Healthy class has the
fewest images, slightly above 1,400, suggesting a lesser representation in
the dataset. This visual distribution highlights an imbalanced dataset
which may be used for training a machine learning model to classify the
health status of potato leaves.

3.2 Image processing and sequential image
augmentation

Pre-processing was applied to all images to enhance lesion
visibility, suppress background clutter, and standardize inputs prior to
learning. Specifically, we performed contrast normalization to
mitigate illumination variability, foreground-background separation
to isolate the lamina, and spatial normalization to a common
resolution. This stage improves the signal-to-noise ratio presented to
the network and, in turn, the reliability of feature extraction for
downstream classification (Hernandez-Valencia et al., 2020). To
reduce storage and I/O overhead without compromising diagnostically
salient content, we employed lossless and hybrid compression.
Lossless codecs Huffman coding and run-length encoding (RLE)
preserve the exact pixel values while exploiting redundancy to shrink
file size (Yao et al., 2020). In the hybrid scheme, regions containing
disease cues (lesion edges, texture) are preserved losslessly, whereas
visually noncritical background is compressed lossily, striking a
balance between fidelity and efficiency for large-scale training and
deployment (TensorFlow Sequential Data Augmentation, 2025).
(Compression is decoupled from resizing, it reduces bytes on disk/
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Potato Leaf image classes

Healthy

transfer, not spatial resolution.) leaf images captured in RGB are
converted to grayscale (Gurucharan, 2020). Edge of Caution to
recognize the edges in a leaf image and alleviate the irritation,
unambiguous evidence is utilized (Powers, 2020). The external designs
in leaf images are equal in how they are perceived from the edge.
When the upper shape is taken as (p, q), the breadth and the level are
(1, 5), and these four centers do not settle the bobbing (Li et al., 2022).
Each member of the upright hopping square is still a work in progress.
The return on investment region is removed using the primary RGB
leaf image’s coordinates (p + 1, q + s). Finally, the dreaded leaf symbol
may be put to rest.

3.2.1 Sequential image augmentation

Sequential image augmentation can be incorporated into a sequential
model in TensorFlow-Keras by using the “tfkeras.layers.experimental.
pre-processing” module. This module provides various layers that can be
added to the sequential model to apply different image augmentation
techniques. These layers can be sequentially added to the model to apply
random horizontal flipping, random rotation within a specific range,
random zooming, and rescaling of pixel values. By adding the image
augmentation pipeline as the first layer of the CNN sequential model, the
subsequent layers can learn from augmented data, enabling the model to
generalize better and handle variations in the input images.

The ‘image_augmentation’ sequential model used in this
research represents an augmentation pipeline using various
pre-processing layers.

« Random Rotation: This layer randomly rotates the input image
by a maximum of 0.2 radians (approximately 11.5 degrees) in a
counterclockwise direction. It introduces variability by simulating
different object orientations in the image.

« Random Zoom: This layer applies random zooming to the input
image, ranging from 0 to 20% of the original size. It helps capture
different scales or perspectives of the object.
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« Random Height: This layer randomly changes the height of the
input image by scaling it between 80 and 120% of the original
height. It adds variability by modifying the image’s aspect ratio.

o Random Width: This layer randomly changes the width of the
input image by scaling it between 80 and 120% of the original
width. Like ‘Random Height' it introduces variability by
modifying the aspect ratio.

o Rescaling: This layer rescales the pixel values of the input image
to a range of [0, 1]. In this case, it divides each pixel value by 255,
assuming the input image has an 8-bit color depth. Rescaling is a
typical pre-processing step to ensure numerical stability and
convergence during model training.

The ‘image_augmentation’ model can be used as a pre-processing
step in your overall CNN model pipeline. It applies random
transformations to the input images during training, enhancing the
diversity and robustness of the data.

3.3 Augmented data split into training,
validation, and testing

The potato leaf disease dataset was divided into training,
validation, and testing sets using 80, 10, and 10% split ratios.
Sequential image augmentation procedures on the training set
reduced overfitting and increased dataset variation. Rescaling,
rotating, modifying shear and zoom ranges, flipping horizontally,
adjusting brightness, and moving channels were these tactics. CNN
model predictions were improved using Adam optimization with
forward and backpropagation. Thus, CNN model output accuracy was
ensured. The validation and testing sets contained 20% of the training
set, which included images of early, robust, and late blight. The
PotatoLeafNet model categorized practice pictures and predicted class
labels on the training dataset.
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3.4 PotatoLeafNet—potato leaf-based CNN
for potato leaf disease detection and
classification

The existing literature on deep learning approaches reveals several
challenges, including misdiagnosis of potato leaf identification, variations
in potato leaves due to different varieties, and environmental factors. Early
detection and management of potato diseases are crucial, but the process
is time-consuming, and access to agricultural expertise is limited in rural
areas (Alzakari et al., 2025). CNNs have shown remarkable progress in
image-based recognition, eliminating the need for extensive image
pre-processing and enabling automatic feature selection (Weng et al.,
2024). However, the availability of large datasets specifically for potato leaf
challenges remains a significant obstacle.

3.4.1 Convolutional neural network (CNN) model

CNN s were developed to process the data represented in grid-like
structures like images. The pixels in an image are arranged in a grid,
and the value of each pixel determines its hue and luminance.
Likewise, each neuron in a CNN processes information within its
receptive field. Like how the human brain processes visual
information, CNN layers detect simpler patterns first, then more
complex ones as the layer progresses.

Convolutional neural networks have input, hidden, and output layers.
Convolution, normalization, pooling, and fully-connected layers lie
between the output and input layers. The convolutional layer’ filters create
classification feature maps. Image processing uses ReLU. This paper
proposes an improved fine-grained robust PotatoLeafNet model for
classifying potato leaf diseases. To minimize the size of the leaf picture and
create several images, image pre-processing and sequential image
augmentation methods are utilized at the first level. A CNN learning
model using a CNN has been established at the next level to identify sick
leaves in the images. The PotatoLeafNet model for potato leaf disease
prediction is shown in Figure 4.

CNN models have numerous convolutional, pooling, and fully linked
layers. Because of its high complexity, a neural network can develop
hierarchical representations of the input data, which are crucial for precise
categorization. Section 3.6 presents a detailed pseudo code for the
proposed CNN model for Potato Leaf detection and classification. The
Convolutional Neural Network model consists of multiple layers,

10.3389/frai.2025.1668839

including Conv2D, Batch Normalization, Max Pooling, and Activation
functions. Here is a description of the model architecture:

1 Conv2D layers: The convolutional operation distinguishes a CNN
from other neural networks. The basic form of convolution
consists of two functions that take real numbers as arguments. To
explain convolution, we can pretend that it is possible to track
where a car is using a laser that gives an output: x(t), where x is the
car’s position in time step t. Several measurements can be taken to
reduce possible noise during the measurements, and an average
value of them is used as the measurement value. Later
measurements have greater value than the older ones. Therefore a
weight function, w(a), is used, where a represents how old a
measurement is. The weight function w must be a valid density
function. If these weighted average measurements are performed
every time step, it can be described with a function, s known as the
Convolution function.

s(t)zfx(a)w(t—a)da (1)

In CNN terminology, the first argument in the convolution
function is called the input, and the second is called the kernel; what
is returned is called the feature map.

s(t)z(x*w)(t) (2)

For the example with the car above to be realistic, the data cannot be
collected in each time step when the amount had become too large, but
in regular intervals, for example, every second or minute. In such a case,
the time variable t would only be of integer type; likewise, the variables x
and w, then the mathematical discrete convolution, can be defined as.

s(t) = (x*w)(t) z::wx(a)w (t—a)

(©)

The model includes 5 Conv2D layers. Conv2D performs
convolution operations on the input image to extract features. Each
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Architecture of the proposed PotatoLeafNet model for potato leaf detection and classification.
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Conv2D layer consists of a set of learnable filters that scan the input
image and produce feature maps. These filters capture different
patterns and features at different scales.

2 Batch Normalization layers: The batch normalized

activation is

Xi —HB

Jok+e

(4)

X =

1
Where yB=—ZTn xi is the batch mean, and
m i=1

1
—Zlﬂi 1(xi - yB)2 is the batch variance. Batch Normalization
m =

o’B

is applied after each Conv2D layer. Adjusting the mean and variance
helps normalize the previous layer’s output. It helps stabilize the
training process and improve the model’s overall performance.

3 Max Pooling layers: Max Pooling precedes each Conv2D layer.
The maximum value inside a pool size lower feature map
spatial dimension. Max Pooling helps down-sampling the
feature maps and extracting the most essential features while
reducing computational complexity.

)

h}cy =maX;=0...s,j=0....s ' (x+i)(y+z')

TABLE 2 Summary of the proposed PotatoLeafNet model architecture.

10.3389/frai.2025.1668839

4 Activation functions: 7 activation functions are used in the
model’s layers. Activation functions allow the model to learn
complicated patterns and make nonlinear judgments. CNNs
often use ReLU, sigmoid, and tanh activation functions to feed
one layer’s output into the next.

ReLU(x,- )= (O,x,-) (6)

Combining Conv2D layers, Batch Normalization, Max Pooling, and
Activation functions helps the CNN model extract and learn intricate
features from the input data effectively. It allows the model to capture the
information for accurate classification or detection tasks. The model uses
convolutional operations, sequential image augmentation, and global
average pooling to accurately and efficiently classify potato leaf diseases.
Table 2 shows the proposed PotatoLeafNet model architecture summary,
and Figure 4 represents the proposed PotatoLeafNet model for Potato
Leaf detection and classification.

o Sequential Image Augmentation: The input images are enhanced
by this layer using various image augmentation methods, including
random flipping, rotation, zooming, and rescaling. It transforms the
pictures to prepare them for better generalization.

« Conv2D (60 filters, 3 x 3, ReLU): This convolutional layer performs
convolutions on the input images using 60 filters of size 3 x 3 and
applies the ReLU activation function. It extracts 60 different features

Output shape Number of parameters Unique Configuration

Custom augmentation settings for potato
Sequential Image Augmentation (None, 224, 224, 3) 0

leaf images
Conv2D (60 filters, 3 x 3, ReLU) (None, 222, 222, 60) 1,740 Optimized for initial feature extraction

Reduces dimensionality, retains critical
MaxPooling2D (pool size: 2x2) (None, 111, 111, 60) 0

spatial features

Additional depth to capture complex
Conv2D (60 filters, 3 x 3, ReLU) (None, 109, 109, 60) 32,460

features

Further reduces spatial dimensions,
MaxPooling2D (pool size: 2x2) (None, 54, 54, 60) 0

focuses on feature pooling

Increases model’s capacity to learn detailed
Conv2D (60 filters, 3 x 3, ReLU) (None, 52, 52, 60) 32,460

features

Enhances the abstraction level of the
MaxPooling2D (pool size: 2x2) (None, 26, 26, 60) 0

features

Prepares for high-level reasoning by the
Conv2D (60 filters, 3 x 3, ReLU) (None, 24, 24, 60) 32,460

network

Last pooling step to compact features
MaxPooling2D (pool size: 2x2) (None, 12, 12, 60) 0

before classification

Reduces each feature map to a single
Global AveragePooling2D (None, 60) 0

number to minimize overfitting

Dense layer to combine features into
Dense (128 units, ReLU) (None, 128) 7,808

higher-level attributes

Tailored for the specific number of disease
Dense (total_classes units, Softmax) (None, total_classes) total_classes )

classes
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from the input images, resulting in an output shape of (None, 222,
222, 60).

» MaxPooling2D (pool size: 2 x 2): By taking the highest value inside
each 2 x 2 region, this max pooling layer decreases the spatial
dimensions of the feature maps by a factor of 2 (Tiwari et al., 2020).
It helps in reducing the spatial dimensions and capturing the most
salient features, resulting in an output shape of (None, 111, 111, 60).

« GlobalAveragePooling2D: This layer performs global average

pooling, reducing the spatial dimensions to a single value per

channel. It summarizes spatial information and retains essential

features. Resulting in an output shape of (None, 60).

Dense (128 units, ReLU): This fully connected dense layer with

128 units applies the ReLU activation function. It introduces

non-linearity and learns high-level representations based on the
extracted features from previous layers. Resulting in an output shape
of (None, 128).

Dense (total_classes units, Softmax): The softmax activation

function is used in the last dense layer, which has units equal to
the entire number of classes in the classification job. It generates
class probabilities, which show the chance that each input picture
belongs to a specific class of illness.

These layers form the PotatoLeafNet model, which combines
sequential image augmentation, convolutional layers for feature
extraction, pooling layers for spatial dimension reduction, global
average pooling for summarization, and fully connected layers for
classification. The model is trained to classify potato leaf disease
images into their respective classes.

3.5 Performance measure

Multiple metrics are used to evaluate the success of a network.
Using different task metrics helps represent the network’s ability to
solve a given problem. The evaluation metrics can use true positive
(TP), false positive (FP), true negative (TN), and false negative (FN).

Classification Accuracy: is determined by the ratio of correct
prediction to total predictions.

Number of Correct Predictions

@)

Accuracy =
4 Total number of Predictions

Precision: Precision determines with what precision the network
places images in the positive category. Precision is calculated as follows:

TP
TP+ FP

(8)

Precision =

Recall: Recall indicates how many positive images the network
recorded. The recall is calculated as follows:

Recall _r 9)
TP+ FEN
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F1-Score: F1-Score is a combination of Precision and Recall. The
calculation is as follows:

Fl—Score=2% Precision* Recall (10)
Precision+ Recall

3.6 Algorithm of the proposed
PotatoLeafNet model for potato leaf
detection and classification

PotatoLeafNet model for potato leaf detection and classification
shown in Algorithm 1.

ALGORITHM 1

Input: Potato Leaf Disease Dataset

Output: Disease Detection and Classification of Potato Leaves

Stepl: Acquire the Potato images with Late Blight, Early Blight,
and Healthy

Step2: Loading the data (X_train,y_train), (X_test,y_test)=image.
load_data()

Step 3: first stage of PotatoLeafNet for sequential image
augmentation model for image augmentation with 6 layers. Each layer
is performing RandomFlip, RandomRotation(0.2),
RandomZoom(0.2), Rescaling(1./255)

Step 4: Put the correct labels on the pictures of the potato
leaf images.

Step 5: Sort photos into categories using the available class labels
from the training and testing datasets.

Step 6: Initialize the parameters image size, epochs, batch size,
and train and test image labels.

Step 7: The Second stage of the PotatoLeafNet Model uses 4
blocks containing Conv2D, Max Pool2D, and Gloal AveragePooling2D,
followed by Desne layers. The total number of layers is 11.

Step 8: Evaluate the trained model using a separate testing dataset.

Calculate the test loss and accuracy of the model.

Step 9: Check the accuracy of the proposed models, and see how
they stack up against the rest of the CNN models out there. Make
predictions on new data

predictions = model.predict(new_images).

4 Results and discussion

All experiments were implemented in Python using TensorFlow and
Keras, optimizing a categorical cross-entropy objective with Adam and a
learning-rate schedule; runs were executed on a server equipped with an
NVIDIA P100 GPU, an Intel i5 CPU, and 8 GB RAM. The evaluation
centered on four aims: reliably tri-classifying potato leaf images into Early
Blight, Late Blight, and Healthy categories, quantifying the effect of a fixed
sequential image-augmentation pipeline during training on the
PotatoLeafNet’s performance; benchmarking PotatoLeafNet against
contemporary convolutional baselines; and situating the empirical
findings within prior deep-learning studies on potato leaf
disease identification.
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4.1 Datasets description

We curated a diverse, high-quality corpus of potato leaf images
spanning Healthy, Early Blight, and Late Blight classes. Training uses
the PlantVillage Potato subset, a widely used, fully open benchmark
for potato leaf disease recognition, to mitigate its limitations and class
imbalance, we additionally compiled a complementary Potato Leaf
Disease Dataset with 4,072 images 1,628 Early Blight, 1,424 Late
Blight, and 1,020 Healthy. To assess real-world generalization beyond
PlantVillage, we conduct cross-dataset validation: models trained on
PlantVillage are evaluated, without further tuning, on PlantDoc
(Singh et al,, 2020) (in-situ scenes with variable lighting, occlusion,
and background clutter) and on Shabrina et al. (2023) field collection
(uncontrolled conditions; seven potato classes remapped to {Healthy,
Early Blight, Late Blight} for comparability). We report Accuracy,
Macro-F1, per-class Precision/Recall, Matthews Correlation
Coefficient (MCC), and Expected Calibration Error (ECE), and
provide confusion matrices and Grad-CAM overlays. Finally, a
few-shot field-adaptation ablation (10% labeled field images)
quantifies domain shift and the benefit of lightweight adaptation.

4.2 Data pre-processing and sequential
image augmentation

All images were prepared for CNN training by converting them to
RGB float tensors and resizing uniformly to 224 x 224 pixels. Pixel
intensities were normalized to [0,1] to stabilize optimization. The dataset
comprised 4,072 potato-leaf images across three classes Healthy, Early

10.3389/frai.2025.1668839

Blight, and Late Blight. To enhance the robustness and generalizability of
PotatoLeafNet, we applied a fixed-order (sequential) image-augmentation
pipeline in Keras on the training split only, thereby increasing appearance
diversity while preserving label integrity and class balance. The
augmentation sequence consisted of rotation (+£25°), width shift (+0.10),
height shift (+0.10), shear (0.20), random zoom (up to 0.20), horizontal
flip, brightness jitter (0.5-1.0), and channel shift (0.05). Applying this
policy expanded the training corpus to 6,000 images, balanced as 2,000
per class, which mitigated class imbalance and improved generalization
across diverse disease manifestations. Figure 5 illustrates representative
pre-processed images at the target 224 x 224 resolution.

4.2.1 Evaluation protocol

We access robustness with Repeated K-Stratified K-Fold (k = 5,
r=3; total N= 15 fits). For fold f, models are trained on D}mm,
validated on D}“l (early stopping, best checkpoint), and evaluated on
D' We report Accuracy, Macro-precision, Macro- Recall, Macro-F1
as ( ut 0') over all N runs, with 95% cls via the t-distribution:

1 N 1 X 2
N Lo = )

(11)

o
Closy, = i Et.975N-1 Tn

For pairwise model comparisons on identical folds we apply
paired t-tests and Wilcoxon signed-rank tests, prediction-level
differences are examined with the McNemar test. We report Hedges’
g and cliff’s § as effect sizes and apply Holm-Bonferroni to control
family-wise error. To quantify optimization stochasticity, we

FIGURE 5
The pre-processed images with a resolution of 224x224.
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additionally train each model on the canonical split with 5 distinct
random seeds and report mean + SD Protocol details Input Size
224*2,224, identical preprocessing/normalization across models, no
augmentation on validation/test, Stratification by class (Healthy, Early
Blight, Late Blight), fixed fold indices shared by all models,
(global seeded data loaders,

deterministic ~ settings seed,

CuDNN deterministic).

4.3 PotatoLeafNet performance on potato
leaf disease dataset

Table 3 illustrates PotatoLeafNet configurations. The dataset
shows the PotatoLeafNet model, which changes internal parameters
to improve performance during training. The model learns to extract
important traits and properly characterize Late, early blight, and
Healthy over several epochs. Each epoch’s accuracy and loss statistics
show model performance. Accuracy is the percentage of correctly
predicted instances concerning actual. Figures 6-9 demonstrate the
accuracy of PotatoLeafNet architectures’ potato leaf disease detection
and classification.

The two-stage CNN model evaluates PotatoLeafNet on potato leaf
disease data. Potato leaf disease datasets employ six-layer sequential
image enhancement. A freshly developed and fine-tuned CNN model
analyzes the training dataset’s accuracy. The PotatoLeafNet model was
optimized with sequential picture augmentation. PotatoLeafNet
model training requires a huge sample.

Figure 6 summarizes the learning dynamics of PotatoLeafNet
trained for 100 epochs with sequential image augmentation on the
potato leaf disease dataset. The training accuracy rapidly increases and
saturates at 98.92% with a final training loss of 0.0356, while the
validation accuracy stabilizes around 97.53% with a closely aligned
validation loss curve. The small gap between training and validation
accuracies, together with the monotonically decreasing and
non-diverging loss trajectories, indicates that the augmented model
generalizes well beyond the training set. On the held-out test set,
PotatoLeafNet attains 98.52% accuracy, confirming that sequential
image augmentation provides effective regularization and supports

TABLE 3 Parameters used in the PotatoLeafNet model.

S.No ‘ Parameter used ‘ Value

1 Training epochs 10 and 100

2 Optimizer Adam

3 Batch size 32

4 Drop out 0.25

5 Image size 224 x 224

6 Kernel size 3

7 Data shuftle True for every 1,000

images

8 No of classes 3

9 Callback True on model
checkpoint

10 Loss function Cross entropy

Learning rate 0.001
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highly reliable classification of healthy, early blight, and late
blight leaves.

Figure 7 shows the behavior of a single-stage PotatoLeafNet
trained for 100 epochs without sequential image augmentation. In
this setting, the model reaches 96.17% training accuracy with a
training loss of 0.2250 and achieves 96.52% validation accuracy,
but the validation accuracy and loss curves exhibit noticeably
larger oscillations than in Figure 6. Test accuracy is reduced to
96.01%, i.e., 2.51 percentage points below the augmented
two-stage PotatoLeafNet, and the substantially higher training loss
further reflects less stable optimization. Comparing Figures 6, 7
demonstrates that sequential image augmentation not only
increases training/validation/test accuracy by +2.75/+1.01/+2.51
points, respectively, but also vyields smoother validation
trajectories and lower loss, highlighting its role as an
effective regularizer.

Figure 8 depicts PotatoLeafNet trained for only 10 epochs with
sequential image augmentation. Even under this short training
regime, the model already reaches 88.22% training accuracy with a
training loss of 0.3535, while the validation accuracy rises to 86.91%
and the validation loss decreases steadily. The corresponding test
accuracy of 88.15% confirms that the augmented model generalizes
well even before full convergence. These dynamics indicate that
augmentation quickly exposes the network to diverse views of each
class, enabling the model to acquire discriminative features early in
training and to maintain a small and stable train-validation gap.

Figure 9 presents the same 10-epoch training schedule without
sequential image augmentation. In this baseline configuration, the
model attains 87.82% training accuracy and 0.3410 training loss, with
validation and test accuracies of 85.82 and 86.91%, respectively.
Compared with Figure 8, both validation and test accuracies are
consistently lower and the gap between training and validation curves
is slightly larger, suggesting mild overfitting when the network is
trained on a less diverse set of images. The corresponding loss curve
also shows a less smooth descent, pointing to reduced robustness of
the optimization process. Together, Figures 8, 9 illustrate that, even at
an early training stage, sequential image augmentation improves
generalization and stabilizes the learning dynamics of PotatoLeafNet.

4.3.1 Model efficiency and parameters

To contextualize deployment cost alongside accuracy (Table 4),
we benchmarked five models under a unified protocol and report
tuning strategy, wall-clock training time, parameter count, and FP32
memory footprint (4 bytes per parameter). The proposed
PotatoLeafNet used manual tuning with ReduceLROnPlateau and
ModelCheckpoint, a fixed sequential augmentation policy, and Adam
(Ir = Le-3); it trained in 1.2 h, contains 16.5 M parameters, and
The
ResNet-50 + VGG-16 fusion, using transfer learning with fine-tuning,
trained in 1.5 h and comprises 164.00 M parameters (656 MB) [or
38.30 M, 153 MB, if reported without the ImageNet classifier];
VGG-16 + MobileNetV2 with grid-search tuning trained in 1.8 h and
totals 141.90 M parameters (567.6 MB) [or 16.97 M, 67.9 MB, without
top]. MobileNetV2, tuned via random search, trained in 0.8 h, has
3.54 M parameters (14 MB) and low complexity. Inception-V3, fine-

occupies 66 MB of memory (moderate complexity).

tuned via standard transfer learning, trained in 1.2 h and includes
23.85 M parameters (95 MB) with moderate complexity. These
results show that PotatoLeafNet is far smaller than fusion baselines
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The performance of PotatoLeafNet on potato leaf disease with sequential image augmentation for 100 epochs.
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Performance of PotatoLeafNet on potato leaf disease without sequential image augmentation for 100 epochs.
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Performance of PotatoLeafNet on potato leaf disease with sequential image augmentation for 10 epochs.
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Performance of PotatoLeafNet on potato leaf disease without sequential image augmentation for 10 epochs.

TABLE 4 Comparison of model efficiency and parameter complexity.

Parameter tuning

method

Training time (h)

Parameter count
(Millions)

Hyperparameter
complexity

Proposed PotatoLeafNet Manual tuning with 12 16.5M Moderate

ReduceLROnPlateau +

ModelCheckpoint; fixed

sequential augmentation; Adam

(Ir=1e-3)
ResNet-50 + VGG-16 Transfer Learning + Fine-Tuning 1.5 138.36 M High
VGG-16 + MobileNetV2 Transfer Learning + Grid Search 1.8 141.67 M High
MobileNetV2 Random Search 0.8 3.54M Low
Inception-V3 Neural Architecture Search (NAS) 1.2 23.85M Moderate

and within an order of magnitude of MobileNetV2; post-training
INT8 quantization typically reduces memory by 4x(eg.,
PotatoLeafNet to 16.5 MB, MobileNetV2 to 3.5 MB), improving
feasibility for real-time mobile/web deployment.

4.4 Comparison of accuracy between
proposed method and existing studies

Table 5 benchmarks the proposed PotatoLeafNet against recent
potato-disease studies spanning handcrafted descriptors with classical
classifiers (Alaa), transfer-learned CNNs (Nur et al., 2025; Shah et al.,
2025), compact bespoke CNNs (Kaur et al., 2025; Salihu et al., 2025),
hybrid CNN-Transformer designs (Sinamenye et al., 2025; Zhang et
al., 2025), and a non-image tabular risk-forecasting approach (Radwan
et al, 2025). Despite heterogeneity in data sources and class
definitions, PotatoLeafNet attains 98.52% accuracy on PlantVillage
(Healthy/Early/Late), placing it among the top performers while using
a compact 11-layer 3 x 3 convolutional stack and a fixed sequential

Frontiers in Artificial Intelligence

13

photometric augmentation policy. Notably, several comparators
optimize for different modalities (e.g., meteorological risk factors) or
field-like imagery; therefore, results are indicative rather than strictly
commensurate, and cross-dataset validation remains essential for
assessing real-world robustness.

4.5 Comparative performance

Under the same training—evaluation protocol, the Proposed model
achieves 98.52% accuracy, 98.67% precision, 99.67% recall, 99.16%
Fl1-score, and 1.00 AUC. Relative to ResNet-50 + VGG-16 (97.10, 95.00,
94.00, 94.00%, 0.98), this corresponds to absolute gains of +1.42 pp.
accuracy, +3.67 pp. precision, +5.67 pp. recall, +5.16 pp F1, and +0.02
AUC Table 6. Against VGG-16 + MobileNetV2 (94.80, 92.00, 91.00,
91.00%, 0.93), the gains are +3.72 pp, +6.67 pp, +8.67 pp, +8.16 pp, and
+0.07. Versus MobileNetV2 (93.20, 91.00, 90.00, 90.00%, 0.92), the
improvements are +5.32 pp, +7.67 pp, +9.67 pp, +9.16 pp, and +0.08; and
versus Inception-V3 (92.50, 90.00, 89.00, 89.00%, 0.91), they are +6.02 pp,
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TABLE 5 Comparison analysis of PotatoLeafNet with existing studies on potato leaf disease dataset.

Study [Ref]

Model/approach

Dataset (classes)

Reported

accuracy (%)

10.3389/frai.2025.1668839

Core techniques/
notes

Radwan et al. (2025) 2025 MLP with binary Greylag 4,000 98.30 K-means, PCA, copula
Goose Optimization for meteorological records for analysis for structure, tabular
feature selection, Compared early and late blight risk risk forecasting
with LR, SVM, KNN, complementary to image-
Gradient Boosting based screening

Chen and Liu (2025) 2025 CBSNet with Channel Self-built photo leaf set 92.04 Target tiny lesions, blurred
Reconstruction Multi-Scale (Healthy, Early blight, Late edges, and noise, attention
convolution Spatial Triple blight) driven multi-scale feature
Attention, Bat-Lion strategy extraction

Sinamenye et al. (2025) | 2025 Hybrid EfficientNetV2-B3 Potato Leaf Disease 85.06 Combines local convolutional
with vision Transformer Dataset (field-like features and global

variability) transformer context for
generalization

Salihu et al. (2025) 2025 CNN trained with Adam Curated set (Healthy, Early 96.88 Scaling augmentation,

blight, Late blight) normalization, confusion-
matrix based evaluation

Alaa (2025) 2025 Generalized Jones polynomial | Plant Village (Potato) 98.45 Pipeline: Preprocessing, GJP
features with SVM Classifier feature extraction,

dimensionality reduction,
SVM, Strong handcrafted
descriptor baseline

Zhang et al. (2025) 2025 VGG16S (GAP with CBAM Early blight and viral 97.87 Response-Surface
and Leaky ReLU, about 15 M disease set with hyperparameter tuning,
parameters) augmentation ablations and public dataset

tests reported

Kaur et al. (2025) 2025 PotConvNet (Compact CNN) Two Potato datasets with 97.78 Resizing, normalization,

defined splits augmentation, high accuracy
on Dataset 1 and Strong
cross-dataset results

Nur et al. (2025) 2025 Inceptionv3 with transfer Domain-Specific potato 97.78 Fine-tuned terminal layers,
learning and targeted fine leaf set efficient and practical
tunning

Shah et al. (2025) 2025 PLDC-Net with Balanced multi-disease 98.39 Emphasizes data balancing
EfficientNet-B1 backbone and | image set from online and robust augmentation,
SVM Classifier sources evaluated on unseen images

Proposed model 2025 PotatoLeafNet Plant Village (Potato) 98.52 Photometric transforms

applied before learning; same
policy across classes.11-layer
convolutional stack with 3 x 3

kernels (PotatoLeafNet)

TABLE 6 Comparative performance of the proposed model and deep learning.

Accuracy (%) Precision (%) Recall (%)
Proposed model 98.52 98.67 99.67 99.16 1.00
ResNet-50 + VGG-16 97.1 0.95 0.94 0.94 0.98
VGG-16 + MobileNetV2 94.8 0.92 0.91 0.91 0.93
MobileNetV2 93.2 0.91 0.90 0.90 0.92
Inception-V3 92.5 0.90 0.89 0.89 0.91
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+8.67 pp, +10.67 pp, +10.16 pp, and +0.09. The consistent, largest margin
in recall indicates the Proposed model substantially reduces false negatives
critical for early disease screening while simultaneously delivering the best
precision, F1, and AUC among all baselines.

4.6 PotatoLeafNet model performance on
correctly predicted images

The classification accuracy of the model on correctly labeled
images reflects the strength of the proposed CNN framework in
distinguishing between diseased and non-diseased leaf samples. A
correctly identified instance refers to an image that the model assigns
the appropriate label to, whether the leaf is affected or unaffected. This
aspect of performance was evaluated using standard accuracy-based
metrics. The model consistently delivered accurate predictions across
all categories, showcasing its reliability in handling both training and
unseen test samples. Its ability to differentiate between various visual

10.3389/frai.2025.1668839

patterns linked to disease manifestations underlines its robustness and
generalizability. The successful identification of all leaf conditions
confirms the framework’s precision and operational reliability in
practical settings. Figure 10 provides a visual representation of the
model’s performance in identifying each class correctly, further
validating its strength in class-wise prediction and its potential for
real-world application in automated plant disease assessment systems.

4.7 Performance measures on individual
diseases prediction and classification

Collectively, these metrics provide a comprehensive view of class-
wise prediction performance. Training the PotatoLeafNet model for 100
epochs yielded strong results: precision of 98.00% for Early blight,
99.00% for Late blight, and 99.00% for Healthy leaves; recall of 100.00,
99.00, and 100.00%, respectively; and F1-scores of 99.00, 99.00, and
99.50% for Early blight, Late blight, and Healthy leaves, respectively,
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FIGURE 11
Confusion matrix for the PotatoLeafNet model on predicted
individual disease classes after 100 epochs.

corresponding to a macro-averaged F1 of 99.16%. Taken together, these
indicators suggest that PotatoLeafNet accurately predicts and classifies
potato leaf disease categories. At the same time, Table 5 indicates that
Early and Late Blight can be less reliably predicted under challenging
conditions such as out-of-distribution inputs, limited representativeness
in the training data, noisy or ambiguous images, and potential overfitting
whereas Healthy leaves are generally classified more accurately.
Figure 11 presents the confusion matrix for a small held-out test subset
after 100 training epochs (Early Blight = 4, Late Blight = 6, Healthy = 2).
All instances were correctly identified, with no false positives or
negatives, corresponding to 99% accuracy and precision/recall of >0.98
for each class on that subset. However, given the limited sample size,
these perfect results should be interpreted cautiously and validated on
larger, more diverse datasets to confirm generalization (Table 7).

4.8 Discussion

Potato production underpins global food security, yet yields and
quality are threatened by diverse foliar diseases whose early diagnosis is
complicated by cultivar heterogeneity, variable symptom expression,
and environmental noise, making rapid and accurate detection essential.
To address this need, we propose PotatoLeafNet, a two-stage
convolutional framework for automated identification of potato leaf
conditions. In the first stage, a fixed sequential image-augmentation
pipeline expands intra-class variability and mitigates overfitting; in the
second, an 11-layer CNN with 3 x 3 kernels learns discriminative
morphological and textural representations from the augmented
images. Evaluated on the enhanced dataset, PotatoLeafNet achieved an
overall accuracy of 98.92%, with complementary performance measures
confirming its ability to correctly categorize samples. In comparative
analyses, the approach outperformed representative state-of-the-art
baselines and consistently predicted Late Blight, Early Blight, and
Healthy classes with high reliability. By enabling precise differentiation
among these categories, PotatoLeafNet facilitates timely intervention
and supports evidence-based disease-management strategies in real-
world agronomic settings.
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TABLE 7 Performance measures on individual potato leaf diseases
classes.

S. No Class Precision Recall F1-Score
(VA (VA (VA
1 Early blight 98.00 100.00 99.00
2 Late blight 99.00 99.00 99.00
3 Healthy 99.00 100.00 99.50
leaves

5 Conclusion

This work introduced PotatoLeafNet, a two-stage convolutional
framework that couples a fixed sequential image-augmentation
pipeline with an 11-layer, 3 x 3-kernel CNN to deliver reliable detection
and classification of potato leaf conditions (Healthy, Early Blight, Late
Blight). Trained on an augmented and class-balanced dataset,
PotatoLeafNet achieved 98.92% overall accuracy under the 100-epoch
setting and maintained strong agreement between training, validation,
and independent test splits; even in a constrained 10-epoch regime it
sustained competitive generalization (training 88.22%, validation
86.91%, test 88.15%). In head-to-head comparisons on the same
dataset, PotatoLeafNet consistently outperformed representative CNN
baselines, indicating that the combination of sequential augmentation
and a compact convolutional stack yields discriminative, disease-
relevant representations without sacrificing computational efficiency.
Practically, these attributes make PotatoLeafNet a strong candidate for
field deployment in resource-limited settings (e.g., mobile or edge
devices), where rapid, accurate triage can enable timely intervention,
reduce losses, and support data-driven integrated pest management.
While the results are robust, two limitations merit attention. First,
performance was established on curated images; domain shift in truly
in-situ imagery (lighting variation, occlusion, mixed infections, cultivar
differences) can degrade accuracy. Second, the present evaluation
emphasizes aggregate metrics; class-wise calibration, error analysis,
and explainability are essential before widescale adoption. Addressing
these gaps will strengthen external validity and user trust. Future work
will expand training with diverse, field-acquired datasets and explicitly
address domain shift through domain-generalization techniques such
as style transfer and test-time adaptation; provide fine-grained
diagnostics including per-class precision and recall, confusion
matrices, and confidence calibration together with explainability
analyses (Grad-CAM/saliency) to verify that decisions focus on
pathognomonic regions; conduct ablation studies to isolate the
contribution of each augmentation transform and architectural
component; examine robustness under label noise and data drift across
seasons and geographies; and prototype a lightweight, on-device
inference stack employing batching and quantization to validate
throughput and latency in real agronomic workflows, thereby
advancing PotatoLeafNet from a high-performing classifier to a
deployable decision-support tool.
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