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We introduce a geometric semantic model designed to capture fine-grained
semantic representations in a multidimensional space. Building on this model,
we develop a novel annotation framework that facilitates detailed semantic
analysis across languages. Central to our approach is a set of Parts-of-Sense
Inference (POSI) tags: 135 interpretable four-letter codes that annotate subtle
semantic attributes often overlooked by traditional models. To evaluate the
cross-linguistic and cross-structural applicability of this framework, we annotate
expressions in four typologically diverse languages. Our results demonstrate that
the proposed model provides an interpretable, cognitively plausible approach to
semantic representation and can serve as a robust tool for investigating language
processing and meaning inference across linguistic contexts.
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1 Introduction

How sense and meaning are shaped by experience has long been central to semantic
research, particularly within linguistic, cognitive, and philosophical inquiry. Traditionally,
semantic theory has debated whether meaning is best understood as a reflection of
prototypical concepts, abstracted through repeated exposure, or as the product of
compositional features learned through experience and encoded in language (Rosch, 1975;
Carey, 2009). This debate touches on a deeper issue: Are linguistic meanings preserved
in symbolic representations, or are they also grounded in somatic and experiential
interactions with the world (Lakoff, 1987; Barsalou, 1999, 2008)?

Recent research in cognitive linguistics and embodied cognition increasingly
emphasizes the importance of perceptual grounding in semantic understanding. The
sensory experience - visual, tactile, auditory - plays a fundamental role in how an
individual form conceptual categories and comprehend language (Glenberg and Kaschak,
2002; Gardenfors, 2004). The smell of coffee or the glow of a sunrise are not merely
experiential events; they help structure how we conceptualize related objects, events, and
their linguistic referents. This experiential substrate informs the syntactic and semantic
properties attributed to expressions across languages.

Languages often encode semantic properties through multiword expressions (MWEs),
where meaning emerges not from individual words but from their inferential interplay
between them. For example, the expression spill the beans demonstrates an idiomatic
shift in which literal meanings yield to culturally learned experiential constructs: it

01 frontiersin.org


https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1666074
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1666074&domain=pdf&date_stamp=2025-11-13
mailto:kiran.pala@uef.fi
https://doi.org/10.3389/frai.2025.1666074
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2025.1666074/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Pala et al.

signifies reveal a secret through embodied knowledge of spilling
(accidental release) and beans (scattered objects), consistent with
(Lakoff, 1987; Barsalou, 1999). Such expressions rely heavily
on shared embodied knowledge and often resist modeling by
traditional distributional or logic-based semantic frameworks
(Nunberg et al., 1994; Jackendoff, 2002).

Given these challenges, our work is motivated by the need for a
semantic annotation framework that can capture the dynamic and
experiential dimensions of meaning across typologically diverse
languages, where variation in syntactic structure often conceals
deeper conceptual regularities. We propose a multidimensional
approach grounded in a geometric model of meaning, where
“geometric” denotes a structured, interpretable semantic space
rather than opaque embeddings built from perceptual and cognitive
dimensions. This model focuses on three primary semantic
dimensions experiential, spatial, and temporal which we argue
are foundational to meaning construction in typologically diverse
languages.

To clarify these dimensions and their differences (noting
potential overlaps, such as experiential aspects influencing spatial
metaphors), we define them as follows:

Spatial dimension captures configuration, location, and
distribution of entities or concepts, emphasizing physical or
metaphorical positioning (e.g., shape, proximity, or orientation
like “up” vs. “down”). This dimension draws from conceptual
spaces where spatial topology structures meaning (Gardenfors,
2004). Temporal dimension encompasses duration, sequence, and
patterns over time, including progression, cyclicity, or frequency
(e.g., “before/after” relations or ongoing events). It models dynamic
aspects distinct from static space but often intersects with it in
metaphors (Pala, 2023b; Arstila, 2016). Similarly, the experiential
dimension reflects attributes grounded in bodily and sensory
interactions, subdivided into functional (utility-based, e.g., an
object’s purpose), structural (organizational, e.g., composition),
material (sensory features, e.g., texture or color), and qualitative
(abstract/symbolic, e.g., emotional value or cultural associations).
This is rooted in embodied cognition, where meaning emerges
from perceptual simulations (Barsalou, 1999).

These
representations,

dimensions interact to form multidimensional

accommodating semantic gradience. For
example, in the metaphorical expression “rising tension,” the
spatial dimension contributes upward movement (vertical
configuration implying increase), the experiential dimension adds
qualitative intensity (emotional or sensory strain from bodily
tightness), and the temporal dimension conveys progression over
time (escalation from low to high). This interplay, aligned with
conceptual metaphor theory, describes how abstract experiences
are structured through perceptual grounding (Lakoff, 1987). Each
dimension reflects a network of conceptual relations that arise
through perceptual engagement and are systematically encoded in
language use (Evans, 2009).

To operationalize this framework, we introduce a set of POSI
tags: 135 interpretable four-letter codes designed to annotate fine-
grained semantic attributes within these dimensions. Unlike part-
of-speech tagging or fixed ontological categories, POSI tags capture
dynamic, context-activated semantic properties rooted in cognitive

experience. This makes the framework particularly effective for
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annotating MWEs, whose meanings often defy conventional
syntactic or lexical classification.

We evaluated our approach by annotating MWEs in four
structurally and typologically diverse languages. This multilingual
evaluation supports our hypothesis that perceptually grounded
dimensions of meaning are both cross-linguistically robust and
computationally tractable. The proposed model offers a nuanced
geometric representation of meaning that accommodates semantic
gradience, overlap, and context sensitivity.

By integrating formal semantic theory with embodied cognition
and multilingual linguistic data, this work provides a novel
toolset for semantic analysis and offers theoretical insights into
how experience shapes linguistic representation. The following
sections describe the design of the geometric model, the structure,
and rationale behind the POSI tags, and our methodology for
multilingual annotation.

2 Geometric model of experiences

The geometric model of experiences serves as a metaphorical
framework to analyze the complexity of perception, interpretation,
and navigation of subjective realities. By analogizing geometric
principles to experiential dimensions, this model extends spatial
and dimensional concepts to explore how individuals construct
meaning across emotional, sensory, and cognitive domains.
Semantic properties of objects or representations are structured
into three dimensions - spatial, temporal, and experiential proposed
by Pala (2023b). Experiential properties further decompose into
functional, material, structural, and qualitative aspects, which
manifest as perceptual modality-oriented expressions in linguistic
discourse (Pala and Shalu, 2025). This formalization enables
systematic analysis of how inferential processes synthesis sensory,
cognitive, and symbolic information into coherent representations.

Experiential properties hold particular significance due to
their grounding in bodily sensations, which mediate both real-
world interactions and imagined scenarios (Pala, 2023a). For
example, experiencing a red apple involves integrating visual
(redness), tactile (material texture), gustatory (sweetness or
sourness), olfactory (smell), and cognitive (shape, temperature)
inputs. Such multimodal correlations underpin the formation
of representational content, as the synthesis of these properties
shapes interpretable meaning. In figurative language, subjective
experience drives inferential processes. The expression “John
has a heart of gold,” for example, invokes qualitative attributes
of gold (warmth, value) alongside spatiotemporal cues (“has a
heart of”). This maps to the paraphrase “John is kind and
thoughtful” demonstrating how experiential properties guide
metaphorical reasoning. To transition from conceptual framing
to formal implementation, we introduce a structured semantic
space that mirrors how experiential, spatial, and temporal
features are encoded linguistically. This space underlies our
POSI tagging system, where each four-letter code maps to
salient coordinates along these dimensions. The term “geometric”
is retained over “vector representations” to emphasize the
structured, interpretable nature of this representational space.
While grounded in R" vectors, the model transcends numerical
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FIGURE 1

Abstract geometric semantic space (colour-coded for clarity).

embedding by encoding dimensions with semantic salience. Spatial,
temporal, and experiential properties are mapped to subspaces
that preserve perceptual and cognitive relationships. This allows
modeling not only proximity but also metaphorical projection and
analogical reasoning-processes aligned with embodied cognition
and conceptual metaphor theory. For example, expressions
like “rising tension” reflect spatialized conceptualizations of
experience. Structuring semantic spaces geometrically ensures
alignment with reasoning patterns (e.g., blending, interpolation),
bridging formal semantics and cognitive processes. The framework
provides a foundation for semantic annotation and computational
applications. By formally encoding experiential properties in
geometric vectors, it enables both theoretical analysis and practical
tools in computational linguistics and cognitive science, while
maintaining cognitive plausibility through its emphasis on spatial
organization and cross-modal integration.

2.1 Formal definition of geometric
semantic model

Our geometric semantic model is a quintuple,
My = (£,0,6,Z,R)

where, L is the space of all linguistic expressions, © is the abstract
geometric space, 6 is the representational geometric space, Z is
the inference function, and R is the representation function. The
space of linguistic expression (L) is a space of all syntactically
valid linguistic expressions, which includes words, phrases, and
sentences. The abstract geometric space is the space of spatial,
temporal and experiential semantic properties, and its figurative
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illustration is shown in Figure 1. The abstract geometric space
is formally defined as:

=0Bs X Or x O

where ®g, O, and Of are the abstract geometric space of spatial
(configuration, location, and distribution), temporal (duration,
sequence, and temporal patterns), and experiential (sensory,
functional, and symbolic attributes) properties of an entity or an
object. The abstract geometric space of experiential property is
further defined as:

@E = ®EF X ®ES X ®EM X @EQ

where Ogr, Ops, Opy, and Ofq are the abstract geometric space
of functional (utility-based attributes), structural (organizational
characteristics), material (sensory features), and qualitative
(abstract/symbolic associations) subdivisions of experiential
properties. This decomposition reflects the multimodal nature of
experience, grounded in embodied cognition theory (Varela et al.,
1991), where meaning emerges from sensorimotor interactions
with the world.

Similar to the abstract geometric space, the representational

geometric space  is defined as:

=0s X O x O
and

O = Ogr X Ogs X Opm X Opq

where 65 € R%, O € R%, 0gp € R, 055 € R%, Oy € Rem,
and Ogq € R% are spaces of geometric vector representations
corresponds to abstract geometric properties from ®s, ©1, OfF,
OFks, Opum, and ®EQ-

In this representational geometric space, spatial properties are
represented as a real vector d; dimensional consists of the feature
values, such as the three coordinates, the shape and position of the
object. The temporal properties are represented as a d; dimensional
real vector, which consists of features that capture the temporal
dynamics of an entity or event. These features may include
duration, frequency, temporal distance, cyclicity, or sequencing,
each encoded as a real value. Each POSI tag corresponds to a
specific projection or region in this representational geometric
space, encoding fine-grained properties along one or more
subdimensions (e.g., Opy for material texture, 6gq for symbolic
resonance). This enables interpretable and structured semantic
annotation grounded in the model’s architecture.

The space of linguistic expression (£) is mapped to the
abstract geometric space (®) through an inference function (7)
and the abstract geometric space () is mapped to representational
geometric space through a representational function (R).

I:L— 0
R:0— 0

This framework models the interactions between subspaces of
abstract geometric space. For example, the abstract geometric
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semantics of metaphor “time flies” is a combination of temporal
(®7) and spatial (®s) meaning through experiential associations
(®Eq). Such interactions can be modelled in representational
geometric space through vector operations.

This model provides a bridge between embodied cognition
theory and computational semantics. Mathematical formalisation
of experiential dimensions enables systematic analysis of how
language encodes complex experiences. Future work will explore
dynamic weighting mechanisms for cross-cultural applications and
integration with neuroimaging data for validation.

2.2 Comparison with other formal
semantic models

The proposed geometric model (M) assumes that meaning
is derived from three core dimensions Spatial, Temporal, and
Experiential. These dimensions are explicitly defined and multi-
dimensional, enabling gradient representations of meaning. This
framework offers a more holistic approach compared to formal
semantics, which typically abstracts away sensory and symbolic
details in favour of truth values. For example, in the metaphor “time
is a flowing river”, the physical configuration of a river (directional
flow, width, etc.) is captured by the abstract spatial property
(®s) of this expression, and the progression of time as analogous
to the flow of the river, is captured by the abstract temporal
property (®r) of this expression. Then the utility of a river (e.g.,
transportation, sustenance) is captured by abstract experiential
functional property (®gr); material properties like the fluidity of
water relate to the continuous nature of time is captured by abstract
experiential material property (®gyr); and qualitative features like
serenity or inevitability which enrich its metaphorical meaning
is captured by abstract experiential qualitative property (®gq)
of the expression. These abstract properties will be represented
in their corresponding representational geometric spaces. Where
traditional formal models focus on logical validity or reference, the
M, model captures embodied, perceptual, and symbolic layers of
meaning, offering interpretability and dimensional richness across
linguistic phenomena.

A detailed comparison between traditional formal semantics
primarily truth-conditional and model-theoretic approaches and
our proposed geometric model (M) is summarised in Table 1.
This comparison highlights differences in focus, treatment of
spatial, temporal, and experiential dimensions, representational
granularity, and application scope.

2.2.1 Truth-conditional semantics
In truth-conditional semantics, the meaning of a sentence is its
truth value within a model:

M= (D,I)

where D is the domain of discourse, and I is an inference function
mapping linguistic terms to elements of D. For example:

“X has a heart of gold” = “X is kind”.
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TABLE 1 Comparison between formal semantics frameworks
(truth-conditional and model-theoretic semantics) and the proposed
geometric model (M,).

Formal semantics
(truth-conditional &
model-theoretic)

Mg Model

Focus Truth values, possible worlds Perceptual
modalities,
semantic interplay

Spatial & Implicit in model structures Explicit, encoded as

Temporal 0s, 6

Experiential Limited (e.g., cultural symbols not Explicit (6

Richness inherent) decomposition)

Application Logical inference, compositionality Perceptual
grounding,
metaphorical
analysis

Granularity High-level abstraction Fine-grained,
multi-dimensional

The geometric model explicitly encodes spatial, temporal, and experiential dimensions,
offering a multi-dimensional, perceptually grounded approach to meaning representation.

In contrast, our geometric model (M,) decomposes both ®
and 6 to capture the intricate interplay of sensory and symbolic
meanings, which are underspecified in truth-conditional semantics.
Our model offers a more nuanced understanding of metaphors and
sensory experiences, which truth-conditional semantics overlooks.
For example, in the metaphor “X has a heart of gold ", our model
would integrate both the symbolic and experiential properties of
gold, which truth-conditional semantics cannot fully capture.

This formalism

supports semantics, but

typically leaves out perceptual or metaphorical meaning Hermann

compositional

et al. (2013). Unlike binary truth assignments, Mg models the
continuous, multimodal nature of metaphor, capturing affective
nuance, material salience, and symbolic projection.

For example, the sentence “the river flows westward”, a truth-
conditional analysis would evaluate whether the river’s direction in
the model corresponds to “westward”. However, it cannot account
for the metaphorical richness of “Time is a flowing river” as
experiential and symbolic elements are not encoded.

2.2.2 Model-theoretic semantics

Model-theoretic semantics (Montague, 1970; Partee and
Hendriks, 1997; Lewis, 1976)uses structures M = (W, T,V)
where W is a set of possible worlds, T a temporal structure,
and V a valuation function. This approach handles temporal and
spatial dimensions, however lacks direct integration of experiential
properties.

While model-theoretic semantics accounts for when and where
events occur, it cannot explain how they feel, look, or symbolically
resonate, elements that are core to cognitive interpretation (Lakoff
and Johnson, 2008; Barsalou, 1999).

In contrast, our model explicitly incorporates experiential
dimensions via @ and its subcomponents (Ogr, Opum, Os, OkQ),
and further grounds them in representational geometric spaces.
For example, in our framework, the statement above is not only
localized in time and space, but also enriched with symbolic,
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functional, and material properties of the river, such as flow
dynamics (material), cultural symbolism (qualitative), and practical
use (functional). This provides a more holistic model of meaning
that integrates formal semantics with insights from embodied
cognition and perceptual semantics.

For example, in the model-theoretic semantics, the statement
“the river will flow westward tomorrow” is represented with a
spatiotemporal structure T, W, allowing representation of future
events. While model-theoretic semantics allows the encoding of
spatiotemporal facts, it falls short in incorporating the experiential
depth (e.g., the emotional impact of the river metaphor).

2.2.3 Vector-space semantics

Vector-space  semantics represent meanings as high-
dimensional vectors derived from co-occurrence data Piantadosi
etal. (2024); Turney and Pantel (2010). Despite modeling analogies
and similarity, these representations lack interpretability grounded
in perceptual meaning. While M, also uses vectors, it grounds
each dimension spatial (6s), temporal (07), experiential (6g) in
interpretable perceptual and functional properties, enhancing
transparency and cognitive relevance. Unlike opaque statistical
embeddings, M, provides structured semantics amenable to
annotation and reasoning over meaning properties. Thus,
M, bridges the divide between cognitive plausibility and
computational tractability,

offering structured, interpretable

semantic representations across dimensions.

3 Parts-of-Sense Inference (POSI) tag
annotation framework

In this section, we define the POSI tag set and a framework
for annotating natural language texts with their spatial, temporal,
and experiential properties, as defined in the previously described
geometric model. We defined 135 four-letter POSI tags using
the first letters and/or the most prominent subsequent sounds of
each word in the category name (e.g., VUAB for the Vertical Up
Above category and PSRC for the Past Recent category), and all
of these tags are listed in Table 2. With the help of a mapping
(e.g. embedding) from such categorical features to a real-valued
vector, these POSI tags can be viewed as proxies for vectors in the
representational geometric space (6).

The experiential property from the geometric model is
one of the key aspects emphasized in this study. We define
numerous categories under the Functional, Material, Structural,
and Qualitative domains.

Experiential Functional (EF) categories are defined based on the
various functions or purposes each object, tool, service, or system
can serve in our daily lives. For example, Function Communication
(FNCO) is a category defined to annotate an object or concept that
serves the act of communication, and Function Utility (FNPY) is
a category defined for annotating an object or concept that has a
physiological function in a living organism.

Experiential Material (EM) categories are defined based on the
primary composition and nature of the materials. For example,
Material Metal (MTML) is defined to annotate metallic objects like
knife and Material Natural Organic (MNOG) is defined to annotate
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TABLE 2 Category-wise list of all POSI tags (Parts—of—Sense Inference).

Category POSI-tag

VUAB, VDBL, VUOV, VDUR, VUTP, VDBT,
VUUP, VULW, VULT, VURT, HLRA, HRLA,
HWDT, MCEN, RLBS, RLNX, RLAD, RLDS,
RLFA, RLNR, RLBH, RLWN, RLFR, RLBK, RLIS,
RLOS, CNSA, EVSA

Spatial

Temporal PSRC, PSDS, PSRM, PRRC, PRNR, PREX, FTNR,
FTDS, PSPE, PSIE, PSPG, PRPE, PRIF, PRPG,

FTPE FTIE FTPG

EF FNPR, FNST, FNTR, ENPS, FNPT, ENEE, FPHC,
FSHC, FNLC, FNSL, FNPY, FNIE, FNNR, FNCO,
FNAB, FNCS

EQ QTSM, QTRG, QTGT, QTSL, QTHD, QTDN,
QTML, QOFL, QOFR, QOSC, QOHR, QOSK,
QOSW, QORT, QOBR, QOFS, QTSW, QTSR,
QTST, QTBT, QTUM, QPTP, QPTL, QPHZ,
QPMK, QPDN, QSMG, QSML, QSMS, QCRD,
QCBL, QCGR, QCYL, QCOR, QCPL, QCBK,
QCPK, QCBR, QCWT, QNFP, QABP

EM MTML, MTPL, MTEW, MNOG, MTAB

ES STCY, STSP, STRC, STPR, STTR, STOV, STCO,
STCR, STAC, STPY, STFL, STAB

Fulfiller FISE, FRSE, FHSE, FLSE, FMSE, FSSE, FCSE,
FIJE, FRJE, FHJE, FLJE, EMJE, FSJE, FLMR,

FNRE, FSYM

natural organic objects like cotton. We have additionally created
a Material Abstract (MTAB) category to use when the material
of something is not very concrete, for example, “honour” in the
sentence “A crown made of honour”.

Experiential Structural (ES) categories are defined based on the
geometric shape and structures. For example, Structural Cylindrical
(STCY) category is defined to annotate cylindrical objects like bottle
and Structural Spherical (STSP) category is defined to annotate
spherical objects like ball. For annotating objects with undefined
structures, we defined a Structural Abstract (STAB) category.

Experiential Qualitative (EQ) categories are defined based on
different qualities such as texture [e.g., Qualitative Texture Smooth
(QTSM)], odour [e.g., Qualitative Odour Floral (QOFL)], taste [e.g.,
Qualitative Taste Sweet (QTSW)], opacity [e.g., Qualitative Opacity
Dense (QPDN)], and colour [e.g., Qualitative Colour Red (QCRD)].
Also, to denote the qualitative properties of concepts like love,
hate, etc., we defined two more categories Functional Qualitative
Properties (FNQP) and Abstract Qualitative Properties (ABQP).

The temporal properties indicate the time frame associated with
an object, thing, or phenomenon and that can be past, present, or
future. We defined 17 categories to mark information regarding
temporal context. For example, we defined the Present Near
(PRNR) category to indicate something occurred or is happening
very close to the present time and Past Distant (PSDS) category to
indicate something that occurred far in the past.

The spatial properties denote how objects, entities, or
phenomena are positioned within a given space. Proposed POSI
tags for the spatial axis are based on categorizing these positions
across different dimensions and orientations. We proposed 28
categories to denote spatial properties. For example, we defined
the Vertical Up Above (VUAB) category to denote an object is
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oriented vertically upward and Medial Center (MCEN) category to
denote the object is positioned closer to the centre. Furthermore, we
defined two categories: Conceptual Spatial Abstraction (CNSA) and
Eventive Spatial Abstraction (EVSA) to denote events and entities
whose spatial properties are ambiguous or unclear.

The essence of something may not be completely conveyed
solely through semantic properties such as experiential, temporal,
and spatial properties. Additional information or transitional
complexities are essential for inferring the sense of representational
content. For example, knowledge of the historical practice of
soldiers biting bullets during surgeries without anesthesia during
wars is required to understand the reason behind forming the
idiomatic sense of the expression “bite the bullet”. To incorporate
such additional aspects, the geometric model defined a new
property called fulfiller. We defined 16 fulfiller categories to mark
such external information. For example, we defined the Historical
Shared Experience (FHSE) category to indicate the experience that
took place in the distant past but is collectively remembered and
often commemorated. If the fulfiller property is not defined or not
required to infer the sense of representational content, we defined
a Not Required or Exist (FNRE) category to indicate that.

4 Annotation

As an initial step, we manually analysed 100 English verb-
noun idiomatic expressions selected from the VNC-Tokens dataset
(Cook et al.,, 2008) and annotated with the proposed POSI tags.
We focused on idiomatic expressions because we think linguistic
expressions with figurative sense will be a suitable test case for
validating the effectiveness of the geometric model and illustrating
its nuances. Note that the geometric model used in this work posits
that geometric properties of a figurative expression can be derived
from the geometric properties of its constituent parts.

While we claim compositionality, we recognize that many
figurative units are non-compositional: German “jmdm. einen
Béren aufbinden” (“tell tall tales”), English “kick the bucket” (“die”)
and Bangla “Ghorar dim” (“horse’s egg” = “something impossible”)
cannot be built from the spatial, material or functional properties
of their parts alone. For such cases, the POSI fulfiller tags host
the cultural/historical knowledge that bridges literal components
and idiomatic sense, instead of forcing a geometric sum that never
existed (Pala et al., 2025; DWDS, 2024; Nunberg et al., 1994).

We are not limiting the scope of our proposed model and
annotation framework to idiomatic expressions and expressions
from the English language. To validate the cross-structural
applicability, we have annotated sets of transitive sentences and
intransitive sentences from the British National Corpus (BNC)
(Burnard, 2007; Consortium, 2007). To validate cross-lingual
applicability, we selected three non-English languages, Punjabi
and Bangla from the Indo-Aryan language family and Malayalam
from the Dravidian language family. Then we have annotated five
sample idiomatic expressions from each of these three non-English
languages. We used GyanNidhi Multilingual Parallel Corpus and
other linguistic resources in Indian languages (Consortium, 2008;
Choudhary, 2019; Chaudhury et al., 2008; Arora et al., 2003; Gupta
and Pala, 2012; Agrawal, 2008) for selecting expressions for the
annotation. Annotated sample of an idiomatic expression, “find
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foot” is included in Appendix 1 and we will publicly release our
entire annotated data.

4.1 Annotation process

To maintain the clarity and consistency of the annotation
process, we followed specific guidelines:

e In the linguistic analysis of the corpus, three annotators
with linguistic backgrounds were involved in the project.
Additionally, for the Bangla and Punjabi languages, we
consulted native speakers with linguistic backgrounds to verify
annotations and gain a deeper understanding of the languages’
context and nuances.

e To ensure reliability in our annotations, we adopted a majority
vote approach throughout the process of analysing the data
(Sabou et al., 2014; Davani et al., 2022). This procedure
involved selecting the annotation with the highest level of
agreement among the annotators at each point in time.

e In the initial step of the annotation process, the property
relations for each component (words) in the idiomatic
expressions were annotated with suitable tags. Following each
tag, a description was given to explain or specify the tag
used. Additionally, an order number was assigned to each
property relation based on its significance in contributing to
the meaning of the expressions.

e If a component had multiple potential POSI tags, the most
specific tag was chosen as the most suitable. For instance,
the structural properties of “moon” could be tagged as either
STSP (Structural Spherical) or STAC (Structural Arc) or STCR
(Structural Circular), but since STSP is more specific, it was
selected as the most appropriate structural tag for “Moon”.

e In cases where assigning a specific tag to a component proves
challenging, we applied the tag of the following word. For
example, it is difficult to assign a function tag to the word
"the." In such cases, we used the tag of the subsequent word.
For instance, if the next word is “book,” we assign the function
tag of the book which is “FNIE” to “the.”

4.2 Challenges

Similar to other studies focused on developing tag sets for
annotating various types of data, we encountered numerous
challenges. One of the primary issues we faced during the creation
of the POSI tagset was the problem of sub-categorization. Each
major category we used encompassed a set of subcategories, and
designing subcategories that accounted for everything under the
major categories proved to be a Herculean task. To achieve more
precise and straightforward annotation, we opted for a more
general classification linked to the major categories. For example,
we categorized materials into polymers (e.g., bags, bottles, toys,
etc.), metals (e.g., Gold, iron, copper, etc.), and natural materials
(e.g., wood, wool, leather, etc.). Additionally, we developed a tagset
(MTAB) to indicate the material of an object or expression when
it is unclear or ambiguous. The same pattern was followed for all
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other major categories. The other challenge we encountered was
the cross-linguistic applicability of the tag sets. Our study aims
to create a set of tags that can be used across different languages.
However, languages vary in how they express spatial and temporal
relations. For instance, some languages use case suffixes or clitics
to indicate spatial relations, while others use adpositions (e.g.,
Malayalam, Tamil, and Zulu). Additionally, some languages use
morphological tense inflections on verbs to indicate time, whereas
tenseless languages rely on adverbs, verbs with aspect and mood
inflections, or other lexical items to establish time references (e.g.,
Chinese, Malay, Burmese, Thai). We have built the tagsets in such a
way that they can account for different languages. The way language
expresses the relations changes, but the fundamental relations
associated with time and space remain the same in every language.
Further, languages use different linguistic markers to indicate
minute meaning changes (e.g., Polish, Hindi/Urdu, Malayalam,
etc.). Addressing these elements in the tagset was one of our main
concerns. To tackle this, we created a tagset called “linguistic
markers-FLMR” and placed it under the fulfiller categories, as it
accounts for the additional elements that contribute to meaning.

Another challenge we faced during annotation involved giving
the proper temporal tag for the verbs that have the same base form,
past form, and past participle form, such as “cut,” “hit,” and “put.”
In these cases, we relied on contextual information or neighboring
words to understand the forms and tagged accordingly.

5 Conclusion and future work

In this paper, we introduced a geometric semantic model
that encodes meaning as interpretable vectors along spatial,
temporal and experiential dimensions, together with POSI - 135
four-letter tags that annotate fine-grained, perceptually grounded
semantic properties. A multilingual evaluation on English, Punjabi,
Bangla, and Malayalam idioms, transitive/intransitive clauses
and other MWEs showed that the scheme is cross-linguistically
robust and cognitively plausible. By formalizing experiential,
spatial, and temporal features that traditional models treat as
peripheral, the framework bridges embodied-cognition insights
and computational semantics, offering a unified account of how
bodily experience, cultural knowledge, and linguistic structure
jointly construct meaning, especially in non-compositional or
metaphorical expressions.

Each POSI tag maps to a transparent region of the geometric
space, so the resource can be plugged directly into downstream
NLP pipelines: the tags supply explainable, embodied features
to semantic parsers, metaphor detectors and machine-translation
systems, while the fulfiller dimension supplies cultural or historical
knowledge whenever compositionality fails.

In the future work, we will (i) automate POSI tagging via
supervised learning, (ii) embed the tags into existing semantic
knowledge bases, and (iii) extend the inventory to additional
languages and genres. And we will undertake a quantitative
evaluation-comparing POSI-augmented models against strong
baselines on tasks such as semantic parsing to demonstrate the
concrete effectiveness.
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A Appendix

B POSI-Tag Annotation of “Find foot”
(Idiomatic and Literal Sense)

<Entry>
<Text>Find foot (Figurative)</Text>
<Desc>To become comfortable in a new situation/
environment/task or to begin to be confident or
successful.</Desc>
<Spatial>
<Tag>EVSA</Tag>
<Desc>The spatial relation associated with the
event indicated by the idiom is not clear or
abstract</Desc>
<Order>-</0Order>
</Spatial>
<Temporal>
<Tag>PRRC</Tag>
<Desc>A period close to the present.</Desc>
<0Order>-</0rder>
</Temporal>
<EF>
<Tag>FNAB</Tag>
<Desc>The function is not clear, but describe the
process of becoming familiar with and
effective in new situations.</Desc>
<0rder>-</0rder>
</EF>
<EQ>
<Tag>QABP</Tag>
<Desc>Confident, comfort, familiar, effective</Desc
>
<Order>-</0Order>
</EQ>
<ES>
<Tag>STAB</Tag>
<Desc>Strctural properties related to expression is
abstarct</Desc>
<0Order>-</0rder>
</ES>
<EM>
<Tag>MTAB</Tag>
<Desc>Material properties related to the expression
is abstract.</Desc>
<Order>-</0Order>
</EM>
<Word>
<Text>Find </Text>
<Desc>To locate/ acquire something (verb)</Desc>
<Spatial>
<Tag>EVSA</Tag>
<Desc>The spatial relation associated with the
verb "find" involves understanding the
process of locating or discovering an object
person, or place within a given space</
Desc>
<Order>5</0rder>
</Spatial>
<Temporal>
<Tag>PRRC</Tag>
<Desc>A period close to the present</Desc>
<Order>4</0Order>
</Temporal>
<EF>
<Tag>FNAB</Tag>
<Desc>Function is not clear, indicating
achievement of something. </Desc>
<Order>2</0Order>
</EF>
<EQ>
<Tag>QABP</Tag>
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<Desc>Accuracy, Discovery, realization,
Evidentiality, Exploration, Satisfaction</
Desc>
<Order>1</0Order>
</EQ>
<ES>
<Tag>STAC</Tag>
<Desc>ES of the following noun.</Desc>
<0rder>6</0rder>
</ES>
<EM>
<Tag>MNOG</Tag>
<Desc>EM of the following noun.</Desc>
<Order>7</0rder>
</EM>
</Word>
<Word>
<Text>Foot</Text>
<Desc>The lower extremity of the leg of humans and
animals (countable noun)</Desc>
<Spatial>
<Tag>VDBT</Tag>
<Desc> Something is positioned vertically and
located at the lowest point or bottommost
location.</Desc>
<Order>5</0rder>
</Spatial>
<Temporal>
<Tag>PPRC</Tag>
<Desc>A period close to the present.</Desc>
<Order>4</0Order>
</Temporal>
<EF>
<Tag>FNPY</Tag>
<Desc>Support body weight and facilitate movement
and balance</Desc>
<Order>1</0Order>
</EF>
<EQ>
<Tag>QABP</Tag>
<Desc>Volitionality, flexibility, balance,
adaptability, vulnerable</Desc>
<Order>1</0rder>
</EQ>
<ES>
<Tag>STAC</Tag>
<Desc>Normal arch shape (flat foot/high arch foot
/etc)</Desc>
<Order>6</0rder>
</ES>
<EM>
<Tag>MNOG</Tag>
<Desc>Composed of various bones, muscles,
ligaments</Desc>
<0rder>7</0rder>
</EM>
</Word>
</Entry>
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