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This study explores the use of pre-trained language models (PLMs) in tracking 
priming treatment induced language recovery in aphasia. We  evaluate PLM-
derived surprisals, the negative log-probabilities of a word or a sequence of 
words calculated by a PLM given its preceding context, as a continuous and 
interpretable measure of treatment-induced language change. We found that 
surprisal scores decreased following structural priming treatment, especially 
in participants with more severe sentence production impairments. We  also 
introduce a prompting-based pipeline for clinical classification tasks. It achieved 
promising results in classifying aphasia sentence correctness (F1 = 0.967) and 
detecting error categories in aphasia (accuracy = 0.846). Such use of PLMs for 
modeling, tracking, and automatically classifying language recovery in aphasia 
represents a promising deployment of GenAI in a clinical rehabilitation setting. 
Together, our PLM-based analyses offer a practical approach for modeling language 
rehabilitation, tracking not only language structure but also individual change 
over time in clinical contexts.
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1 Introduction

Computational methods involving pre-trained language models (PLMs) have recently 
shown promise in adapting models trained on typical speech to better accommodate 
atypical speech patterns (e.g., Purohit et al., 2023; Müller-Eberstein et al., 2024; Cong et al., 
2024a; García et al., 2024). For individuals with atypical speech, such as people with aphasia 
(PWA), an acquired language disorder caused by brain injuries, language recovery is a 
challenge. Although a range of treatments has been developed, substantial individual 
variability in treatment outcomes continues to impede the development of reliable 
predictive models for recovery. Recently, AI has been increasingly used for aphasia 
intervention (e.g., Bailey et al., 2024; Imaezue and Marampelly, 2025). More relevant to the 
current study, previous AI-related research has demonstrated that PLM-derived scores 
such as PLM-surprisals (the negative log-probability of an utterance or a word given its 
preceding context as computed by a PLM) seem effective in detecting the presence and 
types of aphasia during discourse tasks (Rezaii et al., 2023; Cong et al., 2024a,b). Building 
on this line of work, the current study investigates whether PLMs can also serve as a 
sensitive utility to track language changes in aphasia following a language training, 
specifically structural priming training.
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Structural priming, the unconscious repetition of previously 
encountered syntactic structures across otherwise unrelated sentences, 
plays a critical role in language processing and learning (Bock and 
Griffin, 2000; Pickering and Ferreira, 2008; Branigan and Pickering, 
2017). Growing evidence has documented therapeutic potential of 
structural priming in improving language production and 
comprehension in PWA by facilitating access and use of syntactic 
representations (Lee, 2024, for review). Prior studies have 
demonstrated that PWA benefit from implicit structural priming, as 
evidenced by lasting improvements in syntactic production 
(Hartsuiker and Kolk, 1998; Lee et al., 2019b, 2024; Lee and Man, 
2017; Man et al., 2019) and comprehension (e.g., Keen and Lee, 2022; 
Lee et al., 2019a). The present study leverages conditional surprisals 
(the negative log-probabilities of a participant’s production 
conditioned on a target production) derived from PLMs as a metric, 
and uses prompt engineering of PLMs to automatically assess 
priming-induced language learning in aphasia. By assessing the 
divergence between participants’ productions and the target sentence, 
our methodology quantifies the degree to which structural priming 
training brings aphasia closer to expected linguistic outputs. 
Concretely, we  examined both group-level training effects and 
individual variability in response to intervention.

In Study 1, we  tested whether PWA and age- and education-
matched control participants (AEM) would show significant 
reductions in PLM-surprisals following structural priming. We also 
asked if priming-induced changes in surprisals measures would 
be greater for PWA than controls and reflect individual differences 
within the PWA group. Study 2 further explored the relationship 
between surprisals measures and specific production error types, 
thereby spelling out how these metrics reflect not only local lexical 
recovery but also broader syntactic restoration. Study 3 used few-shot 
learning to prompt PLMs, a technique used to enhance the 
performance of PLMs by presenting a limited number of examples (or 
“shots”) within the prompt. These examples serve as demonstrations 
of the desired output format task. Specifically in the current study, 
we used this few-shot prompting technique for automatic assessment 
and tracking of language recovery. This is achieved by measuring the 
alignment between participants’ productions and target sentences, 
and by classifying error types when misalignment occurs. This 
approach addresses the question of automation and enhances the 
efficiency of language rehabilitation assessment.

Our findings suggested the feasibility, efficacy, reliability, and 
interpretability of PLMs as clinical utilities, paving the way for more 
targeted and effective interventions in language recovery and therapy. 
First, our results showed that PLMs offer a promising avenue for 
detecting subtle changes in priming-induced language production. 
Aphasia recovery is highly variable, some individuals show substantial 
gains, while others progress slowly, highlighting the need for more 
precise and personalized tools to predict treatment responsiveness 
over time. Classic clinical measures often fail to capture the nuanced 
linguistic patterns that underlie this variability. We provided results 
that PLM-derived surprisals, which integrate syntactic as well as 
lexical information into a single metric, can serve as an interpretable 
and individualized marker of priming-induced language recovery. 
Further, our results indicated that prompting PLMs enables automated 
assessment of priming-induced recovery, which not only streamlines 
the assessment but also opens the door to scalable, data-driven 
methods for monitoring language-related rehabilitation.

2 Related work

2.1 Structural priming in language learning 
and recovery

Structural priming is a key phenomenon in studies of language 
processing and learning. It refers to the unconscious repetition of 
previously encountered sentence structures during subsequent 
production and comprehension (Bock, 1986; Pickering and Ferreira, 
2008). For example, if a language user hears a double object (DO) 
dative prime sentence (e.g., the man is giving the woman flowers), they 
are more likely to describe a new dative event in the double-object 
form (e.g., the singer is giving the boy a guitar), compared to when they 
heard a prepositional object (PO) prime sentence (e.g., the man is 
giving flowers to the woman). Importantly such priming effects last 
over intervening fillers and across sessions in both young children and 
adults (Branigan and McLean, 2016; Savage et al., 2006; Heyselaar and 
Segaert, 2022). Thus, structural priming is thought to reflect how 
speakers implicitly learn to map messages onto certain syntactic 
structures through prior linguistic experiences (Bock and Griffin, 
2000; Chang et al., 2012).

Implicit learning theories provide a framework for understanding 
how structural priming functions in language acquisition and 
learning. In a commonly cited theory, Chang and colleagues 
characterized structural priming as a consequence of prediction-error 
based language learning (Chang et al., 2006, 2012; but see Pickering 
and Ferreira, 2008 for additional accounts of structural priming). They 
proposed that as the speaker processes a prime sentence incrementally, 
they make predictions about upcoming word order. If the experienced 
(primed) linguistic input (e.g., DO dative sentence) is different from 
what they expected (e.g., PO dative) structure, this discrepancy drives 
adjustments in their syntactic processing system, biasing them to 
produce primed structures more frequently over time. In fact, many 
studies report structural priming results in enduring changes in 
various populations, including young children (Rowland et al., 2012; 
Branigan and McLean, 2016), second language learners (Shin and 
Christianson, 2012), and in both children and adults with language 
disorders (Leonard, 2011; Lee, 2024, for review).

In aphasia, where language production is often impaired, using 
syntactic repetition as a general strategy to simulate use of more 
complex and fluency speech has a long history, although its long-term 
benefits remain equivocal (e.g., Helm-Estabrooks, 1981; Doyle et al., 
1987; Fink et al., 1995). For example, Sentence Production Program 
for Aphasia (formerly HELM Elicited Language Program for Syntax 
Stimulation or HELPSS; Helm-Estabrooks, 1981) emphasizes repeated 
practice of various syntactic structures in story contexts to remediate 
agrammatic speech. More recently, structural priming has been 
recognized for its potential to create lasting changes in sentence 
production in PWA. Growing findings suggest that it facilitates 
language (re-)learning in aphasia, rather than simply boosting 
immediate access of primed structures (e.g., Cho-Reyes et al., 2016; 
Lee et al., 2024; Lee and Man, 2017; Keen and Lee, 2022; van Boxtel 
et al., 2023; Lee et al., 2024; Rainey et al., (in press)). PWA demonstrate 
significant priming effects that persist over up to 10 intervening filler 
utterances between a prime and a target sentence (e.g., Cho-Reyes 
et al., 2016; Man et al., 2019; Lee et al., 2019a, 2019b). PWA show 
cumulative improvements in trained and untrained stimuli over 
repeated priming sessions or trials, with cumulatively increasing 
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effects over sessions (Lee and Man, 2017; Rainey et al., (in press); Lee 
et al., 2024; van Boxtel et al., 2023; Zhang and Lee, 2025). Notably, 
while some studies primarily recruited participants with agrammatic 
Broca’s aphasia (Cho-Reyes et al., 2016; Hartsuiker and Kolk, 1998), 
others recruited participants with varying aphasia types and found 
positive priming effects across aphasia types (e.g., Yan et al., 2018; 
Keen and Lee, 2022; Lee et al., 2024; Saffran et al., 1988).

Another line of evidence that structural priming facilitates 
language learning comes from the so-called inverse preference effect, 
where individuals with less proficient language skills tend to show 
larger priming effects. Branigan and Messenger (2016), for example, 
found that children, as less proficient language users, exhibited 
stronger syntactic priming effects than adults, especially for long-term 
priming conditions. Hartsuiker and Kolk (1998) found priming effects 
only in PWA, examining production of passive and DO dative 
constructions, but not in controls. van Boxtel et al. (2023) found that 
PWA exhibited greater cumulative adaptation in sentence planning 
processes, as measured by eye tracking, to priming compared to 
controls. Additionally, Cho-Reyes et al. (2016), although failed to find 
increased priming effects for PWA at the group level, they found that 
within the PWA group, individuals with more severe sentence 
production impairments showed larger priming effects. However, the 
inverse preference effect was not supported in all studies. Yan et al. 
(2018) have found comparable priming effects between PWA and 
controls and Man et  al. (2019), for example, have found reduced 
priming effects in PWA compared to controls. Nonetheless, these 
findings highlight the variability in priming responses among 
individuals with aphasia and the possibility that those with greater 
sentence production difficulties would show greater priming-
induced improvements.

2.2 Structural priming in PLMs

The study of structural priming has also become an area of interest 
within the field of natural language processing recently, specifically 
concerning PLMs. Recent investigations have suggested that PLMs 
exhibit structural priming effects similar to those observed in human 
language users. Pertaining to the current study, Jumelet et al. (2024) 
demonstrated that PLMs are susceptible to structural priming across 
various conditions. Their experiments revealed that PLMs generate 
higher rates of syntactic alignment when exposed to specific sentence 
structures, reflecting the structural tendencies exhibited by human 
speakers. This indicates that PLMs do not merely rely on rote 
memorization but might be  capable of abstracting grammatical 
relationships from their training data, facilitating a process that seems 
to mirror human syntactic processing and reuse. Jumelet et al. (2024) 
also suggested that structural priming in PLMs is heavily influenced 
by the models’ exposure to diverse syntactic structures during 
training. This training incorporates a multitude of patterns from large 
text corpora, likely allowing PLMs to represent and later reproduce 
similar structures when prompted. Such behavior indicates the 
models’ tendency to lead to coherence and fluency in generated text, 
facilitating interactions that are more aligned with natural 
human dialogue.

More recently, Sinclair et al. (2022) explored structural priming in 
PLMs, finding that autoregressive models favor sentences structurally 
similar to their prefixes across various constructions, resembling 

structural priming seen in humans. Along with findings from van 
Schijndel and Linzen (2018), Prasad et al. (2019), and Sinclair et al. 
(2022) suggested that PLMs recognize structural similarities between 
sentences and anticipate repeated structures. While these studies do 
not focus on input length specifically, their contextual manipulations 
inherently involve length variations, leaving open the question of how 
structural properties interact with different input lengths.

Moreover, the intersection of structural priming with multilingual 
contexts has been examined. Previous studies indicated that 
multilingual PLMs exhibit cross-linguistic structural priming, where 
exposure to similar structures in one language can prime analogous 
structures in another (Michaelov et al., 2023). Michaelov et al. (2023) 
measured cross-lingual structural priming across eight experiments 
spanning six languages, plus four monolingual experiments in three 
non-English languages. Results revealed that models exhibit abstract 
grammatical representations similar to humans, influencing text 
generation across languages and demonstrating shared structural 
processing in multilingual models. The implications of structural 
priming for PLM performance and applications are multifaceted 
(Sinha et al., 2022). For instance, harnessing structural priming could 
enhance dialogue systems and conversational agents, allowing for 
more human-like interactions. By incorporating mechanisms of 
structural priming, developers can create PLMs capable of generating 
contextually relevant and grammatically coherent responses, which 
may lead to improved user experiences in natural language 
applications (Cai et al., 2023).

Another line of work concerns whether structural priming in 
PLMs reflects implicit learning mechanisms, as in humans, or merely 
the reuse of patterns from training data. To address this, studies such 
as Jumelet et  al. (2024) and Sinclair et  al. (2022) used controlled 
prefixes that varied syntactic structure while holding lexical content 
constant. Their findings showed that exposure to specific constructions 
(e.g., double-object versus. Prepositional-dative frames) influenced 
subsequent outputs, even with novel lexical items, suggesting 
abstraction over syntax rather than simple memorization. 
Nevertheless, the mechanism in these PLMs differs from human 
priming. For humans, priming is often linked to shared abstract 
representations guiding production. In PLMs, structural priming may 
have been understood as an emergent property of distributional 
learning. The effect likely arises from probabilistic next-token 
prediction shaped by large-scale exposure to structural patterns (Van 
Schijndel and Linzen, 2018; Kassner and Schütze, 2019; Kassner et al., 
2020; Jurafsky and Martin, 2025).

3 Methods

3.1 Human participants

The human data reported here are from a total of 40 participants, 
including 24 participants with post-stroke aphasia (PWA) and 16 age- 
and education-matched control (AEM) who participated in a larger 
clinical trial project that examines the efficacy of structural priming 
training in aphasia (Clinical Trial registration No: NTC05415501).

PWA and AEM were matched for age (PWA Mean (M) = 59.2, 
SD = 11.4; AEM Mean = 63.4, SD = 11.1; t = −0.988, p > 0.05) and 
years in education (PWA Mean = 16.3, SD = 1.79; AEM Mean = 16.7, 
SD = 1.35; t = −0.722, p > 0.05). All participants were native speakers 
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of English, with no known history of neurological or psychiatric 
disorders that could affect communication (besides the stroke for 
PWA). AEM controls were screened for their cognitive-linguistic skills 
using the Cognitive-Linguistic Quick Test Plus (Helm-Estabrooks, 
2017) prior to study participation. All of them scored within normal 
limits on the composite severity rating score (M = 3.92/4.0, SD = 0.14, 
range 3.6–4.0) that was calculated across the subdomains of attention, 
memory, executive function, language, and visuospatial skills.

All PWA were at least 6 months post onset of stroke at the time of 
study enrollment (Mean = 81.3, SD = 66.8, range = 23–245 months). 
PWA completed a set of clinical tests to determine eligibility following 
the inclusion criteria as detailed in Lee et al. (2024). The tests included 
Western Aphasia Battery—Revised (WAB-R; Kertesz, 2007), 
Northwestern Assessment of Verbs and Sentences (NAVS; Cho-Reyes 
and Thompson, 2012), portions of the Comprehensive Aphasia Test 

(CAT; Swinburn et  al., 2004), the Philadelphia Comprehension 
Battery (PCB; Saffran et  al., 1988), and the Spoken Word-Picture 
Matching subtest of the Psycholinguistic Assessment of Language 
Processing in Aphasia (PALPA; Kay et al., 1996).

PWA test scores are reported in Table  1. All participants 
presented with moderate-to-mild aphasia, as determined by the 
WAB-R aphasia quotient (AQ) 50 or higher to ensure that our tasks 
are doable for them. We included participants with varying aphasia 
types (4 Broca’s, 2 Transcortical Motor, 14 Anomic, 2 Conduction; 
2 Wernicke’s), given that reduced sentence production, especially for 
those with non-canonical word order are found in both fluent and 
nonfluent aphasias (e.g., Man et al., 2019; McAllister et al., 2009; 
Cho-Reyes and Thompson, 2012; Yan et  al., 2018). PWA had to 
demonstrate relatively intact comprehension of single words and 
yes/no questions (>80% on the PALPA spoken word-picture 

TABLE 1  Language testing scores for PWA participants, with means (μ) and standard deviations (σ2) included.

ID WAB-R PALPA NAVS CAT PCB

AQ Fluency AC Naming Repetition SWP % VCT VNT ASPT SPPT SCT Comp 
of 

written 
words 

(%)

Total 
(%)

1 93.6 9 10 8.8 10 93 100 81.8 87.5 93.3 93.3 87 97

2 73.6 6 6.4 8.8 7.6 98 100 95.5 96.9 76.7 93.3 80 78

3 92.8 9 10 9.0 9.4 98 100 77.3 100 96.7 100 100 100

4 82.7 6 9.9 8.1 9.4 98 95.5 81.8 96.9 93.3 100 87 100

5 91.7 9 10 8.9 10 100 100 81.8 100 96.7 100 93 98

6 65.3 4 8.5 6.5 7.7 98 100 40.9 56.3 16.7 96.7 87 88

7 81.4 6 8.9 8.6 8.2 93 100 59.1 84.4 56.7 66.7 100 88

8 78.1 5 9.6 7.8 8.7 98 100 50.0 87.5 76.7 96.7 87 93

9 78.9 6 9.7 7.9 6.9 98 100 81.8 87.5 76.7 86.7 87 90

10 77.7 6 7.9 9.2 6.8 93 100 100 93.8 60.0 73.3 93 88

11 63.5 8 6.5 4.4 5.9 80 81.8 50.0 81.3 3.3 66.7 80 63

12 64.5 5 8.0 5.1 6.2 85 90.9 54.6 84.4 16.7 70.0 73 80

13 75.7 4 9.0 7.8 9.1 98 95.5 63.6 93.8 86.7 93.3 93 88

14 92.0 9 9.8 9.4 8.8 98 100 90.9 100 90.0 93.3 87 95

15 93.2 9 9.9 8.8 9.9 100 100 90.9 100 90.0 100 80 95

16 76.3 6 8.0 7.8 8.4 85 90.9 63.6 78.1 16.7 66.7 73 70

17 72.0 5 7.8 7.9 7.3 93 100 72.7 87.5 40.0 70.0 87 77

18 74.6 6 7.4 8.8 7.1 93 90.9 72.7 78.1 63.3 90.0 93 72

19 85.6 6 10 9.1 8.7 98 100 95.5 96.9 96.7 93.3 100 95

20 69.9 4 8.5 8.9 5.6 100 100 81.8 81.3 3.3 53.3 100 72

21 71.4 6 7.6 8.5 5.6 93 95.5 86.4 90.6 10.0 43.3 100 75

22 87.1 6 9.8 9.2 9.6 95 100 100 93.8 96.7 100 93 100

23 79.2 6 9.8 7.5 7.3 98 100 86.4 93.8 60.0 93.3 87 93

24 78.9 6 8.3 8.1 9.1 95 95.5 45.5 87.5 70.0 76.7 80 78

μ 79.2 6.3 8.8 8.1 8.1 94.9 97.3 75.2 89.1 62.0 84.0 88.6 86.4

σ2 9.2 1.6 1.2 1.2 1.4 5.2 4.6 17.8 9.9 33.6 16.4 8.2 11.0

WAB-R, Western aphasia battery-revised; AQ, aphasia quotient; AC, auditory comprehension; PALPA, psycholinguistic assessments of language processing in aphasia; SWP, spoken word 
picture matching test; NAVS, Northwestern assessment of verbs and sentences; VCT, verb comprehension test; VNT, verb.
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matching task, >80% on the CAT Comprehension of Written Words 
subtest; >5/10 WAB-R Auditory Comprehension subscore; >80% on 
the NAVS Verb Comprehension Test, and >40% on the NAVS 
Sentence Comprehension Test) (Thompson, 2012). However, PWA 
showed difficulty producing complex sentences as shown in the 
SPPT of the NAVS and a set of sentence probe tasks that were 
devised and administered as part of our clinical trial (see Lee et al., 
2024). Additionally, the increasing word length and repeated trials 
subtests of the Apraxia Battery for Adults-Second Edition (ABA-2; 
Dabul, 2000) were administered and those who exhibited severe 
apraxia of speech were excluded. PWA passed informal screening 
for significant attention and memory deficits using the Symbol 
Cancellation and Design Memory subtests of the CLQT+ (Helm-
Estabrooks, 2017). This study was reviewed and approved by Purdue 
University Institutional Review Board (IRB-2021-659).

3.2 Structural priming training paradigm

Both groups of participants completed a structured priming 
training regimen, which consisted of Pre-test (before treatment), three 
sessions of structural priming training targeting production of DO 
dative sentences, and one-day (Post-test 1) and one-week post testing 
sessions (Post-test 2). The three training sessions were delivered over 
a two-week period, with at least 2 days between sessions. Each session 
consisted of 40 structural priming training trials as shown in Figure 1: 
participants first read two DO prime sentences (Prime 1,2) followed 
by a filler sentence (intransitive, as in Filler 1), then completed a target 
sentence (Target). After that, they read two additional filler sentences 
before finishing with a recognition probe. Each priming training 
session took about 30 min for AEM controls and 1–2 h for 
PWA. Training sessions were delivered either in-person or virtually 
over secure Zoom, depending on the participant’s availability for 
in-person sessions.

Before and one-day and one-week after the training, the participants 
completed a sentence production task, consisting of 15 trials involving 
dative alternations. We chose dative sentences as our stimuli, because 
they are among the most frequently studied and well-documented 
syntactic alternations in previous structural priming studies and English 
in both neurotypical speakers (Bock, 1986, 1990; Mahowald et al., 2016) 
and PWA (Lee, 2024, for review). Notably, the participants were 
presented with a unique set of 15 different stimuli at each testing time 
point to avoid practice effects. To prepare for the stimuli, a group of 15 
high frequency (M = 3.985, SUBTLEXus corpus, Brysbaert and New, 
2009), one-syllable dative verbs (e.g., give, offer, show) were selected and 
repeated with three different sets of nouns, yielding a total of 45 unique 
dative sentences (15/testing session). Across the three sets of stimuli that 
were administered at Pre-test, Post-test 1, and Post-test 2, we matched 
the frequency and lengths of the nouns (M number of syllables: 1.73, 1.6, 
and 1.64; M word frequency: 3.11, 2.97, and 3.12; all p’s > 0.05, 
independent t-tests). There was also no overlap between these stimuli 
used in the production task and the sentence stimuli used during the 
priming training sessions.

As illustrated in Figure  2, in the sentence production task, 
participants saw an action verb like serve on the left of the screen and 
nouns like nurse, clown, burger on the right. A sentence frame like The 
nurse ___ appeared at the top of the screen. Using all the given words 
and the frame, participants were asked to make a sentence. Participants 
were free to produce any type of sentences, including either DO or PO 
dative sentences. Because the priming training specifically aimed to 
improve preference of DO structures in the participants’ production 
responses, it was reasoned that if structural priming effectively 
changes participants’ syntactic production, our participants would 
be more likely to produce the DO, rather than the PO structure or any 
other alternative sentence types after training. Thus, our dependent 
measure of interest was whether the participants would show 
increased production of DO responses after priming training 
compared to before training.

FIGURE 1

An example sequence of structural priming training trial for human participants.
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3.3 Apply PLMs to track recovery

3.3.1 Study 1. Do PLM-surprisals reveal training 
effects in sentence production?

Study 1 focused on training effects and the inverse preference 
phenomenon. We measured conditional surprisals across multiple 
time points (Pre-test, Post-test 1, and Post-test 2) to capture how 
structural priming training dative structures influences the alignment 
of participants’ sentence productions with expected targets, i.e., DO 
dative constructions. Each participant’s responses on the task were 
transcribed carefully by a group of trained researchers (n = 10). The 
data reported here is from a larger clinical trial study and were 
collected over the span of approximately 1 year. Each response’s 
correctness and error types were tallied for each participant. When 
scoring correctness of participants’ productions, we  accepted 
synonyms that did not change the meaning of the sentence (e.g., guy 
for man; ballerina for dancer). However, we  did not accept 
substitutions that changed the meaning of the sentence substantially 
(e.g., professor for dancer). Prior to serving as an independent coder, 
all research team members demonstrated 90% or higher inter-
reliability in transcription and coding accuracies following the second 
author’s (JL) lab training protocol. All session data transcriptions and 
coding were double checked for any transcription errors by an 
independent coder who was not present in the testing session. Any 
confusions or disagreements were resolved through a group discussion 
with senior researchers of the study team, including the second author 
(JL). A blind inter-rater reliability was also established on randomly 
selected 20% of the data for accuracy and error coding every 3 months 
during data collection and the group was retrained if a consistent error 
was noted. Average inter-rater agreement rates were very high: 96.29% 
for accuracies (Cohen’s κ = 0.92) and 94.09% for error types (κ = 0.87).

The research team’s codes were used as the ground truth labels. In 
computational pipelines, a ground truth label is the correct, verified, 
and factual annotation for a piece of data (Jurafsky and Martin, 2025). 
These labels, determined through trained human researchers, serve as 
the benchmark or true answer for guiding and evaluating PLMs in our 
tasks. Prior to calculation of PLM-surprisals, disfluencies and 
annotation symbols, including parentheses, ellipses symbols, and 
paraphasia annotation symbols like pp, were removed from the 
transcribed data. After pre-processing, in total, the dataset consisted 
of 2,669 pairs of target sentence and participant production. There 
were 1,531 pairs in the PWA group and 1,138 in the AEM group. For 

the PWA group, there were 555 pairs annotated as “Correct,” and 976 
as “Incorrect.” For AEM, there were 574 “Correct” and 564 “Incorrect.” 
Notably, “Incorrect” responses also include grammatical structures 
(e.g., PO dative, other sentence types) that are not the target DO 
structure, explaining for a relatively high number of “Incorrect” 
responses in AEM. In fact, when excluding non-target PO 
productions, the AEM group only had three incorrect responses for 
“Incorrect”; and for PWA, there were 231 for “Incorrect.”

We computed conditional surprisals using PLMs to capture how 
divergent the participants’ responses were from the expected DO 
target sentences. PLM-surprisals were derived from the conditional 
log-probability assigned by a PLM. We used minicons (Misra, 2022) 
default reduction function which averages the log-probability per 
token, providing a smoothed estimate of how probable a participant’s 
production is, given the target sentence. As a validated method in 
PLMs, NLP, and recent PLM-related aphasia research (Jumelet et al., 
2024; Michaelov et al., 2023; Misra et al., 2020; Jurafsky and Martin, 
2025; Rezaii et al., 2023), such smoothing enabled valid, aggregated 
comparisons of PLM-derived surprisals across different groups, time 
points, and PLMs. All surprisals analyses were conducted using 
minicons, with the exception of the individual trajectory regression. 
For this analysis, we  implemented a custom pipeline using 
HuggingFace’s Transformers library (Wolf et al., 2019), allowing us to 
extract raw (unsmoothed) surprisals for each individual production. 
This approach provided a direct view of individual variation prior to 
smoothing. Mathematically, PLM-surprisals compute (Equation 1):

	 ( )−=
= − …∑ 1 11 , , ,n

i iiSurp logP w C w w
	 (1)

In Equation 1, P is the participant production including n tokens 
(w1, w2, wn), and the context C is the expected target sentence. The 
conditional surprisal Surp is then calculated as the negative 
log-probability of token wi given C and previously generated P tokens. 
A higher surprisal value indicates that the PLM finds the participant 
production less predictable and more diverged given the target 
sentence. Consider an example, where C is the expected target 
sentence The tailor lends the actor the umbrella and P is the actual 
verbatim production The tailor lended an umbreller to an actor, Surp 
by GPT-2 is 5.45. In contrast, with the same C but a less aligned P The 
tailor lended an book to an athlete, Surp is 6.77. The divergence 
between the participant’s actual production and the target sentence is 
manifested in the increase of Surp from 5.45 to 6.77. Our main PLM 
was the autoregressive GPT-2 (Radford et al., 2019), since studies 
suggested that GPT-2 surprisals seem to provide better fit to human 
behavioral analyses (e.g., Shain et al., 2024). We additionally included 
llama-2-7b-hf (Touvron et al., 2023) and Mistral-7B-v0.1 (Jiang et al., 
2023), in order to validate generalizability of the inverse preference 
effects across multiple PLMs. All PLMs in this paper are autoregressive, 
because their pretraining objective (next-word prediction) is 
inherently aligned with the concept of conditional surprisal (Jurafsky 
and Martin, 2025).

There were two primary hypotheses: one at the group level and 
one at the individual level. First, at the group level, we hypothesized 
that if the surprisals measure is sensitive to structural priming training 
gains, both groups AEM and PWA would show lower surprisals at 
Post-test 1 and Post-test 2 compared to Pre-test. Further, in line with 
the inverse preference effect, we hypothesized that PWA, compared to 

FIGURE 2

An example trial for the anagram production test.
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the AEM group, would show greater reduction in surprisals following 
the training, although the previous findings are somewhat mixed as 
discussed earlier. Also, at the individual level, we explored whether 
PWA with higher surprisals at Pre-test would show larger reduction 
in surprisals at Post-test 1 and Post-test 2 compared to those with 
lower Pre-test surprisals.

To approach these hypotheses, we conducted three analyses at the 
group level. First, we conducted the Wilcoxon signed-rank test (a 
non-parametric test that does not assume normal distribution) 
comparing PLM-surprisals across time points for both groups. 
Second, we constructed a linear regression model predicting slope 
difference across time points for both groups. We first extracted the 
slope from each individual regression model involving separate time 
points, then we  calculated the slope differences for pairwise time 
points. Using these differences, we built a new linear regression model, 
with initial PLM-surprisals at Pre-test predicting the slope change. 
Third, we examined group differences at each time point using a linear 
mixed-effects model with least-squares means pairwise comparisons. 
The contrasts were computed as the difference in PLM-surprisal 
values between the AEM and PWA groups (AEM–PWA).

Further, two individual-level analyses were conducted. First, for 
each participant, a linear regression model was used to examine 
changes in surprisals across time, where the difference in surprisals 
between consecutive time points was calculated. Second, to examine 
whether reductions in PLM-surprisals were associated with 
improvements in accuracy at the individual level in the PWA group, 
for each participant, we  calculated the change in PLM-derived 
surprisals and ground-truth accuracy (i.e., the “Correct” label) from 
Pre-test to Post-test 1, and from Post-test 1 to Post-test 2. Pearson 
correlations were then computed across participants using these 
individual change scores, linking surprisals reduction to accuracy 
gains. All statistical analyses were conducted in R (R Core Team, 2025).

3.3.2 Study 2. What is PLM-surprisals tracking in 
language recovery?

Study 2 analyzed the interplay between various production 
categories and surprisals. Production error categories include errors 
which are grammatically incorrect and those that are grammatically 
correct but misaligned with the target sentence. We examined their 
relationships with surprisals over time. The purpose is to identify the 
specific production patterns associated with higher or lower surprisals 
and assess how these relationships evolve as PWA recover. We focused 
on PWA’s language recovery, and our analyses involved AEM controls 
in order to establish an interpretive baseline, benchmarking the 
comparison with our interested group  - PWA. The same data 
pre-processing and PLM-surprisals pipeline used in Study 1 was 
applied in Study 2, to evaluate the overall deviation of the actual 
productions from the expected responses, taking into account various 
categories of non-target responses.

The evaluation process categorizes deviations from target sentence 
structures using predefined category codes, which are tallied by 
trained human annotators. Concretely, NT_po refers to grammatical 
non-target sentence structures, namely PO dative sentences such as 
the man is giving the cake to the woman, when the expected target 
sentence is the man is giving the woman the cake. Any other 
grammatical non-target structures are coded as NT_other (the man 
and woman are enjoying cake). Grammatical errors (GE) included 
argument structure violations errors, for instance, omitting obligatory 

arguments (the man is giving) or incorrect argument order (the man 
is giving with the woman the cake). The NS (non-sentential response) 
error category is when a response consists of a string of nouns (man, 
woman, and cake) or responses without lexical verbs. Lexical errors 
(LE) include incorrect verb or noun substitutions (referee was used for 
king) that deviate significantly from the correct target stimulus. 
Finally, other applies to a response with multiple error types or when 
none of the above categories applies.

There were two primary hypotheses. First, PLM-surprisals change 
across time points should be significantly associated with productions 
with errors, if surprisals can track language recovery as represented in 
distinct production error types. Second, we  pinpointed that if 
PLM-surprisals capture local, lexical recovery, we would expect salient 
relationships between surprisals and lexical errors. On the other hand, 
if surprisals characterize beyond local, lexical recovery, we would 
predict significant relationships between surprisals and other 
grammatical categories, besides lexical errors.

To address these hypotheses, we conducted two analyses. First, 
we fit a linear mixed-effects model to examine whether PLM-derived 
surprisal values of error-containing productions predicted time point. 
Here, error productions refer to productions with error types, 
including GE, NS, and LE. Second, to further investigate the 
relationship between surprisals and production error types within the 
PWA group, we  computed Spearman correlation coefficients and 
associated p-values between surprisals and the one-hot-encoded 
counts of each error category.

3.3.3 Study 3. How effective is PLM-prompting in 
assessing language recovery?

Besides probability-based metrics such as PLM-surprisal, 
we evaluated the few-shot prompting approach. Few-shot prompting 
is a technique used to improve the performance of PLMs by presenting 
a limited number of examples (or “shots”) within the prompt (Jurafsky 
and Martin, 2025). These examples demonstrate a sample sentence 
and the desired label for correctness and error types. We used the 
ground truth annotations for correctness and error types, namely the 
benchmark or “true” answer for instructing and evaluating PLMs, as 
discussed in the previous Section 3.3.1. The examples were also from 
these ground truth annotations, validated by trained researchers, as 
discussed in Section 3.3.1. The same data pre-processing pipeline used 
in Study 1 and 2 was applied to Study 3.

A held-out sentence pairs set was used to construct 
demonstration examples for few-shot prompting. Each exemplar 
included a triplet of (1) the target sentence, (2) the pre-processed 
participant production, and (3) the binary correctness label 
(1 = correct, 0 = incorrect). Following Qiu et al. (2025), we employed 
a “one trial per run” procedure, meaning that each interaction session 
with the PLM involved only a single experimental trial: one pair of 
the target sentence and the production and the instruction prompt 
involving the triplet exemplar. This method can minimize biases 
from previous trials affecting the current judgment and help resolve 
an issue where PLMs occasionally lost track of instructions midway. 
Moreover, the shorter sessions inherent in this design were less 
susceptible to server or connectivity problems. For each test item, 
we  assembled a prompt of the following form: Evaluate the 
Participant Production against the Target Sentence by following the 
step-by-step instructions. Return 1 if the candidate uses a correct 
Double Object (DO) structure that matches the target’s meaning; 
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FIGURE 3

Surprisals time points comparisons, Bonferroni correction applied. ****p < 0.0001, ns: p > 0.05.

otherwise return 0. This excerpt was concatenated with stepwise 
instruction prompts.

This prompt template communicated the binary classification task 
and provided six in-context examples (three negative and three 
positive examples) to guide PLM’s classification and ground the PLM’s 
interpretation. We designed the prompts based on trained annotators’ 
judgments and validations and Jurafsky and Martin (2025), which 
suggested that too many examples might lead to overfitting, but too 
few might not provide PLMs with sufficient domain-specific 
information. We queried llama-3-8b-instruct (Touvron et al., 2023), 
deepseek-r1 (Guo et al., 2024), llama4-maverick (Meta AI, 2025), and 
gpt-4o (OpenAI, 2024), via a unified API: the Replicate API; API 
inquiry time from February to May 2025. Due to class imbalance, F1 
scores were used as the primary metric rather than accuracy. We chose 
these PLMs, because they were open sourced, and they were 
benchmarked as some of the best PLMs in generation tasks at that 
moment (Jurafsky and Martin, 2025; https://huggingface.co/models).

We additionally prompted PLMs to assign an error type label by 
extending the instructions. We added examples to illustrate error-type 
detections. We modified the prompt template for “correctness” by 
breaking down error types into stepwise guidance. For the PWA 
group, our dataset included 745 samples tagged with NT_po, 152 with 
GE, 28 with Other, 25 with LE, 19 with NS; the AEM dataset included 
561 samples tagged with NT_po, 1 with LE, 1 with NT_other, and 1 
with Other. The same API-based prompting pipeline used in the 
binary classification task of “correctness” was applied to classify error 

types in productions marked as “0” (incorrect) in the original dataset, 
as verified by trained clinicians. This classification task was evaluated 
by the matching accuracy between PLM’s predicted and the ground-
truth error-type labels.

For both prompting tasks (correctness and error types), prompt 
templates, all the examples, instructions, and all the step-wise details 
are available in the Open Science Forum at doi: 10.17605/OSF.
IO/FMNSY.

4 Results

4.1 PLMs reveal training effects and inverse 
preference

Our results suggested that PLM-surprisals are informative of 
language recovery, particularly language learning in the PWA group. 
PLM-surprisals measures generally revealed that participants’ 
productions became more aligned with the expected DO dative 
structures over time following structural priming training. Our 
findings indicated such training effects at both the group and the 
individual level.

4.1.1 Group level analyses
Figure 3 indicated that for both groups, there were significant 

decreases of surprisals from Pre-test to Post-test 1 and from Pre-test 
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to Post-test 2, but not from Post-test 1 to Post-test 2. These suggested 
that participants’ sentence productions generally became aligned with 
target sentences following the training and the improvements were 
maintained over time.

Table  2 reinforced this group-level training effects by 
demonstrating that initial surprisals can predict the magnitude of 
change in subsequent training sessions such as Post-test 1 and Post-
test 2. The slope differences between Pre-test and Post-test 1, and 
between Pre-test and Post-test 2, were significant for PWA (coefficients 
of 0.74 and 0.686 respectively, with relatively high adjusted R2 values 
0.527 and 0.446). However, the difference between Post-test 1 and 
Post-test 2 was not significant (adjusted R2 0.062). These results 
suggested that after training, PWA showed significantly reduced 
surprisals compared to Pre-test and the training effects were 
maintained at Post-test 2. Changes in AEM were also significant but 
less pronounced (coefficient of 0.673 and 0.689, respectively). The 
inverse preference effect was also manifested in surprisals. Both PWA 
and AEM groups showed significance and positive coefficient when 
using Pre-test surprisals predicting slope difference, with the PWA 
group slope change from Pre-test to Post-test 1 the most salient. The 
decrease of slope change from Pre-test to Post-test 1 was the largest 
(coefficient = 0.74), among all the coefficients. This indicated that the 
PWA group, with more impaired production in the beginning, showed 
larger amounts of improvements after structural priming training.

Coefficients 𝛽 in Table  3 consistently showed significant 
differences between the AEM and PWA groups. The negative 
coefficient values suggested generally higher surprisals in the PWA 
than in the AEM groups. Further, the regression coefficients for 

Pre-test, Post-test 1, and Post-test 2 indicated statistically significant 
improvements, suggesting that increased exposure through structural 
priming training leads to more predictable (hence lower surprisals), 
target-like productions. The coefficients (absolute values) decrease 
from Pre-test to Post-test 1 and from Pre-test to Post-test 2, implying 
that the PWA group is catching up as their responses become 
more structured.

4.1.2 Individual level analyses
Figure 4 showed that these individual trajectories reveal a general 

pattern of decreasing surprisal values from Pre-test to Post-test 1, with 
this reduction often sustained at Post-test 2. This pattern was observed 
across both the AEM and PWA groups. Notably, individuals who 
began with higher surprisals at Pre-test tended to show greater 
reductions following training, suggesting a potential for surprisals to 
reflect the degree of individual responsiveness to intervention. 
Additionally, changes between Post-test 1 and Post-test 2 were 
minimal or nonsignificant for most participants, indicating a 
maintenance of training effects over time. To statistically justify the 
observable patterns in Figure 4, follow-up pairwise comparisons were 
conducted using the least-squares means pairwise analyses, the 
emmeans package in R (Lenth, 2024), based on a linear regression 
model with surprisals as the dependent variable predicting time 
points. Our result suggested that a total of 11 out of 24 PWA 
participants showed at least one significant pairwise comparison. For 
these participants, the range of effect sizes of surprisals change over 
time was 18.22 to 107.01, standard errors ranged from 2.52 to 33.70, 
and p-values ranged from < 0.0001 to 0.042.

Figure 5 suggested that for PWA, greater reductions in surprisals 
are associated with increased accuracy in sentence production. This 
provides additional statistical evidence linking surprisals reduction to 
language recovery following structural priming training. Crucially, 
we found that this relationship generalizes to llama-2-7b and Mistral. 
In other words, PWA with more severe language impairments showed 
more pronounced improvements with structural priming training, as 
reflected in significant increases in accuracy, which were strongly 
positively correlated with reductions in surprisals. This inverse 
preference effect was consistently observed across multiple PLMs.

4.2 PLMs track syntax in language recovery

Study 2 results suggested that GPT-2 surprisals index beyond 
local, lexical level in language recovery, as shown by findings in error 
types and the relationships over time.

4.2.1 PLM-indexed errors across time
Table 4 showed that the PWA group exhibited significant changes 

in surprisals from Pre-test to post-test sessions (coefficients of 0.926 
and 0.964 with p < 0.001). AEM did not show significant changes in 
surprisals for their errors (GE, NS, and LE), likely because they 
generally made fewer errors regardless of time points. Recall that the 
majority of the “Incorrect” in AEM was grammatical, non-target PO, 
and only 3 out 564 “Incorrect” were ungrammatical errors.

The insignificant decrease of surprisals in PWA productions with 
errors from Post-test 1 to Post-test 2 (Table 4) also reinforced the 
maintenance effect (c.f. Figure  4), suggesting that surprisals can 
effectively track language recovery in various stages. This also 

TABLE 2  Slope differences across time.

Group 𝛽 SE p Adjusted R2

Slope difference (PWA)

Δ(Pre-test−

Post-test 1)

0.740 0.144 3.63e-05 0.527

Δ(Pre-test−

Post-test 2)

0.686 0.155 0.0002 0.446

Δ(Post-test 

1−Post-test 

2)

−0.321 0.202 0.126 0.062

Slope difference (AEM)

Δ(Pre-test−

Post-test 1)

0.673 0.198 0.004 0.414

Δ(Pre-test−

Post-test 2)

0.698 0.199 0.004 0.447

Δ(Post-test 

1−Post-test 

2)

0.109 0.276 0.700 −0.064

TABLE 3  Surprisals group comparison across time.

Time point 𝛽 SE p

Pre-test −0.901 0.170 <0.0001

Post-test 1 −0.608 0.166 0.008

Post-test 2 −0.653 0.166 0.004
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FIGURE 4

Trajectories of surprisals for each participant.

FIGURE 5

Correlations of the reduction in surprisals and the increase in correct responses scored by clinicians.
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highlights the clinical interpretability of surprisals in characterizing 
production errors, further informing recovery trajectories.

4.2.2 PLM-indexed errors across categories
Surprisals generated by GPT-2 showed differential correlations 

with various error types, revealing the categories of linguistic 
disruptions. GE (grammatical errors) showed the strongest positive 
correlation with surprisals (r = 0.277, p < 0.001), followed by 
non-sentential utterances missing a lexical verb (NS; r = 0.195, 
p < 0.001), suggesting that GPT-2 is particularly sensitive to structural 
violations that extend beyond isolated word-level anomalies. LE 
(lexical errors) showed a weaker but significant positive correlation 
(r = 0.088, p = 0.006), indicating that while lexical disruptions affect 
surprisal, their influence is less salient. No significant correlation was 
found between GPT-2 surprisals and NT_other (r = −0.025, p = 0.43), 
indicating that PLM-surprisals are not sensitive to other grammatical 
non-target structures.

Notably, when participants with aphasia produced more NT_po, 
surprisals tended to decrease, as indicated by the negative correlation. 
One likely reason is that we used conditional surprisals, which assumed 
the DO structure as the expected form. Despite their syntactic 
differences (NT_po and DO), NT_po and DO share a similar semantic 
meaning. Consequently, the surprisals of NT_po conditioned on DO 
should hypothetically be lower compared to those of other syntactically 
and semantically distinct productions. To investigate this further, 
we used the sentence-transformers/all-MiniLM-L6-v2 model to embed 
sentence pairs into vector space representations (Sentence Transformers, 
2024). Computational semantics studies have shown that such 
representations capture word content, and similarities between these 
representations capture content overlap (Yu and Ettinger, 2020). We thus 
calculated the cosine similarity between each target DO sentence and 
the corresponding participant production. The results showed that 
productions labeled as NT_po were highly similar to their DO targets 
(Mean = 0.902, SD = 0.116), indicating strong semantic overlap despite 
structural differences. In contrast, similarity scores were lower for other 
error types: GE (Mean = 0.782), LE (Mean = 0.738), and NS 
(Mean = 0.598). These results supported our hypothesis that the negative 
correlation between surprisals and NT_po frequency is possibly 
attributed to the fact that NT_po and DO differ syntactically but share 
semantic content. This also suggested that surprisals are sensitive to 
more than just semantics. It might serve as a composite score of syntactic 
and semantic information, with a stronger weighting toward syntax. If 
surprisals primarily tracked semantics, then error types such as GE and 

LE, would have shown similar correlation strengths. However, only GE 
exhibited a strong correlation, while LE did not, further indicating that 
PLM-surprisals are more responsive to syntactic divergence.

4.3 PLMs assess language recovery with 
few-shot prompting

Figure 6 demonstrated that prompting PLMs to assess recovery-
related sentence correctness and error categorization yields promising 
performance. Overall, our findings revealed distinct performance 
patterns across the evaluated PLMs, groups, and tasks.

First, regarding PLMs, most models achieved strong performance 
on correctness classification, with F1 scores generally exceeding 0.95, 
particularly llama4-maverick and gpt-4o which consistently 
performed above 0.97. However, llama3-8b demonstrated a unique 
performance profile that differed from all other models: while showing 
relatively lower correctness classification performance (F1 scores 
around 0.745–0.880), it exhibited comparatively better error type 
classification accuracy across conditions. This contrasting pattern 
suggested that llama3-8b may have developed different internal 
representations that capture more nuanced error-specific features, 
even when less decisive about binary correctness judgments.

Second, regarding groups, performance varied notably, with most 
PLMs showing superior results in the AEM group compared to PWA 
for both tasks. The PWA group proved more challenging, with several 
models showing performance drops, likely due to individual variance 
in PWA. For instance, deepseek-r1’s F1 score dropped to 0.689 for 
error classification in PWA, and llama3-8b achieved its lowest 
correctness F1 score (0.745) in PWA. We additionally reported the 
overall performance in Figure 6, where we combined both groups 
(AEM and PWA). Overall performance of PLMs on the whole dataset 
generally fell between AEM and PWA.

Third, the binary correctness classification task yielded a better 
performance than the multiclass error type classification across all PLMs 
for both AEM and PWA data. While correctness F1 scores consistently 
exceeded 0.90 for most PLM-group combinations, error type 
classification accuracy ranged from 0.689 to 0.894, highlighting the 
inherent complexity of teasing apart different error categories. This 
performance gap indicated that while PLMs can reliably detect whether 
language production contains errors, the fine-grained categorization of 
error types requires more specialized linguistic knowledge or domain-
specific capabilities. Further, correctness is a binary classification task, 
whereas error-type classification requires distinguishing among multiple 
categories. As Jurafsky and Martin (2025) note, multiclass classification 
generally increases task difficulty, because models must learn and 
maintain more decision boundaries while coping with fewer training 
examples per class. In our case, this meant that PLMs had less data to 
represent each error type, making fine-grained classification more 
challenging than the binary detection of correctness.

5 Discussion

Most clinical applications of PLMs have focused on diagnostic 
classification, such as distinguishing individuals with language 
disorders from neuro-typical controls (Cong et  al., 2024a,b). The 
present study takes a critical next step by exploring whether PLMs can 
be used not only for detection but also to track changes in language 

TABLE 4  Surprisal of error productions across time.

Group 𝛽 SE p

PWA

Pre-test−Post-

test 1

0.926 0.239 <0.0001

Pre-test−Post-

test 2

0.964 0.245 <0.0001

Post-test 1−

Post-test 2

0.039 0.213 0.982

AEM

Pre-test−Post-

test 1

−0.098 0.18 0.601
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functioning over time. Shifting from binary diagnosis to continuous 
recovery monitoring is an important expansion of how PLMs can 
be  leveraged in clinical contexts, particularly for capturing the 
dynamic and multidimensional nature of language rehabilitation.

5.1 PLMs track changes in sentence 
production: feasibility and efficacy

Our findings support our hypotheses that PLM-derived surprisals 
is both a feasible and effective index for tracking improvements in 
sentence production in aphasia. We conducted regression analyses 
alongside group-wise and time-point-wise comparisons, which 
revealed a marked reduction in conditional surprisals from Pre-test to 
both Post-test 1 and Post-test 2 sessions. This reduction was evident 
in both groups. Our results are consistent with previous findings on 
the efficacy of structural priming training, as observed in traditional 
clinical outcome measures such as production accuracy (Lee et al., 
2019b, 2024; Mack et  al., 2017) and syntactic preference choices 
(Cho-Reyes et  al., 2016; Keen and Lee, 2022; Lee et  al., 2019a). 
Importantly, PLM-surprisals were also sensitive to individuals’ 
learning trajectories relative to their Pre-test performance. At the 
group level, both PWA and AEM groups showed decreased surprisals 
following training, with the PWA group exhibiting a more pronounced 
effect. This finding is in line with previous studies showing increased 
priming-induced changes in their language production for speakers 
with less efficient linguistic knowledge (Branigan and Messenger, 
2016; Cho-Reyes et al., 2016; van Boxtel et al., 2023; see also Hartsuiker 
and Kolk, 1998). That is, individuals with higher initial surprisal 

values, reflecting more deficits in sentence production before training, 
demonstrated greater improvement after training at both group and 
individual levels.

Moreover, across all three PLMs tested, reductions in surprisals 
were significantly correlated with training-induced improvements in 
sentence production. This correlation indicates the value and efficacy 
of PLM-surprisals in detecting individual differences in treatment 
response, supporting its potential use in tracking treatment effects in 
aphasia. Further, our individual-level analyses showed promising 
clinical implications for personalization of aphasia rehabilitation. 
Another advantage of using PLM-derived surprisals over traditional 
accuracy-based or categorical error-type analyses lies in its capacity to 
provide a continuous, graded measure of recovery. This continuous 
scale allows for the detection of subtle improvements or shifts in 
linguistic complexity that binary metrics may miss. As such, surprisals 
might be  a more sensitive and fine-grained index of language 
rehabilitation than binary accuracy stores.

Lastly, our prompting-based approach extends prior work 
incorporating probability and instruction-based prompting for PLM 
interaction (Hu and Levy, 2023). Our findings also resonate with the 
prompting study by Imaezue and Marampelly (2025), which proposed 
a simulation method to improve conversational agents by 
incorporating clinically relevant speech error patterns, thereby 
aligning AI-driven dialogues more closely with the needs of aphasia. 
Prompting introduces an end-to-end pipeline: users provide simple 
instruction prompts with few-shot examples, and the model generates 
output labels, either numerical or categorical, without requiring 
intermediate annotations. This streamlined interface may significantly 
enhance the clinical applicability of PLMs. Our results demonstrate 

FIGURE 6

PLMs prompting performance in classifying sentence production correctness and error categories.
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that prompting PLMs is both a feasible approach for language 
rehabilitation in medical settings. While our findings are based on 
four specific PLMs, we hypothesize they would generalize to stronger 
models, provided they are autoregressive and trained on a word 
prediction objective.

Hybrid approaches could further improve prompting’s efficacy. 
Our findings demonstrated robust performance in binary correctness 
classification, but with a relatively lower accuracy rate in error-type 
classification. We  maintain that a hybrid approach, integrating 
probabilistic metrics (such as surprisals) with prompting, could 
augment the precision of fine-grained error detection. For instance, 
employing probability as intermediate outputs to guide PLMs in 
determining the statistical range and distribution of each distinct error 
type, and subsequently utilizing these probabilities by PLMs for 
enhanced error type classification.

5.2 PLMs track different error types: 
reliability and interpretability

Our findings suggest the reliability and interpretability of 
PLM-surprisals, which are crucial in medical contexts. Error 
categorization allowed us to pinpoint what PLMs surprisals reliably 
capture, leading to meaningful results that both clinicians and 
computational linguists can interpret. As discussed in previous 
studies, structural priming not only facilitates the immediate use of 
primed sentence structures but also induces lasting changes in 
language production in aphasia. Our study extended these insights by 
demonstrating that higher PLM-derived surprisals are associated with 
increased grammatical errors and non-sentential utterances, which are 
often seen in patients with syntactic deficits. These findings resonate 
with prior work (Rezaii et al., 2019, 2022a, 2022b, 2023; Cong et al., 
2024a,b), which identified computational linguistic indices can serve 
as interpretable measures of the structural deficits underlying aphasia.

Cong et al. (2024a) showed that PLM-surprisals index both word- 
and sentence-level disruptions characteristic of agrammatic aphasia, 
such as reduced mean length of utterance, lower syntactic complexity 
(e.g., fewer embedded clauses), and diminished verb usage. These 
features were more strongly associated with PLM-surprisals than with 
classic clinical measures such as lexical diversity. Rezaii et al. (2023) 
suggested that high surprisal values may also reflect a communication 
strategy, where PWA, constrained by limited processing resources, rely 
more heavily on high-frequency content words and simplified syntax. 
These are strategies that may go unnoticed in categorical error 
analyses. Our current findings expand Cong et al. (2024a) and support 
the proposal that PLM-surprisals function as an integrative metric 
that reflects broader deficits in syntactic planning and structural 
composition, not merely lexical retrieval. Taken together, 
PLM-surprisals offer a reliable and interpretable utility for quantifying 
language recovery beyond linear, surface-level correctness, enabling a 
hierarchical, finer-grained characterization of structural impairments 
and recovery trajectories in aphasia.

Surprisals reduction could be interpreted as lexical repetition or 
memorization, rather than alignment with the intended syntactic 
target. In our study, we attempted to address this by using conditional 
surprisal measures that presupposed the DO structure, and by 
conducting additional analyses with embedding representations (Yu 
and Ettinger, 2020; sentence transformer 2024; as in Section 4.2.2). 

Our findings suggested that surprisals were more responsive to 
structural alignment and syntactic divergence than to (lexical) overlap 
and repetition. Future work could control for such effects more 
directly, for example, by systematically varying lexical items across test 
points, or by incorporating analyses that leverage (semantically or 
syntactically) nonce words, which explicitly separate lexical from 
structural contributions.

Further, our analyses revealed that, at the group level, PWA 
exhibited significant changes in surprisals associated with 
improvements in syntactic production, while AEM participants 
maintained lower error rates overall. Crucially, within the PWA group, 
the correlations between specific error types (e.g., grammatical errors 
versus non-target productions) and surprisal values revealed that as 
participants’ productions became more target-like, overall surprisals 
decreased. This observation indicates that the PLM-surprisal measure 
is sensitive not only to the accuracy of syntactic reproduction but also 
to the reduction in error load, which is a key indicator of 
language recovery.

5.3 Limitations and future work

This study has some limitations that point toward future 
directions. Our sample included only participants with mild-to-
moderate aphasia, leaving open the question of whether surprisals-
based measures remain valid in more severe cases. Severe aphasia 
often involves a higher proportion of non-sentential or unintelligible 
utterances, which may challenge both PLM-surprisals and prompting-
based classification by reducing linguistic structure and reliable input 
for probability estimation. Adaptations such as more robust 
preprocessing, error-tolerant parsing, or training models on data 
representative of severely impaired speech will likely be necessary, and 
validation in severe populations remains critical. Beyond sentence-
level structures, our methods could be extended to syntactic forms 
commonly studied in priming research, such as passives, relative 
clauses, locative alternations, and noun phrase modifiers (e.g., Cleland 
and Pickering, 2003; Chang et  al., 2012; van Gompel et  al., 2012; 
Mahowald et al., 2016), as well as to discourse production, which has 
not yet been systematically characterized with PLMs. Future work 
could evaluate whether these approaches generalize across syntactic 
and communicative contexts, thereby broadening understanding of 
priming-based treatment effects.

Our current design also did not include a control group of people 
with aphasia who did not undergo priming training. Prior studies 
have established priming’s role in healthy participants (e.g., Branigan 
and McLean, 2016; Savage et al., 2006; Heyselaar and Segaert, 2022; 
Bock and Griffin, 2000; Chang et al., 2012), but future research might 
want to directly isolate priming’s effects in clinical contexts by 
contrasting PWA with and without training. Additionally, careful 
attention is needed to speech variability, multimodality of data, 
differences across PLM pre-training paradigms, and comorbidities 
(e.g., neurological versus. Psychiatric illness), all of which may 
influence surprisals measures.

We focused on few-shot prompting, guided by empirical evidence 
and recommendations in natural language processing. Few-shot 
examples were selected by domain experts (aphasia researchers and 
annotators), and prompt templates were adapted for two tasks: 
detecting correctness and detecting error types. We did not explore 
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alternative prompting strategies (e.g., chain-of-thought, tree-of-
thought), as our aim was to examine the clinical efficacy of PLMs with 
simple few-shot prompting. Similarly, we  chose not to disclose 
whether data came from controls or PWA. We maintained that labels 
could simplify the task and that lengthy prompts describing group 
characteristics might risk distracting PLMs. Instead, we prompted 
PLMs on the combined dataset and analyzed performance by group 
and overall (Section 4.3; Figure  6). We  acknowledge that future 
research could benefit from broader comparisons across prompting 
strategies, the inclusion of labeled datasets, and systematic variation 
in prompt design. Such work would extend our findings and provide 
a more thorough understanding of prompting choices in aphasia 
treatment assessments.

At the same time, recent advances in AI offer a concrete path 
toward deployment in speech-language therapy. Interactive systems 
such as ChatGPT have been used to facilitate word retrieval 
(Purohit et al., 2023), while Aphasia-GPT demonstrated integration 
of generative AI into augmentative and alternative communication 
(AAC) to enhance accessibility and personalization (Bailey et al., 
2024). Building on this trajectory, our findings show how 
PLM-derived surprisals and prompting-based pipelines can provide 
interpretable, scalable tools for monitoring clinical progress (e.g., 
Hou et al., 2025). By quantifying surprisal as a syntactic and lexical 
metric, evaluating model performance with intrinsic (e.g., surprisals 
shift, error detection) and extrinsic (e.g., F1 scores, accuracy) 
metrics, and automating error classification, our approach 
demonstrates a feasible pathway for reducing the burden of clinical  
evaluations.

For real-world adoption, several steps might be critical. Clinician 
training through workshops and modular sessions will be essential to 
build familiarity with interpreting automated indices. User-centered 
dashboards should present outputs as intuitive visualizations and 
summaries, integrated with therapy software and remote platforms, 
while supporting multimodal input (Bailey et al., 2024; Imaezue and 
Marampelly, 2025). Embedding these tools into EHR systems would 
allow structured tracking of longitudinal outcomes, ensure 
interoperability, and consolidate treatment notes and indices in one 
place (Wang et al., 2019; Gale et al., 2024; Cohen et al., 2020). Such 
integration would enable data-driven, scalable, and accessible 
rehabilitation monitoring while maintaining explainability in high-
risk domains.

Taken together, while further validation is required across severity 
levels, syntactic contexts, and clinical designs, the integration of 
PLM-surprisals and prompting pipelines represents a promising step 
toward precision rehabilitation. With careful attention to clinical 
variability, user-centered implementation, and responsible 
deployment, this approach has the potential to improve accessibility 
and quality of aphasia therapy worldwide.

6 Conclusion

Our study demonstrated PLM as an effective and interpretable 
utility for tracking language recovery in aphasia with gradient sensitivity. 
Monitoring PLMs over time can provide a quantifiable measure of 
treatment efficacy, which is particularly useful for tailoring interventions 
to individual patients. Overall, the convergence of computational 
systems with clinical measurement suggests the potential of PLM-based 
approaches to refine our understanding of language recovery.
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