AUTHOR=Cong Yan , Lee Jiyeon TITLE=Tracking priming-induced language recovery in aphasia with pre-trained language models JOURNAL=Frontiers in Artificial Intelligence VOLUME=Volume 8 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2025.1668399 DOI=10.3389/frai.2025.1668399 ISSN=2624-8212 ABSTRACT=This study explores the use of pre-trained language models (PLMs) in tracking priming treatment induced language recovery in aphasia. We evaluate PLM-derived surprisals, the negative log-probabilities of a word or a sequence of words calculated by a PLM given its preceding context, as a continuous and interpretable measure of treatment-induced language change. We found that surprisal scores decreased following structural priming treatment, especially in participants with more severe sentence production impairments. We also introduce a prompting-based pipeline for clinical classification tasks. It achieved promising results in classifying aphasia sentence correctness (F1 = 0.967) and detecting error categories in aphasia (accuracy = 0.846). Such use of PLMs for modeling, tracking, and automatically classifying language recovery in aphasia represents a promising deployment of GenAI in a clinical rehabilitation setting. Together, our PLM-based analyses offer a practical approach for modeling language rehabilitation, tracking not only language structure but also individual change over time in clinical contexts.Clinical trial registrationIdentifier NTC05415501.