:' frontiers ‘ Frontiers in Artificial Intelligence

@ Check for updates

OPEN ACCESS

EDITED BY

Tim Hulsen,

Rotterdam University of Applied Sciences,
Netherlands

REVIEWED BY

Anthony P. Salvatore,

Self-employed, Pensacola, FL, United States
Marina Charalambous,

Cyprus University of Technology, Cyprus

*CORRESPONDENCE
Jiyeon Lee
leel704@purdue.edu

RECEIVED 17 July 2025
ACCEPTED 15 October 2025
PUBLISHED 30 October 2025

CITATION

Cong Y and Lee J (2025) Tracking
priming-induced language recovery in
aphasia with pre-trained language models.
Front. Artif. Intell. 8:1668399.

doi: 10.3389/frai.2025.1668399

COPYRIGHT

© 2025 Cong and Lee. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License

(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Artificial Intelligence

TYPE Original Research
PUBLISHED 30 October 2025
pol 10.3389/frai.2025.1668399
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This study explores the use of pre-trained language models (PLMs) in tracking
priming treatment induced language recovery in aphasia. We evaluate PLM-
derived surprisals, the negative log-probabilities of a word or a sequence of
words calculated by a PLM given its preceding context, as a continuous and
interpretable measure of treatment-induced language change. We found that
surprisal scores decreased following structural priming treatment, especially
in participants with more severe sentence production impairments. We also
introduce a prompting-based pipeline for clinical classification tasks. It achieved
promising results in classifying aphasia sentence correctness (F1 = 0.967) and
detecting error categories in aphasia (accuracy = 0.846). Such use of PLMs for
modeling, tracking, and automatically classifying language recovery in aphasia
represents a promising deployment of GenAl in a clinical rehabilitation setting.
Together, our PLM-based analyses offer a practical approach for modeling language
rehabilitation, tracking not only language structure but also individual change
over time in clinical contexts.

Clinical trial registration: Identifier NTC05415501.
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1 Introduction

Computational methods involving pre-trained language models (PLMs) have recently
shown promise in adapting models trained on typical speech to better accommodate
atypical speech patterns (e.g., Purohit et al., 2023; Miiller-Eberstein et al., 2024; Cong et al.,
2024a; Garcfa et al., 2024). For individuals with atypical speech, such as people with aphasia
(PWA), an acquired language disorder caused by brain injuries, language recovery is a
challenge. Although a range of treatments has been developed, substantial individual
variability in treatment outcomes continues to impede the development of reliable
predictive models for recovery. Recently, AI has been increasingly used for aphasia
intervention (e.g., Bailey et al., 2024; Imaezue and Marampelly, 2025). More relevant to the
current study, previous Al-related research has demonstrated that PLM-derived scores
such as PLM-surprisals (the negative log-probability of an utterance or a word given its
preceding context as computed by a PLM) seem effective in detecting the presence and
types of aphasia during discourse tasks (Rezaii et al., 2023; Cong et al., 2024a,b). Building
on this line of work, the current study investigates whether PLMs can also serve as a
sensitive utility to track language changes in aphasia following a language training,
specifically structural priming training.
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Structural priming, the unconscious repetition of previously
encountered syntactic structures across otherwise unrelated sentences,
plays a critical role in language processing and learning (Bock and
Griffin, 2000; Pickering and Ferreira, 2008; Branigan and Pickering,
2017). Growing evidence has documented therapeutic potential of
structural priming in improving language production and
comprehension in PWA by facilitating access and use of syntactic
representations (Lee, 2024, for review). Prior studies have
demonstrated that PWA benefit from implicit structural priming, as
evidenced by lasting improvements in syntactic production
(Hartsuiker and Kolk, 1998; Lee et al., 2019b, 2024; Lee and Man,
2017; Man et al., 2019) and comprehension (e.g., Keen and Lee, 2022;
Lee et al., 2019a). The present study leverages conditional surprisals
(the negative log-probabilities of a participant’s production
conditioned on a target production) derived from PLMs as a metric,
and uses prompt engineering of PLMs to automatically assess
priming-induced language learning in aphasia. By assessing the
divergence between participants’ productions and the target sentence,
our methodology quantifies the degree to which structural priming
training brings aphasia closer to expected linguistic outputs.
Concretely, we examined both group-level training effects and
individual variability in response to intervention.

In Study 1, we tested whether PWA and age- and education-
matched control participants (AEM) would show significant
reductions in PLM-surprisals following structural priming. We also
asked if priming-induced changes in surprisals measures would
be greater for PWA than controls and reflect individual differences
within the PWA group. Study 2 further explored the relationship
between surprisals measures and specific production error types,
thereby spelling out how these metrics reflect not only local lexical
recovery but also broader syntactic restoration. Study 3 used few-shot
learning to prompt PLMs, a technique used to enhance the
performance of PLMs by presenting a limited number of examples (or
“shots”) within the prompt. These examples serve as demonstrations
of the desired output format task. Specifically in the current study,
we used this few-shot prompting technique for automatic assessment
and tracking of language recovery. This is achieved by measuring the
alignment between participants’ productions and target sentences,
and by classifying error types when misalignment occurs. This
approach addresses the question of automation and enhances the
efficiency of language rehabilitation assessment.

Our findings suggested the feasibility, efficacy, reliability, and
interpretability of PLMs as clinical utilities, paving the way for more
targeted and effective interventions in language recovery and therapy.
First, our results showed that PLMs offer a promising avenue for
detecting subtle changes in priming-induced language production.
Aphasia recovery is highly variable, some individuals show substantial
gains, while others progress slowly, highlighting the need for more
precise and personalized tools to predict treatment responsiveness
over time. Classic clinical measures often fail to capture the nuanced
linguistic patterns that underlie this variability. We provided results
that PLM-derived surprisals, which integrate syntactic as well as
lexical information into a single metric, can serve as an interpretable
and individualized marker of priming-induced language recovery.
Further, our results indicated that prompting PLMs enables automated
assessment of priming-induced recovery, which not only streamlines
the assessment but also opens the door to scalable, data-driven
methods for monitoring language-related rehabilitation.
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2 Related work

2.1 Structural priming in language learning
and recovery

Structural priming is a key phenomenon in studies of language
processing and learning. It refers to the unconscious repetition of
previously encountered sentence structures during subsequent
production and comprehension (Bock, 1986; Pickering and Ferreira,
2008). For example, if a language user hears a double object (DO)
dative prime sentence (e.g., the man is giving the woman flowers), they
are more likely to describe a new dative event in the double-object
form (e.g., the singer is giving the boy a guitar), compared to when they
heard a prepositional object (PO) prime sentence (e.g., the man is
giving flowers to the woman). Importantly such priming effects last
over intervening fillers and across sessions in both young children and
adults (Branigan and McLean, 2016; Savage et al., 2006; Heyselaar and
Segaert, 2022). Thus, structural priming is thought to reflect how
speakers implicitly learn to map messages onto certain syntactic
structures through prior linguistic experiences (Bock and Griffin,
2000; Chang et al., 2012).

Implicit learning theories provide a framework for understanding
how structural priming functions in language acquisition and
learning. In a commonly cited theory, Chang and colleagues
characterized structural priming as a consequence of prediction-error
based language learning (Chang et al., 2006, 2012; but see Pickering
and Ferreira, 2008 for additional accounts of structural priming). They
proposed that as the speaker processes a prime sentence incrementally,
they make predictions about upcoming word order. If the experienced
(primed) linguistic input (e.g., DO dative sentence) is different from
what they expected (e.g., PO dative) structure, this discrepancy drives
adjustments in their syntactic processing system, biasing them to
produce primed structures more frequently over time. In fact, many
studies report structural priming results in enduring changes in
various populations, including young children (Rowland et al., 2012;
Branigan and McLean, 2016), second language learners (Shin and
Christianson, 2012), and in both children and adults with language
disorders (Leonard, 2011; Lee, 2024, for review).

In aphasia, where language production is often impaired, using
syntactic repetition as a general strategy to simulate use of more
complex and fluency speech has a long history, although its long-term
benefits remain equivocal (e.g., Helm-Estabrooks, 1981; Doyle et al.,
1987; Fink et al., 1995). For example, Sentence Production Program
for Aphasia (formerly HELM Elicited Language Program for Syntax
Stimulation or HELPSS; Helm-Estabrooks, 1981) emphasizes repeated
practice of various syntactic structures in story contexts to remediate
agrammatic speech. More recently, structural priming has been
recognized for its potential to create lasting changes in sentence
production in PWA. Growing findings suggest that it facilitates
language (re-)learning in aphasia, rather than simply boosting
immediate access of primed structures (e.g., Cho-Reyes et al., 20165
Lee et al., 2024; Lee and Man, 2017; Keen and Lee, 2022; van Boxtel
etal,, 2023; Lee et al,, 2024; Rainey et al,, (in press)). PWA demonstrate
significant priming effects that persist over up to 10 intervening filler
utterances between a prime and a target sentence (e.g., Cho-Reyes
et al., 2016; Man et al., 2019; Lee et al., 2019a, 2019b). PWA show
cumulative improvements in trained and untrained stimuli over
repeated priming sessions or trials, with cumulatively increasing
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effects over sessions (Lee and Man, 2017; Rainey et al,, (in press); Lee
et al., 2024; van Boxtel et al., 2023; Zhang and Lee, 2025). Notably,
while some studies primarily recruited participants with agrammatic
Broca’s aphasia (Cho-Reyes et al., 2016; Hartsuiker and Kolk, 1998),
others recruited participants with varying aphasia types and found
positive priming effects across aphasia types (e.g., Yan et al., 2018;
Keen and Lee, 2022; Lee et al., 2024; Saffran et al., 1988).

Another line of evidence that structural priming facilitates
language learning comes from the so-called inverse preference effect,
where individuals with less proficient language skills tend to show
larger priming effects. Branigan and Messenger (2016), for example,
found that children, as less proficient language users, exhibited
stronger syntactic priming effects than adults, especially for long-term
priming conditions. Hartsuiker and Kolk (1998) found priming effects
only in PWA, examining production of passive and DO dative
constructions, but not in controls. van Boxtel et al. (2023) found that
PWA exhibited greater cumulative adaptation in sentence planning
processes, as measured by eye tracking, to priming compared to
controls. Additionally, Cho-Reyes et al. (2016), although failed to find
increased priming effects for PWA at the group level, they found that
within the PWA group, individuals with more severe sentence
production impairments showed larger priming effects. However, the
inverse preference effect was not supported in all studies. Yan et al.
(2018) have found comparable priming effects between PWA and
controls and Man et al. (2019), for example, have found reduced
priming effects in PWA compared to controls. Nonetheless, these
findings highlight the variability in priming responses among
individuals with aphasia and the possibility that those with greater
sentence production difficulties would show greater priming-
induced improvements.

2.2 Structural priming in PLMs

The study of structural priming has also become an area of interest
within the field of natural language processing recently, specifically
concerning PLMs. Recent investigations have suggested that PLMs
exhibit structural priming effects similar to those observed in human
language users. Pertaining to the current study, Jumelet et al. (2024)
demonstrated that PLMs are susceptible to structural priming across
various conditions. Their experiments revealed that PLMs generate
higher rates of syntactic alignment when exposed to specific sentence
structures, reflecting the structural tendencies exhibited by human
speakers. This indicates that PLMs do not merely rely on rote
memorization but might be capable of abstracting grammatical
relationships from their training data, facilitating a process that seems
to mirror human syntactic processing and reuse. Jumelet et al. (2024)
also suggested that structural priming in PLMs is heavily influenced
by the models’ exposure to diverse syntactic structures during
training. This training incorporates a multitude of patterns from large
text corpora, likely allowing PLMs to represent and later reproduce
similar structures when prompted. Such behavior indicates the
models’ tendency to lead to coherence and fluency in generated text,
facilitating interactions that are more aligned with natural
human dialogue.

More recently, Sinclair et al. (2022) explored structural priming in
PLMs, finding that autoregressive models favor sentences structurally
similar to their prefixes across various constructions, resembling
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structural priming seen in humans. Along with findings from van
Schijndel and Linzen (2018), Prasad et al. (2019), and Sinclair et al.
(2022) suggested that PLMs recognize structural similarities between
sentences and anticipate repeated structures. While these studies do
not focus on input length specifically, their contextual manipulations
inherently involve length variations, leaving open the question of how
structural properties interact with different input lengths.

Moreover, the intersection of structural priming with multilingual
contexts has been examined. Previous studies indicated that
multilingual PLMs exhibit cross-linguistic structural priming, where
exposure to similar structures in one language can prime analogous
structures in another (Michaelov et al., 2023). Michaelov et al. (2023)
measured cross-lingual structural priming across eight experiments
spanning six languages, plus four monolingual experiments in three
non-English languages. Results revealed that models exhibit abstract
grammatical representations similar to humans, influencing text
generation across languages and demonstrating shared structural
processing in multilingual models. The implications of structural
priming for PLM performance and applications are multifaceted
(Sinha et al., 2022). For instance, harnessing structural priming could
enhance dialogue systems and conversational agents, allowing for
more human-like interactions. By incorporating mechanisms of
structural priming, developers can create PLMs capable of generating
contextually relevant and grammatically coherent responses, which
may lead to improved user experiences in natural language
applications (Cai et al., 2023).

Another line of work concerns whether structural priming in
PLMs reflects implicit learning mechanisms, as in humans, or merely
the reuse of patterns from training data. To address this, studies such
as Jumelet et al. (2024) and Sinclair et al. (2022) used controlled
prefixes that varied syntactic structure while holding lexical content
constant. Their findings showed that exposure to specific constructions
(e.g., double-object versus. Prepositional-dative frames) influenced
subsequent outputs, even with novel lexical items, suggesting
abstraction over syntax rather than simple memorization.
Nevertheless, the mechanism in these PLMs differs from human
priming. For humans, priming is often linked to shared abstract
representations guiding production. In PLMs, structural priming may
have been understood as an emergent property of distributional
learning. The effect likely arises from probabilistic next-token
prediction shaped by large-scale exposure to structural patterns (Van
Schijndel and Linzen, 2018; Kassner and Schiitze, 2019; Kassner et al.,
2020; Jurafsky and Martin, 2025).

3 Methods
3.1 Human participants

The human data reported here are from a total of 40 participants,
including 24 participants with post-stroke aphasia (PWA) and 16 age-
and education-matched control (AEM) who participated in a larger
clinical trial project that examines the efficacy of structural priming
training in aphasia (Clinical Trial registration No: NTC05415501).

PWA and AEM were matched for age (PWA Mean (M) = 59.2,
SD =11.4; AEM Mean = 63.4, SD = 11.1; t = —0.988, p > 0.05) and
years in education (PWA Mean = 16.3, SD = 1.79; AEM Mean = 16.7,
SD = 1.35; t = —0.722, p > 0.05). All participants were native speakers
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of English, with no known history of neurological or psychiatric
disorders that could affect communication (besides the stroke for
PWA). AEM controls were screened for their cognitive-linguistic skills
using the Cognitive-Linguistic Quick Test Plus (Helm-Estabrooks,
2017) prior to study participation. All of them scored within normal
limits on the composite severity rating score (M = 3.92/4.0, SD = 0.14,
range 3.6-4.0) that was calculated across the subdomains of attention,
memory, executive function, language, and visuospatial skills.

All PWA were at least 6 months post onset of stroke at the time of
study enrollment (Mean = 81.3, SD = 66.8, range = 23-245 months).
PWA completed a set of clinical tests to determine eligibility following
the inclusion criteria as detailed in Lee et al. (2024). The tests included
Western Aphasia Battery—Revised (WAB-R; Kertesz, 2007),
Northwestern Assessment of Verbs and Sentences (NAVS; Cho-Reyes
and Thompson, 2012), portions of the Comprehensive Aphasia Test

10.3389/frai.2025.1668399

(CAT; Swinburn et al., 2004), the Philadelphia Comprehension
Battery (PCB; Saffran et al., 1988), and the Spoken Word-Picture
Matching subtest of the Psycholinguistic Assessment of Language
Processing in Aphasia (PALPA; Kay et al., 1996).

PWA test scores are reported in Table 1. All participants
presented with moderate-to-mild aphasia, as determined by the
WAB-R aphasia quotient (AQ) 50 or higher to ensure that our tasks
are doable for them. We included participants with varying aphasia
types (4 Broca’, 2 Transcortical Motor, 14 Anomic, 2 Conduction;
2 Wernicke’), given that reduced sentence production, especially for
those with non-canonical word order are found in both fluent and
nonfluent aphasias (e.g., Man et al., 2019; McAllister et al., 2009;
Cho-Reyes and Thompson, 2012; Yan et al., 2018). PWA had to
demonstrate relatively intact comprehension of single words and
yes/no questions (>80% on the PALPA spoken word-picture

TABLE 1 Language testing scores for PWA participants, with means (¢) and standard deviations (62) included.

WAB-R PALPA NAVS CAT PCB
AQ Fluency AC Naming Repetition SWP% VCT VNT ASPT SPPT SCT Comp @ Total
of (%)
written
words
(%)
1 93.6 9 10 8.8 10 93 100 81.8 87.5 933 93.3 87 97
2 73.6 6 6.4 8.8 7.6 98 100 95.5 96.9 76.7 933 80 78
3 92.8 9 10 9.0 9.4 98 100 77.3 100 96.7 100 100 100
4 82.7 6 9.9 8.1 9.4 98 95.5 81.8 96.9 933 100 87 100
5 91.7 9 10 8.9 10 100 100 81.8 100 9.7 100 93 98
6 65.3 4 8.5 6.5 7.7 98 100 40.9 56.3 16.7 96.7 87 88
7 81.4 6 8.9 8.6 8.2 93 100 59.1 84.4 56.7 66.7 100 88
8 78.1 5 9.6 7.8 8.7 98 100 50.0 87.5 76.7 96.7 87 93
9 78.9 6 9.7 7.9 6.9 98 100 81.8 87.5 76.7 86.7 87 90
10 77.7 6 7.9 9.2 6.8 93 100 100 93.8 60.0 73.3 93 88
11 635 8 6.5 44 5.9 80 81.8 50.0 81.3 33 66.7 80 63
12 64.5 5 8.0 5.1 62 85 90.9 54.6 84.4 16.7 70.0 73 80
13 75.7 4 9.0 7.8 9.1 98 95.5 63.6 93.8 86.7 933 93 88
14 92.0 9 9.8 9.4 8.8 98 100 90.9 100 90.0 93.3 87 95
15 93.2 9 9.9 8.8 9.9 100 100 90.9 100 90.0 100 80 95
16 76.3 6 8.0 7.8 8.4 85 90.9 63.6 78.1 16.7 66.7 73 70
17 72.0 5 7.8 7.9 7.3 93 100 72.7 87.5 40.0 70.0 87 77
18 74.6 6 7.4 8.8 7.1 93 90.9 72.7 78.1 633 90.0 93 72
19 85.6 6 10 9.1 8.7 98 100 95.5 96.9 96.7 93.3 100 95
20 69.9 4 8.5 8.9 5.6 100 100 81.8 81.3 33 53.3 100 72
21 714 6 7.6 8.5 56 93 95.5 86.4 90.6 10.0 433 100 75
22 87.1 6 9.8 9.2 9.6 95 100 100 93.8 96.7 100 93 100
23 79.2 6 9.8 7.5 73 98 100 86.4 93.8 60.0 93.3 87 93
24 78.9 6 8.3 8.1 9.1 95 95.5 455 87.5 70.0 76.7 80 78
" 79.2 6.3 8.8 8.1 8.1 94.9 97.3 75.2 89.1 62.0 84.0 88.6 86.4
o 9.2 1.6 1.2 12 1.4 52 46 17.8 9.9 33.6 16.4 8.2 11.0

WAB-R, Western aphasia battery-revised; AQ, aphasia quotient; AC, auditory comprehension; PALPA, psycholinguistic assessments of language processing in aphasia; SWP, spoken word
picture matching test; NAVS, Northwestern assessment of verbs and sentences; VCT, verb comprehension test; VNT, verb.
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matching task, >80% on the CAT Comprehension of Written Words
subtest; >5/10 WAB-R Auditory Comprehension subscore; >80% on
the NAVS Verb Comprehension Test, and >40% on the NAVS
Sentence Comprehension Test) (Thompson, 2012). However, PWA
showed difficulty producing complex sentences as shown in the
SPPT of the NAVS and a set of sentence probe tasks that were
devised and administered as part of our clinical trial (see Lee et al.,
2024). Additionally, the increasing word length and repeated trials
subtests of the Apraxia Battery for Adults-Second Edition (ABA-2;
Dabul, 2000) were administered and those who exhibited severe
apraxia of speech were excluded. PWA passed informal screening
for significant attention and memory deficits using the Symbol
Cancellation and Design Memory subtests of the CLQT+ (Helm-
Estabrooks, 2017). This study was reviewed and approved by Purdue
University Institutional Review Board (IRB-2021-659).

3.2 Structural priming training paradigm

Both groups of participants completed a structured priming
training regimen, which consisted of Pre-test (before treatment), three
sessions of structural priming training targeting production of DO
dative sentences, and one-day (Post-test 1) and one-week post testing
sessions (Post-test 2). The three training sessions were delivered over
a two-week period, with at least 2 days between sessions. Each session
consisted of 40 structural priming training trials as shown in Figure 1:
participants first read two DO prime sentences (Prime 1,2) followed
by a filler sentence (intransitive, as in Filler 1), then completed a target
sentence (Target). After that, they read two additional filler sentences
before finishing with a recognition probe. Each priming training
session took about 30 min for AEM controls and 1-2h for
PWA. Training sessions were delivered either in-person or virtually
over secure Zoom, depending on the participant’s availability for
in-person sessions.

10.3389/frai.2025.1668399

Before and one-day and one-week after the training, the participants
completed a sentence production task, consisting of 15 trials involving
dative alternations. We chose dative sentences as our stimuli, because
they are among the most frequently studied and well-documented
syntactic alternations in previous structural priming studies and English
in both neurotypical speakers (Bock, 1986, 1990; Mahowald et al., 2016)
and PWA (Lee, 2024, for review). Notably, the participants were
presented with a unique set of 15 different stimuli at each testing time
point to avoid practice effects. To prepare for the stimuli, a group of 15
high frequency (M = 3.985, SUBTLEXus corpus, Brysbaert and New,
2009), one-syllable dative verbs (e.g., give, offer; show) were selected and
repeated with three different sets of nouns, yielding a total of 45 unique
dative sentences (15/testing session). Across the three sets of stimuli that
were administered at Pre-test, Post-test 1, and Post-test 2, we matched
the frequency and lengths of the nouns (M number of syllables: 1.73, 1.6,
and 1.64; M word frequency: 3.11, 2.97, and 3.12; all p’s>0.05,
independent #-tests). There was also no overlap between these stimuli
used in the production task and the sentence stimuli used during the
priming training sessions.

As illustrated in Figure 2, in the sentence production task,
participants saw an action verb like serve on the left of the screen and
nouns like nurse, clown, burger on the right. A sentence frame like The
nurse ___appeared at the top of the screen. Using all the given words
and the frame, participants were asked to make a sentence. Participants
were free to produce any type of sentences, including either DO or PO
dative sentences. Because the priming training specifically aimed to
improve preference of DO structures in the participants’ production
responses, it was reasoned that if structural priming effectively
changes participants’ syntactic production, our participants would
be more likely to produce the DO, rather than the PO structure or any
other alternative sentence types after training. Thus, our dependent
measure of interest was whether the participants would show
increased production of DO responses after priming training
compared to before training.

Prime 1 Prime 2

Filler 1 Target

The husband is pouring the
wife the wine

The sister is pouring the
brother the milk

is pouring the tea.

The cars are German

& &

Filler 2

Filler 3

Memory Probe

The apple was green.

V 4

The family was happy.

Did you see this sentence?

The cars are German.

FIGURE 1

An example sequence of structural priming training trial for human participants.
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The nurse

nurse clown

serve

burger

FIGURE 2
An example trial for the anagram production test.

3.3 Apply PLMs to track recovery

3.3.1 Study 1. Do PLM-surprisals reveal training
effects in sentence production?

Study 1 focused on training effects and the inverse preference
phenomenon. We measured conditional surprisals across multiple
time points (Pre-test, Post-test 1, and Post-test 2) to capture how
structural priming training dative structures influences the alignment
of participants’ sentence productions with expected targets, i.e., DO
dative constructions. Each participant’s responses on the task were
transcribed carefully by a group of trained researchers (n = 10). The
data reported here is from a larger clinical trial study and were
collected over the span of approximately 1 year. Each response’s
correctness and error types were tallied for each participant. When
scoring correctness of participants productions, we accepted
synonyms that did not change the meaning of the sentence (e.g., guy
for man; ballerina for dancer). However, we did not accept
substitutions that changed the meaning of the sentence substantially
(e.g., professor for dancer). Prior to serving as an independent coder,
all research team members demonstrated 90% or higher inter-
reliability in transcription and coding accuracies following the second
author’s (JL) lab training protocol. All session data transcriptions and
coding were double checked for any transcription errors by an
independent coder who was not present in the testing session. Any
confusions or disagreements were resolved through a group discussion
with senior researchers of the study team, including the second author
(JL). A blind inter-rater reliability was also established on randomly
selected 20% of the data for accuracy and error coding every 3 months
during data collection and the group was retrained if a consistent error
was noted. Average inter-rater agreement rates were very high: 96.29%
for accuracies (Cohen’s k = 0.92) and 94.09% for error types (k = 0.87).

The research team’s codes were used as the ground truth labels. In
computational pipelines, a ground truth label is the correct, verified,
and factual annotation for a piece of data (Jurafsky and Martin, 2025).
These labels, determined through trained human researchers, serve as
the benchmark or true answer for guiding and evaluating PLMs in our
tasks. Prior to calculation of PLM-surprisals, disfluencies and
annotation symbols, including parentheses, ellipses symbols, and
paraphasia annotation symbols like pp, were removed from the
transcribed data. After pre-processing, in total, the dataset consisted
of 2,669 pairs of target sentence and participant production. There
were 1,531 pairs in the PWA group and 1,138 in the AEM group. For
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the PWA group, there were 555 pairs annotated as “Correct,” and 976
as “Incorrect” For AEM, there were 574 “Correct” and 564 “Incorrect.”
Notably, “Incorrect” responses also include grammatical structures
(e.g., PO dative, other sentence types) that are not the target DO
structure, explaining for a relatively high number of “Incorrect”
responses in AEM. In fact, when excluding non-target PO
productions, the AEM group only had three incorrect responses for
“Incorrect”; and for PWA, there were 231 for “Incorrect”

We computed conditional surprisals using PLMs to capture how
divergent the participants’ responses were from the expected DO
target sentences. PLM-surprisals were derived from the conditional
log-probability assigned by a PLM. We used minicons (Misra, 2022)
default reduction function which averages the log-probability per
token, providing a smoothed estimate of how probable a participant’s
production is, given the target sentence. As a validated method in
PLMs, NLP, and recent PLM-related aphasia research (Jumelet et al.,
2024; Michaelov et al., 2023; Misra et al., 2020; Jurafsky and Martin,
2025; Rezaii et al., 2023), such smoothing enabled valid, aggregated
comparisons of PLM-derived surprisals across different groups, time
points, and PLMs. All surprisals analyses were conducted using
minicons, with the exception of the individual trajectory regression.
For this analysis, we implemented a custom pipeline using
HuggingFace’s Transformers library (Wolf et al., 2019), allowing us to
extract raw (unsmoothed) surprisals for each individual production.
This approach provided a direct view of individual variation prior to
smoothing. Mathematically, PLM-surprisals compute (Equation 1):

Surp:—zz; logP (W,-|C, wl,...,w,-_l) (1)

In Equation 1, P is the participant production including # tokens
(w5, wy w,), and the context C is the expected target sentence. The
conditional surprisal Surp is then calculated as the negative
log-probability of token w; given C and previously generated P tokens.
A higher surprisal value indicates that the PLM finds the participant
production less predictable and more diverged given the target
sentence. Consider an example, where C is the expected target
sentence The tailor lends the actor the umbrella and P is the actual
verbatim production The tailor lended an umbreller to an actor, Surp
by GPT-2 is 5.45. In contrast, with the same C but a less aligned P The
tailor lended an book to an athlete, Surp is 6.77. The divergence
between the participant’s actual production and the target sentence is
manifested in the increase of Surp from 5.45 to 6.77. Our main PLM
was the autoregressive GPT-2 (Radford et al.,, 2019), since studies
suggested that GPT-2 surprisals seem to provide better fit to human
behavioral analyses (e.g., Shain et al., 2024). We additionally included
llama-2-7b-hf (Touvron et al., 2023) and Mistral-7B-v0.1 (Jiang et al.,
2023), in order to validate generalizability of the inverse preference
effects across multiple PLMs. All PLMs in this paper are autoregressive,
because their pretraining objective (next-word prediction) is
inherently aligned with the concept of conditional surprisal (Jurafsky
and Martin, 2025).

There were two primary hypotheses: one at the group level and
one at the individual level. First, at the group level, we hypothesized
that if the surprisals measure is sensitive to structural priming training
gains, both groups AEM and PWA would show lower surprisals at
Post-test 1 and Post-test 2 compared to Pre-test. Further, in line with
the inverse preference effect, we hypothesized that PWA, compared to
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the AEM group, would show greater reduction in surprisals following
the training, although the previous findings are somewhat mixed as
discussed earlier. Also, at the individual level, we explored whether
PWA with higher surprisals at Pre-test would show larger reduction
in surprisals at Post-test 1 and Post-test 2 compared to those with
lower Pre-test surprisals.

To approach these hypotheses, we conducted three analyses at the
group level. First, we conducted the Wilcoxon signed-rank test (a
non-parametric test that does not assume normal distribution)
comparing PLM-surprisals across time points for both groups.
Second, we constructed a linear regression model predicting slope
difference across time points for both groups. We first extracted the
slope from each individual regression model involving separate time
points, then we calculated the slope differences for pairwise time
points. Using these differences, we built a new linear regression model,
with initial PLM-surprisals at Pre-test predicting the slope change.
Third, we examined group differences at each time point using a linear
mixed-effects model with least-squares means pairwise comparisons.
The contrasts were computed as the difference in PLM-surprisal
values between the AEM and PWA groups (AEM-PWA).

Further, two individual-level analyses were conducted. First, for
each participant, a linear regression model was used to examine
changes in surprisals across time, where the difference in surprisals
between consecutive time points was calculated. Second, to examine
whether reductions in PLM-surprisals were associated with
improvements in accuracy at the individual level in the PWA group,
for each participant, we calculated the change in PLM-derived
surprisals and ground-truth accuracy (i.e., the “Correct” label) from
Pre-test to Post-test 1, and from Post-test 1 to Post-test 2. Pearson
correlations were then computed across participants using these
individual change scores, linking surprisals reduction to accuracy
gains. All statistical analyses were conducted in R (R Core Team, 2025).

3.3.2 Study 2. What is PLM-surprisals tracking in
language recovery?

Study 2 analyzed the interplay between various production
categories and surprisals. Production error categories include errors
which are grammatically incorrect and those that are grammatically
correct but misaligned with the target sentence. We examined their
relationships with surprisals over time. The purpose is to identify the
specific production patterns associated with higher or lower surprisals
and assess how these relationships evolve as PWA recover. We focused
on PWA’s language recovery, and our analyses involved AEM controls
in order to establish an interpretive baseline, benchmarking the
comparison with our interested group - PWA. The same data
pre-processing and PLM-surprisals pipeline used in Study 1 was
applied in Study 2, to evaluate the overall deviation of the actual
productions from the expected responses, taking into account various
categories of non-target responses.

The evaluation process categorizes deviations from target sentence
structures using predefined category codes, which are tallied by
trained human annotators. Concretely, NT_po refers to grammatical
non-target sentence structures, namely PO dative sentences such as
the man is giving the cake to the woman, when the expected target
sentence is the man is giving the woman the cake. Any other
grammatical non-target structures are coded as NT_other (the man
and woman are enjoying cake). Grammatical errors (GE) included
argument structure violations errors, for instance, omitting obligatory
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arguments (the man is giving) or incorrect argument order (the man
is giving with the woman the cake). The NS (non-sentential response)
error category is when a response consists of a string of nouns (man,
woman, and cake) or responses without lexical verbs. Lexical errors
(LE) include incorrect verb or noun substitutions (referee was used for
king) that deviate significantly from the correct target stimulus.
Finally, other applies to a response with multiple error types or when
none of the above categories applies.

There were two primary hypotheses. First, PLM-surprisals change
across time points should be significantly associated with productions
with errors, if surprisals can track language recovery as represented in
distinct production error types. Second, we pinpointed that if
PLM-surprisals capture local, lexical recovery, we would expect salient
relationships between surprisals and lexical errors. On the other hand,
if surprisals characterize beyond local, lexical recovery, we would
predict significant relationships between surprisals and other
grammatical categories, besides lexical errors.

To address these hypotheses, we conducted two analyses. First,
we fit a linear mixed-effects model to examine whether PLM-derived
surprisal values of error-containing productions predicted time point.
Here, error productions refer to productions with error types,
including GE, NS, and LE. Second, to further investigate the
relationship between surprisals and production error types within the
PWA group, we computed Spearman correlation coefficients and
associated p-values between surprisals and the one-hot-encoded
counts of each error category.

3.3.3 Study 3. How effective is PLM-prompting in
assessing language recovery?

Besides probability-based metrics such as PLM-surprisal,
we evaluated the few-shot prompting approach. Few-shot prompting
is a technique used to improve the performance of PLMs by presenting
a limited number of examples (or “shots”) within the prompt (Jurafsky
and Martin, 2025). These examples demonstrate a sample sentence
and the desired label for correctness and error types. We used the
ground truth annotations for correctness and error types, namely the
benchmark or “true” answer for instructing and evaluating PLMs, as
discussed in the previous Section 3.3.1. The examples were also from
these ground truth annotations, validated by trained researchers, as
discussed in Section 3.3.1. The same data pre-processing pipeline used
in Study 1 and 2 was applied to Study 3.

A held-out sentence pairs set was used to construct
demonstration examples for few-shot prompting. Each exemplar
included a triplet of (1) the target sentence, (2) the pre-processed
participant production, and (3) the binary correctness label
(1 = correct, 0 = incorrect). Following Qiu et al. (2025), we employed
a “one trial per run” procedure, meaning that each interaction session
with the PLM involved only a single experimental trial: one pair of
the target sentence and the production and the instruction prompt
involving the triplet exemplar. This method can minimize biases
from previous trials affecting the current judgment and help resolve
an issue where PLMs occasionally lost track of instructions midway.
Moreover, the shorter sessions inherent in this design were less
susceptible to server or connectivity problems. For each test item,
we assembled a prompt of the following form: Evaluate the
Participant Production against the Target Sentence by following the
step-by-step instructions. Return 1 if the candidate uses a correct
Double Object (DO) structure that matches the target’s meaning;
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FIGURE 3
Surprisals time points comparisons, Bonferroni correction applied. ****p < 0.0001, ns: p > 0.05.

otherwise return 0. This excerpt was concatenated with stepwise
instruction prompts.

This prompt template communicated the binary classification task
and provided six in-context examples (three negative and three
positive examples) to guide PLM’s classification and ground the PLM’s
interpretation. We designed the prompts based on trained annotators’
judgments and validations and Jurafsky and Martin (2025), which
suggested that too many examples might lead to overfitting, but too
few might not provide PLMs with sufficient domain-specific
information. We queried llama-3-8b-instruct (Touvron et al., 2023),
deepseek-r1 (Guo et al,, 2024), llama4-maverick (Meta Al, 2025), and
gpt-40 (OpenAl, 2024), via a unified API: the Replicate API; API
inquiry time from February to May 2025. Due to class imbalance, F1
scores were used as the primary metric rather than accuracy. We chose
these PLMs, because they were open sourced, and they were
benchmarked as some of the best PLMs in generation tasks at that
moment (Jurafsky and Martin, 2025; https://huggingface.co/models).

We additionally prompted PLM:s to assign an error type label by
extending the instructions. We added examples to illustrate error-type
detections. We modified the prompt template for “correctness” by
breaking down error types into stepwise guidance. For the PWA
group, our dataset included 745 samples tagged with NT_po, 152 with
GE, 28 with Other, 25 with LE, 19 with NS; the AEM dataset included
561 samples tagged with NT_po, 1 with LE, 1 with NT_other, and 1
with Other. The same API-based prompting pipeline used in the
binary classification task of “correctness” was applied to classify error
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types in productions marked as “0” (incorrect) in the original dataset,
as verified by trained clinicians. This classification task was evaluated
by the matching accuracy between PLM’s predicted and the ground-
truth error-type labels.

For both prompting tasks (correctness and error types), prompt
templates, all the examples, instructions, and all the step-wise details
are available in the Open Science Forum at doi: 10.17605/OSE
IO/FMNSY.

4 Results

4.1 PLMs reveal training effects and inverse
preference

Our results suggested that PLM-surprisals are informative of
language recovery, particularly language learning in the PWA group.
PLM-surprisals measures generally revealed that participants’
productions became more aligned with the expected DO dative
structures over time following structural priming training. Our
findings indicated such training effects at both the group and the
individual level.

4.1.1 Group level analyses

Figure 3 indicated that for both groups, there were significant
decreases of surprisals from Pre-test to Post-test 1 and from Pre-test
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to Post-test 2, but not from Post-test 1 to Post-test 2. These suggested
that participants’ sentence productions generally became aligned with
target sentences following the training and the improvements were
maintained over time.

Table 2 reinforced this group-level training effects by
demonstrating that initial surprisals can predict the magnitude of
change in subsequent training sessions such as Post-test 1 and Post-
test 2. The slope differences between Pre-test and Post-test 1, and
between Pre-test and Post-test 2, were significant for PWA (coefficients
of 0.74 and 0.686 respectively, with relatively high adjusted R* values
0.527 and 0.446). However, the difference between Post-test 1 and
Post-test 2 was not significant (adjusted R* 0.062). These results
suggested that after training, PWA showed significantly reduced
surprisals compared to Pre-test and the training effects were
maintained at Post-test 2. Changes in AEM were also significant but
less pronounced (coeficient of 0.673 and 0.689, respectively). The
inverse preference effect was also manifested in surprisals. Both PWA
and AEM groups showed significance and positive coefficient when
using Pre-test surprisals predicting slope difference, with the PWA
group slope change from Pre-test to Post-test 1 the most salient. The
decrease of slope change from Pre-test to Post-test 1 was the largest
(coeflicient = 0.74), among all the coefficients. This indicated that the
PWA group, with more impaired production in the beginning, showed
larger amounts of improvements after structural priming training.

Coefficients f in Table 3 consistently showed significant
differences between the AEM and PWA groups. The negative
coeflicient values suggested generally higher surprisals in the PWA
than in the AEM groups. Further, the regression coefficients for

TABLE 2 Slope differences across time.

Group B Y3 p Adjusted R?
Slope difference (PWA)
A(Pre-test— 0.740 0.144 3.63e-05 0.527
Post-test 1)
A(Pre-test— 0.686 0.155 0.0002 0.446
Post-test 2)
A(Post-test —0.321 0.202 0.126 0.062
1—Post-test
2)
Slope difference (AEM)
A(Pre-test— 0.673 0.198 0.004 0.414
Post-test 1)
A(Pre-test— 0.698 0.199 0.004 0.447
Post-test 2)
A(Post-test 0.109 0.276 0.700 —0.064
1—Post-test
2)

TABLE 3 Surprisals group comparison across time.
Time point p SE Jo)
Pre-test —0.901 0.170 <0.0001
Post-test 1 —0.608 0.166 0.008
Post-test 2 —0.653 0.166 0.004
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Pre-test, Post-test 1, and Post-test 2 indicated statistically significant
improvements, suggesting that increased exposure through structural
priming training leads to more predictable (hence lower surprisals),
target-like productions. The coeflicients (absolute values) decrease
from Pre-test to Post-test 1 and from Pre-test to Post-test 2, implying
that the PWA group is catching up as their responses become
more structured.

4.1.2 Individual level analyses

Figure 4 showed that these individual trajectories reveal a general
pattern of decreasing surprisal values from Pre-test to Post-test 1, with
this reduction often sustained at Post-test 2. This pattern was observed
across both the AEM and PWA groups. Notably, individuals who
began with higher surprisals at Pre-test tended to show greater
reductions following training, suggesting a potential for surprisals to
reflect the degree of individual responsiveness to intervention.
Additionally, changes between Post-test 1 and Post-test 2 were
minimal or nonsignificant for most participants, indicating a
maintenance of training effects over time. To statistically justify the
observable patterns in Figure 4, follow-up pairwise comparisons were
conducted using the least-squares means pairwise analyses, the
emmeans package in R (Lenth, 2024), based on a linear regression
model with surprisals as the dependent variable predicting time
points. Our result suggested that a total of 11 out of 24 PWA
participants showed at least one significant pairwise comparison. For
these participants, the range of effect sizes of surprisals change over
time was 18.22 to 107.01, standard errors ranged from 2.52 to 33.70,
and p-values ranged from < 0.0001 to 0.042.

Figure 5 suggested that for PWA, greater reductions in surprisals
are associated with increased accuracy in sentence production. This
provides additional statistical evidence linking surprisals reduction to
language recovery following structural priming training. Crucially,
we found that this relationship generalizes to llama-2-7b and Mistral.
In other words, PWA with more severe language impairments showed
more pronounced improvements with structural priming training, as
reflected in significant increases in accuracy, which were strongly
positively correlated with reductions in surprisals. This inverse
preference effect was consistently observed across multiple PLMs.

4.2 PLMs track syntax in language recovery

Study 2 results suggested that GPT-2 surprisals index beyond
local, lexical level in language recovery, as shown by findings in error
types and the relationships over time.

4.2.1 PLM-indexed errors across time

Table 4 showed that the PWA group exhibited significant changes
in surprisals from Pre-test to post-test sessions (coeflicients of 0.926
and 0.964 with p < 0.001). AEM did not show significant changes in
surprisals for their errors (GE, NS, and LE), likely because they
generally made fewer errors regardless of time points. Recall that the
majority of the “Incorrect” in AEM was grammatical, non-target PO,
and only 3 out 564 “Incorrect” were ungrammatical errors.

The insignificant decrease of surprisals in PWA productions with
errors from Post-test 1 to Post-test 2 (Table 4) also reinforced the
maintenance effect (c.f. Figure 4), suggesting that surprisals can
effectively track language recovery in various stages. This also
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TABLE 4 Surprisal of error productions across time.

(€17e]0] ) ‘ B ‘ SE ‘

P
PWA
Pre-test—Post- 0.926 0.239 <0.0001
test 1
Pre-test—Post- 0.964 0.245 <0.0001
test 2
Post-test 1— 0.039 0.213 0.982
Post-test 2
AEM
Pre-test—Post- —0.098 0.18 0.601

test 1

highlights the clinical interpretability of surprisals in characterizing
production errors, further informing recovery trajectories.

4.2.2 PLM-indexed errors across categories

Surprisals generated by GPT-2 showed differential correlations
with various error types, revealing the categories of linguistic
disruptions. GE (grammatical errors) showed the strongest positive
correlation with surprisals (r=0.277, p<0.001), followed by
non-sentential utterances missing a lexical verb (NS; r=0.195,
p <0.001), suggesting that GPT-2 is particularly sensitive to structural
violations that extend beyond isolated word-level anomalies. LE
(lexical errors) showed a weaker but significant positive correlation
(r=0.088, p = 0.006), indicating that while lexical disruptions affect
surprisal, their influence is less salient. No significant correlation was
found between GPT-2 surprisals and NT_other (r = —0.025, p = 0.43),
indicating that PLM-surprisals are not sensitive to other grammatical
non-target structures.

Notably, when participants with aphasia produced more NT_po,
surprisals tended to decrease, as indicated by the negative correlation.
One likely reason is that we used conditional surprisals, which assumed
the DO structure as the expected form. Despite their syntactic
differences (NT_po and DO), NT_po and DO share a similar semantic
meaning. Consequently, the surprisals of NT_po conditioned on DO
should hypothetically be lower compared to those of other syntactically
and semantically distinct productions. To investigate this further,
we used the sentence-transformers/all-MiniLM-L6-v2 model to embed
sentence pairs into vector space representations (Sentence Transformers,
2024). Computational semantics studies have shown that such
representations capture word content, and similarities between these
representations capture content overlap (Yu and Ettinger, 2020). We thus
calculated the cosine similarity between each target DO sentence and
the corresponding participant production. The results showed that
productions labeled as NT_po were highly similar to their DO targets
(Mean = 0.902, SD = 0.116), indicating strong semantic overlap despite
structural differences. In contrast, similarity scores were lower for other
error types: GE (Mean=0.782), LE (Mean=0.738), and NS
(Mean = 0.598). These results supported our hypothesis that the negative
correlation between surprisals and NT_po frequency is possibly
attributed to the fact that NT_po and DO differ syntactically but share
semantic content. This also suggested that surprisals are sensitive to
more than just semantics. It might serve as a composite score of syntactic
and semantic information, with a stronger weighting toward syntax. If
surprisals primarily tracked semantics, then error types such as GE and
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LE, would have shown similar correlation strengths. However, only GE
exhibited a strong correlation, while LE did not, further indicating that
PLM-surprisals are more responsive to syntactic divergence.

4.3 PLMs assess language recovery with
few-shot prompting

Figure 6 demonstrated that prompting PLMs to assess recovery-
related sentence correctness and error categorization yields promising
performance. Overall, our findings revealed distinct performance
patterns across the evaluated PLMs, groups, and tasks.

First, regarding PLMs, most models achieved strong performance
on correctness classification, with F1 scores generally exceeding 0.95,
particularly llama4-maverick and gpt-40 which consistently
performed above 0.97. However, llama3-8b demonstrated a unique
performance profile that differed from all other models: while showing
relatively lower correctness classification performance (F1 scores
around 0.745-0.880), it exhibited comparatively better error type
classification accuracy across conditions. This contrasting pattern
suggested that llama3-8b may have developed different internal
representations that capture more nuanced error-specific features,
even when less decisive about binary correctness judgments.

Second, regarding groups, performance varied notably, with most
PLMs showing superior results in the AEM group compared to PWA
for both tasks. The PWA group proved more challenging, with several
models showing performance drops, likely due to individual variance
in PWA. For instance, deepseek-r1’s F1 score dropped to 0.689 for
error classification in PWA, and llama3-8b achieved its lowest
correctness F1 score (0.745) in PWA. We additionally reported the
overall performance in Figure 6, where we combined both groups
(AEM and PWA). Overall performance of PLMs on the whole dataset
generally fell between AEM and PWA.

Third, the binary correctness classification task yielded a better
performance than the multiclass error type classification across all PLMs
for both AEM and PWA data. While correctness F1 scores consistently
exceeded 0.90 for most PLM-group combinations, error type
classification accuracy ranged from 0.689 to 0.894, highlighting the
inherent complexity of teasing apart different error categories. This
performance gap indicated that while PLMs can reliably detect whether
language production contains errors, the fine-grained categorization of
error types requires more specialized linguistic knowledge or domain-
specific capabilities. Further, correctness is a binary classification task,
whereas error-type classification requires distinguishing among multiple
categories. As Jurafsky and Martin (2025) note, multiclass classification
generally increases task difficulty, because models must learn and
maintain more decision boundaries while coping with fewer training
examples per class. In our case, this meant that PLMs had less data to
represent each error type, making fine-grained classification more
challenging than the binary detection of correctness.

5 Discussion

Most clinical applications of PLMs have focused on diagnostic
classification, such as distinguishing individuals with language
disorders from neuro-typical controls (Cong et al., 2024a,b). The
present study takes a critical next step by exploring whether PLMs can
be used not only for detection but also to track changes in language
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functioning over time. Shifting from binary diagnosis to continuous
recovery monitoring is an important expansion of how PLMs can
be leveraged in clinical contexts, particularly for capturing the
dynamic and multidimensional nature of language rehabilitation.

5.1 PLMs track changes in sentence
production: feasibility and efficacy

Our findings support our hypotheses that PLM-derived surprisals
is both a feasible and effective index for tracking improvements in
sentence production in aphasia. We conducted regression analyses
alongside group-wise and time-point-wise comparisons, which
revealed a marked reduction in conditional surprisals from Pre-test to
both Post-test 1 and Post-test 2 sessions. This reduction was evident
in both groups. Our results are consistent with previous findings on
the efficacy of structural priming training, as observed in traditional
clinical outcome measures such as production accuracy (Lee et al.,
2019b, 2024; Mack et al., 2017) and syntactic preference choices
(Cho-Reyes et al., 2016; Keen and Lee, 2022; Lee et al., 2019a).
Importantly, PLM-surprisals were also sensitive to individuals’
learning trajectories relative to their Pre-test performance. At the
group level, both PWA and AEM groups showed decreased surprisals
following training, with the PWA group exhibiting a more pronounced
effect. This finding is in line with previous studies showing increased
priming-induced changes in their language production for speakers
with less efficient linguistic knowledge (Branigan and Messenger,
2016; Cho-Reyes et al., 2016; van Boxtel et al., 2023; see also Hartsuiker
and Kolk, 1998). That is, individuals with higher initial surprisal
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values, reflecting more deficits in sentence production before training,
demonstrated greater improvement after training at both group and
individual levels.

Moreover, across all three PLMs tested, reductions in surprisals
were significantly correlated with training-induced improvements in
sentence production. This correlation indicates the value and efficacy
of PLM-surprisals in detecting individual differences in treatment
response, supporting its potential use in tracking treatment effects in
aphasia. Further, our individual-level analyses showed promising
clinical implications for personalization of aphasia rehabilitation.
Another advantage of using PLM-derived surprisals over traditional
accuracy-based or categorical error-type analyses lies in its capacity to
provide a continuous, graded measure of recovery. This continuous
scale allows for the detection of subtle improvements or shifts in
linguistic complexity that binary metrics may miss. As such, surprisals
might be a more sensitive and fine-grained index of language
rehabilitation than binary accuracy stores.

Lastly, our prompting-based approach extends prior work
incorporating probability and instruction-based prompting for PLM
interaction (Hu and Levy, 2023). Our findings also resonate with the
prompting study by Imaezue and Marampelly (2025), which proposed
a simulation method to improve conversational agents by
incorporating clinically relevant speech error patterns, thereby
aligning AI-driven dialogues more closely with the needs of aphasia.
Prompting introduces an end-to-end pipeline: users provide simple
instruction prompts with few-shot examples, and the model generates
output labels, either numerical or categorical, without requiring
intermediate annotations. This streamlined interface may significantly
enhance the clinical applicability of PLMs. Our results demonstrate
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that prompting PLMs is both a feasible approach for language
rehabilitation in medical settings. While our findings are based on
four specific PLMs, we hypothesize they would generalize to stronger
models, provided they are autoregressive and trained on a word
prediction objective.

Hybrid approaches could further improve prompting’s efficacy.
Our findings demonstrated robust performance in binary correctness
classification, but with a relatively lower accuracy rate in error-type
classification. We maintain that a hybrid approach, integrating
probabilistic metrics (such as surprisals) with prompting, could
augment the precision of fine-grained error detection. For instance,
employing probability as intermediate outputs to guide PLMs in
determining the statistical range and distribution of each distinct error
type, and subsequently utilizing these probabilities by PLMs for
enhanced error type classification.

5.2 PLMs track different error types:
reliability and interpretability

Our findings suggest the reliability and interpretability of
PLM-surprisals, which are crucial in medical contexts. Error
categorization allowed us to pinpoint what PLMs surprisals reliably
capture, leading to meaningful results that both clinicians and
computational linguists can interpret. As discussed in previous
studies, structural priming not only facilitates the immediate use of
primed sentence structures but also induces lasting changes in
language production in aphasia. Our study extended these insights by
demonstrating that higher PLM-derived surprisals are associated with
increased grammatical errors and non-sentential utterances, which are
often seen in patients with syntactic deficits. These findings resonate
with prior work (Rezaii et al., 2019, 2022a, 2022b, 2023; Cong et al.,
2024a,b), which identified computational linguistic indices can serve
as interpretable measures of the structural deficits underlying aphasia.

Cong et al. (2024a) showed that PLM-surprisals index both word-
and sentence-level disruptions characteristic of agrammatic aphasia,
such as reduced mean length of utterance, lower syntactic complexity
(e.g., fewer embedded clauses), and diminished verb usage. These
features were more strongly associated with PLM-surprisals than with
classic clinical measures such as lexical diversity. Rezaii et al. (2023)
suggested that high surprisal values may also reflect a communication
strategy, where PWA, constrained by limited processing resources, rely
more heavily on high-frequency content words and simplified syntax.
These are strategies that may go unnoticed in categorical error
analyses. Our current findings expand Cong et al. (2024a) and support
the proposal that PLM-surprisals function as an integrative metric
that reflects broader deficits in syntactic planning and structural
composition, not merely lexical retrieval. Taken together,
PLM-surprisals offer a reliable and interpretable utility for quantifying
language recovery beyond linear, surface-level correctness, enabling a
hierarchical, finer-grained characterization of structural impairments
and recovery trajectories in aphasia.

Surprisals reduction could be interpreted as lexical repetition or
memorization, rather than alignment with the intended syntactic
target. In our study, we attempted to address this by using conditional
surprisal measures that presupposed the DO structure, and by
conducting additional analyses with embedding representations (Yu
and Ettinger, 2020; sentence transformer 2024; as in Section 4.2.2).
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Our findings suggested that surprisals were more responsive to
structural alignment and syntactic divergence than to (lexical) overlap
and repetition. Future work could control for such effects more
directly, for example, by systematically varying lexical items across test
points, or by incorporating analyses that leverage (semantically or
syntactically) nonce words, which explicitly separate lexical from
structural contributions.

Further, our analyses revealed that, at the group level, PWA
exhibited significant changes in surprisals associated with
improvements in syntactic production, while AEM participants
maintained lower error rates overall. Crucially, within the PWA group,
the correlations between specific error types (e.g., grammatical errors
versus non-target productions) and surprisal values revealed that as
participants’ productions became more target-like, overall surprisals
decreased. This observation indicates that the PLM-surprisal measure
is sensitive not only to the accuracy of syntactic reproduction but also
to the reduction in error load, which is a key indicator of
language recovery.

5.3 Limitations and future work

This study has some limitations that point toward future
directions. Our sample included only participants with mild-to-
moderate aphasia, leaving open the question of whether surprisals-
based measures remain valid in more severe cases. Severe aphasia
often involves a higher proportion of non-sentential or unintelligible
utterances, which may challenge both PLM-surprisals and prompting-
based classification by reducing linguistic structure and reliable input
for probability estimation. Adaptations such as more robust
preprocessing, error-tolerant parsing, or training models on data
representative of severely impaired speech will likely be necessary, and
validation in severe populations remains critical. Beyond sentence-
level structures, our methods could be extended to syntactic forms
commonly studied in priming research, such as passives, relative
clauses, locative alternations, and noun phrase modifiers (e.g., Cleland
and Pickering, 2003; Chang et al., 2012; van Gompel et al., 2012;
Mahowald et al., 2016), as well as to discourse production, which has
not yet been systematically characterized with PLMs. Future work
could evaluate whether these approaches generalize across syntactic
and communicative contexts, thereby broadening understanding of
priming-based treatment effects.

Our current design also did not include a control group of people
with aphasia who did not undergo priming training. Prior studies
have established priming’s role in healthy participants (e.g., Branigan
and McLean, 2016; Savage et al., 2006; Heyselaar and Segaert, 2022;
Bock and Griffin, 2000; Chang et al., 2012), but future research might
want to directly isolate primings effects in clinical contexts by
contrasting PWA with and without training. Additionally, careful
attention is needed to speech variability, multimodality of data,
differences across PLM pre-training paradigms, and comorbidities
(e.g., neurological versus. Psychiatric illness), all of which may
influence surprisals measures.

We focused on few-shot prompting, guided by empirical evidence
and recommendations in natural language processing. Few-shot
examples were selected by domain experts (aphasia researchers and
annotators), and prompt templates were adapted for two tasks:
detecting correctness and detecting error types. We did not explore
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alternative prompting strategies (e.g., chain-of-thought, tree-of-
thought), as our aim was to examine the clinical efficacy of PLMs with
simple few-shot prompting. Similarly, we chose not to disclose
whether data came from controls or PWA. We maintained that labels
could simplify the task and that lengthy prompts describing group
characteristics might risk distracting PLMs. Instead, we prompted
PLMs on the combined dataset and analyzed performance by group
and overall (Section 4.3; Figure 6). We acknowledge that future
research could benefit from broader comparisons across prompting
strategies, the inclusion of labeled datasets, and systematic variation
in prompt design. Such work would extend our findings and provide
a more thorough understanding of prompting choices in aphasia
treatment assessments.

At the same time, recent advances in Al offer a concrete path
toward deployment in speech-language therapy. Interactive systems
such as ChatGPT have been used to facilitate word retrieval
(Purohit et al., 2023), while Aphasia-GPT demonstrated integration
of generative Al into augmentative and alternative communication
(AAC) to enhance accessibility and personalization (Bailey et al.,
2024). Building on this trajectory, our findings show how
PLM-derived surprisals and prompting-based pipelines can provide
interpretable, scalable tools for monitoring clinical progress (e.g.,
Hou et al., 2025). By quantifying surprisal as a syntactic and lexical
metric, evaluating model performance with intrinsic (e.g., surprisals
shift, error detection) and extrinsic (e.g., F1 scores, accuracy)
metrics, and automating error classification, our approach
demonstrates a feasible pathway for reducing the burden of clinical
evaluations.

For real-world adoption, several steps might be critical. Clinician
training through workshops and modular sessions will be essential to
build familiarity with interpreting automated indices. User-centered
dashboards should present outputs as intuitive visualizations and
summaries, integrated with therapy software and remote platforms,
while supporting multimodal input (Bailey et al., 2024; Imaezue and
Marampelly, 2025). Embedding these tools into EHR systems would
allow structured tracking of longitudinal outcomes, ensure
interoperability, and consolidate treatment notes and indices in one
place (Wang et al., 2019; Gale et al., 2024; Cohen et al., 2020). Such
integration would enable data-driven, scalable, and accessible
rehabilitation monitoring while maintaining explainability in high-
risk domains.

Taken together, while further validation is required across severity
levels, syntactic contexts, and clinical designs, the integration of
PLM-surprisals and prompting pipelines represents a promising step
toward precision rehabilitation. With careful attention to clinical
variability, user-centered implementation, and responsible
deployment, this approach has the potential to improve accessibility
and quality of aphasia therapy worldwide.

6 Conclusion

Our study demonstrated PLM as an effective and interpretable
utility for tracking language recovery in aphasia with gradient sensitivity.
Monitoring PLMs over time can provide a quantifiable measure of
treatment efficacy, which is particularly useful for tailoring interventions
to individual patients. Overall, the convergence of computational
systems with clinical measurement suggests the potential of PLM-based
approaches to refine our understanding of language recovery.
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