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Background: Prediction of infection status is critical for effective disease 
management and timely intervention. Traditional diagnostic methods for Severe 
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) are challenged by 
varying sensitivities and specificities, necessitating the evaluation of advanced 
statistical approaches. This study evaluated the predictive performance of 
frequentist logistic regression, Bayesian logistic regression, and a random forest 
classifier using clinical and demographic predictors to predict PCR positivity.
Methodology: A total of 950 participants were analyzed using three modeling 
approaches. To address class imbalance, the data were balanced using the 
Synthetic Minority Oversampling Technique (SMOTE) before training the random 
forest classifier. Predictors include IgG serostatus, travel history (international and 
domestic), self-reported symptoms (such as loss of smell, fatigue, sore throat), 
sex, and age. Three models were developed: (1) frequentist logistic regression; 
(2) Bayesian logistic regression with a moderately informative Normal (mean = 1, 
SD = 2) prior and a weakly informative Cauchy (0, 2.5) prior; and (3) machine 
learning (ML) using a random forest classifier. Missing data were minimal (<2%) 
and handled through imputation, with sensitivity analyses confirming no material 
impact on model performance. Performance was evaluated using odds ratios, 
posterior means with credible intervals, and area under the ROC curve (AUC).
Results: Of the 950 participants, 74.8% tested positive for SARS-CoV-2. The 
frequentist logistic regression identified recent international travel (Odds 
Ratio = 4.8), loss of smell (OR = 2.3), and domestic travel (OR = 1.5) as the 
strongest predictors of PCR positivity. The Bayesian model yielded similar 
posterior estimates, confirming the robustness of these associations across prior 
assumptions. The random forest classifier achieved the highest discriminative 
performance (AUC = 0.947–0.963). Notably, age and sex were not significant 
in the regression models but emerged as influential predictors in the random 
forest model, suggesting possible nonlinear or interaction effects.
Conclusion: The machine learning approach (random forest) outperformed the 
logistic regression models in predictive accuracy. Bayesian regression confirmed 
the reliability of key predictors and allowed quantification of uncertainty. These 
findings highlight that simple, routinely collected symptom and exposure data 
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can support rapid, resource-conscious screening for SARS-CoV-2, particularly 
when laboratory testing capacity is limited.

KEYWORDS

SARS-CoV-2, PCR testing, logistic regression, Bayesian analysis, random forest, 
predictive modeling

1 Introduction

The unprecedented global pandemic precipitated by SARS-CoV-2 
has highlighted the essential role of predictive modeling in public 
health, particularly in informing interventions and resource allocation. 
Accurate prediction of PCR test positivity for SARS-CoV-2 is critical 
as it enables authorities to implement timely measures aimed at 
curbing virus transmission and managing healthcare resources 
effectively. Among numerous statistical methodologies employed for 
binary outcome prediction, logistic regression stands out as a 
conventional yet powerful tool. Within this framework, both 
frequentist and Bayesian approaches have been widely utilized, each 
offering distinct perspectives on data analysis (Hosmer et al., 2013; 
Gelman et al., 2013; Ihenetu et al., 2024).

Coronavirus disease 2019 (COVID-19) diagnosis relies on nucleic 
acid amplification tests, particularly RT-PCR testing for SARS-CoV-2, 
which is widely regarded as the clinical reference standard. However, 
RT-PCR has practical limitations; it requires laboratory infrastructure, 
and results often take hours or days to return (Zoabi et al., 2021; 
Kucirka et al., 2020; Crozier et al., 2021; Wertenauer et al., 2023). In 
resource-limited settings or peak surges, PCR tests may be scarce or 
backlogged, delaying identification of infectious individuals. 
Furthermore, RT-PCR sensitivity varies significantly depending on 
the stage of infection. Sensitivity is lower during the pre-symptomatic 
phase, and false-negative results can occur due to suboptimal sampling 
technique or timing (Zoabi et al., 2021; Kucirka et al., 2020; Jindal et 
al., 2021; Kanji et al., 2021). These temporal and procedural limitations 
introduce potential misclassification bias when using PCR as the 
outcome variable in predictive modeling studies (Kucirka et al., 2020).

Given these constraints, our study does not assume PCR to be a 
flawless gold standard, but instead uses it as the best available diagnostic 
benchmark during the time of data collection, integrating clinical and 
laboratory findings when appropriate. The aim of our study is to 
augment rather than replace PCR testing by developing a predictive 
model that can rapidly flag likely positive cases. Such a tool could be used 
for preliminary screening and triage while awaiting confirmatory PCR, 
especially when immediate PCR testing is unavailable. We recognize 

PCR’s limitations and aim to create a model that complements its use by 
offering rapid, preliminary risk estimation based on clinical data.

Prior research during the pandemic has explored symptom-based 
screening and risk scores to prioritize testing when capacity is limited 
(Zhang et al., 2021; Callahan et al., 2020; Lan et al., 2020). These 
approaches leverage readily available clinical predictors to identify 
high-risk patients, helping to bridge the gap in settings of limited 
access or delayed PCR results (Callahan et al., 2020; Wikramaratna et 
al., 2020; Vandenberg et al., 2020; Baik et al., 2022).

Several studies have reported that combinations of symptoms, 
exposures, and basic demographics can predict PCR positivity with 
reasonable accuracy (Elliott et al., 2021; Menni et al., 2020; Elimian et 
al., 2021; Aung et al., 2024). For example, models asking about key 
symptoms and risk factors (such as recent exposures or travel) have 
shown area-under-curve values around 0.8–0.9 for discriminating 
positive vs. negative cases (Aung et al., 2024; Quer et al., 2020). This 
suggests that early clinical information can be harnessed to assist PCR 
testing by indicating which patients are most likely to be infected.

Building on this concept, our study compares three modeling 
approaches for predicting SARS-CoV-2 PCR results: a traditional 
frequentist logistic regression, a Bayesian logistic regression, and a 
machine learning model (random forest). By comparing these 
approaches, we evaluate whether advanced methods (Bayesian 
inference or non-linear machine learning) offer any gains in 
predictive performance or practical insights over the standard 
logistic model. We specifically focus on a cohort of unvaccinated 
individuals undergoing PCR testing, using predictors such as self-
reported symptoms and recent travel history as predictors. While 
this enhances internal validity, it restricts external applicability to 
vaccinated or previously infected populations; a limitation we 
explicitly address.

The goal is to determine if an interpretable predictive model could 
serve as an early warning tool to flag likely positive cases for isolation 
or expedited confirmatory testing, thereby augmenting PCR-based 
diagnosis in scenarios of limited testing availability or slow 
turnaround times.

2 Materials and methods

2.1 Study design

This cross-sectional study was conducted to compare the 
performance of frequentist, Bayesian, and ML logistic regression 
models in predicting SARS-CoV-2 PCR positivity. Data were collected 
from 950 participants at the Federal University Teaching Hospital in 
Owerri, Imo State, Nigeria, between December 2020 and October 
2024, encompassing the peak period of the COVID-19 pandemic. The 
structured questionnaire used for data collection is available as a 
Supplementary material S1.

Abbreviatios: SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2; 

PCR, Polymerase chain reaction; ML, Machine learning; rRT-PCR, Real-time reverse 

transcription polymerase chain reaction; IgG, Immunoglobulin G; AIC, Akaike 

information criterion; VIF, Variance inflation factor; ROC, Receiver operating 

characteristic; AUC, Area under the curve; OOB, Out-Of-Bag (used in model 

accuracy evaluation); R2, R-squared (coefficient of determination); R̂, Gelman-

Rubin Statistic (for assessing Bayesian convergence); F1, F1-Score (harmonic mean 

of precision & recall); JASP, Jeffrey’s amazing statistics program; PIPs, Posterior 

inclusion probabilities; OR, Odd ratio; SMOTE, Synthetic minority oversampling 

technique; COVID-19, Coronavirus disease 2019.
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2.2 Participants criteria

Individuals presenting for SARS-CoV-2 testing were recruited. 
Inclusion criteria were: age ≥18 years and presence of symptoms 
consistent with COVID-19. Individuals with a confirmed prior 
COVID-19 diagnosis or those who received a COVID-19 vaccination 
within 2 months prior to enrollment were excluded to minimize biases 
arising from pre-existing immunity or vaccine-induced serological 
responses (Yilmaz & Çelik, 2021). This exclusion criterion focused the 
analysis on a cohort of de novo infections, avoiding confounding due 
to immunity status. All participants provided written 
informed consent.

2.3 Data collection

Trained healthcare personnel administered a structured 
questionnaire capturing demographic information (age, sex, and 
marital status), clinical symptoms (fever, cough, sore throat, anosmia, 
and gastrointestinal symptoms), recent travel history, and exposure to 
confirmed SARS-CoV-2 cases. Recent travel history was assessed by 
asking: “Have you traveled outside the country or to a high-risk region 
in the past 30 days?” Additionally, data on pre-existing comorbidities, 
including respiratory diseases, were obtained to adjust for confounding 
variables in the modeling process.

2.4 Laboratory testing

Nasopharyngeal swabs were obtained from all participants for 
SARS-CoV-2 detection using real-time reverse transcription-
polymerase chain reaction (rRT-PCR), which is regarded as the gold 
standard for COVID-19 diagnostics (Dybowski, 2020). In addition, 
immunological assays were employed to detect IgG antibodies against 
SARS-CoV-2.

2.5 Data preprocessing

Before analysis, the dataset underwent rigorous preprocessing to 
ensure data quality and integrity. In practice, missing data were 
minimal (each variable <2%), and were imputed using median values 
for continuous variables and the mode for categorical variables 
(Rohmah et al., 2023). To ensure the imputation did not bias results, 
we conducted a sensitivity analysis comparing model outcomes with 
and without the imputed data; the key findings remained unchanged, 
indicating that our imputation approach did not significantly affect 
the results. Continuous variables were standardized to enhance model 
convergence and interpretability; in fact, age was the only continuous 
predictor and it was standardized (z-score transformed). Outlier 
detection was performed using statistical methods (e.g., Z-scores, 
interquartile range) and visual inspection (e.g., boxplots), with 
corrections made to avoid model distortion. No extreme outliers 
necessitating removal were found; no data points were excluded, and 
any mildly outlying values were examined and left as-is or winsorized 
if needed, as they did not unduly influence the model as histograms 
of continuous variables (e.g., age) confirmed these were approximately 
normally distributed. To address the marked class imbalance (74.8% 

PCR-positive vs. 25.2% PCR-negative), we employed SMOTE using 
the “DMwR” package in R. This procedure oversampled the minority 
(PCR-negative) class to achieve a 1:1 ratio prior to model training. 
Without this balancing step, preliminary models overwhelmingly 
predicted the majority class (PCR-positive) for most cases, resulting 
in near-zero sensitivity for PCR-negative cases. Applying SMOTE 
improved the classifier’s ability to detect the minority class, as 
evidenced by substantially higher recall and balanced accuracy in the 
results. Model evaluation emphasized balanced accuracy, precision, 
recall, and F1-score over raw accuracy to reflect true performance.

Imputation sensitivity: To assess the impact of imputation, we 
repeated all model fits using complete-case data (listwise deletion) and 
compared performance metrics to those from the imputed dataset. 
Results were highly consistent (AUC Δ ≤ 0.008; Sensitivity Δ ≤ 0.012; 
Balanced Accuracy Δ ≤ 0.013), and model ranking was unchanged 
(Supplementary Table S3), indicating that imputation did not 
materially affect predictive findings.

2.6 Statistical analysis

2.6.1 Variable selection
Variables were selected based on clinical relevance, statistical 

significance, and insights from existing literature to ensure the 
inclusion of predictors supported by empirical evidence and 
theoretical justification (Yilmaz & Çelik, 2021).

2.6.2 Frequentist logistic regression
A frequentist logistic regression model was employed to evaluate 

the association between SARS-CoV-2 PCR positivity and various 
clinical and demographic predictors. This model estimates the 
likelihood of a positive test result based on observed variables, derived 
from data without integrating prior distributions. Predictor variables 
were selected based on their clinical significance, statistical 
significance in univariate analysis (p-value < 0.25), and previous 
findings in the literature (De Smedt et al., 2023; Lukman et al., 2021). 
A backward stepwise elimination technique refined the model, guided 
by the Akaike Information Criterion (AIC) for optimal fit. 
Multicollinearity was assessed using Variance Inflation Factors (VIF), 
with variables exhibiting high VIF values reviewed and managed to 
mitigate redundancy (Ihenetu et al., 2024; Tschoellitsch et al., 2020). 
Outliers and influential observations were identified by examining 
standardized residuals, leverage statistics, and Cook’s distance, with 
necessary adjustments made to minimize their influence. The 
performance of the frequentist model was evaluated using the area 
under the ROC to gauge predictive accuracy, supplemented by 
classification tables, sensitivity, specificity, and goodness-of-fit tests for 
comprehensive model assessment (Couronné et al., 2018). Predictors 
that fit well into the classic regression were included into the Bayesian 
model. Additionally, we evaluated a potential non-linear effect of age 
by including a quadratic age term in preliminary models; this term 
was not significant (p > 0.3) and did not improve model fit, so age was 
retained as a linear predictor.

2.6.3 Bayesian logistic regression
Bayesian logistic regression was employed to estimate the 

probability of SARS-CoV-2 PCR positivity while incorporating prior 
distributions for the regression coefficients. Two models were specified 
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to evaluate the influence of different prior assumptions. In the primary 
model (Model 1), a moderately informative prior was defined using a 
normal distribution with mean = 1 and standard deviation = 2, based 
on previous epidemiological applications (Ihenetu et al., 2024; Lee, 
2025; Gelman et al., 2008; Vehtari, 2025; Fleitas et al., 2021). This 
configuration provided slight regularization and a mild positive bias, 
allowing prior information to influence estimates without dominating 
the observed data. To assess the robustness of inferences, a prior 
sensitivity analysis (Model 2) was conducted using a weakly 
informative Cauchy prior centered at zero with a scale of 2.5, as 
recommended by Gelman et al. (2008). This prior is commonly used 
in Bayesian logistic regression due to its flexibility and ability to down-
weight extreme coefficient values. Both models were implemented 
using the “brms” package in R, leveraging Hamiltonian Monte Carlo 
sampling. Convergence was assessed using trace plots and the 
Gelman-Rubin statistic (R̂), following standard Bayesian diagnostic 
criteria. Posterior estimates were summarized using posterior medians 
and 95% credible intervals (CrI).

2.6.4 Machine learning-based prediction and 
model interpretation

2.6.4.1 Data preprocessing and class balancing
The dataset was preprocessed to ensure consistent variable 

encoding. All categorical predictors were converted to factors, and 
one-hot encoding was applied where appropriate. Before balancing, 
the model exhibited near-zero sensitivity for PCR-negative cases due 
to the 3:1 class imbalance; this was corrected after SMOTE (Table 1; 
Supplementary Table S3). To address class imbalance (711 
PCR-positive vs. 239 PCR-negative cases), SMOTE was applied using 
the “themis” package in R (Table 1) (Ramentol et al., 2011). (Before 
SMOTE, the dataset contained 711 PCR-positive and 239 
PCR-negative cases. After balancing, both classes had 711 
observations, ensuring equal representation and reducing bias in 
model training). Initial model training on the imbalanced dataset 
(74.8% PCR-positive vs. 25.2% PCR-negative) resulted in very low 
sensitivity for the negative class, often approaching zero. This occurred 
because the classifiers, particularly the random forest, optimized 

overall accuracy by favoring the dominant class. In practice, the 
models learned to classify most observations as positive, minimizing 
false negatives at the expense of missing many true negatives. This 
imbalance-driven bias justified applying SMOTE to synthetically 
increase minority-class examples and rebalances the training data 
prior to model fitting. Because SMOTE addresses class imbalance 
during model training, it was applied only to the Random Forest 
classifier. Logistic and Bayesian regression were evaluated under the 
original class distribution (no SMOTE).

2.6.4.2 Model development and cross-validation
A random forest classifier was developed using the “ranger” 

engine within the “tidymodels” framework in R. Model training and 
evaluation were based on 5-fold cross-validation applied to the 
SMOTE-adjusted dataset. Additionally, 20% of the data were set aside 
as a hold-out test set to validate the final model’s performance on 
unseen cases.

Model performance was assessed using standard classification 
metrics derived from the confusion matrix, including accuracy, 
balanced accuracy, sensitivity (recall), specificity, F1 score, and the 
area under the ROC curve (AUC).

Performance metrics were calculated as follows:
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ROC AUC values were obtained using the average of the 
sensitivity-specificity trade-offs across thresholds. The confusion 
matrix terms are defined as:

	•	 TP (True Positives) = correctly identified PCR-positive cases.
	•	 TN (True Negatives) = correctly identified PCR-negative cases.
	•	 FP (False Positives) = PCR-negative cases incorrectly predicted 

as positive.
	•	 FN (False Negatives) = PCR-positive cases incorrectly predicted 

as negative.

All performance metrics were computed using the test set 
predictions for both Random Forest models (with and without travel 
history), and confusion matrix counts (TP, FP, TN, FN) were used to 
verify metric consistency. To assess model robustness, a second 
random forest model was trained after removing international and 
domestic travel history from the predictor set, allowing direct 
comparison of predictive performance with and without travel 
variables (Ramentol et al., 2011).

2.6.4.3 Model explainability using SHAP values
To enhance model interpretability, SHAP (SHapley Additive 

exPlanations) values were computed using the “iml” package. SHAP 

TABLE 1  Comparative performance of random forest models with and 
without travel history.

Metric With travel (mean 
± SE)

Without travel 
(mean ± SE)

Accuracy 0.786 ± 0.0129 0.812 ± 0.0064

Balanced accuracy 0.648 ± 0.0185 0.813 ± 0.0061

F1 score 0.463 ± 0.0356 0.790 ± 0.0071

Recall (sensitivity) 0.368 ± 0.0321 0.708 ± 0.0156

Specificity 0.927 ± 0.0090 0.917 ± 0.0168

ROC AUC 0.963 0.947

True positives 262 504

False positives 17 20

True negatives 222 219

False negatives 449 207

Metrics were estimated using 5-fold cross-validation on SMOTE-balanced data. Confusion 
matrix values are totals across folds out of 711 actual positives and 239 actual negatives.
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summary plots were generated to visualize the relative contribution of 
each predictor to the random forest model’s output. Two SHAP 
analyses were performed; one using all predictors, and another 
excluding travel-related variables; to highlight differences in predictor 
importance across models (Kivrak et al., 2024).

2.6.4.4 Model comparison and sensitivity analysis
Comparative evaluation of the random forest models; with and 

without travel-related predictors; was performed using 5-fold cross-
validated metrics, confusion matrices, and ROC curves. This analysis 
assessed the effect of excluding travel history (international and 
domestic) on model performance. The models were trained on the 
same SMOTE-adjusted dataset to ensure fair comparison of predictive 
power between full and reduced variable sets.

2.7 Software and computational tools

All statistical analyses were conducted using RStudio (v4.5.1) and 
JASP (v0.19.3). Bayesian logistic regression models were implemented 
entirely in R using the “brms” package. Classical logistic regression 
was performed in JASP and independently confirmed in R for 
consistency. Machine learning procedures, including SMOTE 
balancing and Random Forest modeling, were executed using the 
“tidymodels,” “ranger,” “themis,” and “iml” packages in R. All figures 
were generated in JASP or R, as appropriate.

2.8 Ethical considerations

Ethical approval was obtained from the Institutional Review 
Board of the Federal University Teaching Hospital, Owerri. Informed 
consent was secured from all participants prior to data collection and 
PCR testing. All data were anonymized, and confidentiality was 
maintained throughout the study in compliance with ethical research 
standards (De Smedt et al., 2023).

3 Results

Table 2 presents the descriptive characteristics of the study 
population stratified by PCR status. The mean age was similar between 
PCR-positive (36.8 years) and PCR-negative (38.2 years) participants. 
Females represented approximately two-thirds of both groups. Most 
participants were married, but widowed individuals were more 
common among PCR-negative cases (6.3%) compared to positives 
(2.3%). Symptom profiles differed between groups. Fatigue was more 
common among PCR-negative participants (90.8%) than PCR-positive 
(84.4%), while loss of smell showed a stronger association with 
positivity—reported in 85.5% of PCR-positive individuals versus 
71.5% of PCR-negatives. Other symptoms like abdominal pain, cough, 
and runny nose were frequent in both groups but slightly more 
prevalent in PCR-positive cases. Travel history was notably different. 
A larger proportion of PCR-positive individuals had recent 
international travel (92.4%) compared to PCR-negative (71.5%). A 
similar trend was seen for domestic travel (69.1% vs. 59.4%). IgG 
seropositivity was more frequent in PCR-positive participants (26.4%) 

than PCR-negative (20.1%). History of respiratory disease was rare 
and similar across both groups.

A supplementary file has been added to summarize the rate of 
missingness for each variable. All variables had less than 2% missing 
data. Imputation methods and summary counts are explicitly 
presented in Supplementary Table S2.

The logistic regression model including the selected predictors 
(Model 1) significantly improved the fit compared to the null model 
(Δχ2 = 164.352, p < 0.001), as shown in Table 3. The model explained 
a modest proportion of the variance in PCR test positivity (McFadden 
R2 = 0.153; Nagelkerke R2 = 0.235), consistent with expectations for 
clinical prediction models.

TABLE 2  Descriptive characteristics of the study population by PCR test 
result. (PCR-positive vs. PCR-negative groups).

Covariate Category PCR 
positive
(N = 711) 

(%)

PCR 
negative
(N = 239) 

(%)

Age Mean (± SD) 36.8 ± 15.3 38.2 ± 15.7

PCR test result Positive (%) 711 (100%) —

Negative (%) — 239 (100%)

IgG serostatus Positive 188 (26.4%) 48 (20.1%)

Negative 523 (73.6%) 191 (79.9%)

Sex Female 466 (65.5%) 157 (65.7%)

Male 245 (34.5%) 82 (34.3%)

Marital status Married 440 (61.9%) 161 (67.4%)

Single 255 (35.9%) 63 (26.4%)

Widow/widower 16 (2.3%) 15 (6.3%)

Fatigue Yes 600 (84.4%) 217 (90.8%)

No 111 (15.6%) 22 (9.2%)

Loss of smell Yes 608 (85.5%) 171 (71.5%)

No 103 (14.5%) 68 (28.5%)

Runny nose Yes 573 (80.6%) 178 (74.5%)

No 138 (19.4%) 61 (25.5%)

Shortness of 

breath

Yes 586 (82.4%) 197 (82.4%)

No 125 (17.6%) 42 (17.6%)

Abdominal pain Yes 535 (75.2%) 155 (64.9%)

No 176 (24.8%) 84 (35.1%)

Respiratory 

disease history

Yes 28 (3.9%) 10 (4.2%)

No 683 (96.1%) 229 (95.8%)

Cough Yes 522 (73.4%) 181 (75.7%)

No 189 (26.6%) 58 (24.3%)

Sore throat Yes 570 (80.2%) 188 (78.7%)

No 141 (19.8%) 51 (21.3%)

Domestic travel 

(30 days)

Yes 491 (69.1%) 142 (59.4%)

No 220 (30.9%) 97 (40.6%)

International 

travel (30 days)

Yes 657 (92.4%) 171 (71.5%)

No 54 (7.6%) 68 (28.5%)

All percentages are calculated within each PCR outcome group.
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Table 4 shows the final stepwise logistic regression model 
estimates. Several variables emerged as significant predictors of PCR 
positivity. Reporting fatigue was associated with decreased odds of a 
positive PCR result (coef = −0.617, p = 0.021, 95% CI: −1.142 to 
−0.092). Conversely, reporting loss of smell was associated with 
higher odds of testing positive (coef = 0.849, p = 0.026, 95% CI: 0.099 
to 1.599). Participants with abdominal pain were also more likely to 
test positive (coef = 0.486, p = 0.030, 95% CI: 0.048 to 0.924). 
Domestic travel in the past 30 days was a significant predictor 
(coef = 0.419, p = 0.025, 95% CI: 0.054 to 0.785). Notably, recent 
international travel was the strongest predictor in the model 
(coef = 1.566, p < 0.001, 95% CI: 1.080 to 2.052).

The frequentist logistic regression model achieved an overall 
accuracy of 0.797 and an AUC of 0.728, reflecting moderate 
discriminative ability. Sensitivity was high (0.961), but specificity was 
lower (0.310), indicating strong case detection but limited ability to 
rule out negatives. Detailed performance metrics are shown in Table 5, 
and the AUC is visualized in Figure 1 alongside the Bayesian and 
random forest models.

Figure 2 displays the distribution of squared Pearson residuals 
from the frequentist logistic regression model. Most residuals are 
concentrated near the lower end of the scale, with no discernible 
outliers or influential data points. The smooth trend line remains close 
to zero across predicted probabilities, indicating no major departures 
from model assumptions and an adequate overall fit.

The Bayesian analysis largely corroborated the frequentist 
results. Table 6 summarizes the posterior estimates from Model 1 
(with moderately informative Normal priors). Consistent with the 
classical model, loss of smell (posterior mean = 0.85; 95% CrI: 
0.08 to 1.61), abdominal pain (0.49; 95% CrI: 0.04 to 0.91), 
domestic travel (0.42; 95% CrI: 0.10 to 0.77), and international 
travel (1.61; 95% CrI: 1.14 to 2.07) were significant positive 
predictors of SARS-CoV-2 positivity. Fatigue was negatively 
associated with PCR positivity (−0.59; 95% CrI: −1.15 to −0.07). 

TABLE 3  Frequentist logistic regression model summary for predicting SARS-CoV-2 PCR positivity.

Model Deviance AIC BIC df Δχ2 p McFadden 
R2

Nagelkerke 
R2

Tjur 
R2

Cox & 
snell 
R2

M₀ 1071.720 1073.720 1078.576 949 — — — — — —

M₁ 907.368 939.368 1017.071 934 164.352 <0.001 0.153 0.235 0.191 0.159

TABLE 4  Stepwise logistic regression model for predicting SARS-CoV-2 PCR positivity in the model selection process.

Predictor Estimate SE Wald
χ2

df p 95% CI

Lower Upper

M₀ (Intercept) 1.090 0.075 212.600 1 <0.001 0.944 1.237

M₁ (Intercept) −1.221 0.449 7.378 1 0.007 −2.101 −0.340

Fatigue (Yes) −0.617 0.268 5.298 1 0.021 −1.142 −0.092

Loss of smell (Yes) 0.849 0.383 4.924 1 0.026 0.099 1.599

Abdominal pain (Yes) 0.486 0.223 4.733 1 0.030 0.048 0.924

Domestic travel (Yes) 0.419 0.186 5.057 1 0.025 0.054 0.785

International travel 

(Yes)

1.566 0.248 39.845 1 <0.001 1.080 2.052

Table shows variables retained in the final stepwise logistic regression model. Other predictors were excluded during the selection process.

TABLE 5  Performance diagnostics of the frequentist logistic regression 
model.

Performance metric Value

Accuracy 0.797

AUC 0.728

Sensitivity 0.961

Specificity 0.310

Precision 0.805

FIGURE 1

ROC curves comparing predictive models for SARS-CoV-2 PCR 
positivity. The blue curve represents the frequentist logistic 
regression model (AUC = 0.73), the orange curve represents the 
random forest model including travel history (AUC = 0.963), and the 
green curve represents the random forest model excluding travel 
history (AUC = 0.947). Both axes range from 0.0 to 1.0.
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Predictors such as sex, age, sore throat, cough, and history of 
respiratory disease had 95% credible intervals that included zero, 
suggesting weak or uncertain associations. These Bayesian 
credible intervals (CrIs) reinforce which effects are credibly 
non-zero and mirror the confidence interval findings of the 
frequentist model. The use of a weakly informative Cauchy prior 
(Model 2) produced very similar results (e.g., international travel 
posterior = 1.60, 95% CrI: 1.11 to 2.10; loss of smell = 0.85, 95% 

CrI: 0.08 to 1.58; abdominal pain = 0.48, 95% CrI: 0.03 to 0.92; 
domestic travel = 0.42, 95% CrI: 0.09 to 0.77; fatigue = −0.61, 95% 
CrI: −1.13 to −0.09), indicating that our choice of prior did not 
materially affect the findings. All Markov chain diagnostics were 
satisfactory (R̂ = 1.00).

All candidate variables had posterior inclusion probabilities (PIPs) 
of approximately 1.0 in Model 1, indicating the model consistently 
included all predictors. Figure 3 shows the posterior coefficient 
estimates with 95% credible intervals (CrIs) for Model 1. Predictors 
whose CrIs do not cross zero are considered significant; as shown, 
international travel, domestic travel, loss of smell, and abdominal pain 
have CrIs entirely above zero, while age and sex have CrIs spanning 
zero (Figure 4).

To evaluate the robustness of findings to prior assumptions, a 
Bayesian logistic regression model was re-estimated using weakly 
informative Cauchy priors (center = 0, scale = 2.5) following Gelman 
et al. (2008). This sensitivity model yielded posterior estimates that 
were largely consistent with the primary model. Notably, international 
travel within the last 30 days (Estimate = 1.60, 95% CrI: 1.11 to 2.10), 
presence of loss of smell (Estimate = 0.85, 95% CrI: 0.08 to 1.58), 
abdominal pain (Estimate = 0.48, 95% CrI: 0.03 to 0.92), and domestic 
travel (Estimate = 0.42, 95% CrI: 0.09 to 0.77) were associated with 
increased odds of testing positive for SARS-CoV-2. Conversely, fatigue 
remained a credible protective factor (Estimate = −0.61, 95% CrI: 
−1.13 to −0.09). The 95% credible intervals for other predictors 
overlapped zero, indicating insufficient evidence for strong 
associations. All parameters demonstrated excellent convergence  
(R̂ = 1.00) and high effective sample sizes, confirming model stability 
and reliability. These results are presented in Table 7 below. All 
significant predictors in Model 2 were also identified in Model 1, 
reinforcing the stability of these effects across prior assumptions. Each 
had a posterior inclusion probability (PIP) of approximately 1.0, 
confirming their consistent importance across MCMC samples.

Figure 5 presents the posterior coefficient estimates with 95% 
credible intervals for Model 2 (Cauchy prior). Loss of smell (posterior 
median = 0.85, 95% CrI: 0.08–1.58), abdominal pain (0.48, 95% CrI: 
0.03–0.92), domestic travel (0.42, 95% CrI: 0.09–0.77), and 
international travel (1.60, 95% CrI: 1.11–2.10) had credible intervals 
that excluded zero, indicating strong positive associations with SARS-
CoV-2 PCR positivity. Fatigue and marital status (widow/widower) 
showed significant negative associations. All other predictors had wide 
credible intervals overlapping zero, suggesting weaker or uncertain 
effects. The pattern of significant predictors mirrors Model 1, 
confirming that key associations, particularly travel history and 
anosmia, are robust to different prior choices.

Table 8 compares the Bayesian logistic regression models using 
leave-one-out cross-validation (LOO-CV). Model 1 was fitted with 
moderately informative Normal priors, while Model 2 used weakly 
informative Cauchy priors. The estimated difference in expected log 
pointwise predictive density (elpd_diff) between the models was −0.1 
with a standard error of 0.2, indicating no meaningful difference in 
predictive performance. This negligible difference supports that key 
inferences remain stable even under different prior specifications. 
Although a few observations had high Pareto k values, moment-
matched LOO diagnostics confirmed stable performance, supporting 
the validity of the posterior inferences across both models.

To address the class imbalance (74.8% PCR + vs. 25.2% PCR-), 
SMOTE were applied. Before SMOTE, the dataset contained 711 

FIGURE 2

Squared Pearson residuals plot for the frequentist logistic regression 
model.

TABLE 6  Posterior summaries from Bayesian logistic regression model 1 
(moderately informative priors).

Coefficient Mean SD 95% CI 
Lower

95% CI 
Upper

1 (Intercept) −1.2977 0.4608 −2.2171 −0.3970

2 Age 0.0015 0.0067 −0.0117 0.0144

3 Sex (male) 0.2342 0.1827 −0.1219 0.5989

4 Marital_status1 

(single)

0.3129 0.2162 −0.1063 0.7441

5 Marital_status2 

(widow/

widower)*

−0.8371 0.4197 −1.6506 0.0128

6 Fatigue* −0.5915 0.2735 −1.1544 −0.0699

7 Sore_throat −0.2978 0.3701 −1.0415 0.3912

8 Loss_of_smell* 0.8544 0.3889 0.0841 1.6103

9 Runny_nose 0.3771 0.3572 −0.3197 1.0549

10 Cough −0.1341 0.2910 −0.7123 0.4365

11 Shortness_of_

breath

0.0614 0.3703 −0.6873 0.7833

12 Abdominal_pain* 0.4931 0.2230 0.0447 0.9144

13 Respiratory 

disease

−0.0581 0.4035 −0.8211 0.7439

14 Domestic travel* 0.4235 0.1715 0.1011 0.7661

15 International 

travel*

1.6074 0.2390 1.1375 2.0692

16 IgG (positive) 0.3766 0.2065 −0.0264 0.7917

*Indicates a 95% credible interval that does not include 0 (i.e., effect credibly different from 
zero).
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PCR-positive and 239 PCR-negative cases. After balancing, both 
classes had 711 observations, ensuring equal representation and 
reducing bias in model training. Figure 3 shows the SHAP predictor 
importance rankings from the Random Forest models. Panel A (blue 
bars) corresponds to the model including travel history, while Panel B 
(red bars) corresponds to the model excluding travel history. Bars 
represent mean absolute SHAP values, indicating the relative 
contribution of each predictor to the prediction of SARS-CoV-2 PCR 
positivity. In Panel A, recent international and domestic travels were 
the strongest predictors, followed by sex, abdominal pain, and IgG 
serostatus. Respiratory disease and sore throat contributed the least. 
In Panel B, after travel variables were removed, abdominal pain 
emerged as the most influential predictor, followed by sex, loss of 

smell, and IgG serostatus. Respiratory disease and sore throat 
remained low in importance. This pattern highlights how travel 
history strongly drives model predictions when included, whereas 
non-travel predictors (e.g., abdominal pain, anosmia, sex) become 
more dominant when travel data are not available.

Table 1 summarizes the comparative performance of random 
forest models trained with and without travel history. When travel 
variables were included, the model achieved 78.6% accuracy and a 
balanced accuracy of 64.8%. Specificity was high at 92.7%, meaning 
the model was effective at identifying PCR-negative individuals. 
However, sensitivity was low at 36.8%, indicating many PCR-positive 
cases were missed. The F1 score was 0.463, reflecting modest 
balance between precision and recall under travel-driven 

FIGURE 3

SHAP predictor importance from the random forest models.

FIGURE 4

Posterior estimates with 95% credible intervals (Model 1). Predictors with intervals that do not include zero are strongly associated with PCR positivity:
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predictions. After excluding international and domestic travel 
predictors, performance improved across several dimensions. 
Balanced accuracy rose to 81.3%, and sensitivity nearly doubled to 
70.8%, suggesting the model became substantially better at 
identifying true positives. The F1 score increased to 0.790, reflecting 
stronger alignment between precision and recall. Accuracy also 
improved modestly to 81.2%, and specificity remained high (91.7%). 

TABLE 7  Posterior estimates from Model 2 (Bayesian logistic regression with Cauchy priors).

Coefficient Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

1 Intercept −1.2588 0.4521 −2.1393 −0.3848 1.0006 5609.457 3349.905

2 Age 0.0016 0.0067 −0.0115 0.0148 1.0002 5117.734 3790.557

3 Sex (male) 0.2281 0.1890 −0.1356 0.6026 1.0026 7309.019 2884.834

4 Marital_status1 

(single)

0.3035 0.2142 −0.1229 0.7228 1.0008 5547.912 3163.030

5 Marital_status2 

(widow/widower)*

−0.8920 0.4376 −1.7554 −0.0231 1.0004 6040.356 2866.929

6 Fatigue* −0.6078 0.2686 −1.1326 −0.0883 1.0011 6213.057 2802.454

7 Sore_throat −0.2877 0.3833 −1.0503 0.4484 1.0017 5913.666 2851.732

8 Loss_of_smell* 0.8477 0.3823 0.0763 1.5838 1.0012 5669.066 2923.263

9 Runny_nose 0.3675 0.3538 −0.3339 1.0462 0.9998 5226.675 3053.602

10 Cough −0.1364 0.2901 −0.7087 0.4227 1.0029 6066.075 2985.689

11 Shortness_of_breath 0.0618 0.3647 −0.6581 0.7893 0.9999 5347.596 2839.107

12 Abdominal_pain* 0.4835 0.2225 0.0341 0.9173 1.0004 7313.578 2766.120

13 respiratory_disease −0.1018 0.4146 −0.8954 0.7330 1.0011 6851.385 2645.507

14 Domestic travel* 0.4224 0.1777 0.0932 0.7731 0.9996 6061.214 2916.948

15 International travel* 1.6003 0.2539 1.1055 2.0975 1.0002 6579.457 2549.944

16 IgG (Positive) 0.3621 0.1947 −0.0134 0.7445 1.0008 8009.948 3141.571

*Indicates a 95% credible interval that does not include 0 (i.e., effect credibly different from zero).

FIGURE 5

Posterior coefficient estimates with 95% credible intervals (Model 2).

TABLE 8  Model comparison—Bayesian logistic regression.

Model elpd_diff se_diff

Model 1 (moderately 

informative priors)

0.0 0.0

Model 2 (weakly 

informative Cauchy priors)

−0.1 0.2
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Both versions of the model showed excellent discrimination: AUC 
was 0.963 with travel data and 0.947 without. While travel history 
boosted specificity, removing it produced a more balanced model 
better suited for flagging infected individuals, especially in settings 
where travel history is unavailable or unreliable. The shift in 
performance metrics demonstrates that non-travel predictors, 
particularly symptoms, IgG serostatus, and demographics; retain 
strong predictive value.

As summarized in Supplementary Table S3, the Random Forest 
showed near-zero sensitivity for the minority (negative) class before 
SMOTE (reported as specificity = 0.248–0.262) with low balanced 
accuracy (0.569–0.571), despite a high AUC (0.943–0.948). After 
SMOTE, negative-class sensitivity (specificity) rose to 0.904–0.917 and 
balanced accuracy to 0.800–0.813, while AUC remained essentially 
unchanged (0.939–0.947). Logistic and Bayesian models were not 
SMOTE-adjusted and showed stable metrics across imputed vs. 
complete-case analyses (Tables 5, 7; Supplementary Table S3).

Figure 1 compares the diagnostic performance of three predictive 
models using ROC curves. The frequentist logistic regression model 
had an AUC of 0.73, indicating moderate ability to distinguish 
PCR-positive from PCR-negative cases. In contrast, the random forest 
model including travel history performed substantially better, 
achieving an AUC of 0.96 and demonstrating excellent discriminative 
power. After removing international and domestic travel variables, the 
model still maintained a strong AUC of 0.95, confirming that 
symptoms, demographic factors, and IgG serostatus alone are 
sufficient for high classification accuracy. Although travel history 
improved specificity slightly (92.7% vs. 91.7%), it was associated with 
lower sensitivity (36.8%). Excluding travel predictors nearly doubled 
sensitivity to 70.8% and increased balanced accuracy to 81.3%, while 
maintaining high specificity and AUC. This supports the 
generalizability of a non-travel-based model when travel data are 
limited or unavailable.

4 Discussion

The results of this comparative analysis of frequentist, Bayesian, 
and ML methods for predicting SARS-CoV-2 PCR positivity provide 
valuable insights into the effectiveness of each approach. All models 
identified recent travel history, especially international travel, and the 
loss of smell (anosmia) as the strongest predictors of a positive PCR 
test. In the frequentist logistic regression, recent international travel 
was associated with the highest odds of testing positive (OR = 4.8), 
followed by domestic travel (OR = 1.5), while self-reported loss of 
smell also markedly increased the odds (OR = 2.3). These findings 
align with prior knowledge: travel history was a well-recognized risk 
factor early in the pandemic, with one study reporting an 
approximately fourfold increase in odds of COVID-19 infection 
among individuals with recent travel (Menni et al., 2020; Gu et al., 
2020; Kang et al., 2022). In fact, Gu et al. (2020) observed that recent 
travel; particularly to COVID-19 hotspots, was the most common 
association with new positive cases, leading the authors to recommend 
prioritizing travelers for testing when resources are limited. Likewise, 
sudden loss of smell has been widely reported as a distinctive symptom 
of COVID-19. Gerkin et al. (2020) found that acute olfactory loss was 
the single best predictor of COVID-19 infection among people with 
respiratory symptoms (ROC AUC = 0.72). They even proposed a 

simple olfactory rating scale as a screening tool when PCR tests are 
impractical (Gerkin et al., 2020). Our results corroborate these 
patterns: recent smell loss and travel exposure are critical red flags, 
reinforcing their usefulness in triaging patients when immediate PCR 
testing is unavailable.

Beyond these key predictors, our models provided additional 
insights. The frequentist logistic model indicated that abdominal pain, 
a somewhat atypical symptom, was significantly associated with PCR 
positivity (OR = 1.6), whereas a very common symptom like fatigue 
showed a negative association with positivity (OR = 0.54). At first 
glance, a negative coefficient for fatigue seems counterintuitive, since 
fatigue is common in COVID-19. A possible explanation is 
multicollinearity and symptom clustering: fatigue was almost 
ubiquitous in our cohort (84.4% prevalence) and is a non-specific 
complaint; individuals who did not report fatigue may have had other 
more specific symptoms (like anosmia) driving their COVID-19 
diagnoses. In a multivariable model, this can make fatigue appear 
protective; essentially highlighting that lack of fatigue (in the presence 
of other symptoms) might distinguish some COVID-19 cases. This 
phenomenon has precedent in other analyses. For example, an analysis 
of over 67,000 cases in Argentina found that classical respiratory 
complaints (e.g., dyspnea, chest pain, even abdominal pain) were 
negatively or non-significantly associated with COVID-19 positivity 
in multivariate models (Fleitas et al., 2021; Park, 2021). Instead, 
anosmia and dysgeusia (loss of taste) were among the strongest 
positive predictors, consistent across age groups (Fleitas et al., 2021; 
Mutiawati et al., 2021; Carignan et al., 2020). Thus, our finding that a 
very common symptom (fatigue) did not increase predictive power, 
and even showed a negative coefficient in a multivariate context, aligns 
with the idea that specific symptoms (anosmia, etc.) carry more 
diagnostic weight than broadly prevalent ones (Menni et al., 2020). 
The association of abdominal pain with higher odds of COVID-19 in 
our study is intriguing. Gastrointestinal manifestations of COVID-19 
are well documented but generally less frequent than respiratory 
symptoms (Patel et al., 2022; Schmulson et al., 2020). Typical studies 
report only about 4%–7% of COVID-19 patients experience 
abdominal pain (Perisetti et al., 2020). In our cohort, however, a 
striking 72.6% reported abdominal pain, which is an unusually high 
prevalence. This discrepancy could be due to differences in data 
collection (active symptom querying in our study leading to more 
reports of mild pain) or possibly a unique predictor of our sample or 
setting. Some GI-focused analyses noted that as the pandemic 
progressed, clinicians became more aware of gastrointestinal 
symptoms and thus reported them more frequently (Perisetti et al., 
2020; Akin et al., 2020). It’s also possible that, in a cohort enriched 
with travelers or specific exposures, GI symptoms were particularly 
common. Regardless, our finding suggests that when abdominal 
discomfort is widely present in a group under investigation, it may 
help flag COVID-19 cases, a point that contrasts with at least one 
study where abdominal pain was not a useful discriminator (Fleitas et 
al., 2021). We acknowledge that the high rate of reported abdominal 
pain in our data could reflect reporting or interpretation bias. 
Participants or clinicians might have interpreted general malaise as 
“abdominal pain,” or there may have been overlap with other 
gastrointestinal issues not unique to COVID-19. It is also important 
to note that many common COVID-19 symptoms (e.g., fatigue, 
cough) are non-specific and can be caused by other illnesses such as 
influenza. Therefore, while symptom-based screening is valuable for 
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detecting likely positives, it may also capture cases of other respiratory 
infections, limiting its specificity when those alternative diagnoses are 
present (Perisetti et al., 2020).

Demographic factors played a smaller role in our models. Neither 
age nor sex was significantly associated with PCR positivity in the 
frequentist or Bayesian regressions (Tables 4, 6, 7), which is consistent 
with some epidemiological data indicating that, while older age and 
male sex are risk factors for severe COVID-19 outcomes, they do not 
always strongly differentiate infection probability in a young, 
predominantly healthy screening population (Molani et al., 2022). 
Interestingly, the classical frequentist model did find that being 
widowed was associated with lower odds of testing positive. We 
interpret this cautiously: widowed individuals made up only 3% of our 
sample, and they tend to be older; this result may reflect lower 
exposure risk or mobility in that subgroup, or simply be a spurious 
finding. We note it here for completeness, but it is likely not a 
generalizable predictor of COVID-19 risk. In contrast, the machine 
learning model ranked sex as a relatively influential predictor (with 
female sex associated with higher SHAP importance for positivity). 
This discrepancy between models suggests that the random forest may 
be capturing subtle nonlinear interactions involving sex; for instance, 
perhaps female participants in our sample had different symptom 
patterns or exposure contexts, even though sex by itself did not show 
a main effect in logistic regression. Prior studies have reported mixed 
results on sex differences in COVID-19 infection rates; some analyses 
early in the pandemic found males and females to be infected at 
similar rates even if males had worse clinical outcomes, while others 
noted context-dependent differences (Fleitas et al., 2021; Doerre & 
Doblhammer, 2022; Sieurin et al., 2022). Our findings do not provide 
strong evidence of a sex-based infection risk disparity, but the machine 
learning model’s inclusion of sex in its top predictors suggests there 
may be interaction effects worth further exploration (for example, 
certain symptoms might have different predictive value in men vs. 
women, a nuance that a tree-based model could capture) (Zoabi et al., 
2021; Azizi et al., 2022).

One of the aims of this study was to compare how a traditional 
frequentist regression, a Bayesian regression, and a machine learning 
model perform on the same prediction task. Overall, we found that all 
three approaches identified a consistent set of important predictors 
(travel history, anosmia, etc.), which speaks to the robustness of these 
predictors. The Bayesian approach, by incorporating prior 
information, did not drastically change the point estimates obtained 
by the frequentist model rather, it shrank some coefficients slightly 
towards zero and produced 95% credible intervals that explicitly 
reflect uncertainty. For key predictors like international travel or loss 
of smell, the Bayesian posterior remained far from zero despite the 
prior, indicating strong data-driven effects. For others (like age, sex) 
that had weak effects, the Bayesian credible intervals comfortably 
included zero, highlighting our uncertainty about those associations. 
The Bayesian models also allowed us to quantify the posterior 
inclusion probability (PIP) of each predictor. In our analysis, all 
chosen predictors had PIP = 1.0, meaning they were consistently 
retained across MCMC samples and contributed to the posterior 
estimates. This was expected given our deliberate variable selection, 
but it is reassuring that there were no “junk” variables with PIP < 1. 
Importantly, we found that changing the prior, from a moderately 
informative Normal prior to a weakly informative Cauchy prior, did 
not materially alter the results (Table 8). This sensitivity analysis 

increases our confidence that the conclusions are not an artifact of a 
particular prior assumption. One benefit of the Bayesian framework 
is the probabilistic interpretation of results: for example, we can say 
there is roughly a 95% probability that the effect of recent international 
travel on the log-odds of COVID-19 positivity lies between about 1.1 
and 2.1 (which corresponds to roughly a 3- to 8-fold increase in odds) 
given our data and prior assumptions. Such an interpretation may be 
more intuitively appealing to clinicians than a frequentist confidence 
interval, which does not have a direct probability meaning. 
Additionally, the Bayesian approach highlights the capability to 
incorporate prior knowledge (had we possessed strong prior beliefs 
about certain predictors) which can be valuable in scenarios of sparse 
data or expert-driven hypotheses (Sullivan et al., 2025).

In terms of predictive performance, the machine learning model 
(random forest) notably achieved the highest discriminative ability 
(cross-validated AUC = 0.947–0.963), outperforming both logistic 
regression approaches. This level of performance indicates excellent 
classification of PCR outcomes (Couronné et al., 2018; Sundaravadivel 
et al., 2025; Leonard et al., 2022). In fact, our random forest’s AUC is 
on par with or better than the best results reported in the literature for 
symptom-based COVID-19 prediction models (Zoabi et al., 2021; Pal 
et al., 2022; Rashidi et al., 2024; Galoustian, 2022). For instance, one 
automated machine learning approach that combined clinical and 
laboratory predictors achieved 95.6% sensitivity and 98% specificity 
in classifying COVID-19 status (Rashidi et al., 2024). Another study 
that used simple symptom and demographic predictors across five 
different ML algorithms reported AUC values above 0.81, with their 
best models reaching 76%–81% accuracy (Galoustian, 2022). 
Similarly, Lanzilao et al. (2023) observed that machine learning 
methods, particularly random forests and logistic regression, achieved 
high discrimination (AUC > 0.80) in COVID-19 prediction tasks 
using routine clinical and laboratory data, closely aligning with our 
performance metrics (Lanzilao et al., 2023; Daghistani & Alshammari, 
2020). Our random forest model slightly exceeds these benchmarks 
in AUC, likely reflecting the richness of our predictor set (including 
travel history and detailed symptomatology) and the power of 
ensemble methods in capturing complex patterns. Notably, the 
random forest can implicitly model interactions and non-linear 
relationships that a single logistic regression might miss (for example, 
interactions between specific symptoms and exposures). Indeed, we 
suspect that the RF learned a rule-like pattern: “IF recent international 
travel = yes, then high likelihood of COVID.” Consistent with that, 
SHAP predictor importance analysis showed that international and 
domestic travel were the top two predictors when they were included, 
indicating the model heavily used those predictors for its decisions. 
Before balancing, the model exhibited near-zero sensitivity for 
PCR-negative cases due to the 3:1 class imbalance; this was corrected 
after SMOTE (Table 1; Supplementary Table S3). However, this 
strength also proved to be a double-edged sword. The initial RF 
model, while overall highly accurate, exhibited an imbalance in its 
error pattern, it showed very high specificity (>92%) but relatively low 
sensitivity (37%). In other words, it was very good at flagging negatives 
(especially those with no travel history and mild symptoms) but 
missed a substantial portion of positives. Upon investigation, we 
discovered that the model was over-relying on travel history: many 
PCR-positive individuals in our dataset had traveled, so the RF 
effectively learned to associate “no travel” with being negative. As a 
result, positive cases without a travel history were often misclassified 
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as negative. We tested this by removing the travel-related predictors 
and retraining the model. The outcome was striking: the model’s 
sensitivity improved dramatically (from 37% to 71%), while 
maintaining a high specificity (92%), and the balanced accuracy 
jumped from 64.8% to 81.3%. Initially, this might seem counter-
intuitive one would expect removing an important predictor to 
degrade performance, but in this case the change forced the model to 
base predictions on symptoms and demographics alone, making it 
more generalizable. The “without travel” model did have a slightly 
lower specificity (it produced a few more false positives among those 
with no travel history and mild symptoms), but it missed far fewer 
positives (i.e., it greatly reduced the false negatives) compared to the 
original model. In practical terms, this means that symptoms and 
basic demographics carried substantial predictive signal on their own, 
and the model became much better at catching positive cases across 
the board once it wasn’t single-mindedly focused on travel. From an 
implementation standpoint, this has important implications. In 
scenarios where travel history is not readily available or not relevant 
(e.g., later in the pandemic when community spread dominates), a 
symptom-only model might actually perform better in identifying 
cases, as our analysis suggests. Including travel data can boost 
precision (improving specificity by reducing false alarms, since travel 
is a strong risk factor when it applies) but at the cost of missing 
positives who do not fit that profile. This highlights the importance of 
context in deploying prediction models, our full model (with travel 
variables) would be ideal in an early containment phase to flag high-
risk travelers, whereas the symptom-only model might generalize 
better in a widespread community transmission phase or when 
reliable travel/exposure data are unavailable. Another consideration is 
that removing travel history only slightly reduced the overall AUC of 
the random forest (from 0.963 to 0.947, a minor drop), demonstrating 
strong performance even without travel data. Indeed, in the travel-
excluded model, predictors like abdominal pain, loss of smell, sex, and 
IgG serostatus became the primary drivers (as illustrated in Figure 1), 
and achieving 0.947 AUC with those predictors alone is encouraging, 
it implies that even without knowing travel history, a data-driven 
model can perform very well. Including travel gave a tiny edge in 
AUC, but as discussed, it came with the trade-off of reduced sensitivity 
in our context.

Overall, the random forest’s superior performance is not 
surprising given its flexibility and the potential interactions in the 
data (for instance, combinations of symptoms that jointly predict 
infection beyond their individual effects). Machine learning models 
are often criticized as “black boxes,” but we mitigated this by using 
SHAP values to interpret predictor importance. After removing 
travel, the most influential predictors in the random forest were 
abdominal pain, sex, loss of smell, and IgG serostatus, which is 
consistent with the regression findings (except that sex appears more 
important in the RF, possibly due to the interactions as noted). SHAP 
analysis also confirmed that variables like respiratory disease history 
and sore throat contributed the least to the model, consistent with 
their minimal effects in the logistic regression. This interpretability 
step lends transparency to the model: for example, we can explain an 
individual prediction by noting whether the presence of certain 
symptoms (e.g., anosmia, GI complaints) or patient factors (e.g., 
female sex, lack of prior IgG antibodies) pushed the probability of 
positivity higher. Ultimately, our random forest model, especially in 
its travel-excluded form, demonstrates that machine learning can 

produce a highly accurate COVID-19 screening tool using readily 
available clinical information (Sievering et al., 2022). The logistic 
regression models, in turn, provide assurance that the relationships 
identified are medically sensible and not artifacts of overfitting, since 
both frequentist and Bayesian approaches converged on the same 
key predictors and effect directions.

Our findings have practical implications for how predictive 
models might be used in a pandemic context. In outbreaks or 
low-resource settings, a predictive algorithm can flag likely COVID-19 
cases for priority PCR testing or immediate isolation. PCR remains the 
diagnostic gold standard for COVID-19 (Parker & Boyer, 2022), but it 
requires laboratory processing (often causing days-long delays) and 
large-scale PCR testing can be impractical in surges (Lundon et al., 
2021). For example, one risk stratification model (trained on data from 
the Mount Sinai Health System) achieved a negative predictive value 
of 96% at a high-risk cutoff, providing a “superior net benefit” over 
blanket testing and thus “conserving vital resources” (Lundon et al., 
2021). Similar triage scores (e.g., for healthcare workers) have been 
developed to guide testing under resource constraints (Hohl et al., 
2022). In practice, the performance of our model, sensitivity 71% and 
specificity 92% in the travel-excluded random forest, means far fewer 
cases are missed compared to using symptoms alone without a model, 
while many low-risk individuals can safely defer or avoid testing 
(allowing limited PCR tests to be focused on the high-probability 
group). Including recent travel or known exposure history can of 
course boost screening yield in early epidemic phases. In one San 
Francisco study, 43% of early COVID-19 cases were travel-related (Gu 
et al., 2020), so testing efforts initially focused on travelers or close 
contacts. Our findings reflect this pattern: a travel variable was highly 
predictive in our data collected during a containment phase. However, 
we also show that symptom-based models remain robust even if travel/
exposure data are later unavailable. In other words, exposure history 
can improve case finding when available (Gu et al., 2020), but the core 
symptom algorithm still works well without it. We also found that 
including anti-SARS-CoV-2 IgG serostatus in the model is technically 
feasible but of secondary importance. This aligns with public health 
guidelines noting that high population seroprevalence (past infection 
rates) limits antibody testing’s acute diagnostic value (Hayden et al., 
2024). By the time of our study, a positive IgG was more likely to reflect 
prior infection or immunity rather than an active infection (Hayden 
et al., 2024). Notably, higher antibody titers do correlate with lower 
infection risk (Hayden et al., 2024), so knowing someone’s IgG level 
might slightly adjust their prior probability of acute COVID-19. In 
future scenarios (e.g., highly vaccinated or previously exposed 
populations), serostatus could help refine screening probabilities, but 
it cannot replace molecular testing for diagnosing current infection.

We verified our predictors using both frequentist and Bayesian 
methods, and they agree, increasing confidence that the signals we 
identified (e.g., anosmia, travel, gastrointestinal symptoms) are real 
and not modeling artifacts. The superior accuracy of our machine 
learning models suggests that health systems might consider deploying 
similar algorithms as part of screening and triage protocols. Of course, 
caution is warranted: models must be continuously re-evaluated as the 
virus evolves. Symptom importance can shift over time, for example, 
loss of smell was very common in early 2020 strains but became much 
rarer with the Omicron variant (only 13% of Omicron cases had 
anosmia versus 34% of cases with the earlier Delta variant) (Rodriguez-
Sevilla et al., 2022). Any deployed screening tool will therefore require 
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ongoing monitoring, validation on new patient data, and periodic 
retraining to maintain its effectiveness in the face of such changes.

5 Conclusion

In our analysis of SARS-CoV-2 screening data, frequentist and 
Bayesian logistic regression and a machine learning (random forest) 
model all identified the same key predictors of PCR positivity, recent 
travel history and loss of smell were the strongest signals, along with 
symptoms like abdominal pain. The logistic regression models provided 
clear, interpretable risk factors that align with known COVID-19 
predictors, and the Bayesian analysis confirmed these results with 
probabilistic uncertainty estimates. The random forest model achieved 
the highest accuracy (cross-validated AUC = 0.963), demonstrating that 
machine learning can leverage non-linear patterns and interactions to 
improve prediction. These findings suggest that a symptom-based triage 
tool could effectively flag high-risk individuals for confirmatory PCR 
testing. Importantly, such a tool would complement, not replace PCR 
diagnostics. Flagged individuals should still receive PCR confirmation, 
but the model’s predictions can help prioritize limited testing resources 
by identifying likely positives. In practice, a hybrid approach may be 
ideal, for example, a quick scoring system derived from the logistic 
regression for use in the field, backed by a more complex ML algorithm 
for fine-tuning decisions in borderline cases (with SHAP or similar 
methods providing explanation). Overall, our results show that data-
driven models can augment COVID-19 testing strategies by rapidly 
identifying likely cases and informing resource allocation.

5.1 Study limitations

We acknowledge several limitations in our study. First, our analysis 
is based on a dataset drawn from a high-prevalence screening context 
(75% PCR-positive) with a large proportion of recent travelers, which 
may limit the generalizability of our findings to broader community 
settings. In a more typical population with lower infection prevalence 
and different exposure patterns, the model’s positive predictive value 
would likely be lower, and its calibration might need adjustment. 
Second, our predictive predictors were restricted to self-reported 
symptoms, basic demographics, travel history, and a single 
immunological marker (IgG status). We did not incorporate potentially 
important data such as vital signs, detailed medical histories, 
comorbidities, or known exposure events, which could improve model 
accuracy and robustness if included. Third, self-report and recall bias 
may affect symptom data quality: participants or clinicians reported 
symptoms subjectively, which can introduce noise or inconsistencies. 
For example, fatigue and abdominal pain were reported at very high 
rates in our sample (as discussed), suggesting possible over-reporting, 
interpretation differences, or selection bias in who was tested; 
moreover, these symptoms could have been due to other circulating 
illnesses (e.g., influenza), potentially leading to false positives in 
contexts where COVID-19 is not the only prevalent infection. Fourth, 
the retrospective cross-sectional design and our use of cross-validation 
on the same dataset present a risk of overfitting to idiosyncrasies in our 
data, the model might have inadvertently learned predictors (such as 
the travel history effect) too specifically, limiting its performance on 

new data. Additionally, the pandemic context was evolving during our 
study period, and factors like new viral variants or increasing 
vaccination rates could alter the symptom profile or prevalence of 
disease over time. This means the model would require ongoing 
recalibration to remain accurate. Finally, we urge caution in interpreting 
the observed associations as causal. For instance, a negative coefficient 
for fatigue or a positive coefficient for being widowed in the regression 
models may reflect subgroup effects or collinearity rather than true 
protective or risk factors. Our models identify predictive associations, 
but these should not be misconstrued as evidence that certain factors 
cause or prevent infection; rather, they aid in prediction given the 
data context.

5.2 Future work

Looking ahead, future work will focus on enhancing the model’s 
generalizability, robustness, and practical utility. First, we plan to 
perform external validation by testing and recalibrating our models 
on new datasets from different populations and geographic regions, 
including data from post-vaccination eras and involving new viral 
variants, to ensure that our findings and model performance remain 
valid under diverse conditions. Second, we will incorporate additional 
predictive predictors such as vital signs, laboratory or rapid test 
results, comorbidity information, and documented exposure history, 
which could further improve predictive power and reliability. Third, 
we aim to explore methods for real-time model updating using 
continuously streaming data, so that the model can adapt as local 
epidemiological conditions change (for example, adjusting to shifts in 
prevalent strains or population immunity). Finally, we will prioritize 
usability and deployment considerations by developing a user-friendly 
interface (such as a smartphone app or web-based calculator) and 
integrating the tool into clinical and public health workflows. These 
efforts will help make our predictive screening tool more accurate, 
practical, and impactful for real-world use.
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