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Background: Prediction of infection status is critical for effective disease
management and timely intervention. Traditional diagnostic methods for Severe
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) are challenged by
varying sensitivities and specificities, necessitating the evaluation of advanced
statistical approaches. This study evaluated the predictive performance of
frequentist logistic regression, Bayesian logistic regression, and a random forest
classifier using clinical and demographic predictors to predict PCR positivity.
Methodology: A total of 950 participants were analyzed using three modeling
approaches. To address class imbalance, the data were balanced using the
Synthetic Minority Oversampling Technique (SMOTE) before training the random
forest classifier. Predictors include IgG serostatus, travel history (internationaland
domestic), self-reported symptoms (such as loss of smell, fatigue, sore throat),
sex, and age. Three models were developed: (1) frequentist logistic regression;
(2) Bayesian logistic regression with a moderately informative Normal (mean = 1,
SD = 2) prior and a weakly informative Cauchy (0, 2.5) prior; and (3) machine
learning (ML) using a random forest classifier. Missing data were minimal (<2%)
and handled through imputation, with sensitivity analyses confirming no material
impact on model performance. Performance was evaluated using odds ratios,
posterior means with credible intervals, and area under the ROC curve (AUC).
Results: Of the 950 participants, 74.8% tested positive for SARS-CoV-2. The
frequentist logistic regression identified recent international travel (Odds
Ratio = 4.8), loss of smell (OR =2.3), and domestic travel (OR = 1.5) as the
strongest predictors of PCR positivity. The Bayesian model yielded similar
posterior estimates, confirming the robustness of these associations across prior
assumptions. The random forest classifier achieved the highest discriminative
performance (AUC = 0.947-0.963). Notably, age and sex were not significant
in the regression models but emerged as influential predictors in the random
forest model, suggesting possible nonlinear or interaction effects.

Conclusion: The machine learning approach (random forest) outperformed the
logistic regression models in predictive accuracy. Bayesian regression confirmed
the reliability of key predictors and allowed quantification of uncertainty. These
findings highlight that simple, routinely collected symptom and exposure data
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can support rapid, resource-conscious screening for SARS-CoV-2, particularly
when laboratory testing capacity is limited.
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SARS-CoV-2, PCR testing, logistic regression, Bayesian analysis, random forest,

predictive modeling

1 Introduction

The unprecedented global pandemic precipitated by SARS-CoV-2
has highlighted the essential role of predictive modeling in public
health, particularly in informing interventions and resource allocation.
Accurate prediction of PCR test positivity for SARS-CoV-2 is critical
as it enables authorities to implement timely measures aimed at
curbing virus transmission and managing healthcare resources
effectively. Among numerous statistical methodologies employed for
binary outcome prediction, logistic regression stands out as a
conventional yet powerful tool. Within this framework, both
frequentist and Bayesian approaches have been widely utilized, each
offering distinct perspectives on data analysis (Hosmer et al., 2013;
Gelman et al., 2013; Thenetu et al., 2024).

Coronavirus disease 2019 (COVID-19) diagnosis relies on nucleic
acid amplification tests, particularly RT-PCR testing for SARS-CoV-2,
which is widely regarded as the clinical reference standard. However,
RT-PCR has practical limitations; it requires laboratory infrastructure,
and results often take hours or days to return (Zoabi et al.,, 2021;
Kucirka et al., 2020; Crozier et al., 2021; Wertenauer et al., 2023). In
resource-limited settings or peak surges, PCR tests may be scarce or
backlogged, delaying identification of infectious individuals.
Furthermore, RT-PCR sensitivity varies significantly depending on
the stage of infection. Sensitivity is lower during the pre-symptomatic
phase, and false-negative results can occur due to suboptimal sampling
technique or timing (Zoabi et al., 2021; Kucirka et al., 2020; Jindal et
al., 2021; Kanji et al., 2021). These temporal and procedural limitations
introduce potential misclassification bias when using PCR as the
outcome variable in predictive modeling studies (Kucirka et al., 2020).

Given these constraints, our study does not assume PCR to be a
flawless gold standard, but instead uses it as the best available diagnostic
benchmark during the time of data collection, integrating clinical and
laboratory findings when appropriate. The aim of our study is to
augment rather than replace PCR testing by developing a predictive
model that can rapidly flag likely positive cases. Such a tool could be used
for preliminary screening and triage while awaiting confirmatory PCR,
especially when immediate PCR testing is unavailable. We recognize

Abbreviatios: SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2;
PCR, Polymerase chain reaction; ML, Machine learning; rRT-PCR, Real-time reverse
transcription polymerase chain reaction; IgG, Immunoglobulin G; AIC, Akaike
information criterion; VIF, Variance inflation factor; ROC, Receiver operating
characteristic; AUC, Area under the curve; OOB, Out-Of-Bag (used in model
accuracy evaluation); R2, R-squared (coefficient of determination); R, Gelman-
Rubin Statistic (for assessing Bayesian convergence); F1, F1-Score (harmonic mean
of precision & recall); JASP, Jeffrey’s amazing statistics program; PIPs, Posterior
inclusion probabilities; OR, Odd ratio; SMOTE, Synthetic minority oversampling
technique; COVID-19, Coronavirus disease 2019.

Frontiers in Artificial Intelligence 02

PCR’s limitations and aim to create a model that complements its use by
offering rapid, preliminary risk estimation based on clinical data.

Prior research during the pandemic has explored symptom-based
screening and risk scores to prioritize testing when capacity is limited
(Zhang et al., 2021; Callahan et al., 2020; Lan et al., 2020). These
approaches leverage readily available clinical predictors to identify
high-risk patients, helping to bridge the gap in settings of limited
access or delayed PCR results (Callahan et al., 2020; Wikramaratna et
al.,, 2020; Vandenberg et al., 2020; Baik et al., 2022).

Several studies have reported that combinations of symptoms,
exposures, and basic demographics can predict PCR positivity with
reasonable accuracy (Elliott et al., 2021; Menni et al., 2020; Elimian et
al., 2021; Aung et al., 2024). For example, models asking about key
symptoms and risk factors (such as recent exposures or travel) have
shown area-under-curve values around 0.8-0.9 for discriminating
positive vs. negative cases (Aung et al., 2024; Quer et al., 2020). This
suggests that early clinical information can be harnessed to assist PCR
testing by indicating which patients are most likely to be infected.

Building on this concept, our study compares three modeling
approaches for predicting SARS-CoV-2 PCR results: a traditional
frequentist logistic regression, a Bayesian logistic regression, and a
machine learning model (random forest). By comparing these
approaches, we evaluate whether advanced methods (Bayesian
inference or non-linear machine learning) offer any gains in
predictive performance or practical insights over the standard
logistic model. We specifically focus on a cohort of unvaccinated
individuals undergoing PCR testing, using predictors such as self-
reported symptoms and recent travel history as predictors. While
this enhances internal validity, it restricts external applicability to
vaccinated or previously infected populations; a limitation we
explicitly address.

The goal is to determine if an interpretable predictive model could
serve as an early warning tool to flag likely positive cases for isolation
or expedited confirmatory testing, thereby augmenting PCR-based
diagnosis in scenarios of limited testing availability or slow
turnaround times.

2 Materials and methods

2.1 Study design

This cross-sectional study was conducted to compare the
performance of frequentist, Bayesian, and ML logistic regression
models in predicting SARS-CoV-2 PCR positivity. Data were collected
from 950 participants at the Federal University Teaching Hospital in
Owerri, Imo State, Nigeria, between December 2020 and October
2024, encompassing the peak period of the COVID-19 pandemic. The
structured questionnaire used for data collection is available as a
Supplementary material S1.
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2.2 Participants criteria

Individuals presenting for SARS-CoV-2 testing were recruited.
Inclusion criteria were: age >18 years and presence of symptoms
consistent with COVID-19. Individuals with a confirmed prior
COVID-19 diagnosis or those who received a COVID-19 vaccination
within 2 months prior to enrollment were excluded to minimize biases
arising from pre-existing immunity or vaccine-induced serological
responses (Yilmaz & Celik, 2021). This exclusion criterion focused the
analysis on a cohort of de novo infections, avoiding confounding due
to immunity status. All

participants  provided  written

informed consent.

2.3 Data collection

Trained healthcare personnel administered a structured
questionnaire capturing demographic information (age, sex, and
marital status), clinical symptoms (fever, cough, sore throat, anosmia,
and gastrointestinal symptoms), recent travel history, and exposure to
confirmed SARS-CoV-2 cases. Recent travel history was assessed by
asking: “Have you traveled outside the country or to a high-risk region
in the past 30 days?” Additionally, data on pre-existing comorbidities,
including respiratory diseases, were obtained to adjust for confounding
variables in the modeling process.

2.4 Laboratory testing

Nasopharyngeal swabs were obtained from all participants for
SARS-CoV-2 detection using real-time reverse transcription-
polymerase chain reaction (rRT-PCR), which is regarded as the gold
standard for COVID-19 diagnostics (Dybowski, 2020). In addition,
immunological assays were employed to detect IgG antibodies against
SARS-CoV-2.

2.5 Data preprocessing

Before analysis, the dataset underwent rigorous preprocessing to
ensure data quality and integrity. In practice, missing data were
minimal (each variable <2%), and were imputed using median values
for continuous variables and the mode for categorical variables
(Rohmah et al., 2023). To ensure the imputation did not bias results,
we conducted a sensitivity analysis comparing model outcomes with
and without the imputed data; the key findings remained unchanged,
indicating that our imputation approach did not significantly affect
the results. Continuous variables were standardized to enhance model
convergence and interpretability; in fact, age was the only continuous
predictor and it was standardized (z-score transformed). Outlier
detection was performed using statistical methods (e.g., Z-scores,
interquartile range) and visual inspection (e.g., boxplots), with
corrections made to avoid model distortion. No extreme outliers
necessitating removal were found; no data points were excluded, and
any mildly outlying values were examined and left as-is or winsorized
if needed, as they did not unduly influence the model as histograms
of continuous variables (e.g., age) confirmed these were approximately
normally distributed. To address the marked class imbalance (74.8%
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PCR-positive vs. 25.2% PCR-negative), we employed SMOTE using
the “DMwR” package in R. This procedure oversampled the minority
(PCR-negative) class to achieve a 1:1 ratio prior to model training.
Without this balancing step, preliminary models overwhelmingly
predicted the majority class (PCR-positive) for most cases, resulting
in near-zero sensitivity for PCR-negative cases. Applying SMOTE
improved the classifier’s ability to detect the minority class, as
evidenced by substantially higher recall and balanced accuracy in the
results. Model evaluation emphasized balanced accuracy, precision,
recall, and F1-score over raw accuracy to reflect true performance.

Imputation sensitivity: To assess the impact of imputation, we
repeated all model fits using complete-case data (listwise deletion) and
compared performance metrics to those from the imputed dataset.
Results were highly consistent (AUC A < 0.008; Sensitivity A < 0.012;
Balanced Accuracy A < 0.013), and model ranking was unchanged
(Supplementary Table S3), indicating that imputation did not
materially affect predictive findings.

2.6 Statistical analysis

2.6.1 Variable selection

Variables were selected based on clinical relevance, statistical
significance, and insights from existing literature to ensure the
inclusion of predictors supported by empirical evidence and
theoretical justification (Yilmaz & Celik, 2021).

2.6.2 Frequentist logistic regression

A frequentist logistic regression model was employed to evaluate
the association between SARS-CoV-2 PCR positivity and various
clinical and demographic predictors. This model estimates the
likelihood of a positive test result based on observed variables, derived
from data without integrating prior distributions. Predictor variables
were selected based on their clinical significance, statistical
significance in univariate analysis (p-value < 0.25), and previous
findings in the literature (De Smedt et al., 2023; Lukman et al., 2021).
A backward stepwise elimination technique refined the model, guided
by the Akaike Information Criterion (AIC) for optimal fit.
Multicollinearity was assessed using Variance Inflation Factors (VIF),
with variables exhibiting high VIF values reviewed and managed to
mitigate redundancy (Thenetu et al., 2024; Tschoellitsch et al., 2020).
Outliers and influential observations were identified by examining
standardized residuals, leverage statistics, and Cook’s distance, with
necessary adjustments made to minimize their influence. The
performance of the frequentist model was evaluated using the area
under the ROC to gauge predictive accuracy, supplemented by
classification tables, sensitivity, specificity, and goodness-of-fit tests for
comprehensive model assessment (Couronné et al., 2018). Predictors
that fit well into the classic regression were included into the Bayesian
model. Additionally, we evaluated a potential non-linear effect of age
by including a quadratic age term in preliminary models; this term
was not significant (p > 0.3) and did not improve model fit, so age was
retained as a linear predictor.

2.6.3 Bayesian logistic regression

Bayesian logistic regression was employed to estimate the
probability of SARS-CoV-2 PCR positivity while incorporating prior
distributions for the regression coefficients. Two models were specified
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to evaluate the influence of different prior assumptions. In the primary
model (Model 1), a moderately informative prior was defined using a
normal distribution with mean = 1 and standard deviation = 2, based
on previous epidemiological applications (Thenetu et al., 2024; Lee,
2025; Gelman et al., 2008; Vehtari, 2025; Fleitas et al., 2021). This
configuration provided slight regularization and a mild positive bias,
allowing prior information to influence estimates without dominating
the observed data. To assess the robustness of inferences, a prior
sensitivity analysis (Model 2) was conducted using a weakly
informative Cauchy prior centered at zero with a scale of 2.5, as
recommended by Gelman et al. (2008). This prior is commonly used
in Bayesian logistic regression due to its flexibility and ability to down-
weight extreme coefficient values. Both models were implemented
using the “brms” package in R, leveraging Hamiltonian Monte Carlo
sampling. Convergence was assessed using trace plots and the
Gelman-Rubin statistic (R), following standard Bayesian diagnostic
criteria. Posterior estimates were summarized using posterior medians
and 95% credible intervals (CrI).

2.6.4 Machine learning-based prediction and
model interpretation

2.6.4.1 Data preprocessing and class balancing

The dataset was preprocessed to ensure consistent variable
encoding. All categorical predictors were converted to factors, and
one-hot encoding was applied where appropriate. Before balancing,
the model exhibited near-zero sensitivity for PCR-negative cases due
to the 3:1 class imbalance; this was corrected after SMOTE (Table 1;
Supplementary Table S3). To address class imbalance (711
PCR-positive vs. 239 PCR-negative cases), SMOTE was applied using
the “themis” package in R (Table 1) (Ramentol et al., 2011). (Before
SMOTE, the dataset contained 711 PCR-positive and 239
PCR-negative cases. After balancing, both classes had 711
observations, ensuring equal representation and reducing bias in
model training). Initial model training on the imbalanced dataset
(74.8% PCR-positive vs. 25.2% PCR-negative) resulted in very low
sensitivity for the negative class, often approaching zero. This occurred
because the classifiers, particularly the random forest, optimized

TABLE 1 Comparative performance of random forest models with and
without travel history.

Metric With travel (mean ~ Without travel
+ SE) (mean + SE)

Accuracy 0.786 £ 0.0129 0.812 £ 0.0064

Balanced accuracy 0.648 +0.0185 0.813 + 0.0061

F1 score 0.463 +0.0356 0.790 £ 0.0071

Recall (sensitivity) 0.368 +0.0321 0.708 £ 0.0156

Specificity 0.927 +0.0090 0.917 £ 0.0168

ROC AUC 0.963 0.947

True positives 262 504

False positives 17 20

True negatives 222 219

False negatives 449 207

Metrics were estimated using 5-fold cross-validation on SMOTE-balanced data. Confusion
matrix values are totals across folds out of 711 actual positives and 239 actual negatives.
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overall accuracy by favoring the dominant class. In practice, the
models learned to classify most observations as positive, minimizing
false negatives at the expense of missing many true negatives. This
imbalance-driven bias justified applying SMOTE to synthetically
increase minority-class examples and rebalances the training data
prior to model fitting. Because SMOTE addresses class imbalance
during model training, it was applied only to the Random Forest
classifier. Logistic and Bayesian regression were evaluated under the
original class distribution (no SMOTE).

2.6.4.2 Model development and cross-validation

A random forest classifier was developed using the “ranger”
engine within the “tidymodels” framework in R. Model training and
evaluation were based on 5-fold cross-validation applied to the
SMOTE-adjusted dataset. Additionally, 20% of the data were set aside
as a hold-out test set to validate the final model’s performance on
unseen cases.

Model performance was assessed using standard classification
metrics derived from the confusion matrix, including accuracy,
balanced accuracy, sensitivity (recall), specificity, F1 score, and the
area under the ROC curve (AUC).

Performance metrics were calculated as follows:

TP specificity=— N
(rp+EN) P T N v Ep)

Sensitivity (Recall) =
(TP+1TN)
(TP+TN+FP+FN)’
(Sensitivity + Speciﬁcity)
2

Accuracy =

Balanced Accuracy =

TP _2x (Precision X Recall)

Precision = N
(TP +FP)

(Precision + Recall )

ROC AUC values were obtained using the average of the
sensitivity-specificity trade-offs across thresholds. The confusion
matrix terms are defined as:

o TP (True Positives) = correctly identified PCR-positive cases.

o TN (True Negatives) = correctly identified PCR-negative cases.

« FP (False Positives) = PCR-negative cases incorrectly predicted
as positive.

 EN (False Negatives) = PCR-positive cases incorrectly predicted
as negative.

All performance metrics were computed using the test set
predictions for both Random Forest models (with and without travel
history), and confusion matrix counts (TP, FP, TN, FN) were used to
verify metric consistency. To assess model robustness, a second
random forest model was trained after removing international and
domestic travel history from the predictor set, allowing direct
comparison of predictive performance with and without travel
variables (Ramentol et al., 2011).

2.6.4.3 Model explainability using SHAP values

To enhance model interpretability, SHAP (SHapley Additive
exPlanations) values were computed using the “iml” package. SHAP
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summary plots were generated to visualize the relative contribution of
each predictor to the random forest model’s output. Two SHAP
analyses were performed; one using all predictors, and another
excluding travel-related variables; to highlight differences in predictor
importance across models (Kivrak et al., 2024).

2.6.4.4 Model comparison and sensitivity analysis

Comparative evaluation of the random forest models; with and
without travel-related predictors; was performed using 5-fold cross-
validated metrics, confusion matrices, and ROC curves. This analysis
assessed the effect of excluding travel history (international and
domestic) on model performance. The models were trained on the
same SMOTE-adjusted dataset to ensure fair comparison of predictive
power between full and reduced variable sets.

2.7 Software and computational tools

All statistical analyses were conducted using RStudio (v4.5.1) and
JASP (v0.19.3). Bayesian logistic regression models were implemented
entirely in R using the “brms” package. Classical logistic regression
was performed in JASP and independently confirmed in R for
consistency. Machine learning procedures, including SMOTE
balancing and Random Forest modeling, were executed using the

» « » «

“tidymodels,” “ranger; “themis,” and “iml” packages in R. All figures

were generated in JASP or R, as appropriate.

2.8 Ethical considerations

Ethical approval was obtained from the Institutional Review
Board of the Federal University Teaching Hospital, Owerri. Informed
consent was secured from all participants prior to data collection and
PCR testing. All data were anonymized, and confidentiality was
maintained throughout the study in compliance with ethical research
standards (De Smedt et al., 2023).

3 Results

Table 2 presents the descriptive characteristics of the study
population stratified by PCR status. The mean age was similar between
PCR-positive (36.8 years) and PCR-negative (38.2 years) participants.
Females represented approximately two-thirds of both groups. Most
participants were married, but widowed individuals were more
common among PCR-negative cases (6.3%) compared to positives
(2.3%). Symptom profiles differed between groups. Fatigue was more
common among PCR-negative participants (90.8%) than PCR-positive
(84.4%), while loss of smell showed a stronger association with
positivity—reported in 85.5% of PCR-positive individuals versus
71.5% of PCR-negatives. Other symptoms like abdominal pain, cough,
and runny nose were frequent in both groups but slightly more
prevalent in PCR-positive cases. Travel history was notably different.
A larger proportion of PCR-positive individuals had recent
international travel (92.4%) compared to PCR-negative (71.5%). A
similar trend was seen for domestic travel (69.1% vs. 59.4%). IgG
seropositivity was more frequent in PCR-positive participants (26.4%)
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TABLE 2 Descriptive characteristics of the study population by PCR test
result. (PCR-positive vs. PCR-negative groups).

Covariate Category PCR PCR
positive negative
(N =711) (N = 239)
(%) (%)
Age Mean (+ SD) 36.8+15.3 382+15.7
PCR test result Positive (%) 711 (100%) —
Negative (%) — 239 (100%)

IgG serostatus Positive 188 (26.4%) 48 (20.1%)
Negative 523 (73.6%) 191 (79.9%)
Sex Female 466 (65.5%) 157 (65.7%)
Male 245 (34.5%) 82 (34.3%)
Marital status Married 440 (61.9%) 161 (67.4%)
Single 255 (35.9%) 63 (26.4%)
Widow/widower 16 (2.3%) 15 (6.3%)
Fatigue Yes 600 (84.4%) 217 (90.8%)
No 111 (15.6%) 22 (9.2%)
Loss of smell Yes 608 (85.5%) 171 (71.5%)
No 103 (14.5%) 68 (28.5%)
Runny nose Yes 573 (80.6%) 178 (74.5%)
No 138 (19.4%) 61 (25.5%)
Shortness of Yes 586 (82.4%) 197 (82.4%)
breath No 125 (17.6%) 42(17.6%)

Abdominal pain Yes 535 (75.2%) 155 (64.9%)

No 176 (24.8%) 84 (35.1%)
Respiratory Yes 28 (3.9%) 10 (4.2%)
disease history No 683 (96.1%) 229 (95.8%)

Cough Yes 522 (73.4%) 181 (75.7%)

No 189 (26.6%) 58 (24.3%)
Sore throat Yes 570 (80.2%) 188 (78.7%)

No 141 (19.8%) 51 (21.3%)
Domestic travel Yes 491 (69.1%) 142 (59.4%)
(30 days) No 220 (30.9%) 97 (40.6%)
International Yes 657 (92.4%) 171 (71.5%)
travel (30 days) No 54 (7.6%) 68 (28.5%)

All percentages are calculated within each PCR outcome group.

than PCR-negative (20.1%). History of respiratory disease was rare
and similar across both groups.

A supplementary file has been added to summarize the rate of
missingness for each variable. All variables had less than 2% missing
data. Imputation methods and summary counts are explicitly
presented in Supplementary Table S2.

The logistic regression model including the selected predictors
(Model 1) significantly improved the fit compared to the null model
(Ay* =164.352, p < 0.001), as shown in Table 3. The model explained
amodest proportion of the variance in PCR test positivity (McFadden
R*=0.153; Nagelkerke R* = 0.235), consistent with expectations for
clinical prediction models.
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TABLE 3 Frequentist logistic regression model summary for predicting SARS-CoV-2 PCR positivity.

Model Deviance AIC McFadden Nagelkerke Tjur Cox &
R? R? R?

Mo 1071.720 1073.720 1078.576 949 — — — — — — ‘

M, 907.368 939.368 1017.071 934 164.352 <0.001 0.153 0.235 0.191 0.159 ‘

TABLE 4 Stepwise logistic regression model for predicting SARS-CoV-2 PCR positivity in the model selection process.

Predictor Estimate 95% ClI

Lower Upper
M, (Intercept) 1.090 0.075 212.600 1 <0.001 0.944 1.237
M; (Intercept) —1.221 0.449 7.378 1 0.007 —2.101 —0.340
Fatigue (Yes) —-0.617 0.268 5.298 1 0.021 —1.142 —0.092
Loss of smell (Yes) 0.849 0.383 4.924 1 0.026 0.099 1.599
Abdominal pain (Yes) 0.486 0.223 4.733 1 0.030 0.048 0.924
Domestic travel (Yes) 0.419 0.186 5.057 1 0.025 0.054 0.785
International travel 1.566 0.248 39.845 1 <0.001 1.080 2.052
(Yes)

Table shows variables retained in the final stepwise logistic regression model. Other predictors were excluded during the selection process.

Table 4 shows the final stepwise logistic regression model
estimates. Several variables emerged as significant predictors of PCR
positivity. Reporting fatigue was associated with decreased odds of a
positive PCR result (coef = —0.617, p =0.021, 95% CI: —1.142 to
—0.092). Conversely, reporting loss of smell was associated with
higher odds of testing positive (coef = 0.849, p = 0.026, 95% CI: 0.099
to 1.599). Participants with abdominal pain were also more likely to
test positive (coef=0.486, p=0.030, 95% CI: 0.048 to 0.924).
Domestic travel in the past 30 days was a significant predictor
(coef =0.419, p =0.025, 95% CI: 0.054 to 0.785). Notably, recent
international travel was the strongest predictor in the model
(coef = 1.566, p < 0.001, 95% CI: 1.080 to 2.052).

The frequentist logistic regression model achieved an overall
accuracy of 0.797 and an AUC of 0.728, reflecting moderate
discriminative ability. Sensitivity was high (0.961), but specificity was
lower (0.310), indicating strong case detection but limited ability to
rule out negatives. Detailed performance metrics are shown in Table 5,
and the AUC is visualized in Figure 1 alongside the Bayesian and
random forest models.

Figure 2 displays the distribution of squared Pearson residuals
from the frequentist logistic regression model. Most residuals are
concentrated near the lower end of the scale, with no discernible
outliers or influential data points. The smooth trend line remains close
to zero across predicted probabilities, indicating no major departures
from model assumptions and an adequate overall fit.

The Bayesian analysis largely corroborated the frequentist
results. Table 6 summarizes the posterior estimates from Model 1
(with moderately informative Normal priors). Consistent with the
classical model, loss of smell (posterior mean = 0.85; 95% Crl:
0.08 to 1.61), abdominal pain (0.49; 95% Crl: 0.04 to 0.91),
domestic travel (0.42; 95% CrI: 0.10 to 0.77), and international
travel (1.61; 95% Crl: 1.14 to 2.07) were significant positive
predictors of SARS-CoV-2 positivity. Fatigue was negatively
associated with PCR positivity (—=0.59; 95% CrI: —1.15 to —0.07).

Frontiers in Artificial Intelligence 06

TABLE 5 Performance diagnostics of the frequentist logistic regression
model.

Accuracy 0.797
AUC 0.728
Sensitivity 0.961
Specificity 0.310
Precision 0.805

ROICOCurves for Predicting SARS-CoV-2 PCR Positivity

0.8}

o
o

o
IS

True Positive Rate

0.2
pd — Logistic (AUC=0.73)
7 —— RF with Travel (AUC=0.96)
L —— RF w/o Travel (AUC=0.95)
0'?).0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

FIGURE 1

ROC curves comparing predictive models for SARS-CoV-2 PCR
positivity. The blue curve represents the frequentist logistic
regression model (AUC = 0.73), the orange curve represents the
random forest model including travel history (AUC = 0.963), and the
green curve represents the random forest model excluding travel
history (AUC = 0.947). Both axes range from 0.0 to 1.0.
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FIGURE 2
Squared Pearson residuals plot for the frequentist logistic regression
model.

TABLE 6 Posterior summaries from Bayesian logistic regression model 1
(moderately informative priors).

Coefficient Mean 95% ClI  95% CI
Lower Upper
1 (Intercept) —-1.2977 0.4608 —2.2171 —0.3970
2 Age 0.0015 0.0067 —0.0117 0.0144
3 Sex (male) 0.2342 0.1827 —-0.1219 0.5989
4 Marital_status1 0.3129 0.2162 —0.1063 0.7441
(single)
5 Marital_status2 —0.8371 0.4197 —1.6506 0.0128
(widow/
widower)*
6 Fatigue* —0.5915 0.2735 —1.1544 —0.0699
7 Sore_throat —0.2978 0.3701 —1.0415 0.3912
8 Loss_of_smell* 0.8544 0.3889 0.0841 1.6103
9 Runny_nose 0.3771 0.3572 —0.3197 1.0549
10 Cough —0.1341 0.2910 —0.7123 0.4365
11 Shortness_of_ 0.0614 0.3703 —0.6873 0.7833
breath
12 Abdominal_pain* 0.4931 0.2230 0.0447 0.9144
13 Respiratory —0.0581 0.4035 —0.8211 0.7439
disease
14 Domestic travel* 0.4235 0.1715 0.1011 0.7661
15 International 1.6074 0.2390 1.1375 2.0692
travel*
16 IgG (positive) 0.3766 0.2065 —0.0264 0.7917

*Indicates a 95% credible interval that does not include 0 (i.e., effect credibly different from
7ero).

Predictors such as sex, age, sore throat, cough, and history of
respiratory disease had 95% credible intervals that included zero,
suggesting weak or uncertain associations. These Bayesian
credible intervals (Crls) reinforce which effects are credibly
non-zero and mirror the confidence interval findings of the
frequentist model. The use of a weakly informative Cauchy prior
(Model 2) produced very similar results (e.g., international travel
posterior = 1.60, 95% Crl: 1.11 to 2.10; loss of smell = 0.85, 95%
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Crl: 0.08 to 1.58; abdominal pain = 0.48, 95% CrI: 0.03 to 0.92;
domestic travel = 0.42, 95% Crl: 0.09 to 0.77; fatigue = —0.61, 95%
Crl: —1.13 to —0.09), indicating that our choice of prior did not
materially affect the findings. All Markov chain diagnostics were
satisfactory (R =1.00).

All candidate variables had posterior inclusion probabilities (PIPs)
of approximately 1.0 in Model 1, indicating the model consistently
included all predictors. Figure 3 shows the posterior coefficient
estimates with 95% credible intervals (Crls) for Model 1. Predictors
whose Crls do not cross zero are considered significant; as shown,
international travel, domestic travel, loss of smell, and abdominal pain
have Crls entirely above zero, while age and sex have Crls spanning
zero (Figure 4).

To evaluate the robustness of findings to prior assumptions, a
Bayesian logistic regression model was re-estimated using weakly
informative Cauchy priors (center = 0, scale = 2.5) following Gelman
et al. (2008). This sensitivity model yielded posterior estimates that
were largely consistent with the primary model. Notably, international
travel within the last 30 days (Estimate = 1.60, 95% CrI: 1.11 to 2.10),
presence of loss of smell (Estimate = 0.85, 95% CrlI: 0.08 to 1.58),
abdominal pain (Estimate = 0.48, 95% Crl: 0.03 to 0.92), and domestic
travel (Estimate = 0.42, 95% Crl: 0.09 to 0.77) were associated with
increased odds of testing positive for SARS-CoV-2. Conversely, fatigue
remained a credible protective factor (Estimate = —0.61, 95% Crl:
—1.13 to —0.09). The 95% credible intervals for other predictors
overlapped zero, indicating insufficient evidence for strong
associations. All parameters demonstrated excellent convergence
(R=1.00) and high effective sample sizes, confirming model stability
and reliability. These results are presented in Table 7 below. All
significant predictors in Model 2 were also identified in Model 1,
reinforcing the stability of these effects across prior assumptions. Each
had a posterior inclusion probability (PIP) of approximately 1.0,
confirming their consistent importance across MCMC samples.

Figure 5 presents the posterior coefficient estimates with 95%
credible intervals for Model 2 (Cauchy prior). Loss of smell (posterior
median = 0.85, 95% Crl: 0.08-1.58), abdominal pain (0.48, 95% Crl:
0.03-0.92), domestic travel (0.42, 95% Crl: 0.09-0.77), and
international travel (1.60, 95% CrI: 1.11-2.10) had credible intervals
that excluded zero, indicating strong positive associations with SARS-
CoV-2 PCR positivity. Fatigue and marital status (widow/widower)
showed significant negative associations. All other predictors had wide
credible intervals overlapping zero, suggesting weaker or uncertain
effects. The pattern of significant predictors mirrors Model 1,
confirming that key associations, particularly travel history and
anosmia, are robust to different prior choices.

Table 8 compares the Bayesian logistic regression models using
leave-one-out cross-validation (LOO-CV). Model 1 was fitted with
moderately informative Normal priors, while Model 2 used weakly
informative Cauchy priors. The estimated difference in expected log
pointwise predictive density (elpd_diff) between the models was —0.1
with a standard error of 0.2, indicating no meaningful difference in
predictive performance. This negligible difference supports that key
inferences remain stable even under different prior specifications.
Although a few observations had high Pareto k values, moment-
matched LOO diagnostics confirmed stable performance, supporting
the validity of the posterior inferences across both models.

To address the class imbalance (74.8% PCR + vs. 25.2% PCR-),
SMOTE were applied. Before SMOTE, the dataset contained 711
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FIGURE 3
SHAP predictor importance from the random forest models.
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Posterior estimates with 95% credible intervals (Model 1). Predictors with intervals that do not include zero are strongly associated with PCR positivity:

0 1 2
Estimate

PCR-positive and 239 PCR-negative cases. After balancing, both
classes had 711 observations, ensuring equal representation and
reducing bias in model training. Figure 3 shows the SHAP predictor
importance rankings from the Random Forest models. Panel A (blue
bars) corresponds to the model including travel history, while Panel B
(red bars) corresponds to the model excluding travel history. Bars
represent mean absolute SHAP values, indicating the relative
contribution of each predictor to the prediction of SARS-CoV-2 PCR
positivity. In Panel A, recent international and domestic travels were
the strongest predictors, followed by sex, abdominal pain, and IgG
serostatus. Respiratory disease and sore throat contributed the least.
In Panel B, after travel variables were removed, abdominal pain
emerged as the most influential predictor, followed by sex, loss of
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smell, and IgG serostatus. Respiratory disease and sore throat
remained low in importance. This pattern highlights how travel
history strongly drives model predictions when included, whereas
non-travel predictors (e.g., abdominal pain, anosmia, sex) become
more dominant when travel data are not available.

Table 1 summarizes the comparative performance of random
forest models trained with and without travel history. When travel
variables were included, the model achieved 78.6% accuracy and a
balanced accuracy of 64.8%. Specificity was high at 92.7%, meaning
the model was effective at identifying PCR-negative individuals.
However, sensitivity was low at 36.8%, indicating many PCR-positive
cases were missed. The F1 score was 0.463, reflecting modest
balance between precision and recall under travel-driven
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TABLE 7 Posterior estimates from Model 2 (Bayesian logistic regression with Cauchy priors).

Coefficient Estimate Est.Error 1-95% CI u-95% Cl Rhat Bulk_ESS Tail_ESS

1 Intercept —1.2588 0.4521 —2.1393 —0.3848 1.0006 5609.457 3349.905
2 Age 0.0016 0.0067 —0.0115 0.0148 1.0002 5117.734 3790.557
3 Sex (male) 0.2281 0.1890 —0.1356 0.6026 1.0026 7309.019 2884.834
4 Marital_status1 0.3035 0.2142 —0.1229 0.7228 1.0008 5547.912 3163.030

(single)
5 Marital_status2 —0.8920 0.4376 —1.7554 —0.0231 1.0004 6040.356 2866.929

(widow/widower)*
6 Fatigue* —0.6078 0.2686 —1.1326 —0.0883 1.0011 6213.057 2802.454
7 Sore_throat —0.2877 0.3833 —1.0503 0.4484 1.0017 5913.666 2851.732
8 Loss_of_smell* 0.8477 0.3823 0.0763 1.5838 1.0012 5669.066 2923.263
9 Runny_nose 0.3675 0.3538 —0.3339 1.0462 0.9998 5226.675 3053.602
10 Cough —0.1364 0.2901 —0.7087 0.4227 1.0029 6066.075 2985.689
11 Shortness_of_breath 0.0618 0.3647 —0.6581 0.7893 0.9999 5347.596 2839.107
12 Abdominal_pain* 0.4835 0.2225 0.0341 0.9173 1.0004 7313.578 2766.120
13 respiratory_disease —0.1018 0.4146 —0.8954 0.7330 1.0011 6851.385 2645.507
14 Domestic travel* 0.4224 0.1777 0.0932 0.7731 0.9996 6061.214 2916.948
15 International travel* 1.6003 0.2539 1.1055 2.0975 1.0002 6579.457 2549.944
16 IgG (Positive) 0.3621 0.1947 —0.0134 0.7445 1.0008 8009.948 3141.571

*Indicates a 95% credible interval that does not include 0 (i.e., effect credibly different from zero).
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FIGURE 5
Posterior coefficient estimates with 95% credible intervals (Model 2).

TABLE 8 Model i —B ian logisti ion. s . . . .
oael comparison—iayesian fogistic regression predictions. After excluding international and domestic travel

elpd_diff se_diff predictors, performance improved across several dimensions.

Balanced accuracy rose to 81.3%, and sensitivity nearly doubled to

Model 1 (moderately 0.0 0.0

70.8%, suggesting the model became substantially better at

informative priors)

identifying true positives. The F1 score increased to 0.790, reflecting

Model 2 (weakly ol 02 stronger alignment between precision and recall. Accuracy also

informative Cauchy priors)

improved modestly to 81.2%, and specificity remained high (91.7%).
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Both versions of the model showed excellent discrimination: AUC
was 0.963 with travel data and 0.947 without. While travel history
boosted specificity, removing it produced a more balanced model
better suited for flagging infected individuals, especially in settings
where travel history is unavailable or unreliable. The shift in
performance metrics demonstrates that non-travel predictors,
particularly symptoms, IgG serostatus, and demographics; retain
strong predictive value.

As summarized in Supplementary Table S3, the Random Forest
showed near-zero sensitivity for the minority (negative) class before
SMOTE (reported as specificity = 0.248-0.262) with low balanced
accuracy (0.569-0.571), despite a high AUC (0.943-0.948). After
SMOTE, negative-class sensitivity (specificity) rose to 0.904-0.917 and
balanced accuracy to 0.800-0.813, while AUC remained essentially
unchanged (0.939-0.947). Logistic and Bayesian models were not
SMOTE-adjusted and showed stable metrics across imputed vs.
complete-case analyses (Tables 5, 7; Supplementary Table S3).

Figure 1 compares the diagnostic performance of three predictive
models using ROC curves. The frequentist logistic regression model
had an AUC of 0.73, indicating moderate ability to distinguish
PCR-positive from PCR-negative cases. In contrast, the random forest
model including travel history performed substantially better,
achieving an AUC of 0.96 and demonstrating excellent discriminative
power. After removing international and domestic travel variables, the
model still maintained a strong AUC of 0.95, confirming that
symptoms, demographic factors, and IgG serostatus alone are
sufficient for high classification accuracy. Although travel history
improved specificity slightly (92.7% vs. 91.7%), it was associated with
lower sensitivity (36.8%). Excluding travel predictors nearly doubled
sensitivity to 70.8% and increased balanced accuracy to 81.3%, while
maintaining high specificity and AUC. This supports the
generalizability of a non-travel-based model when travel data are
limited or unavailable.

4 Discussion

The results of this comparative analysis of frequentist, Bayesian,
and ML methods for predicting SARS-CoV-2 PCR positivity provide
valuable insights into the effectiveness of each approach. All models
identified recent travel history, especially international travel, and the
loss of smell (anosmia) as the strongest predictors of a positive PCR
test. In the frequentist logistic regression, recent international travel
was associated with the highest odds of testing positive (OR = 4.8),
followed by domestic travel (OR = 1.5), while self-reported loss of
smell also markedly increased the odds (OR = 2.3). These findings
align with prior knowledge: travel history was a well-recognized risk
factor early in the pandemic, with one study reporting an
approximately fourfold increase in odds of COVID-19 infection
among individuals with recent travel (Menni et al., 2020; Gu et al,,
2020; Kang et al., 2022). In fact, Gu et al. (2020) observed that recent
travel; particularly to COVID-19 hotspots, was the most common
association with new positive cases, leading the authors to recommend
prioritizing travelers for testing when resources are limited. Likewise,
sudden loss of smell has been widely reported as a distinctive symptom
of COVID-19. Gerkin et al. (2020) found that acute olfactory loss was
the single best predictor of COVID-19 infection among people with
respiratory symptoms (ROC AUC = 0.72). They even proposed a

Frontiers in Artificial Intelligence

10.3389/frai.2025.1668477

simple olfactory rating scale as a screening tool when PCR tests are
impractical (Gerkin et al, 2020). Our results corroborate these
patterns: recent smell loss and travel exposure are critical red flags,
reinforcing their usefulness in triaging patients when immediate PCR
testing is unavailable.

Beyond these key predictors, our models provided additional
insights. The frequentist logistic model indicated that abdominal pain,
a somewhat atypical symptom, was significantly associated with PCR
positivity (OR = 1.6), whereas a very common symptom like fatigue
showed a negative association with positivity (OR = 0.54). At first
glance, a negative coefficient for fatigue seems counterintuitive, since
fatigue is common in COVID-19. A possible explanation is
multicollinearity and symptom clustering: fatigue was almost
ubiquitous in our cohort (84.4% prevalence) and is a non-specific
complaint; individuals who did not report fatigue may have had other
more specific symptoms (like anosmia) driving their COVID-19
diagnoses. In a multivariable model, this can make fatigue appear
protective; essentially highlighting that lack of fatigue (in the presence
of other symptoms) might distinguish some COVID-19 cases. This
phenomenon has precedent in other analyses. For example, an analysis
of over 67,000 cases in Argentina found that classical respiratory
complaints (e.g., dyspnea, chest pain, even abdominal pain) were
negatively or non-significantly associated with COVID-19 positivity
in multivariate models (Fleitas et al., 2021; Park, 2021). Instead,
anosmia and dysgeusia (loss of taste) were among the strongest
positive predictors, consistent across age groups (Fleitas et al., 2021;
Mutiawati et al., 2021; Carignan et al., 2020). Thus, our finding that a
very common symptom (fatigue) did not increase predictive power,
and even showed a negative coeflicient in a multivariate context, aligns
with the idea that specific symptoms (anosmia, etc.) carry more
diagnostic weight than broadly prevalent ones (Menni et al., 2020).
The association of abdominal pain with higher odds of COVID-19 in
our study is intriguing. Gastrointestinal manifestations of COVID-19
are well documented but generally less frequent than respiratory
symptoms (Patel et al., 2022; Schmulson et al., 2020). Typical studies
report only about 4%-7% of COVID-19 patients experience
abdominal pain (Perisetti et al., 2020). In our cohort, however, a
striking 72.6% reported abdominal pain, which is an unusually high
prevalence. This discrepancy could be due to differences in data
collection (active symptom querying in our study leading to more
reports of mild pain) or possibly a unique predictor of our sample or
setting. Some GlI-focused analyses noted that as the pandemic
progressed, clinicians became more aware of gastrointestinal
symptoms and thus reported them more frequently (Perisetti et al.,
20205 Akin et al., 2020). It’s also possible that, in a cohort enriched
with travelers or specific exposures, GI symptoms were particularly
common. Regardless, our finding suggests that when abdominal
discomfort is widely present in a group under investigation, it may
help flag COVID-19 cases, a point that contrasts with at least one
study where abdominal pain was not a useful discriminator (Fleitas et
al., 2021). We acknowledge that the high rate of reported abdominal
pain in our data could reflect reporting or interpretation bias.
Participants or clinicians might have interpreted general malaise as
“abdominal pain,” or there may have been overlap with other
gastrointestinal issues not unique to COVID-19. It is also important
to note that many common COVID-19 symptoms (e.g., fatigue,
cough) are non-specific and can be caused by other illnesses such as
influenza. Therefore, while symptom-based screening is valuable for
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detecting likely positives, it may also capture cases of other respiratory
infections, limiting its specificity when those alternative diagnoses are
present (Perisetti et al., 2020).

Demographic factors played a smaller role in our models. Neither
age nor sex was significantly associated with PCR positivity in the
frequentist or Bayesian regressions (Tables 4, 6, 7), which is consistent
with some epidemiological data indicating that, while older age and
male sex are risk factors for severe COVID-19 outcomes, they do not
always strongly differentiate infection probability in a young,
predominantly healthy screening population (Molani et al., 2022).
Interestingly, the classical frequentist model did find that being
widowed was associated with lower odds of testing positive. We
interpret this cautiously: widowed individuals made up only 3% of our
sample, and they tend to be older; this result may reflect lower
exposure risk or mobility in that subgroup, or simply be a spurious
finding. We note it here for completeness, but it is likely not a
generalizable predictor of COVID-19 risk. In contrast, the machine
learning model ranked sex as a relatively influential predictor (with
female sex associated with higher SHAP importance for positivity).
This discrepancy between models suggests that the random forest may
be capturing subtle nonlinear interactions involving sex; for instance,
perhaps female participants in our sample had different symptom
patterns or exposure contexts, even though sex by itself did not show
a main effect in logistic regression. Prior studies have reported mixed
results on sex differences in COVID-19 infection rates; some analyses
early in the pandemic found males and females to be infected at
similar rates even if males had worse clinical outcomes, while others
noted context-dependent differences (Fleitas et al., 2021; Doerre &
Doblhammer, 2022; Sieurin et al., 2022). Our findings do not provide
strong evidence of a sex-based infection risk disparity, but the machine
learning model’s inclusion of sex in its top predictors suggests there
may be interaction effects worth further exploration (for example,
certain symptoms might have different predictive value in men vs.
women, a nuance that a tree-based model could capture) (Zoabi et al.,
2021; Azizi et al., 2022).

One of the aims of this study was to compare how a traditional
frequentist regression, a Bayesian regression, and a machine learning
model perform on the same prediction task. Overall, we found that all
three approaches identified a consistent set of important predictors
(travel history, anosmia, etc.), which speaks to the robustness of these
predictors. The Bayesian approach, by incorporating prior
information, did not drastically change the point estimates obtained
by the frequentist model rather, it shrank some coefficients slightly
towards zero and produced 95% credible intervals that explicitly
reflect uncertainty. For key predictors like international travel or loss
of smell, the Bayesian posterior remained far from zero despite the
prior, indicating strong data-driven effects. For others (like age, sex)
that had weak effects, the Bayesian credible intervals comfortably
included zero, highlighting our uncertainty about those associations.
The Bayesian models also allowed us to quantify the posterior
inclusion probability (PIP) of each predictor. In our analysis, all
chosen predictors had PIP = 1.0, meaning they were consistently
retained across MCMC samples and contributed to the posterior
estimates. This was expected given our deliberate variable selection,
but it is reassuring that there were no “junk” variables with PIP < 1.
Importantly, we found that changing the prior, from a moderately
informative Normal prior to a weakly informative Cauchy prior, did
not materially alter the results (Table 8). This sensitivity analysis
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increases our confidence that the conclusions are not an artifact of a
particular prior assumption. One benefit of the Bayesian framework
is the probabilistic interpretation of results: for example, we can say
there is roughly a 95% probability that the effect of recent international
travel on the log-odds of COVID-19 positivity lies between about 1.1
and 2.1 (which corresponds to roughly a 3- to 8-fold increase in odds)
given our data and prior assumptions. Such an interpretation may be
more intuitively appealing to clinicians than a frequentist confidence
interval, which does not have a direct probability meaning.
Additionally, the Bayesian approach highlights the capability to
incorporate prior knowledge (had we possessed strong prior beliefs
about certain predictors) which can be valuable in scenarios of sparse
data or expert-driven hypotheses (Sullivan et al., 2025).

In terms of predictive performance, the machine learning model
(random forest) notably achieved the highest discriminative ability
(cross-validated AUC = 0.947-0.963), outperforming both logistic
regression approaches. This level of performance indicates excellent
classification of PCR outcomes (Couronné et al., 2018; Sundaravadivel
et al.,, 2025; Leonard et al., 2022). In fact, our random forest’s AUC is
on par with or better than the best results reported in the literature for
symptom-based COVID-19 prediction models (Zoabi et al., 2021; Pal
et al., 2022; Rashidi et al., 2024; Galoustian, 2022). For instance, one
automated machine learning approach that combined clinical and
laboratory predictors achieved 95.6% sensitivity and 98% specificity
in classifying COVID-19 status (Rashidi et al., 2024). Another study
that used simple symptom and demographic predictors across five
different ML algorithms reported AUC values above 0.81, with their
best models reaching 76%-81% accuracy (Galoustian, 2022).
Similarly, Lanzilao et al. (2023) observed that machine learning
methods, particularly random forests and logistic regression, achieved
high discrimination (AUC > 0.80) in COVID-19 prediction tasks
using routine clinical and laboratory data, closely aligning with our
performance metrics (Lanzilao et al., 2023; Daghistani & Alshammari,
2020). Our random forest model slightly exceeds these benchmarks
in AUC, likely reflecting the richness of our predictor set (including
travel history and detailed symptomatology) and the power of
ensemble methods in capturing complex patterns. Notably, the
random forest can implicitly model interactions and non-linear
relationships that a single logistic regression might miss (for example,
interactions between specific symptoms and exposures). Indeed, we
suspect that the RF learned a rule-like pattern: “IF recent international
travel = yes, then high likelihood of COVID? Consistent with that,
SHAP predictor importance analysis showed that international and
domestic travel were the top two predictors when they were included,
indicating the model heavily used those predictors for its decisions.
Before balancing, the model exhibited near-zero sensitivity for
PCR-negative cases due to the 3:1 class imbalance; this was corrected
after SMOTE (Table 1; Supplementary Table S3). However, this
strength also proved to be a double-edged sword. The initial RF
model, while overall highly accurate, exhibited an imbalance in its
error pattern, it showed very high specificity (>92%) but relatively low
sensitivity (37%). In other words, it was very good at flagging negatives
(especially those with no travel history and mild symptoms) but
missed a substantial portion of positives. Upon investigation, we
discovered that the model was over-relying on travel history: many
PCR-positive individuals in our dataset had traveled, so the RF
effectively learned to associate “no travel” with being negative. As a
result, positive cases without a travel history were often misclassified
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as negative. We tested this by removing the travel-related predictors
and retraining the model. The outcome was striking: the model’s
sensitivity improved dramatically (from 37% to 71%), while
maintaining a high specificity (92%), and the balanced accuracy
jumped from 64.8% to 81.3%. Initially, this might seem counter-
intuitive one would expect removing an important predictor to
degrade performance, but in this case the change forced the model to
base predictions on symptoms and demographics alone, making it
more generalizable. The “without travel” model did have a slightly
lower specificity (it produced a few more false positives among those
with no travel history and mild symptoms), but it missed far fewer
positives (i.e., it greatly reduced the false negatives) compared to the
original model. In practical terms, this means that symptoms and
basic demographics carried substantial predictive signal on their own,
and the model became much better at catching positive cases across
the board once it wasn’t single-mindedly focused on travel. From an
implementation standpoint, this has important implications. In
scenarios where travel history is not readily available or not relevant
(e.g., later in the pandemic when community spread dominates), a
symptom-only model might actually perform better in identifying
cases, as our analysis suggests. Including travel data can boost
precision (improving specificity by reducing false alarms, since travel
is a strong risk factor when it applies) but at the cost of missing
positives who do not fit that profile. This highlights the importance of
context in deploying prediction models, our full model (with travel
variables) would be ideal in an early containment phase to flag high-
risk travelers, whereas the symptom-only model might generalize
better in a widespread community transmission phase or when
reliable travel/exposure data are unavailable. Another consideration is
that removing travel history only slightly reduced the overall AUC of
the random forest (from 0.963 to 0.947, a minor drop), demonstrating
strong performance even without travel data. Indeed, in the travel-
excluded model, predictors like abdominal pain, loss of smell, sex, and
IgG serostatus became the primary drivers (as illustrated in Figure 1),
and achieving 0.947 AUC with those predictors alone is encouraging,
it implies that even without knowing travel history, a data-driven
model can perform very well. Including travel gave a tiny edge in
AUC, but as discussed, it came with the trade-off of reduced sensitivity
in our context.

Overall, the random forest’s superior performance is not
surprising given its flexibility and the potential interactions in the
data (for instance, combinations of symptoms that jointly predict
infection beyond their individual effects). Machine learning models
are often criticized as “black boxes,” but we mitigated this by using
SHAP values to interpret predictor importance. After removing
travel, the most influential predictors in the random forest were
abdominal pain, sex, loss of smell, and IgG serostatus, which is
consistent with the regression findings (except that sex appears more
important in the RE possibly due to the interactions as noted). SHAP
analysis also confirmed that variables like respiratory disease history
and sore throat contributed the least to the model, consistent with
their minimal effects in the logistic regression. This interpretability
step lends transparency to the model: for example, we can explain an
individual prediction by noting whether the presence of certain
symptoms (e.g., anosmia, GI complaints) or patient factors (e.g.,
female sex, lack of prior IgG antibodies) pushed the probability of
positivity higher. Ultimately, our random forest model, especially in
its travel-excluded form, demonstrates that machine learning can
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produce a highly accurate COVID-19 screening tool using readily
available clinical information (Sievering et al., 2022). The logistic
regression models, in turn, provide assurance that the relationships
identified are medically sensible and not artifacts of overfitting, since
both frequentist and Bayesian approaches converged on the same
key predictors and effect directions.

Our findings have practical implications for how predictive
models might be used in a pandemic context. In outbreaks or
low-resource settings, a predictive algorithm can flag likely COVID-19
cases for priority PCR testing or immediate isolation. PCR remains the
diagnostic gold standard for COVID-19 (Parker & Boyer, 2022), but it
requires laboratory processing (often causing days-long delays) and
large-scale PCR testing can be impractical in surges (Lundon et al.,
2021). For example, one risk stratification model (trained on data from
the Mount Sinai Health System) achieved a negative predictive value
of 96% at a high-risk cutoff, providing a “superior net benefit” over
blanket testing and thus “conserving vital resources” (Lundon et al.,
2021). Similar triage scores (e.g., for healthcare workers) have been
developed to guide testing under resource constraints (Hohl et al.,
2022). In practice, the performance of our model, sensitivity 71% and
specificity 92% in the travel-excluded random forest, means far fewer
cases are missed compared to using symptoms alone without a model,
while many low-risk individuals can safely defer or avoid testing
(allowing limited PCR tests to be focused on the high-probability
group). Including recent travel or known exposure history can of
course boost screening yield in early epidemic phases. In one San
Francisco study, 43% of early COVID-19 cases were travel-related (Gu
et al., 2020), so testing efforts initially focused on travelers or close
contacts. Our findings reflect this pattern: a travel variable was highly
predictive in our data collected during a containment phase. However,
we also show that symptom-based models remain robust even if travel/
exposure data are later unavailable. In other words, exposure history
can improve case finding when available (Gu et al., 2020), but the core
symptom algorithm still works well without it. We also found that
including anti-SARS-CoV-2 IgG serostatus in the model is technically
feasible but of secondary importance. This aligns with public health
guidelines noting that high population seroprevalence (past infection
rates) limits antibody testing’s acute diagnostic value (Hayden et al.,
2024). By the time of our study, a positive IgG was more likely to reflect
prior infection or immunity rather than an active infection (Hayden
et al., 2024). Notably, higher antibody titers do correlate with lower
infection risk (Hayden et al., 2024), so knowing someone’s IgG level
might slightly adjust their prior probability of acute COVID-19. In
future scenarios (e.g., highly vaccinated or previously exposed
populations), serostatus could help refine screening probabilities, but
it cannot replace molecular testing for diagnosing current infection.

We verified our predictors using both frequentist and Bayesian
methods, and they agree, increasing confidence that the signals we
identified (e.g., anosmia, travel, gastrointestinal symptoms) are real
and not modeling artifacts. The superior accuracy of our machine
learning models suggests that health systems might consider deploying
similar algorithms as part of screening and triage protocols. Of course,
caution is warranted: models must be continuously re-evaluated as the
virus evolves. Symptom importance can shift over time, for example,
loss of smell was very common in early 2020 strains but became much
rarer with the Omicron variant (only 13% of Omicron cases had
anosmia versus 34% of cases with the earlier Delta variant) (Rodriguez-
Sevilla et al., 2022). Any deployed screening tool will therefore require
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ongoing monitoring, validation on new patient data, and periodic
retraining to maintain its effectiveness in the face of such changes.

5 Conclusion

In our analysis of SARS-CoV-2 screening data, frequentist and
Bayesian logistic regression and a machine learning (random forest)
model all identified the same key predictors of PCR positivity, recent
travel history and loss of smell were the strongest signals, along with
symptoms like abdominal pain. The logistic regression models provided
clear, interpretable risk factors that align with known COVID-19
predictors, and the Bayesian analysis confirmed these results with
probabilistic uncertainty estimates. The random forest model achieved
the highest accuracy (cross-validated AUC = 0.963), demonstrating that
machine learning can leverage non-linear patterns and interactions to
improve prediction. These findings suggest that a symptom-based triage
tool could effectively flag high-risk individuals for confirmatory PCR
testing. Importantly, such a tool would complement, not replace PCR
diagnostics. Flagged individuals should still receive PCR confirmation,
but the model’s predictions can help prioritize limited testing resources
by identifying likely positives. In practice, a hybrid approach may be
ideal, for example, a quick scoring system derived from the logistic
regression for use in the field, backed by a more complex ML algorithm
for fine-tuning decisions in borderline cases (with SHAP or similar
methods providing explanation). Overall, our results show that data-
driven models can augment COVID-19 testing strategies by rapidly
identifying likely cases and informing resource allocation.

5.1 Study limitations

We acknowledge several limitations in our study. First, our analysis
is based on a dataset drawn from a high-prevalence screening context
(75% PCR-positive) with a large proportion of recent travelers, which
may limit the generalizability of our findings to broader community
settings. In a more typical population with lower infection prevalence
and different exposure patterns, the model’s positive predictive value
would likely be lower, and its calibration might need adjustment.
Second, our predictive predictors were restricted to self-reported
symptoms, basic demographics, travel history, and a single
immunological marker (IgG status). We did not incorporate potentially
important data such as vital signs, detailed medical histories,
comorbidities, or known exposure events, which could improve model
accuracy and robustness if included. Third, self-report and recall bias
may affect symptom data quality: participants or clinicians reported
symptoms subjectively, which can introduce noise or inconsistencies.
For example, fatigue and abdominal pain were reported at very high
rates in our sample (as discussed), suggesting possible over-reporting,
interpretation differences, or selection bias in who was tested;
moreover, these symptoms could have been due to other circulating
illnesses (e.g., influenza), potentially leading to false positives in
contexts where COVID-19 is not the only prevalent infection. Fourth,
the retrospective cross-sectional design and our use of cross-validation
on the same dataset present a risk of overfitting to idiosyncrasies in our
data, the model might have inadvertently learned predictors (such as
the travel history effect) too specifically, limiting its performance on
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new data. Additionally, the pandemic context was evolving during our
study period, and factors like new viral variants or increasing
vaccination rates could alter the symptom profile or prevalence of
disease over time. This means the model would require ongoing
recalibration to remain accurate. Finally, we urge caution in interpreting
the observed associations as causal. For instance, a negative coefficient
for fatigue or a positive coeflicient for being widowed in the regression
models may reflect subgroup effects or collinearity rather than true
protective or risk factors. Our models identify predictive associations,
but these should not be misconstrued as evidence that certain factors
cause or prevent infection; rather, they aid in prediction given the
data context.

5.2 Future work

Looking ahead, future work will focus on enhancing the model’s
generalizability, robustness, and practical utility. First, we plan to
perform external validation by testing and recalibrating our models
on new datasets from different populations and geographic regions,
including data from post-vaccination eras and involving new viral
variants, to ensure that our findings and model performance remain
valid under diverse conditions. Second, we will incorporate additional
predictive predictors such as vital signs, laboratory or rapid test
results, comorbidity information, and documented exposure history,
which could further improve predictive power and reliability. Third,
we aim to explore methods for real-time model updating using
continuously streaming data, so that the model can adapt as local
epidemiological conditions change (for example, adjusting to shifts in
prevalent strains or population immunity). Finally, we will prioritize
usability and deployment considerations by developing a user-friendly
interface (such as a smartphone app or web-based calculator) and
integrating the tool into clinical and public health workflows. These
efforts will help make our predictive screening tool more accurate,
practical, and impactful for real-world use.
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