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AI alignment is all your need for
future drug discovery

Chunyan Li*

School of Informatics, Yunnan Normal University, Kunming, China

In recent years, the integration of artificial intelligence (AI) with drug discovery
has become a promising frontier in biomedical research. However, as artificial
intelligence systems become increasingly complex, ensuring their alignment
with human values and goals becomes essential. Specifically, combining artificial
intelligence systems with human values is crucial for reducing potential risks in
the field of drug discovery and maximizing social benefits. This article explores
the concepts and challenges related to alignment with artificial intelligence in
the context of drug discovery, emphasizing on human-centered approaches to
AI development and deployment. We further investigated popular technology
frameworks designed for human-centered AI alignment, aimed at improving
the robustness and interpretability of AI models. We provide some insights into
the challenges of human-centered AI alignment, which represents a significant
advancement in addressing robustness and interpretability, thus taking a step
forward in the field of AI alignment research. Finally, we discuss strategies for
systematically integrating human values into AI-driven drug discovery systems.
This article aims to emphasize the importance of AI alignment as a foundational
principle in the field of drug discovery and advocate the perspective that “AI
alignment is all your need for future drug discovery”.
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1 Introduction

The annals of human civilization are replete with narratives of endeavors to combat
afflictions and calamities. Essential to this effort are pharmaceuticals, which constitute
the principal ways for mitigating diseases, having been progressively refined through
human empirical inquiry and application. Nonetheless, conventional drug development
methods still face significant challenges, including high costs, lengthy timelines, and
meager success rates. In fact, the diffcult road from drug conceptualization to market
outcomes typically spans ten years, with expenditures approaching 2.6 billion dollars. In
addition, the success rate of candidate drugs transitioning from trial phases to market
availability scarcely exceeds 10% (Avorn, 2015; DiMasi et al., 2016). Hence, artificial
intelligence has significantly shortened the drug development trajectory, provided novel
avenues for the advancement of drug discovery (Wu et al., 2018; Xia et al., 2023; Li et al.,
2022a, 2021b, 2023).

However, with the continuous improvement of artificial intelligence (AI) system
capabilities, related risks are also increasing (Ji et al., 2024). Emerging trends, such as the
proliferation of intelligent agents based on large language models and the development
of generative AI technology, have the potential to achieve a form of universal artificial
intelligence where systems may attain or even surpass human-level intelligence in specific
domains. Although these advancements foreshadow potential benefits such as automation,
increased efficiency, and accelerated technological progress, they also bring significant
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risks, including security vulnerabilities, biases, and societal
inequalities. Moreover, there are concerns about the potential
impact of large-scale deployment of superhuman artificial
intelligence systems. Notably, contemporary large language models
exhibit significant biases in terms of gender, sexual identity,
and immigration status, which exacerbates pre-existing social
inequities. Furthermore, the negative behaviors observed in
these models, such as the propagation of inaccurate responses,
flattery, and deceit, tend to escalate with the amplification
of model size, which raises ethical considerations regarding
the deployment of advanced artificial intelligence systems.
Concurrently, the development of generative language models
has sparked discussions around the control and governance
mechanisms, which is required for effective management such
systems (Arora, 2024).

In the domain of drug discovery (Urbina et al., 2022), if the
output provided by large language models is proven to be erroneous
or fallacious, it has the potential to misguide researchers and trigger
erroneous determinations throughout the entire drug discovery
process, which, in turn, may lead to resource waste, deviation from
the intended research trajectory, and the inadvertent introduction
of unsafe or inefficacious drugs into the market. Large language
models may be susceptible to manipulation or exploitation as
a channel for the promotion of specific drugs or therapeutic
modalities, regardless of their empirical foundation or clinical
efficacy. Such instances of flattery and deceit have the propensity
to compromise patient welfare, which will lead to the adoption
of superfluous or ineffectual treatment methods. The sensitivity of
large language models to data-driven biases can exacerbate bias
in research outcomes and drug recommendations, which could
exacerbate existing healthcare inequalities. In scenarios where
large language models provide illegal or morally questionable
recommendations, such as the promotion of prohibited substances
or improper drug utilization, which will arise legal culpability and
moral quandaries, thereby questioning the integrity and credibility
of the healthcare industry. Hence, the harmful behaviors exhibited
by large language models indicate deleterious impacts on research,
clinical practice, and patient welfare (Urbina et al., 2022; Vijayan
et al., 2022).

In the context of AI-driven drug discovery, human values
refer to fundamental principles such as fairness, transparency,
accountability, and respect for human well-being, which are
key guiding principles. Embedding these values into artificial
intelligence systems is not only a moral requirement, which is
also a practical necessary condition to ensure that drug discovery
results are trustworthy, beneficial to society, and meet the needs
of patients. For example, fairness is crucial in preventing bias in
data analysis and candidate prioritization. Transparency improves
the interpretability of predictive models. This multidimensional
perspective emphasizes that combining artificial intelligence
systems with human values can greatly impact the credibility and
acceptance of society. Han et al. (2022) further emphasized the
need for a deep understanding of the consistency between artificial
intelligence and human values, providing important insights on
how to achieve this consistency in the biomedical field. Therefore,
the integration of human-centered artificial intelligence (HCAI)
into drug discovery offers several potential benefits (Mbatha et al.,

2023). By aligning AI systems with human values, there is a
greater focus on ensuring that drug candidates identified by AI
are safe and effective for human use, which could reduce adverse
effects and improve the success rate of clinical trials (Wang et al.,
2023). Human-centered AI can help ensure that drug discovery
efforts are inclusive and meet the needs of different populations
(Zheng et al., 2023). Integrating human values into AI systems can
ensure that ethical considerations are central to the drug discovery
process. By prioritizing human-centered approaches, AI systems
can mitigate potential biases in the data or algorithms used in drug
discovery, which leads to more fair and unbiased decision-making
processes, ultimately improving the fairness and reliability of drug
discovery efforts. Human-centered AI alignment can simplify the
drug discovery process by prioritizing drug candidate drugs that
are most likely to meet the needs and preferences of patients and
clinical doctors, which can lead to faster development timelines and
more efficient resources allocation in drug discovery research.

The endeavor to achieve AI alignment depict the key basic
trajectory toward the attainment of human-centered AI. AI
alignment (Ji et al., 2024) is predicated on the imperative to
engender AI systems that align their behavior with human
intentions and values. This pursuit includes four overall objectives,
namely Robustness, Interpretability, Controllability and Ethicality
(RICE) (Ji et al., 2024). AI alignment has the potential to
fundamentally change the drug discovery process by improving
efficiency, safety, ethical considerations, and fairness. By aligning
AI systems with human intentions and values, researchers can
harness the transformative power of AI to address unmet medical
needs and improve patient outcomes in a responsible and equitable
manner. Ji et al. believe that as the capabilities of artificial
intelligence systems continue to increase, the risk of alignment
failure is also increasing. Mitigating the extinction risk brought by
artificial intelligence should become an important global priority.
They first proposed four key objectives for AI alignment, namely
RICE, and divided AI alignment into two key components: forward
alignment and backward alignment (Ji et al., 2024). The difference
in this article’s approach is that we provide a review of the alignment
problem of artificial intelligence in the field of drug discovery, with
a focus on robust and interpretable technical architectures.

To push the boundaries of drug discovery into human-centered
AI alignment as shaping a positive future of drug discovery, we
argue that aligning AI systems with human values is essential
to mitigate potential risks and maximize societal benefits in the
domain of drug discovery. In this paper, initially, we scrutinized
the challenges inherent in AI alignment. Subsequently, we survey
popular technical frameworks designed for human-centered AI
alignment and give some insights to aim at enhancing the
robustness and interpretability of artificial intelligence models, that
are the two most critical objectives of AI alignment. Finally, we
propose relevant strategies to incorporate human values into AI
systems for drug discovery. In summary, the key contributions of
our work are as follows:

• To the best of our knowledge, this work represents the first
comprehensive survey of technical frameworks specifically
designed for human-centered AI alignment, with a focus on
AI technologies in the field of drug discovery.
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• We give some insights into the challenge of AI alignment,
aimed at enhancing the robustness and interpretability
of artificial intelligence models based on molecule-related
downstream tasks, which describes our preliminary findings
concerning AI alignment.

• We propose relevant strategies to incorporate human values
into the design and implementation of AI systems for
drug discovery.

2 Challenges in AI alignment

Foundation models, such as GPT-3 (Brown et al., 2020) and
BERT (Devlin et al., 2019), can advance the development of
science by augmenting research methods with foundation models
and generative AI. If explicit guidelines are formulated for the
utilization of foundation models and generative AI, the potential
benefits they offer to science and scholarly inquiry outweigh the
associated risks (Rossi et al., 2024). The endeavor to construct
artificial intelligence systems that harmonize with human values
and intentions poses a significant challenge. Presently, there lacks
a universally accepted standard for gauging alignment. Leike et al.
(2018) have described the intelligent agent alignment problem
and expanded its scope to encompass super artificial intelligence
systems (OpenAI, 2023b). Meanwhile, the RICE principle proposed
by Ji et al. (2024) centers on discerning and accommodating
human intentions, which points the four cardinal objectives of
AI alignment: Robustness, Interpretability, Controllability and
Ethicality. These four basic objectives form a unified whole, referred
to as the RICE principles, which present distinct challenges in the
context of AI alignment.

• Robustness: The robustness of AI systems represents their
capacity to maintain stability and dependability amid diverse
uncertainties, disruptions, or adversarial attacks (Dietterich,
2017). In essence, a robust AI system excels at maintaining
proficient performance across varied environments and
situations, while exhibiting robust adaptability to alterations
or perturbations in input data. A robust AI system exhibits
minimal performance degradation or susceptibility to failure
when confronted with variations in external conditions.
Such robustness constitutes a pivotal attribute requisite for
ensuring the dependable operation of AI systems in real-world
settings and for effectively addressing various challenges. To
enhance the robustness of AI systems, researchers typically
employ a variety of methods, including but not limited
to augmenting the diversity of training data, implementing
data augmentation techniques, improving algorithms and
model architectures for enhanced resilience, and designing
tailored testing and evaluation protocols. By iteratively
enhancing the robustness of the system, it becomes better
equipped to navigate complex real-world scenarios, thereby
enhancing the efficacy and reliability of AI systems in different
application domains. Aligned systems always consistently
maintain robustness throughout its entire lifecycle (Russell,
2019).

• Interpretability: The interpretability of AI systems involves
their ability to provide clear and transparent explanations

or reasoning, thereby facilitating user comprehension of the
system’s operational framework, decision-making mechanism,
and underlying principles for recommendations. A well
interpretable AI system can explain its behavior and provide
reasonable reasons for its decisions, rather than merely
providing results. In many application scenarios, people not
only need accurate predictions or decisions from AI systems
but also need to understand the mechanisms that support
these results and the basic rationale that drive such decisions.
Interpretability is crucial in cultivating user’s confidence in
the system, augmenting its credibility, and aiding in the
identification of potential biases or discrepancies therein.
Furthermore, the interpretability of AI systems helps clarify
the decision-making logic for users and facilitates system
developers to identify and correct potential defects, thereby
enhancing the robustness and reliability of the system.
Therefore, interpretability has emerged as a pivotal research
approach within the realm of artificial intelligence, attracting
widespread attention and applicability in different practical
areas (Lipton, 2016; Guidotti et al., 2018; Doshi-Velez and
Kim, 2017).

• Controllability: The controllability of AI systems refers
to the ability of humans to effectively manage and control
the behavior and decision-making of the system, ensuring
that the system’s actions and decision-making processes
are always supervised and constrained by humans (Soares
et al., 2015; Hadfield-Menell et al., 2017). Controllability
focuses more on real-time human intervention and
adjustment of the system to ensure that it meets human
expectations and needs during operation, while avoiding
adverse or unexpected consequences. With the increasing
development of AI technology, more and more research
has expressed concerns about the controllability of
these powerful systems (Critch and Krueger, 2020).
So, the controllability of AI systems encompasses the
capacity to fulfill human expectations and objectives while
mitigating potential risks and uncertainties (Bowman et al.,
2022).

• Ethicality: The ethical behavior of AI systems is related
to their capacity to comply with ethical norms and values
during the design, development, deployment, and utilization
phases, which includes ensuring that the behavior and
decisions of the system comply with ethical norms, upholding
individual rights and dignity, and exhibiting accountability
toward societal and public interests (Floridi and Sanders,
2004; Jobin et al., 2019). The ethical behavior of AI systems
involves diverse aspects, including safeguarding privacy,
fostering fairness, promoting transparency, and embracing
accountability. Given the profound impact that AI systems
may exert on individuals, society, and the environment,
the consideration of ethical imperatives is increasingly
deemed imperative (Mittelstadt et al., 2016). Neglecting moral
considerations during the development and deployment
of AI systems may lead to adverse effects and social
challenges (Taddeo and Floridi, 2018). Thus, for AI systems,
their ethical behavior is considered a key determinant in
maintaining their positive societal impact, avoiding harm
and unfairness.
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3 Implementation strategies to AI
alignment

3.1 Mainstream methods of AI alignment
for drug discovery

The key technologies utilized in the AI alignment process
include reinforcement learning with human feedback (RLHF)
(Knox and Stone, 2009), out-of-distribution (OOD) generalization
(Ji et al., 2022; Zhuang et al., 2023; Eissa et al., 2024; Tossou
et al., 2024) and OOD detection (Wang et al., 2025; Shen et al.,
2024; He et al., 2024; Theunissen et al., 2025; Liu et al., 2025)
techniques and visualization methods (Li et al., 2021b,a). RLHF
is a subfield of reinforcement learning (RL) that incorporates
human feedback into the learning process to guide and improve the
performance of RL agents, whose goal is to train agents to perform
specific tasks, and humans typically provide evaluation feedback
or guidance to agents in the form of reward signals, criticisms,
preferences, or demonstrations. This kind of human feedback
helps RL agents learn more efficiently and effectively, especially in
challenging domains where designing reward functions is crucial.
OOD techniques (Eissa et al., 2024; Li et al., 2025; Antonluk et al.,
2025) are designed to tackle the ubiquitous problem of distribution
shift, wherein the distribution observed during training is different
from that encountered during testing. OOD generalization refers
to the ability of a model to maintain reasonable predictive ability
during the testing phase for OOD data, which is new distribution
samples unseen during training but are relevant to the task. It aims
to learn the basic laws and transferable representations of data,
rather than relying solely on the statistical characteristics of training
data, in order to have stronger robustness and adaptability in open
environments. OOD detection aims to automatically distinguish
between input samples from the In Distribution (ID) or OOD
during the model inference phase, whose core goal is to prevent
the model from making high confidence erroneous predictions on
unseen and distributed data, thereby improving the reliability and
safety of the model in practical applications. Visualization (Li et al.,
2021b, 2023, 2021a) helps to increase the interpretability of the
model, which is important in understanding why the model makes
such decisions and inferences. Table 1 shows the implementation
strategies and mainstream methods of AI alignment for drug
discovery, as well as their relationship with RICE principles. In
the next section, we will introduce a technical framework and
methodology aimed at studying the robustness and interpretability
of neural network models, specifically addressing the first two
challenges outlined in the RICE framework. This effort aims to
demonstrate our conceptual approach and feasible solutions for
achieving AI alignment.

3.2 Technical framework for exploring
robustness and interpretability

The fundamental concept that support AI alignment involves
directing our attention toward AI technologies as a means to
address the four challenges mentioned above. Figure 1 illustrates
the design of our framework and methodology for addressing the

four challenges in AI alignment. For each specific challenge, we
have come up with the most effective approaches to response it.
Specifically, in order to improve the reliability of neural network
models, we suggest implementing several techniques that can
enhance model robustness. Especially, we recommend focusing on
AI technologies that can help models identify and detect to “out
of distribution data”, meaning that models not only perform well
on training data, but also work properly when encountering new
samples that are different from the training data. Additionally, we
suggest integrating the methods of “residual vector quantization”
and “invariant substructure” into AI model. The advantage of doing
so is that AI model can identify and capture key features that are
consistent exist across different data, and make the model perform
better and easier to understand, thereby improving its overall
performance and interpretability. When addressing the challenge
of interpretability in AI models, we propose a range of visualization
techniques. These methods can greatly aid in understanding the
inner workings of the models. Specifically, we suggest visualizing
the model flowchart and molecular 3D structure, which can provide
a clearer understanding of the model’s architecture and the data
format processed by model. Additionally, visualizing the feature
space can help clarify how the model processes and distinguishes
various inputs. Furthermore, by visualizing the contribution results
of the target task, it is possible to gain insights into which features
or components of the input data are most influential in driving the
model’s predictions. Then, we survey and give some insight into
novel AI algorithms to address the challenges of robustness and
interpretability in AI alignment for drug discovery. In recent years,
graph neural networks have demonstrated impressive performance.
Consequently, in this paper, we represent drug molecules using
a graph structure. Within this framework, atoms are depicted as
nodes, and bonds as edges. Given this representation, we aim
to explore the robustness and interpretability of tasks related to
molecules in non-Euclidean space.

3.2.1 Suggested approaches for robustness
Neural network models are always built on the assumption of

independent and identically distributed (i.i.d) across training and
testing data. In the field of drug discovery, when distribution shift
occurs, such as molecular scaffolds (Wu et al., 2018), size (Ji et al.,
2022), label noise changing on the training and testing sets, or when
the i.i.d assumption is not valid, the performance of the model will
be poor. As is well known, in the virtual screening process of hit
recognition, the prediction model always trains on a determined
target. The COVID-19 event resulted in a new target with an
unprecedented data distribution, leading to a significant decrease in
the performance of the prediction model when applied to this new
target. OOD learning in this field focuses on handling scenarios
where training and testing data present different distributions,
aiming to alleviate performance degradation and improve model
robustness (Zhuang et al., 2023; Muandet et al., 2013). In light of the
present limitations of unbiased learning in capturing distributional
shifts pertaining to both labels and feature spaces, the proposed
approach endeavors to examine the interplay between unbiased
learning on graphs and OOD detection within a unified latent
discrete space. Subsequently, it aims to introduce a method for
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TABLE 1 The implementation strategies and mainstream methods of AI alignment for drug discovery, and the implementation objectives of the RICE principles covered by each strategy and method.

Solution Direction Implementation
strategy

Methods Challenges

Robustness Interpretability Controllability Ethicality

Graph OOD
generalization
and detection

Algorithm
intervention

Inference environment GraphDE (Li et al., 2022d)
MoleOOD (Yang et al., 2022)
GIL (Li et al., 2022c)
CODI (Eissa et al., 2024)
TS-DAR (Liu et al., 2025)

√ √

Invariant learning
(invariant substructure)
(semantic-relevant)

iMoLD (Zhuang et al., 2023)
CIGA (Chen et al., 2022)
DisC (Fan et al., 2022)
SCI (Li et al., 2025)

√ √

Disentangled representation
or explainability

DIR (Wu et al., 2022)
GSAT (Miao et al., 2022)
GREA (Liu et al., 2022a)
OOD-GNN (Li et al., 2022b)

√ √

Strategic
intervention

Adversarial training DAGNN (Wu et al., 2019)
GNN-DRO (Sadeghi et al., 2021)
GVAT (Lu et al., 2025)

√ √

Self-supervised learning Pretraining-GNN (Hu et al., 2020)
PATTERN
(Yehudai et al., 2021)
DR-GST (Liu et al., 2022b)

√

Reinforcement
learning

Policy training Reward model (RM)
Policy model (PM)

Reinforcement Learning
from human
Feedback (RLHF) (Touvron et al., 2023)

√ √ √

Visualization Representation
property prediction
Interaction predicction

Encodings
attention Mechanism
adaptive graph convolution

iCAN (Weckbecker et al., 2024)
Drug3D-Net (Li et al., 2021a)
3DMol-Net (Li et al., 2021b)
MolLoG (Feng et al., 2024)

√ √

Lagrangian mechanics LagNet (Li et al., 2023)
√ √

Molecular design Geometry deep autoencoder GEOM-CVAE (Li et al., 2024)
√ √

Evaluation
validation
governance

Safety evaluations values
verification AI governance

Moral values theory
multi-stakeholder
cooperation

Moral, legal (Erman and Furendal, 2022)
Cooperative methods
(Kerry et al., 2021)
International governance (Tallberg et al., 2023)

√ √

The “
√

” stands for the main achievement goal.
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FIGURE 1

A technical framework and methodology for addressing the four challenges in AI alignment. (a) The out-of-distribution (OOD) module is tailored for
robustness, with the capability to acquire invariance and resilience against distributional shifts. (b) The visualization module is specifically crafted to
enhance interpretability, offering functionalities such as 3D structural visualization, feature space visualization, and contribution visualization. (c) The
controllable module is engineered to facilitate controllability, affording opportunities for human intervention. (d) The module delineating social
values designed for ethicality that adheres to global moral standards and upholds human values.

unbiased distributional representation of graph data and OOD
detection guided by environmental variables. Figure 2 shows the
overview of suggested unbiased learning and out of distribution
detection method.

This method aims to utilize a binary environmental variable e
to model both in-distribution (ID) and out-of-distribution data,
where e = 1 denotes in-distribution data and e = 0 signifies
biased or out-of-distribution data. Define labeled training set
Dtrain = {(Gtrain, ytrain)}Ntrain

i=1 and test set Dtest = {(Gtest)}Ntest
i=1 ,

where Ntrain and Ntest represent the number of samples in the
training and test sets, respectively. Let G(V , E) be a graph with
adjacency matrix A = {auv|u, v ∈ V} and initial node features
X = {xv} for v ∈ V , where V is nodes set and E is edges
set. Our objective is to develop a predictive model fη :G → ŷ
capable of accurately forecasting labels within Dtest . Let L(f e

η (G), y)
as the loss function on sample (G, y) under environment e, then
the empirical risk minimization (ERM) (Cherkassky, 1997) can be
defined as

min
η

Ee∼p(e)
[
E(G,y)∼P(G,y|e=e)[L(f e

η (G), y)]
]

(1)

where L(f e
η (G), y) is a constant when e = 0 holds, p denotes

the probability distribution and satisfies the following
condition: p(G, y|e) = p(G|e)p(y|G, e). Furthermore, to
identify OOD samples within the test set, it is imperative to
design an OOD detector dect, including predictive model fη ,

score function score, threshold χ . The detector dect can be
defined as:

dect(G; fη , score, χ) =
{

0 (OOD), ifscore(G; fη) ≤ χ

1 (ID), ifscore(G; fη) > χ
(2)

Through this approach, the model engages in unbiased learning
during the training phase and additionally performs out-of-
distribution detection during the testing phase of downstream
tasks. This strategy effectively mitigates the negative impact of out-
of-distribution samples on the model’s performance, consequently
enhancing its efficacy and robustness. Hence, the proposed method
exemplifies our strategic approach and investigational efforts
toward bolstering the robustness of the model, constituting a
modest stride in the direction of fortifying its resilience. In the field
of drug discovery, in terms of OOD generalization, CODI (Eissa
et al., 2024) is a contextual OOD integration method designed to
generates synthetic data by incorporating unrepresented sources
of variation observed in real-world applications into a given
molecular fingerprint dataset. By augmenting the dataset with
OOD variance, CODI enhances the ability of machine learning
models to generalize to samples beyond the original training
data, thereby reducing the reliance on extensive experimental
data collection. Tossou et al. present a rigorous method (Tossou
et al., 2024) to investigate molecular OOD generalization in the
field of drug discovery. This method uses covariate changes to
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FIGURE 2

The suggested unbiased learning and out of distribution detection method. It includes two tasks: how to better represent data during the training
phase (unbiased learning) and how to better utilize data during the testing phase (OOD detection).

quantitatively quantify the distribution changes of sample distance
to the training set encountered during actual deployment, which
can lead to performance degradation of up to 60% and uncertainty
calibration degradation of up to 40%. In terms of OOD detection,
PGR-MOOD (Shen et al., 2024) is a molecular OOD detection
method by using an auxiliary diffusion model, which compares
similarities between input molecules and reconstructed graphs.
Due to the generative bias toward reconstructing in-distribution
training samples, the similarity scores of OOD molecules will
be much lower to facilitate detection. GDDA (He et al., 2024)
is a novel two-phase method of graph disentangled diffusion
augmentation, aimed to disentangle graph representations into
semantic factors and style factors by using a distribution-shift-
controlled score-based diffusion model. Theunissen et al. evaluate
six OOD detection methods to demonstrate OOD detection
performance in both synthetical and real-world application settings
(Theunissen et al., 2025), specifically in the context of single-cell
transcriptomics annotation. Liu et al. proposed TS-DAR (Liu et al.,
2025), a transition state identification method based on dispersion
and variational principle regularized neural networks. TS-DAR
is a deep learning framework inspired by OOD detection in
trustworthy artificial intelligence, aimed at understanding protein
conformational changes. Unlike traditional Molecular Dynamics
(MD) simulations, TS-DAR leverages deep learning techniques to
identify transition states, offering a novel approach to studying
dynamic molecular processes.

3.2.2 Suggested approaches for interpretability
It is widely acknowledged that neural networks are often

referred to as black box models primarily due to the inherent

challenge in intuitively understanding and elucidating their
internal operating mechanisms. Neural networks typically
comprise a multitude of neurons and layers, learning patterns
and features of input data through intricate weight adjustments
during training. Given the intricate internal architecture of neural
networks, elucidating the precise relationship between individual
neurons and weights proves challenging, thereby impeding
the intuitive explanation of neural network decision-making
processes. Despite neural networks’ capability to undergo
training on extensive datasets and yield highly accurate
predictions, their decision-making processes often remain
opaque and defy straightforward explanation. In the realm of
drug discovery, the interpretability of models assumes paramount
importance, as it fosters patient trust in medical diagnoses and
facilitates the provision of comprehensive disease treatment by
healthcare professionals.

Drug molecules are always represented as graph structures.
Rotation invariance-based 3DMol-Net (Li et al., 2021b) model
demonstrates the interpretability by learning three-dimensional
(3D) soft relation and K-nearest neighbors (KNNs) relation in
3D space, subsequently constructing 3D graph Laplacian, then
building rotation-invariant map (RIM) with attention mechanism.
This process can be expressed as follows:

Lap(3D)
sr = In − Dsr

− 1
2 FsrDsr

− 1
2 (3)

Lap(3D)
knn = In − Dknn

− 1
2 FknnDknn

− 1
2 (4)

Lap(3D) = Lap(3D)
knn + αLap(3D)

sr (5)

where Fsr and Dsr denote the soft relationship matrix and its degree
matrix, respectively. Similarly, Fknn and Dknn denote the KNN
relationship matrix in 3D space and its degree matrix, respectively.
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FIGURE 3

3DMol-Net: a 3D garph Laplacian, which is composed of KNN Laplacian and soft Laplacian.

Lap(3D)
knn and Lap(3D)

sr and represent Laplacian matrices under
KNN relationships and soft relationships, respectively. Finally, the
proposed 3D graph Laplacian matrix Lap(3D) can be obtained
using Equation 5 with a hyperparameter α. As shown in Figure 3,
Lap(3D) is initialized by KNN Laplacian Lap(3D)

knn and refined by
soft Laplacian Lap(3D)

sr . Then define RIM as a function of rotation-
invariant map, Vcoord as 3D coordinates vector for each atom. The
final rotation invariance-based geometric representation Fri_geom
for molecules can be calculated as:

Fri_geom = RIM(Lap(3D), Vcoord) (6)

Furthermore, attention attmn can be formulated as:

attmn = exp(LeakyRelu(W · [hm, hn
]
))∑

n∈N(m) exp(LeakyRelu(W · [hm, hn
]
))

(7)

where m is the target atom, n is the neighbor node, and hm, hn
represent the state vectors of atom m and n, respectively. W
denotes trainbale weight matrix. LeakeRelu denotes nonlinear
activation function.

The 3DMol-Net leverages adaptive graph convolutional
networks to proficiently acquire the 3D molecular representations,
showcasing commendable efficacy in predicting molecular
properties. Moreover, the proposed model exhibits notable
interpretability in discerning and explicating the predicted
outcomes. As shown in Figure 4, hydrophilic groups exhibit a
more pronounced influence on predicting water solubility in

the ESOL dataset, with their contribution to molecular features
playing a decisive role in the final prediction. Furthermore, the
group most pertinent to predicting the activity of inhibiting HIV
replication demonstrates a heightened contribution to graph-level
representation. Additionally, 3D structural visualization greatly
improves the interpretability of AI models within the context of
drug discovery. The 3D structural attributes of small molecules
and proteins play a crucial role in determining their biochemical
functions and activity predictions. These 3D characteristics
predominantly dictate both the properties of drugs and the
binding characteristics of their respective targets. Therefore, Li
et al. (2021a) conducted visualization of 3D voxel representations
of molecules within 3D space, with distinct colors denoting
various atoms, as shown in Figure 5. This visualization technique
affords a more intuitive comprehension of the three-dimensional
microstructure of molecules, thereby exerting a discernible
influence on the prediction of drug-related interactions, such as
drug-drug interaction (DDI) and compound protein interaction
(CPI). In addition, iCAN (Weckbecker et al., 2024) aims to
covercome the constraints of machine learning models that
typically rely on structured and rigid input formats. It encodes
the neighborhoods of carbon atoms using a counting array,
enhancing the effectiveness of the generated representations for
machine learning tasks. By producing interpretable molecular
encodings, iCAN method facilitates the comparison of molecular
neighborhoods, the detection of recurring patterns, and the
visualization of important features through heat maps. MolLoG
(Feng et al., 2024) is a molecular deep interpretability method
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FIGURE 4

Visualizing the contribution of atoms to molecule-level predictive tasks, that is shown using jet colormap with range [0.25, 1.0]. Red signifies the
most significant contribution, blue denotes the least contribution, while yellow and green lie in the intermediate range.

FIGURE 5

Three represents for the same drug molecule. (a) 2D molecular structure. (b) 3D molecular structure. (c) 3D voxel structure automatically modeled in
3D space using python language.

that establishes a bridge between local features and global
representations, aiming to enhance the prediction of drug-
target interactions. MolLoG comprises local feature encoders
(LFE) and global interactive learning (GIL) modules, offering
biologically relevant interpretations for the predictions generated
by black-box models.

As for protein 3D representation, since the 3D conformation
of a protein dictates its function, the 3D structure of proteins
is foundational to understanding their role in biological systems.
The specific arrangement of amino acids determines how a
protein interacts with other molecules, including substrates
and inhibitors. Consequently, insights into protein structure
can reveal mechanisms of action and inform the design of
new drugs. Furthermore, the stability and dynamics of protein
structures are integral to their functionality. Changes in a protein’s
conformation can significantly affect its activity and interactions.
Thus, elucidating these structural nuances is essential for predicting
how proteins behave under various conditions. Following GEOM-
CVAE (Li et al., 2024), the 3D mesh structure of protein surfaces
can be visualized in Figure 6, which encompasses abundant
geometric information crucial for deriving an effective protein
characterization. The different colors in the mesh represent
different surface features. The process of mesh simplification is
illustrated from right to left. The simplification of protein 3D mesh
can also be regarded as the graph sampling and graph pooling
in graph neural network. In tasks associated with AI-Generated

Content (AIGC), such as drug design and the prediction of
compound-protein binding pockets, this visualization method and
underlying representation techniques demonstrate commendable
robustness and interpretability.

3.3 Strategies for incorporating human
values

AI systems have penetrated into various aspects of our lives
and careers, that are bringing us numerous conveniences. It is
worth noting that advanced AI models, such as AIGC large
language systems, possess the ability to independently decompose
complex tasks into manageable subtasks and execute decisions
without human intervention. The emergence of AIGC has brought
substantial advantages, especially in improving productivity,
tailoring services according to personal preferences, cultivating
creativity and breakthroughs, and promoting industrial progress.
However, on the other hand, these are countless inherent potential
risks associated with AI systems. Empirical research emphasizes
the potential capacity of AI systems to pose a threat to global
security (Turchin and Denkenberger, 2020; Ji et al., 2024). For
instance, the initial iterations of the GPT-4 model, as identified
by OpenAI, exhibited a series of dangerous behaviors, including
spreading misinformation, manipulating public emotions, and
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FIGURE 6

Visualization of the 3D mesh structure of protein surfaces. The first line depicts the original folding of the protein 5EOY, visualized using PyMOL. The
second line illustrates the modeling of the 5EOY surface utilizing three-dimensional (3D) mesh, which encompasses abundant geometric information
crucial for deriving an effective protein characterization. From left to right in the second line, the mesh resolution progressively increases,
accompanied by an increasing number of vertices in the 3D mesh. The different colors in the mesh represent different surface features. In
AIGC-related tasks, such as drug design and the prediction of compound-protein binding pockets, this visualization method and underlying
representation techniques demonstrate commendable robustness and interpretability.

even formulating novel biochemical substances (OpenAI, 2023a).
Furthermore, investigations by Urbina et al. (2022) emphasize the
potential health risks posed by AI systems in domains such as drug
discovery and synthetic biology. The AIGC models tailored for
drug design have generated an astonishing 40,000 toxic molecules,
whose synthesis and introduction into the human body could
potentially trigger significant disasters.

In addition, artificial intelligence has also raised issues such
as employment and economic inequality, privacy breaches and
security risks, algorithmic bias and discrimination, and ethical
concerns (Taddeo and Floridi, 2018; Jobin et al., 2019; Floridi
and Cowls, 2019). In the absence of adequate regulation and
governance, artificial intelligence systems have the potential to pose
catastrophic risks to humanity, that may even endanger human
survival (Yu et al., 2018). We must maintain a profound sense of
responsibility toward AI alignment. Here are several strategies for
integrating human values:

• Technology Integration: The task of AI developers and
researchers is to consider AI alignment issues right from
the beginning of AI system design. This requires careful
design of artificial intelligence algorithms, models, and
training protocols, with a focus on prioritizing security,
transparency, and consistency with human values. Here are
some examples of how human values can be applied in
AI design, which will help to bridge theory with practice.
For instance, fairness can be applied to AI-driven drug
discovery by incorporating fairness metrics to mitigate bias

in molecular property prediction tasks, thereby reducing
potential biases generated by imbalanced training data (Chen
et al., 2024; Salmi et al., 2024). Transparency may be
achieved by employing interpretable graph neural networks
or attention mechanisms in candidate drug design, which
allow researchers and clinicians to understand how candidate
molecules are prioritized (Li et al., 2021b; Fang et al., 2023).
Accountability can be strengthened through the integration
of bias detection and monitoring protocols during model
training and validation, which ensures that systematic errors
are identified early and addressed (Antonluk et al., 2025;
Liu et al., 2024). Together, these practices demonstrate how
to embed human values into the workflow of artificial
intelligence, that enables drug discovery systems to be not
only technically effective but also ethically aligned and
socially responsible.

• Policy Regulation: Governments play a crucial role in
formulating and managing the regulations for the
development and deployment of artificial intelligence.
By developong responsible AI policies, guidelines, ethical
frameworks, interdisciplinary collaboration and ethical
oversight and accountability, we ensure that artificial
intelligence systems uphold human values and adhere to
ethical standards. For example, the European Union’s AI Act
proposes a comprehensive legal framework that classifies AI
applications based on risk and mandates requirements such
as transparency, human oversight, and accountability for
high-risk systems, which include applications in healthcare
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(European Commission, 2021). Similarly, the U.S. Food
and Drug Administration (FDA) has released guidelines on
AI/ML-based Software as a Medical Device (SaMD), which
emphasize continuous learning, performance monitoring,
and transparency to ensure patient safety and ethical
compliance (U.S. Food and Drug Administration, 2021).
These measures demonstrate how regulatory measures can
effectively safeguard the fairness, reliability, and societal trust
in the application of AI for drug discovery.

• Public Engagement: Collaboration on a global scale is crucial
for raising public awareness about the challenges and impacts
of AI alignment. It can facilitate mutual supervision and
ensures that different perspectives are taken into account
throughout the alignment process by encouraging public
participation in discussions on artificial intelligence ethics.
Global cooperation and public consultation are crucial for
ensuring AI alignment in reflecting different perspectives and
social values. The OECD Principles on Artificial Intelligence
and other international initiatives provide examples of how
multi stakeholder governance can promote responsible AI
practices (OECD Legal Instruments, 2019). Similarly, the
European Union’s Artificial Intelligence Act explains how
transparent participation mechanisms can incorporate public
opinion into policy frameworks (European Commission,
2021). The participatory design approaches further emphasize
that involving end-users and affected communities in the early
stages of the process can enhance inclusivity and legitimacy
(Vines et al., 2013).

4 Global developments in AI
alignment for drug discovery

Countries have made certain progress and achievements in
aligning AI with the field of drug discovery. The United States
has always been at the forefront of drug discovery, with its AI
aligned strategies mainly focused on funding research, policy-
making, and regulation. For example, the National Institutes of
Health (NIH) and the Food and Drug Administration (FDA) have
funded many AI projects for drug discovery and developed relevant
policy guidance (Uddin et al., 2025; National Institutes of Health
(NIH), 2023). In addition, some large pharmaceutical companies
in the United States, including Pfizer and Merck, are actively
exploring the application of AI in drug discovery (XtalPi, 2025;
Merck, 2023). The Chinese government regards healthcare as one
of the important development areas and promotes the development
of AI in the field of drug discovery through funding research
projects, formulating policies, and strengthening international
cooperation. Recently, China has proposed the concept of “new
quality productive forces”, which are advanced productive forces
led by innovation and in line with the new development concept,
ultimately achieving harmonious coexistence between humans and
nature (The Central People’s Government of the People’s Republic
of China, 2024). The European Commission has funded many
AI projects for drug discovery through institutions such as the
European Innovation Commission, and has proposed strategic

goals to promote pharmaceutical innovation and drug discovery
(European Innovation Council, 2022). Other countries, such as
Canada, the United Kingdom, Germany, etc., have also conducted
some research and practice on AI alignment in the field of
drug discovery. Some research institutions and pharmaceutical
companies are also actively exploring the application of AI in
drug discovery (UK Biobank, 2025). In contrast, the United
States emphasizes regulatory leadership and industry adoption,
while China emphasizes state driven innovation and integration
into broader socio-economic strategies, and the European Union
prioritizes cross-border cooperation and ethical governance
frameworks. These different methods have demonstrated their
respective advantages (Blanco-González et al., 2023). Future
research and policies should integrate the effectiveness of these
different strategies and promote global cooperation to address
ethical and practical challenges, which will enable responsible and
influential artificial intelligence to play a role in drug discovery.

5 Conclusion

Drawing on insights from the fields of computer science, and
pharmacology, the paper explores the potential benefits of human-
centered AI alignment in drug discovery, such as enhanced safety,
effectiveness, and accessibility of pharmaceutical interventions. By
prioritizing human values and societal well-being, AI-driven drug
discovery programs can better meet the needs and preferences
of patients, clinicians, and other stakeholders. Subsequently, the
paper focuses on the challenges faced by artificial intelligence
alignment and measures to address these challenges, incorporating
human values into the design and implementation of drug
discovery. AI alignment not only emphasizes the integration of
ethical principles, stakeholder engagement, and interdisciplinary
collaboration throughout the entire AI development lifecycle,
but also recommends the use of robustness, transparent and
interpretable AI models which incorporate different perspectives
in algorithmic decision-making, and establish sustained ethical
oversight and accountability mechanisms.

Looking ahead, we should conduct further research on how to
achieve deep coupling between artificial intelligence and human
values throughout the entire drug discovery process. On the one
hand, it is necessary to explore new interdisciplinary collaboration
models that integrate ethics, clinical medicine, pharmacology,
and artificial intelligence algorithm research more closely to
promote the integration and innovation of interdisciplinary
knowledge. On the other hand, we should strengthen research
on the interpretability and causal inference ability of artificial
intelligence models, which not only provide efficient prediction
results, but also provide traceable scientific basis for drug
mechanism research and clinical decision-making. In addition, we
should also focus on studying issues of fairness and universality,
ensuring that artificial intelligence systems can maintain stable
performance and fair results when facing different populations,
disease types, and medical environments. At the practical level,
it is recommended to establish a long-term ethical supervision
and evaluation framework, which combined with dynamic
regulatory mechanisms and open science principles, to ensure
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the safe, controllable, and transparent development of artificial
intelligence technology. Through continuous exploration in the
above directions, it is expected to promote the landing and
popularization of human-centered artificial intelligence in drug
discovery, thereby promoting the sustainable development of the
healthcare industry.

In conclusion, we advocates for a paradigm shift toward
human-centered AI alignment in drug discovery. Researchers,
policy makers, and industry stakeholders should prioritize ethical
considerations and societal impact when developing and applying
AI systems. Only in this way can the application of artificial
intelligence in biomedical research truly serve human well-being.
By aligning AI with human values, it can not only play a huge role in
promoting the development of healthcare, but also ensure that the
benefits brought by technology can be fairly distributed. This can
also make the entire process more ethical. All in all, AI alignment is
all your need for future drug discovery.
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