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A Turing Test for artificial nets
devoted to vision

Jorge Vila-Tomas!', Pablo Hernandez-Camara®', Qiang Li?,
Valero Laparra® and Jesus Malo'*

*Image Processing Lab, Universitat de Valéncia, Valencia, Spain, 2TReNDS, Georgia State, Georgia Tech,
and Emory, Atlanta, GA, United States

In this work! we argue that, despite recent claims about successful modeling
of the visual brain using deep nets, the problem is far from being solved,
particularly for low-level vision. Open issues include where should we read from
in ANNs to check behavior? What should be the read-out? Is this ad-hoc read-
out considered part of the brain model or not? In order to understand vision-
ANNSs, should we use artificial psychophysics or artificial physiology? Anyhow,
should artificial tests literally match the experiments done with humans? These
questions suggest a clear need for biologically sensible tests for deep models
of the visual brain, and more generally, to understand ANNs devoted to generic
vision tasks. Following our use of low-level facts from Vision Science in Image
Processing, we present a low-level dataset compiling the basic spatio-chromatic
properties that describe the adaptive bottleneck of the retina-V1 pathway and
are not currently available in popular databases such as BrainScore. We propose
its use for qualitative and quantitative model evaluation. As an illustration of
the proposed methods, we check the behavior of three recent models with
similar deep architectures: (1) A parametric model tuned via the psychophysical
method of Maximum Differentiation [Malo & Simoncelli SPIE 15, Martinez et al.
PLOS 18, Martinez et al. Front. Neurosci. 19], (2) A non-parametric model (the
PerceptNet) tuned to maximize the correlation with humans on subjective image
distortions [Hepburn et al. IEEE ICIP 20], and (3) A model with the same encoder
as the PerceptNet, but tuned for image segmentation [Hernandez-Camara et al.
Patt.Recogn.Lett. 23, Hernandez-Camara et al. Neurocomp. 25]. Results on the
proposed 10 compelling psycho/physio visual properties show that the first
(parametric) model is the one with behavior closest to humans.

KEYWORDS

evaluation of Al models, neural networks for vision, human vision, Turing Test, low-level
visual psychophysics, linear + non-linear cascade, image quality, image segmentation

1 Introduction

1.1 Prologue

This work reproduces our talk (otherwise unpublished in print) at the AI Evaluation
Workshop in June 2022 at the AI Dept. of the University of Bristol organized by Prof. Raul
Santos of the Eng. Maths Dept. of UoB (Malo et al., 2022). That talk proposed an original
methodology (with experimental results) to evaluate deep nets devoted to vision tasks and
was the seed of our current (as of 2025) work with Prof. Jeff Bowers of the Psychol. Dept.

1 Concept and results first presented at the Al Evaluation Workshop at the University of Bristol, June
2022.
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of UoB, as a low-level complement to his (high-level) proposals
in Bowers et al. (2023) and Biscione et al. (2024). Journal
publication of this 2022 talk is pertinent for a wider audience
because this approach, based on low-level visual psychophysics,
is still unusual in the AI and machine learning communities,
despite some researchers are independently proposing very similar
evaluations quite recently (Cai et al., 2025; Hammou et al., 2025). As
shown below, our proposed evaluation program includes facts that
go beyond the luminance, color, and contrast masking properties
considered in Cai et al. (2025) and Hammou et al. (2025). The
work of Rafal Mantiuk’s lab shares the same spirit and focus on
low-level psychophysics, but his focus on quantitative comparison
is in contrast with our proposal, which, while including quantitative
comparison, also stresses the qualitative understanding of the
response curves. In that way, AI researchers can spot major
conceptual errors in deep models easily. Moreover, as explained
below, the selected visual stimuli® (and associated psychophysical
properties) allow us to intuitively infer modifications in the
architectures in order to correct the detected errors.

1.2 Motivation: is that model really
human-like?

The motivation for our proposal starts by reviewing the claims
about how deep learning models are the ultimate tool to model the
visual brain, as recalled in Bowers et al. (2023). Claims cited by
Bowers et al. include Kubilius et al. (2019), Mehrer et al. (2021),
Zhuang et al. (2021), Storrs et al. (2021), Rajalingham et al. (2018)
and Macpherson et al. (2021), and other examples in the same vein
include Cadena et al. (2019) and Burg et al. (2021). A skeptical
tone about claims (Bowers et al, 2023) is a good practice in
science®. Two examples of this skepticism regarding the eventual
plausibility of models include major scientists such as Tomaso
Poggio and Horace Barlow. In the 70s, Marr and Poggio proposed
a taxonomy of the approaches to the vision problem: their famous
separate abstraction levels, namely, computational, algorithmic, and
implementation (Marr and Poggio, 1977; Marr, 1978). However,
42 years later, in view of the current tools to optimize models,
Poggio himself questioned the separability of these levels (Poggio,
2021). This taxonomy has been inspiring for decades, but now it is
under debate (Lengyel, 2024; Pillow, 2024; Malo and Hernandez-
Camara, 2024; Hernandez-Camara et al., 2025c). For example,
work on color illusions (Gomez-Villa et al., 2020b), on CSFs
in autoencoders Li et al. (2022), and on subjective distances
between images in ANNs (Hernindez-Camara et al, 2025¢
Hepburn et al., 2022) stress the relation between the computational
and the algorithmic levels, thus questioning previous (purely
computational) explanations that disregard architecture (Malo and
Gutiérrez, 2006; Laparra et al., 2012; Laparra and Malo, 2015). In

2 Al made online available here since 2022: http://isp.uv.es/docs/
TuringTestVision.zip.

3 Inthe talk (Malo et al., 2022), we mentioned the humorous comment of
Dr. Paninski at NYU back in 2001 after he carefully listened to the details of
our brand new model: yes, yes, that is nice, but the brain doesn't work like
that, does it?.

Frontiersin Artificial Intelligence

10.3389/frai.2025.1665874

a similar vein, Horace Barlow, 50 years after his inspiring Efficient
Coding Hypothesis (Barlow, 1959, 1961), questioned his own purely
infomax approach (Barlow, 2001) .

That skepticism is the core of the spirit in Bowers et al. (2023),
and also the motivation of this work, which has two key ideas:

e The use of Al techniques (e.g., deep learning) to understand
the visual brain may not be as easy as people thought back in
2022, and even now. More explanatory tests are required.

e Our specific proposal here is a Turing-like test (Turing,
1950) based on 10 properties of low-level human vision (our
Decalogue) to check if a certain artificial model behaves as the
(low-level) human visual brain.

1.3 Structure of the paper

Section 2 states that the question Are the models sensible from
the point of view of low-level physiology and psychophysics? remains
open from the perspective of modeling and evaluation. In Section 3,
we propose our contribution: an easy-to-use test (consisting
of online available visual stimuli) and associated responses for
qualitative and quantitative evaluation of deep learning vision
models. These stimuli visually illustrate low-level phenomena
described by classical Vision Science. In Section 4, we illustrate
the proposed method through the qualitative and quantitative
evaluation of three recent models: (1) a classically formulated,
not end-to-end optimized model with a functional form derived
from classical vision science literature, where the specific values
of its parameters have been psychophysically measured (Malo
and Simoncelli, 2015; Martinez et al., 2018, 2019; Malo et al.,
2024). (2) A network with a bio-inspired architecture but with
free parameters end-to-end optimized to reproduce subjective
image quality, the PerceptNet (Hepburn et al., 2020). It resembles
AlexNet and VGG, but it was specifically designed to accommodate
the known aspects of the retina—cortex visual pathway using a
constrained version of divisive normalization (Ballé et al., 2017).
And (3) a model with the same encoder as the PerceptNet, but
augmented with a decoder, and both (encoder and decoder) are
trained for image segmentation (Herndndez-Cdmara et al., 2023;
Herndndez-Cdmara et al., 2025b), which is also a biologically
plausible task. Section 5 discusses what can be learned from the
proposed test and shows an example of how a model can be
fixed. Note that even in the engineering case where one does not
necessarily need the networks to resemble humans, one would
always want them to have good adaptation properties to achieve
good generalization, and potential failures in this regard become
clearly evident through the proposed tests. Finally, Section 6
concludes the paper. Supplementary materials include (a) the
ground-truth values of the response curves in the proposed tests,
(b) in-depth results of the CSFs of the models using six different

4 In the talk Malo et al. (2022), we guessed that, following that skepticism,
Barlow questioned our preliminary work on the use of Principal Curves to
explain color and texture non-linearities of human vision purely based on
image data, back in 2004 (Malo et al., 2004): yes, that is interesting, but the

visual brain may not work like that.
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read-out strategies at all the layers of the considered networks, and
(c) a critical discussion of the aggregation of quantitative quality
descriptors used in BrainScore (Schrimpf et al., 2018).

2 Open issues in modeling vision

As pointed out in Torralba et al. (2024), the basic question, as
in human vision, is how to deal with deep models which are hardly
explainable black boxes once trained.

2.1 Uncertain computational goal

First, the more general open issue is the discussion on the
computational goal that eventually explains the organization and
behavior of visual systems. Consider architectures/tasks such as the
ones presented in Figure 1. These tasks are related to low-, mid-,
and high-level tasks arguably implemented by biological vision. In
biology, enhancement of the blurry and noisy signal in the retina
has been proposed as an explanation of the LGN, as pursuing
this goal may reproduce some of its spatio-chromatic (Atick et al.,
1992; Li et al, 2022) and purely chromatic (Gomez-Villa et al.,
2020b) features. Another example is the compression, possibly,
happening in part at the LGN bottleneck and at the feature
selection after V1. Bandwidth limitation, dimensionality reduction,
and attention focus are sensible goals in this regard (Karklin
and Simoncelli, 2011; Lindsey et al., 2019; Zhaoping, 2014). A
number of compression algorithms [for images (Wallace, 1991;

10.3389/frai.2025.1665874

Malo et al., 1995, 2000a; Taubman and Marcellin, 2013; Malo
et al., 2006; Ballé et al., 2017) and video Le Gall, 1992; Malo
et al., 2000b,c, 2001] have been based on human vision models.
Segmentation is arguably another (mid-level) task that has to be
done by biological vision, and biological non-linearities have been
shown to improve segmentation in images (Herndndez-Cdmara
et al.,, 2023; Herndndez-Cdmara et al., 2025b) and video (Malo
et al., 2000c, 2001). Arguably, segmentation is implemented in
the where channel from the lower-level primitives extracted in
V1 (Goodale et al., 1991; Milner and Goodale, 1992). Higher-level
tasks such as classification are supposed to happen in the what
channel (Logothetis and Sheinberg, 1996; Kreiman et al., 2000).
Similarly, in standard models such as the one depicted in Figure 1,
biological non-linearities have been shown to have a significant
role in classification (Coen-Cagli and Schwartz, 2013; Miller et al.,
2022).

2.2 Uncertain read-out mechanisms

As stated in the introduction, in the age of automatic
differentiation where the classical Marr-Poggio levels are not that
separated, the computational goal is not the only open issue. For
instance, in order to check if a (mathematical) model is biologically
sensible, where should we read the signals from? The read-out
mechanism is also important. Note that the fact that a certain layer
has the necessary information in order to solve a task (read-out in
any complicated way, e.g., a highly specialized dense network) is not
enough to say that this layer represents the way the visual brain

Denoising (LGN)

Compression (LGN-Cortex)

Noisy input (Retina)

Classification (what)

FIGURE 1

Image denoising, image compression, image segmentation, and image classification architectures with (eventually) biological correlates in the LGN,
the V1, and beyond. However, it is not obvious how these tasks may be combined to explain biological vision. Images reproduced with permission
from: M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele, “The Cityscapes Dataset for Semantic
Urban Scene Understanding,” in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Segmentation (where)
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works: the necessary information is already present in the retina
(if read in a proper way) and, of course, the retina is not a good
model for the rest of the visual brain. This problem is illustrated in
Figure 2.

In the case of doing artificial physiology, i.e., reading the signals
from certain neurons or layers, or artificial psychophysics, i.e., trying
to make decisions from the responses of the network to decide if
a certain stimulus is visible or not, one should propose a read-out
mechanism to summarize the responses into a decision variable (see
Figure 3). The selection of the read-out mechanism is not trivial. In
fact, the quality of the read-out information may strongly depend
on the complexity of this (arbitrarily selected) mechanism. As a
result, one may not be able to tell if the model itself is good, or
if the good behavior has to be attributed to a clever read-out that
is not part of the model. Examples include the use of classifiers at
certain locations of the network to make a decision on visibility,
as in (Coen-Cagli and Schwartz, 2013; Akbarinia et al., 2023),
or without classifiers relying on the model output (Hernandez-
Cémara et al., 2025a); or the (more classical) use of Euclidean

Decoding
0

o

%-‘ All features?
@ One feature?

Encoding
200

E

|\ )

-

Given a deep model successfully trained for some visual task, the
read-out location and read-out mechanism (or decoder) are
important to assess its biological plausibility.

10.3389/frai.2025.1665874

distances between stimuli to tell if they are discriminable (Teo and
Heeger, 1994; Li et al., 2022; Hernandez-Cémara et al., 2025c¢).
These (arbitrary) decisions definitely affect the characterization of
the system, e.g., its frequency response (Li et al., 2022; Akbarinia
et al,, 2023). For example, linear or non-linear classifiers effectively
apply different (non-Euclidean) distance metrics (Duda and Hart,
1973) and, hence, they should lead to different decisions.

Another (more particular) discussion is the debate on the
summation, which is classical in vision science (Graham, 1989):
for instance, which Minkowski exponent is more physiologically
plausible? Note that using different norms and summation schemes
definitely leads to different results (Laparra etal., 2010). A final (also
non-obvious) way of assessing stimuli in the network is measuring
differences in the statistical properties of the response (Wang et al.,
2004; Ding et al., 2022) or measuring information flow along the
network (Sheikh et al., 2005; Sheikh and Bovik, 2006; Malo, 2020;
Malo et al., 20215 Li et al., 2024). These options require making
non-trivial decisions such as which statistical descriptors make
sense (Gatys et al., 2016; Ding et al., 2022), or how to set the level
of noise in the network (Sheikh et al., 2005; Sheikh and Bovik,
2006; Malo, 2020). In this regard, models can be improved either by
changing the architecture and the measures of information (Malo
et al., 2021; Laparra et al., 2025), or by better estimations of the
internal noise (Malo et al., 2025).

2.3 Uncertain experimental setting

And finally, the third open issue is the way of doing the
evaluation: the experiment implementation matters. In particular,
should we use artificial physiology or artificial psychophysics?
Current techniques by the machine learning community to
visualize the behavior of the networks (Mahendran and Vedaldi,
20165 Luo et al., 2016) are based on classical single-cell recordings,
such as the very concept of receptive field (Hubel et al., 1959
Hubel and Wiesel, 1961; Ringach, 2002), and the identification
of sensitive neurons by looking at the stimulus that maximizes
the neuron response, which is a common practice in visual
neuroscience (Tailby et al, 2008). However, there are more

PHYSIOLOGY Artificial
Physiology
Si Slml
o : MODEL
cax(
v
L
[ Decoder
)
Predicted
Neural Signal

FIGURE 3

In artificial physiology (Left) and in artificial psychophysics (Right), the arbitrary decoder to read out model activations is critical.

PSYCHOPHYSICS
Artificial
Psychophysics
Decoder
] ;63&/
Predicted
Visibility
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LITERAL: variable energy to match brightness
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FIGURE 4

In measuring the spectral sensitivity of certain elements of a network, one may try a literal reproduction of human psychophysics (Left) or an
idealized experiment (Right). The literal reproduction could be done through matching experiments (Wyszecki and Stiles, 2000): finding the ratio of
energies necessary to match the response to quasi-spectral stimuli of different wavelengths. The idealized version of the experiment could be based
on measuring the increment of response (distance) due to equal energy quasi-monochromatic stimuli with regard to a common reference.
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sophisticated techniques such as reverse correlation which are
used both in physiology (Ringach and Shapley, 2004) and in
psychophysics (Eckstein and Ahumada, 2002), and these are not
yet widely used in machine learning. Regarding the experimental
setting, should one go for a literal reproduction of the experiments
with humans, or should one try an idealized version of the
experiment? This open question can be illustrated by the example
in Figure 4 on the spectral sensitivity of a network.

This is a non-trivial question because, for instance, some
techniques to assess visual illusions in a model involves the
inversion of the inner representation (Otazu et al., 2010; Gomez-
Villa et al., 2020b), which does not happen in the human
brain, while others, similarly to human psychophysics (Ware and
Cowan, 1982), are based on matching the response at the inner
representation (Gomez-Villa et al., 2020b, 2025). As stated above,
this has implications for deciding at which layer one should impose
the matching (or where to read from).

2.4 Better evaluation techniques are
needed

All these non-trivial decisions (despite that they all belong to
low-level characterizations of the visual system) clearly point out
the need for better methodologies for model evaluation in order to
assess how close different models may be to the visual brain. These
better methods should easily show the impact of the open issues
mentioned above.

In this context, our proposal here is simple: just provide the code
to generate a set of well-selected stimuli that illustrate a number of
classical low-level visual psychophysics facts and have them prepared

Frontiersin Artificial Intelligence

as inputs to evaluate image-computable models. The first version of
such a low-level Turing Test (back in 2022) included stimuli for
10 wellknown behaviors (our Decalogue). That Decalogue is being
extended to 20 properties in our on-going (2025) collaboration with
Prof. Bowers (Malo and Bowers, 2024).

The selected stimuli here (which include color and texture)
are behind the current understanding of early vision as a set
of linear-non-linear layers (Rust and Movshon, 2005; Schiitt and
Wichmann, 2017; Martinez et al., 2018, 2019; Bertalmio et al., 2020;
Malo et al., 2024; Bertalmio et al., 2024). Our proposal follows
the tradition of previous (too simple) low-level datasets such as
the OSA ModelFest initiative (Carney et al., 1999), but low-level
psychophysics has not been extensively included in the (today’s
popular) BrainScore (Schrimpf et al., 2018), nor in the high-level
criticisms made by Bowers et al. (2023) and Biscione et al. (2024).

3 Our proposal: a low-level vision
Turing Test for deep-nets

3.1 The Decalogue: facts and foundations

The set of facts and associated stimuli included in our proposal
is summarized in Table 1. Among the rich literature on low-level
visual psychophysics, the selection of those specific properties is
grounded in two main reasons.

First, they describe the visual information adaptively captured
(and discarded) by the front end of human vision. On the
one hand, linear sensitivities describe the spectral, chromatic,
and spatio-temporal bandwidth and relative weight given by the
system to the frequency components of the input stimuli. This

frontiersin.org
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TABLE 1 Properties of human vision (and associated stimuli) of our Decalogue that are behind the current understanding of the information bottleneck

happening between the retina and the V1 cortex.

Facts / properties Stimuli Modality Response
1 Spectral sensitivities (achromatic and opponent) Quasi-spectral Color Linear
2 Brightness & color response saturation Color calibrated Color Non-linear
3 Achromatic contrast sensitivity (bandwidth) Achrom. Gabors/noise Texture Linear
4 Chromatic contrast sensitivity (bandwidth) Chrom. Gabors/noise Texture Linear
5 Spatio-chromatic receptive fields Deltas / noise Texture Linear
6 Non-linear contrast response: saturation Gabors/noise Texture Non-linear
7 Non-linear contrast response: freq. dependent Gabors/noise Texture Non-linear
8 Context effects: energy Gabors/noise Texture Non-linear
9 Context effects: frequency Gabors/noise Texture Non-linear
10 Context effects: Orientation Gabors/noise Texture Non-linear

They include color, texture, and motion processing abilities of human early vision. In the original literature, the stimuli were specifically designed to probe the linear or the non-linear behavior

of the system.

linear description in terms of sensitivity filters is the first-order
approximation to the visual bottleneck. More interestingly, this
bottleneck is adaptive: in classical models of vision science, extra
non-linear mechanisms are proposed between the linear filters to
account for the adaptive responses to the specific eigen-stimuli
of the linear filters. The stimuli in the tests we compile here
were specifically designed to probe those linear and non-linear
mechanisms of human vision. The power and relevance of the
selected stimuli for a complete characterization of the low-level
bottleneck of image-computable models is suggested by the fact
that, for decades, the straightforward use of these facts (with minor
or no optimization at all) led to competitive image (Wallace, 1991;
Malo et al., 1995, 2000a; Taubman and Marcellin, 2013; Malo
et al,, 2006) and video coding algorithms (Le Gall, 1992; Malo
et al, 2000b,c, 2001) and distortion metrics (Daly, 1993; Null,
1993; Teo and Heeger, 1994; Malo et al., 1997; Watson and Malo,
2002; Laparra et al., 2010) equipped with color constancy and
contrast adaptation (Herndndez-Cdmara et al., 2023; Herndndez-
Cémara et al.,, 2025b; Hernandez-Cdmara et al., 2024). Checking if
the response of a network is human-like for those stimuli would
imply that the bottleneck of the network would have statistically
good adaptive behavior (Olshausen and Field, 1996; Schwartz and
Simoncelli, 2001; Malo and Gutiérrez, 2006; Malo and Laparra,
2010; Laparra et al.,, 2012; Laparra and Malo, 2015; Gomez-Villa
et al., 2020a; Malo, 2020, 2022). This adaptivity could be useful for
the mentioned applications and also for domain adaptation (Sengar
et al., 2025).

Second, effects elicited by the selected stimuli are visually
compelling and hence, the user of the test can check (by the
eye) if the model under consideration behaves like humans or
not. On the one hand, sensitivity surfaces to simple (isolated)
stimuli are standardized and ready for direct quantitative
comparison (Wyszecki and Stiles, 2000; Hurvich and Jameson,
1957; Krauskopf and Gegenfurtner, 1992; Campbell and Robson,
1968; Mullen, 1985; Georgeson and Sullivan, 1975; Daly, 1990;
Malo et al,, 1997; Kelly, 1979; Diez-Ajenjo et al., 2011). On the
other hand, as illustrated below, non-linear responses when using
stimuli in a context (under adaptation) have specific qualitative

Frontiersin Artificial Intelligence

behaviors that are easy to see (Foley, 1994; Watson and Solomon,
1997; Martinez-Uriegas, 1997). In this way, that eventual model
deviations from human-like behavior are easy to detect. Moreover,
Section 3.3 proposes ways to summarize these visual behaviors in a
numerical score. The proposed tests do not give definitive answers
to the points raised in Section 2, but they are useful to stress the
impact of those issues in easy-to-view ways and rule out models
accordingly.

3.2 The Decalogue: specific examples

In this section, we show four examples of the proposed
Decalogue with series of calibrated stimuli (from the colorimetric
and the spatial perspectives) that illustrate the non-linear response
of humans to (i) luminance in different backgrounds leading to
different perceptions of brightness, (ii) deviations in opponent color
directions under different induction conditions leading to different
perceptions of hue and saturation, (iii) texture masking due to the
energy of the background, and (iv) texture masking due to the
similarity between the features of the background and the test.

It is important to note that the properties illustrated here
(properties 2, 8, 10) are examples of curves that are not
standardized, as opposed to other facts in the proposed Decalogue
(properties 1, 3, 4, 6, 7), in which strict comparisons (RMSE
or Pearson correlation) are possible. The fact that, even in
these non-standardized examples, the qualitative behavior is so
compelling implies that checking the order of the curves using
rank correlations is useful to quantitatively describe the alignment
between artificial models and humans.

3.2.1 Luminance and brightness

The first set of stimuli refers to a series of luminance-calibrated
achromatic samples that illustrate the perception of brightness in
backgrounds of different luminance. They illustrate the Weber
law (Wyszecki and Stiles, 2000; Fairchild, 2013) and the crispening
effect (Whittle, 1992), i.e., the achromatic part of Property 2 in
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FIGURE 5

Series of stimuli eliciting non-linear brightness perception. Luminance-calibrated linearly spaced tests in different luminance-calibrated backgrounds.
This illustrates the Weber law (Fairchild, 2013) as well as Whittle's crispening effect (Whittle, 1992), as summarized in Bertalmio et al. (2020).
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Table 1. These effects have been related to the statistics of natural
images (Laughlin, 1981; Laparra et al., 2012) and with sophisticated
models of retinal adaptation (Bertalmio et al., 2020).

Figure 5 shows a series of these stimuli in the (linearly
spaced) range of luminance [0.5, 120] cd/m? on (linearly spaced)
backgrounds of luminance in the range [1, 160] cd/m?. These
stimuli are easily generated in digital levels (i.e., ready to feed
conventional artificial models) with the code provided in this
work®, which makes use of the calibration of the Matlab toolbox
Colorlab (Malo and Luque, 2002) on a standard computer screen.

Let’s describe the perceived brightness of the stimuli in this test.

First, the series of stimuli in the darkest background clearly
shows the saturation non-linearity of the brightness vs luminance
curve: note that the jumps in perceived brightness for the low-
luminance tests are distinctly bigger than the equivalent jumps
for the same increments in luminance at the high-luminance end.
In the axis of perceived brightness, the above implies that the
response (blue curve) has a large slope (high sensitivity) at the low-
luminance end and a saturation of such response (lower sensitivity)
at the high-luminance end. That makes the qualitative saturating
blue curve of brightness vs luminance.

Second, when one increases the luminance of the background
(e.g., from 1 cd/m? to 40 cd/m?), the brightness of the (same)
samples is lower than in the previous series, so the qualitative
brightness response to this second series of stimuli is below the
previous one (as depicted by the qualitative black curve).

Third, by looking at the stimuli highlighted in gray in the
1 cd/m? and the 40 cd/m? backgrounds, it is obvious that in the
brighter background, the stimuli with equivalent brightness are
shifted to the right on the scale of luminance, which means that
the response in black (for the stimuli in the brighter background)
is shifted right-down with regard to the curve in blue (for the
stimuli in the darker background). Moreover, this means that
the black curve has a sigmoidal shape as it should start from
zero brightness. Similar visual reasoning implies that this shift
progressively increases as one increases the luminance of the

5 Seethe script StimuliColorNonLinearities.m.
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background, as qualitatively illustrated by the samples highlighted
in gray along the diagonal of the panel with the stimuli (left),
leading to the shift in the curves (right).

Fourth, the (same) stimuli in the brightest background elicit
a brightness response with a substantially different shape: the
sigmoid has substantially shifted to the right (red curve), and, all
in all, one can see a smooth transition of the sigmoidal response
curves from the blue curve to the red curve. The crispening effect
(increased sensitivity around backgrounds of similar luminance) is
illustrated by the shift to the right of the points of maximum slope
in the response curves.

Finally, fifth, the decreasing brightness of the samples of the
same luminance in backgrounds of progressively greater luminance
(as illustrated by the samples highlighted in green) illustrates
brightness induction (Fairchild, 2013).

Of course, the qualitative visual observations made here do not
try to substitute for the rich quantitative literature in which these
responses are determined by accurate psychophysics (Wyszecki
and Stiles, 20005 Fairchild, 2013). However, (1) the phenomena are
compelling enough that one can see the qualitative trends of the
curves by eye, and, as seen in the numerical experiments below, (2)
these trends (visible in ready-to-use digital images) are enough to
spot divergences with human behavior in certain artificial models
or discriminate between models in terms of their similarity to
human behavior, which is the ultimate goal of the tests presented
here.

3.2.2 Non-linear response to saturation and color
adaptation

Responses to constant deviations from white in the red-
green and yellow-blue directions of the Jameson & Hurvich color
space (Hurvich and Jameson, 1957; Vila-Tomas et al., 2023) with
equiluminant stimuli describe the non-linear perception of hue
and saturation, as pointed out in Krauskopf and Gegenfurtner
(1992) and Romero et al. (1993) in similar opponent spaces, i.e.,
the chromatic version of property 2 in Table 1.

Figure 6 shows colorimetrically calibrated stimuli with such
deviations (in the range [-20, 20] of the linear RG and YB
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FIGURE 6

Gegenfurtner (1992) and Romero et al. (1993).

Series of non-linear perceived saturation (or response of the opponent chromatic channels) vs. linearly spaced increments in colorimetrically
calibrated color opponent directions in different chromatic contexts. This illustrates the non-linear effects pointed out in Krauskopf and
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tristimulus values of the Jameson and Hurvich space) in different
backgrounds, which are easy to generate and modify by using
the code provided in this work®. As in the previous test, let’s
describe the perceived hue and saturation of the stimuli to infer the
qualitative shape of the responses.

First, take the stimuli in gray backgrounds and note that the
jumps in perceived hue are bigger around the central (achromatic)
stimuli than at the extremes with more saturated stimuli (either
red, green, yellow, or blue): Judge the jumps in saturation close to
the achromatic stimulus and at the extremes of the chromatic axes.
Similarly to the responses for brightness, these differences imply a
sigmoidal response to saturation when the stimuli linearly depart
from white in constant steps: see the qualitative responses in gray
for both the red-green and the yellow-blue directions. Second, these
sigmoidal responses shift to the right or to the left, as can be seen
from the shift of the stimuli that are perceived as achromatic in
the different backgrounds (e.g., see the stimuli highlighted in gray).
Note that a stimulus is seen as achromatic when the response of
the mechanism tuned to red-green or yellow-blue is zero. See the
corresponding shifts in the zero crossings of the sigmoids (also
highlighted in gray). Finally, third, the shift of the responses is
bigger as the saturation of the background is increased.

Again, the goal of this test is not to substitute the
original accurate psychophysics done on humans (Krauskopf and
Gegenfurtner, 1992; Romero et al, 1993) to point out these
phenomena. On the contrary, they just represent an easy way to get
digital images that can be used to test artificial models and check if
their responses qualitatively behave like humans.

3.2.3 Texture masking 1 (energy): non-linear
adaptive contrast response

The same kind of qualitative derivation of human-like
responses can be applied to the perceived contrast of textured
patterns with calibrated frequency content and controlled
luminance. The test presented here illustrates the fact that
perceived contrast non-linearly depends on linearly increasing

6 See the script StimuliColorNonLinearities.m of this work which

also uses the Toolbox Colorlab (Malo and Luque, 2002) for calibration.
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Michelson contrast (Legge and Foley, 1980; Legge, 1981) and this
response decreases with (is masked by) the energy of a background
of similar texture (Foley, 1994; Watson and Solomon, 1997). This
corresponds to property 8 in Table 1. The stimuli presented in
the following example can be reproduced and modified both in
frequency orientation, average luminance, and contrast with the
code provided’.

Figure 7 shows Gaussian-windowed test noise patches of 4
cycles/degree (cpd) in images subtending 1 degree with an average
luminance of 50 cd/m? and linearly spaced RMSE contrasts (from
left to right) in the range [0, 0.3]. The different rows show the same
tests on different backgrounds of noise of 4 cpd with linearly spaced
RMSE contrast in the range [0, 0.25].

Similarly to the previous cases, let us describe the perceived
contrast along the two dimensions of the panel: test: left to right,
and background: top to bottom. Again, the qualitative shape of the
responses will be determined by the perceived jumps of contrast of
the tests (from left to right) and by their variation as one increases
the energy of the background (from top to bottom).

First, for the zero-contrast background (first, top row), the
jumps in perceived contrast in the low-contrast end (left) are
bigger than the jumps in perceived contrast in the high-contrast
end (right). See the differences in perceived contrast in the tests
highlighted in blue. This implies a saturating contrast response
curve (as in the previous examples), i.e., the blue curve.

Second, as the contrast of the background is increased (see
stimuli highlighted in orange), the perceived contrast of the test
is reduced. This implies that subsequent curves (black and lighter
shades of gray) are below the initial blue curve.

Finally, third, in order to perceive the tests with equivalent
contrasts in backgrounds of progressively greater energy, the
necessary contrast of the test increases; this means that the
sigmoidal curves shift to the right.

As in the previous examples, the qualitative behavior illustrated
by this series of digital images generated by our code should give
(in artificial models) corresponding saturating curves with smooth
variation from the blue (zero-contrast background) condition to

7 Seethe script StimuliMaskEnergy .m which makes extensive use of the
Toolbox Vistalab (Malo and Gutierrez, 2002).
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Series of non-linearly perceived contrast (or response of the mechanisms tuned to certain texture) vs. linearly spaced increments in
contrast-calibrated test of controlled spatial frequency in backgrounds of different (controlled) energy. This illustrates the non-linear effects pointed
out in Georgeson and Sullivan (1975), Legge and Foley (1980), Legge (1981), and Daly (1990).
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the red (high-contrast background) condition, and hence the lower
response curve.

3.2.4 Texture masking 2 (features): interaction
between orientations

Reduction of sensitivity (the so-called masking) also happens
when a certain test is presented on top of a background that shares
some feature with the test (Ross et al., 1991; Foley, 1994; Watson
and Solomon, 1997), i.e., properties 9 and 10 in Table 1. The next
example, Figure 8, refers to the specific case of interaction between
orientations of test and background. It can be reproduced and
modified in terms of frequency, orientation, contrast, and average
luminance with the code provided®.

Figure 8 shows 6 cpd horizontal Gabor patches with an average
luminance of 50 cd/m?* and RMSE contrast increasing linearly from
left to right in the range [0, 0.3]. These Gabor patches are shown on
top of band-pass noise of contrast 0.2, with the same frequency,
but different orientation. The numbers in the different rows show
the angular difference between tests and backgrounds. The figure
shows some compelling facts that lead to clear qualitative trends in
the response curves.

First, the test is better seen (has bigger visibility or perceived
contrast) when the background is orthogonal to the test (in the
first row). In that row, the different jumps in visibility in the low-
contrast and high-contrast ends (tests highlighted in cyan) indicate
a saturating response, as in the previous examples (response curve
in blue).

Second, the necessary contrast to detect the test smoothly
increases as the difference in orientation between test and
background decreases: see that the tests highlighted in blue, black,
shades of gray, and red approximately have the same visibility over

8 See the script StimuliMaskOrient.m, which makes extensive use of
the Toolbox Vistalab (Malo and Gutierrez, 2002).
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the different backgrounds with angular differences in the range
[90,0] deg. The trend is similar for negative angular differences.
This implies a smooth variation (decrease) of the response curves
in terms of the difference between test and background.

Third, the biggest masking is obtained when test and
background are aligned (the red curve is clearly the lowest response
curve). This and the previous fact imply that the general trend is
this smooth transition of the non-linear curves from the blue to the
red.

3.3 Proposed methodology

Our proposal is simple: use the code provided here® to generate
the stimuli (digital images well-calibrated in luminance, color,
and spatio-temporal frequency) that illustrate the 10 compelling
properties listed in Table 1 describing the adaptive information
bottleneck of low-level human vision. The resulting digital images
are organized in series that correspond to progressive stimulation of
a vision system in particular ways. The interesting point is that this
set of controlled stimulation conditions leads to intuitive responses
(as shown above), or even to standardized sensitivity curves or
surfaces that are also provided with the code see Section 1 of
Supplementary material.

Once stimuli are generated, they are used to feed any artificial
image-computable model. Then, depending on the model, the user
decides where to read from the network under consideration and
the read-out mechanism to get visibility values to generate artificial
series of response curves.

The resulting curves can be qualitatively assessed by checking
the correspondence of their shape with our own visual experience

9 The Decalogue Toolbox is available here: http://isp.uv.es/docs/

TuringTestVision.zip.
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FIGURE 8

in Foley (1994) and Watson and Solomon (1997).

Series of non-linearly perceived contrast (or response of the mechanisms tuned to certain texture) vs. linearly spaced increments in
contrast-calibrated tests of controlled spatial frequency in backgrounds of different orientations. This illustrates the non-linear effects pointed out
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as in the examples above. However, in order to simplify the (blind-
quantitative) use by the non-expert, we propose two different
correlation measures for the cases where experimental ground truth
is (or is not) available:

e Pearson Correlation: in the case of properties where clear
ground truth is available, we propose to quantify the alignment
using Pearson correlation between the ground truth and the
predictions of the models. Pearson correlation is insensitive to
a global (arbitrary) scale of the response, and this is generally
acceptable because a single global scale is not important.
In order to reduce the relevance of this arbitrary scale, we
propose to evaluate a single Pearson correlation measure for
groups of comparable curves (for instance, response curves
for different frequencies but the same contrast stimulation—
e.g., in Props. 6-8-, or curves with known scaling between
the achromatic and chromatic response-e.g., in spectral
sensitivities in Prop. 1, CSFs in Props. 3 and 4, or scale of
achromatic and chromatic curves in Props. 6 and 7). In those
cases, by evaluating the Pearson correlation for groups of
curves, it captures if they are scaled with the proper relative
size (which should be reproduced by the models). Using the
ground truth curves shown in Supplementary material (and
associated code), the Pearson correlation can be computed for
about 70% of the proposed tests (Props. 1, 3-7, the cases with
no adaptation in Prop. 2, and also the no-masking curves in
Props. 8-10).

e Rank correlation: In the cases of brightness and chromatic
adaptation (Prop. 2) and cases where there is spatial masking
with the same stimulus (Prop. 8) or with different stimuli

Frontiersin Artificial Intelligence

(Props. 9 and 10), direct visualization of the tests shows the
trend for the variation of the curves (mainly shifting and
attenuation of the curves when increasing the strength of the
adaptor—either luminance or saturation of the background
or illuminant or contrast of the masker). The specialized
literature describes these trends, but in too sparse (or not
comparable) situations that are not properly captured by the
(ready for ANNs) stimuli in the database. In this situation,
Pearson correlation is not applicable. However, the relative
order (or rank) between the curves for different strengths of
the adaptor is known. Reproduction of this known rank of
curves at several locations of the abscissas is possible using
rank correlation (e.g., Spearman or Kendall correlations)to
obtain a quantitative descriptor per Property. Although
necessary in cases where no experimental data is available, this
kind of descriptor of “ranking of curves” can also be used in
cases with ground truth because Pearson correlation may miss
(or not clearly capture) the rank between the curves, which
usually is a qualitative trend that should be reproduced by the
models.

Choosing an appropriate layer to read from and a read-
out mechanism can be a crucial step because, as it happens in
the human-visual system, certain behaviors are expected to be
happening at different points of the visual processing pipeline.
BrainScore (Schrimpf et al., 2018) proposes using an independent
test set to evaluate how each layer of an artificial model matches
to certain areas of the brain. Then, it's only a matter of reading
from the layer that has a better match with the behavior we want
to measure. As a different example, within this work we employ
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conditions.

The proposed method: feed the model with a series of images, compute responses (using the simplest possible read-out mechanism), and make
quantitative comparisons with standard sensitivity surfaces or qualitative comparisons checking the non-linearity using different adaptation

models that have been designed to accommodate certain parts
of the human visual system at certain layers, so choosing the
appropriate layer to read from is straightforward. We also provide a
set of control experiments (Supplementary material; Section 2) that
showcase how does the read-out mechanism affect the obtained
results so that the interested reader can make an informed choice.

In the case of properties 2, 8, 9 and 10 these curves have to
be compared with the kind of qualitative curves described above,
which given the clarity of the selected stimuli can be drawn by
simple visual observation of the stimuli as described above.

In the case of property 5 [existence of center-surround and
Gabor-like receptive fields tuned to achromatic, red-green and
yellow-blue patterns (Shapley and Hawken, 2011)], the more
straightforward method is checking their presence by reading the
response to deltas from single neurons or from the Jacobian of
the network at that layer (Martinez et al., 2018; Gomez-Villa et al.,
2020b; Li et al., 2022). Other indirect methods could be (1) using
reverse correlation feeding the network with controlled noise [also
generable using Vistalab (Malo and Gutierrez, 2002) following
the appropriate literature (Eckstein and Ahumada, 2002)], or
(2) using artificial psychophysics based on adaptation [e.g., the
Blakemore and Campbell experiment (Blakemore and Campbell,
1969)]. However, this very last method to measure proeprty 5 relies
on fulfillment of adaptation proeprties 6-10, which may not hold
in non-human networks.

In the above (non-standardized) cases the general trends of the
curves can be qualitatively assessed in detail: general shape of the
curves, the blue response and the red curve being the biggest and
the lowest, respectively, and the transition from one to the other.
Note that user of the provided code can change the parameters
of the stimuli and infer new curves by applying a similar visual
analysis. For the receptive fields they can be analyzed using shape
parameters in the spatial or the Fourier domain as classically done
in visual neuroscience (Ringach, 2002; Ringach and Shapley, 2004;
Martinez et al., 2017; Loxley, 2017) and the same for the chromatic
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tuning in standard color spaces (Tailby et al., 2008; Gutmann et al.,
2014; Gomez-Villa et al., 2020b).

Finally in the case of sensitivity curves or surfaces which are
standardized or available in the code (proeprties 1, 3, 4, 6 and 7)
the visibility values obtained from the models can be numerically
compared with the provided ground truth.

The above quantitative descriptors clearly display some
limitations. First, they obviously overlook relevant qualitative
properties of the results. For example: (a) Correlations do not
capture the change of slope happening in crispening and chromatic
adaptation in Prop. 2. This change of slopes is relevant to decide
between models (Laparra et al., 2012; Bertalmio et al., 2020). More
complicated descriptors of the qualitative shape of these specific
curves could be developed, but they are out of the scope of this
work. (b) Assessment of receptive fields in certain layers is done
by the eye in many influential works (Olshausen and Field, 1996;
Bell and Sejnowski, 1997; Hyvarinen et al., 2009; Krizhevsky et al.,
2012a) that report the emergence of Gabor-like receptive fields
and their similarity with biological receptive fields in V1 just by
inspection of the filters. Analysis of the spatio-frequency properties
and chromatic properties of the receptive fields, as in Gutmann
et al. (2014); Martinez et al. (2017); Loxley (2017); Gomez-Villa
et al. (2020b) comparing with (Ringach, 2002) and Tailby et al.
(2008), is also possible but more unusual.

Second, the derivation of a single score per model as the average
of scores over experiments [as the compromise solution taken
in BrainScore (Schrimpf et al., 2018)] is arguable. The selection
of properties to average over is always somewhat arbitrary, and
alternative selections lead to global scores with different variances
(and discriminative power). Supplementary material illustrates this
limitation by showing bootstrap examples in the set of quantitative
results shown below.

This qualitative/quantitative methodology is summarized in
Figure 9 and applied in the next experimental section for three
illustrative networks.
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4 Experiments: analysis of three
illustrative deep models

4.1 Networks and experimental setting

In our experiments, we check the behavior on the proposed
Decalogue of three recent networks of similar architecture:

1. A
network (Martinez

model,
2018),
cascade of four linear+non-linear stages that account for

parametric  vision the  BioMultiLayer

et al, which consists of a
(1) color opponency and adaptation, (2) contrast computation,
(3) contrast sensitivities and energy masking, and (4) wavelet
analysis and cross-masking between textures. The linear
parts of all the stages were not optimized, but they were
directly inspired by classical psychophysical or physiological
literature. The non-linear parts were implemented via divisive
normalization (Carandini and Heeger, 1994; Malo et al., 2006;
Laparra et al., 2010; Malo et al., 2024; Carandini and Heeger,
2012). The non-linearities of the 2nd and 3rd stages of the
model were tuned via the psychophysical method of maximum
differentiation in Malo and Simoncelli (2015). The non-linear
parts of the 1st and 4th stages were tuned to reproduce subjective
opinions on distortion and contrast masking facts (Martinez
etal., 2018, 2019). The statistical properties of the model and its
relations with recurrent models were studied in Gomez-Villa
etal. (2020a) and Malo et al. (2024), respectively.

. A non-parametric model to predict subjective image quality,
the PerceptNet (Hepburn et al., 2020), which starts with a
non-linear front-end at the retina followed by a cascade of
three linear+non-linear stages. The architecture was intended
to accommodate similar vision facts that motivated the
BioMultiLayer. The PerceptNet architecture is similar to
AlexNet (Krizhevsky et al, 2012b) but its non-linearities
were formulated using an end-to-end optimizable divisive
normalization (Laparra et al., 2017; Ballé et al., 2017). Both
the linear and the non-linear parts of PerceptNet were end-
to-end tuned to maximize the correlation with humans on
subjective image distortions (Hepburn et al., 2020). Non-
parametric layers of PerceptNet are not easy to interpret, as
pointed out recently (Vila-Tomas et al., 2025).

. An image segmentation model, the Bio U-Net (Herndndez-
Cdmara et al, 2023), with the same style encoder as the
non-parametric PerceptNet (a cascade of linear + divisive
normalization stages), but augmented with a decoder that
recovers the original dimension of the input signal and predicts
a class per pixel for semantic segmentation. The encoder
and the decoder were tuned to optimize segmentation in
different databases. The benefits of the biologically inspired non-
linearities of this model for segmentation have been further
studied thereafter (Hernandez-Camara et al., 2025b).

We assumed a visual field of 2 degrees with a sampling
frequency of 64 cycles/deg, i.e., we fed the models with 128 x
128 images. We measured the responses of the models to specific
tests through the Euclidean departure between the response to
test+background with regard to the response to the isolated
background.
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4.2 Results I: qualitative analysis

In this section, we qualitatively assess the results by checking
the shape and relative scales of the curves obtained by the models in
relation to the observations made in Section 3.2. In the next section,
we apply the quantification of the alignment proposed in Section
3.3.

4.2.1 Spectral sensitivities and color responses
(properties 1 and 2)

Figure 10-top shows the response of the models to quasi-
monochromatic stimuli’® to get the spectral sensitivity of the
neurons (property 1). In order to point out the relevance of the
layer from which responses are measured, in the case of the
BioMultiLayer network, we consider direct read-out of the response
(with sign) in the first linear layer (subplots A and B) and in
the last non-linear layer (subplots C and D). In this network, the
first linear layer has achromatic and opponent channels defined by
construction, so the V (Wyszecki and Stiles, 2000) (subplot A) and
the opponent curves of Jameson & Hurvich (Hurvich and Jameson,
1957) (subplot B) are trivially obtained. Interestingly, the spectral
sensitivities at the last non-linear layer are wide-band positive in
the first channel of the network and opponent in the other two
channels, but their shapes are substantially modified with regard
to the human-like behavior at the first layer. These differences and
the uneven relative scaling between the achromatic and chromatic
responses justify the qualitative scores given in each case. We can
conclude that spectral sensitivity in this model is human-like at the
front end but degrades throughout the network. In other words, as
suggested in Section 2.2, read-out location matters, and a certain
kind of information should be extracted from a specific place in the
model.

The PerceptNet has a color space change after the retinal non-
linearity. We measure the spectral sensitivity at that point because
the design assumed that achromatic and chromatic channels could
emerge there. Results show that the first channel displays an all-
positive but bimodal response (subplot E), and for the other two
channels, one of them certainly displays opponent-like responses,
but the other is basically insensitive (subplot F).

The very same location of the encoder of the segmentation Bio-
U-Net has very different sensitivities despite it having the same
architecture as the PerceptNet up to that layer. The sensitivity of
the (supposedly) achromatic channel is very noisy, and the other
two channels are clearly non-human (subplots G and H).

On the other hand, Figure 10-bottom checks property 2 by
showing the responses to (i) luminance and to deviations from
white in the (ii) red-green and (iii) yellow-blue directions (left,
center, and right, respectively). In the achromatic case, tests in
the range [0.5, 120] cd/m? are shown on top of backgrounds of
different luminance in the range [1, 160] cd/m?. The response
curves in different backgrounds are depicted in blue, black, and

10 Spectrally narrow Gaussians (5 nm width) of constant energy centered
on different wavelengths along the visible spectrum on top of a low energy
flat spectrum, as in Figure 4. In this way all the stimuli can be faithfully

represented in digital values.
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FIGURE 10

Spectral sensitivities of the considered models (top) and corresponding responses to luminance and linear deviations from white in the cardinal
red-green and yellow-blue directions (bottom). Subplots (A), (C), (E), and (G) display the achromatic spectral sensitivity for the models, while
subplots (B), (D), (F), and (H) display the chromatic sensitivity obtained through hue cancellation (Vila-Tomas et al.
spectral sensitivity, the CIE V; curve (Wyszecki and Stiles, 2000), or the standard spectral sensitivity of the opponent channels (Hurvich and Jameson,
1957) indicates which model is correct in Prop. 1. Subplots (1), (L), (O), and (R) show the brightness responses to luminance. Subplots (J), (K), (M), (N),
(P), (Q), (S), and (T) show the responses to deviations from white. In this case, the stimuli proposed here (Figures 5, 6) and the associated human
behavior described above indicate the correct trends in the responses of Prop. 2.

, 2023). Knowledge of the standard

progressively lighter shades of gray until red, as in Figure 5. In
the chromatic cases, responses are computed with tests on an
achromatic background (black curve) and on backgrounds of
progressively saturated color (reddish and greenish curves, and
bluish and yellowish curves as in Figure 6).

For the BioMultiLayer model, we have such responses for two
different layers: first (I, J, K) and fourth (L, M, and N). The
achromatic response of the first layer is certainly non-linear for
the darkest background, and the response gets attenuated when the
luminance of the background is increased (see the transition from
curves in blue to red in subplot I). However, these responses do
not reproduce the crispening (sigmoids shifting to high luminance),
and responses for high luminance backgrounds are too linear. As
a result, the achromatic behavior of this layer has been qualified
as non-human. The chromatic responses display sigmoidal shapes,
and they shift in the right directions under different backgrounds
(subplots J and K). However, the non-linearities for the chromatic
backgrounds are very smooth compared to the sharpness of the
non-linearity for the achromatic background. As a result, the
human similarity of chromatic behaviors has been qualified as
intermediate. In contrast, the achromatic response of the fourth
layer (subplot L) does reproduce the non-linear behavior and
crispening, so it has been qualified as more human-like than the
achromatic response of the first layer. Shifts of the chromatic non-
linearities are stronger depending on the background, but the non-
linearities in achromatic backgrounds (black curves in subplots M
and N) are still too sharp. Therefore, the score remains the same.
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The PerceptNet model displays non-linear behavior and
crispening in the responses to the achromatic series (subplot O).
However, note how the curves corresponding to light backgrounds
exceed the response on dark backgrounds, so human similarity has
been qualified as intermediate. The responses to red-green series in
PerceptNet shift in the right directions on different backgrounds,
but they are too linear (and hence wrong) in subplot P. In contrast,
the blue-yellow responses (subplot Q) display a rather human
behavior.

Finally, the Bio-U-Net shows a clearly non-human achromatic
response: note the noise and wrong order in the curves with
no trace of crispening (subplot R). In contrast, the responses to
the chromatic series display the expected sigmoidal shape with
the shift in the proper directions for the different chromatic
backgrounds (subplots S and T). Noisy and unstable responses are
what determined the intermediate score.

4.2.2 Achromatic and chromatic contrast
sensitivities and receptive fields (props. 3, 4, and 5)
The top row of Figure 11 shows the achromatic Contrast
Sensitivity Function (property 3, black curve) and the red-green
and yellow-blue Contrast Sensitivity Functions (property 4, red and
blue curves, respectively). These CSFs have been computed from
the responses to noise patterns of controlled spatial frequency and
the same low contrast (Crpmsg = 0.05) for every frequency. Patterns
were generated in the corresponding color channel of the Jameson

frontiersin.org


https://doi.org/10.3389/frai.2025.1665874
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Vila-Tomas et al.

10.3389/frai.2025.1665874

FIGURE 11

layers.

< BioMultiLayer PerceptNet Bio-UNet
2 1) ® ®®
© 10! — Achromatic
(4] > > —— Red-Green >
3 E E — Yellow-Blue ‘;‘
K =] 5 200
T 5 G %
a G g ]
o 0 0w 0
S 10f
a
1 10t 10° 10!
6 cpd
} 02| E == 12 cpd )
Lg- Frequency (é%ld) s v 0100 g
Frequency (cpd)
g ) ® BEE
: ) H . . |
S
. L]
WE ........ EEENEDEENEESSEEE EREERBRE
2 EEEER HESEEE - | BEE
SIS
1 EENSE EEEEEE
MRS SR | e e s
EERRHE EINERRE
WEEECDEOEEANE | saaes B Eiia
© EEEER EEEERER
J

Achromatic and chromatic CSFs of the considered models [top subplots (A—C)]. Subplots (D—F) show the receptive fields tuned to 3, 6, and 12 cpd
(different line styles) computed for the different models using the Blakemore & Campbell CSF adaptation method (Blakemore and Campbell, 1969).
Subplots (G-1) show the receptive fields obtained using delta stimuli (Martinez et al., 2018) at early layers of the models and subplots (J-L) at late

& Hurvich color space (Hurvich and Jameson, 1957) that isolates
luminance, red-green, and yellow-blue components. We consider
the responses at the last layer of the networks, and we plot the
Euclidean distance between the responses for each pattern and for
a flat image of the same average color.

The CSFs of the BioMultiLayer model (subplot A) strongly
resemble the human CSFs (Campbell and Robson, 1968; Mullen,
1985): the achromatic response is band-pass with peak sensitivity
around 4 cpd and high cut-off frequency (above 32 cpd), and the
chromatic responses are lower and basically low-pass with cut-off
frequencies of about 15 cpd.

The achromatic CSF of the PerceptNet is also band-pass
(black curve in subplot B), but the chromatic CSFs are far from
human because their shape is also band-pass and the responses
to modulations in the YB direction are much bigger than the
responses to equivalent achromatic modulations.

Finally, the Bio-U-Net (subplot C) displays a strongly non-
human behavior: see the non-plausible high-pass behavior of the
responses to achromatic gratings, and the bigger responses to
chromatic gratings in the mid-frequency range.

Supplementary material makes a systematic study of the impact
on the CSFs of different read-out locations along the three models
and six different read-out strategies, thus illustrating the points
made in Section 2.2.

The receptive fields of the models (property 5) have been
proved in two ways: (1) a psychophysical method based on the
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Blakemore & Campbell experiment (Blakemore and Campbell,
1969), which relies on the attenuation of the CSF under adaptation
for different frequencies, and (2) a physiological method based
on recording the response to deltas in the luminance, red-green,
and yellow-blue channels (Martinez et al., 2018). This is another
example of two different experimental settings (psychophysical and
physiological) to measure the alignment mentioned in Section 2.2.

In the BioMultiLayer model, the attenuation of the achromatic
CSF when the gratings are shown on top of backgrounds of
specific frequencies (subplot D) reveals the existence of narrow-
band sensors with bandwidth that increases with frequency, which
is consistent with human behavior (Blakemore and Campbell, 1969;
Simoncelli and Adelson, 1990). This comes from the fact that
the linear part of the 4th layer of this model is made of wavelet
kernels, and their response is non-linearly attenuated by the activity
of neighbor sensors tuned to the same feature through divisive
normalization.

On the other hand, when checking the shape of the receptive
fields using delta functions, one gets two biologically plausible
results: (a) in the 3rd layer of the BioMultiLayer network, receptive
fields are center-surround patterns in the achromatic, red-green,
and yellow-blue directions (subplot G), and (b) in the fourth layer,
one gets local frequency filters with different orientations and scales
(subplot J) as happens in biological vision at LGN (Cai et al., 1997;
Shapley and Hawken, 2011) and V1 (Hubel et al,, 1959; Watson,
1983).
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FIGURE 12
Contrast responses of the considered models in different masking conditions and for achromatic and chromatic textures of different frequencies.
The color code (indicated in the subplots corresponding to Perceptnet, but applicable to the equivalent curves of the other models) has been
designed so that human response curves would be in the blue-red order, as in Figures 7, 8. In this way, it is obvious which model reproduces human
behavior better.

For PerceptNet, results are quite different: first, the Blakemore

and Campbell experiment shows non-human wide-band
mechanisms (subplot E). This is not only due to the non-
human nature of the CSFs, it also means that any frequency leads
to attenuation of the responses to patterns of any frequency. This
departure from human behavior is also visible when getting the
receptive fields from the last layer of the network using deltas:
one gets oriented filters, but all with the same size and with low-
frequency blobs. Moreover, chromatic information is spread along
all the filters (subplot K), as opposed to what happens in the early
layers, where one gets achromatic, red-green, and yellow-blue
responses (subplot H).

Finally, in the Bio-U-Net model, the Blakemore and Campbell
experiment also leads to non-human ratios of the CSFs (subplot
F). The receptive fields obtained from deltas in the first layers
lead to center-surround blobs but not in definite chromatic
directions (subplot I). In the central layers of the encoder, one gets
larger receptive fields which have no clear spatial oscillations nor

preferred chromatic directions (subplot L).

4.2.3 Contrast saturation, dependence on
frequency (properties 6 and 7)

The top row of Figurel2 shows the visibility response
(Euclidean difference of response with respect to the response
of a uniform gray image) for achromatic patterns of different
frequencies and for red-green and yellow-blue patterns of different
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frequencies, all seen in isolation (properties 6 and 7). Line styles for
the different frequencies in the achromatic and chromatic cases are
different according to the different order expected for band-pass
and low-pass systems. In every case, a match with human behavior
would be illustrated by having the blue curve at the top and the red
curve at the bottom, with a smooth transition from black to light
gray in between.

The BioMultiLayer model leads to saturating responses with
larger intensities in the achromatic case (left) than in the chromatic
cases (subplots A and B-C), as in humans (Watson and Solomon,
1997; Martinez-Uriegas, 1997). The achromatic response to mid-
frequency (3 cpd, in blue) is clearly bigger than the response
to the other frequencies, which is smoothly reduced for higher
frequencies (from 6 to 24 cpd) and also attenuated for 1.5cpd.
On the other hand, the chromatic responses are basically ordered
according to frequency in a low-pass fashion. All these trends are in
good agreement with human behavior.

The achromatic responses of the PerceptNet, though band-pass,
exhibit quite a linear, non-saturating or even expanding behavior
(subplot D). Moreover, these achromatic responses are not bigger
than the response to chromatic patterns, particularly the yellow-
blue (subplot F), which is contrary to human perception.

The responses for the chromatic patterns in the Bio-U-Net
model exhibit human-like saturation, and they are in the right
frequency order (subplots H and I), but they are larger than the
responses for achromatic patterns (subplot G), which is contrary to
human perception.
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TABLE 2 Summary of qualitative results, which for these models, is enough to clearly identify the best alignment.

Facts / properties BioMultiLayer PerceptNet Bio-UNet
1 Spectral sensitivities (achromatic and opponent) v X~ XX
2 Brightness & Color response saturation v X-
3 Achromatic contrast sensitivity (bandwidth) v v X
4 Chromatic Contrast Sensitivity (Bandwidth) v X
5 Spatio-chromatic receptive fields vvv X~ XX~
6 Non-linear contrast response: saturation Vv X X X v
7 Non-linear contrast response: frequency order v X
8 Context effects: energy v X
9 Context effects: frequency X X
10 Context effects: orientation X X

4.2.4 Energy masking and feature masking
(properties 8—10)

Each panel of the second row in Figure 12 shows the responses
to a 3 cpd achromatic pattern (left) and a 12 cpd achromatic
pattern (right) seen on top of a mask (noise of the same frequency
and orientation) with progressively larger RMSE contrast (in the
range [0,0.3]) leading to different response curves in different colors
(from blue to red), thus checking the effect of the energy of the
background (prop. 8). The color code has been selected so that the
no-mask case is depicted in blue (less attenuated in humans), and
colors from black to light gray and red are taken for progressively
bigger contrasts of the mask.

The responses of the BioMultiLayer in Figure 12 (subplots
J, K) progressively attenuate as the energy of the background
is increased, in line with the reduction in visibility of the test
shown in each column of Figure 7. And this happens both for
low and high frequency, with bigger responses for the mid-
frequency. Therefore, the behavior is qualitatively human. The
PerceptNet displays a completely non-human behavior: for the
3 cpd tests, progressively larger masks induce enhancement of
the expansive (non-saturating) response, and the responses for
the high-frequency patterns are larger, linear, and do not show
significant variation with the mask. Finally, the Bio-U-Net model
does display human-like attenuation of the response to 3 cpd
patterns (subplot N). However, the responses to 12 cpd patterns
(subplot O) are not human-like because of their (large) size,
expansive shape, and increase with the energy of the mask.

The panels of the third row of Figure 12 show the responses
for an achromatic test of 3 cpd (left) and 12 cpd (right) seen
on top of backgrounds of different frequencies (and 0.2 contrast)
compared to the no-mask condition, i.e., it checks the frequency
cross-masking (property 9). The color code has been selected
so that the no-mask case is depicted in blue (less attenuated in
humans), and colors from black to light gray and red are taken
for progressively closer frequencies in mask and test, which lead
to increased attenuation of response in humans.

The response of the BioMultiLayer model is bigger in the
no-mask condition, displays substantial attenuation when the
background shares the same frequency as the test (red curves in
subplots P and Q), and responses are bigger for 3 cpd than for
12 cpd. In each case, the optimal frequency is not the one that
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leads to the biggest attenuation, but it is close to it. The PerceptNet
responses are not human because for the low frequency, subplot
R, responses are not saturating regardless of the mask, and the
responses for high frequency are larger, linear, and the presence
of backgrounds leads to larger responses (subplot S). The Bio-U-
Net does not show human-like trends because in the case that
displays a saturating response, the presence of a background leads
to responses larger than in the no-mask case (black curve in subplot
T). The behavior in subplot U is non-human for the same reasons
stated in subplots N and O.

Finally, the last row of Figure 12 shows the responses for
low- and high-frequency achromatic patterns (left and right,
respectively) seen on top of backgrounds of the same frequency but
different orientations; i.e., it checks the orientation cross-masking
(property 10). Again, the color code has been chosen so that in a
human, the blue curve would be at the top and the red would be at
the bottom, as in Figure 8.

For this last example, the BioMultiLayer model gets bigger
attenuation for the background of the same orientation, particularly
for high frequency (see the red curves), and the other orientations
lead to responses that are between the no-mask condition (in blue)
and the same-orientation background (in red) in subplots Vand W.
The other models give clearly non-human results because (on top of
the arguments used in previous cases) stimulation on backgrounds
of the same orientation (red curves) does not lead to the expected
attenuation, and bigger attenuation is obtained for backgrounds
that are almost orthogonal to the test, which is not what humans
experience in Figure 8.

4.2.5 Summary of qualitative results

The qualitative evaluation of the considered models over the
proposed tests is summarized in Table 2. From this table, there is
a clear ranking of the alignment between the models and humans.
It is not surprising that the parametric model (the BioMultiLayer)
has greater alignment in the linear parts (props. 1 and 5) since
sensitivities and center-surround and Gabor receptive fields were
parametrically built into that model.

More interestingly, the band-pass behavior of the sensors
emerged from modifications in the CSFs in our simulation of the
Blakemore and Campbell experiment. It is also interesting that the
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RMSE fit (pp) Curve Order (pg)
BioMultiLayer | PerceptNet | U-Net BioMultiLayer PerceptNet I U-Net
L, 0.76 L, -0.17
Prop. 1 L 073 0.16 0.62 e 0.65 0.31 0.36
Prop. 2 L 0.83 n 10
achrom. L, 0.64 663 012 Ls 1.0 0.68 -
RG YB
Prop. 2 L, 092 RG YB RG YB
0.49 -0.42 Ly 0.83 0.56
chrom. Ly 095 L. 085 06l 1.0 1.0 0.69 0.90
Prop. 3 & 4 0.83 0.49 -0.42 0.36 0.12 -0.19
Prop. 5 0.52 -0.29 -0.44 0.57 -0.47 -0.57
A RG YB A RG YB A RG YB
Prop. 6 & 7 0.86 054 1 0SL 1 052 081 080 | -024 044 043 | 029 029 039
Lowf Highf Low f High f Lowf  Highf
Erap B e 6% | O 10 10 090 -0.66 035 -0.35
Prop. 9 0.92 0.64 0.91 0.41 0.52 0.01 0.18 -0.03 -0.14
Prop. 10 0.92 0.64 0.91 0.16 0.24 -0.06 0.11 -0.01 0.10
FIGURE 13
Alignment with human behavior measured in two ways: alignment between ground truth and prediction (Pearson correlation, left panel) and
preservation of order between curves (rank Kendall correlation, right panel). Props. 8—10 share the same p, values here because they share the same
(known) no-masking curves. In props. 8—10, the interesting masking behavior is described by the order of the curves, quantified by px.

close reproduction of the band-pass and low-pass behavior and the
relative scaling of the CSFs obtained from responses to sinusoids
(an original check done here) was not built in. This indicates that
the (non-trivial) gain of the center-surround cells and the Gabor
cells was properly adjusted through the indirect psychophysical
experiments done to set their parameters. As a result, the relative
order of the (saturated) frequency responses (prop. 7) is also ok,
both for achromatic and chromatic textures. The saturation of
the responses to Gabor stimuli in isolation (prop. 6) is better
reproduced in the parametric model than in the Bio-UNet. The
difference between them is more evident when one digs deeper
using props. 8-10 because they need proper interaction between
texture sensors, and this was only easy to do in a parametric model
such as the BioMultiLayer.

However, note that the reproduction of the interaction between
features (both in color, property 2, and in texture, properties 9
and 10) is not properly reproduced, not even in the BioMultiLayer,
pointing out that more work is needed to adjust its parameters, as
discussed below.

According to the proposed test, the other two models (the non-
parametric PerceptNet and the Bio-U-Net) are less human, in that
order of alignment. This also makes sense because the PerceptNet
was tuned to reproduce low-level human opinion on distortion,
while the Bio-U-Net was just tuned to reproduce a specific mid-
level vision goal such as image segmentation. In the discussion, we
elaborate more on the combination of goals that may explain the
organization of the visual system.

In any case, we see that even with this qualitative application
of the proposed test (again, quantitative comparisons could be
done with properties 1, 3, 4, and 6, even for moving patterns),
a significant ranking is possible, and, as discussed below, the
qualitative behaviors, when they are properly understood, suggest
significant changes in the architectures and training of the models.
Quantitative automation of the optimization should be iteratively
done by alternating goals of different natures, as suggested
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in Martinez et al. (2019): optimize for conventional goals and then
fine-tune to reproduce the effects pointed out by the test proposed
here (or the other way around).

4.3 Results IlI: quantitative analysis

The table in Figure 13 shows the quantitative description of the
alignment with humans of each model for each property using the
method proposed in Section 3.3 that considers RMSE alignment up
to a scale factor using Pearson correlation and preservation of the
order between curves using a rank correlation (in this case, Kendall
correlation). All the scores are in a comparable [—1, 1] range, where
bigger value means higher alignment. The table shows separate
descriptors for read-outs done at different layers (L; or Ly), for the
order of the curves for properties measured at different chromatic
channels (achromatic, red-green, and yellow-blue), or the order of
the curves for different frequencies (Low f and High f). Maximum
correlations for each property are highlighted in green.

The plain average of the descriptors, as suggested in
BrainScore (Schrimpf et al., 2018), leads to the following model
ranking: BioMultiLayer: 0.68 £ 0.14, PerceptNet: 0.26 *+ 0.26.
Bio-UNet: 0.20 £ 0.34, and Two-sample Kolmogorov-Smirnov
tests (Monahan, 2011) show that the BioMultiLayer is significantly
more aligned with humans than the other two (with p = 8 - 1073
andp = 7 - 1073, respectively), while the other two models are
not significantly different (p = 0.26). This global conclusion is
consistent with the qualitative analysis shown above.

The trend of individual scores in the table of quantitative
descriptors agrees with the qualitative analysis shown in Table 2.
Nevertheless, as anticipated in Section 3.3, the numerical
descriptors may miss certain qualitative differences. For example,
the rank correlation for the chromatic case of Property 2 in
PerceptNet states that the alignment is good for both the RG and
the YB cases. However, inspection of plots P and Q in Figure 10,
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compared with the expected qualitative behavior in Figure 6, shows
that while the order in the RG curves of plot (Figure 10). P is
correct, the shape of the curves is clearly not sigmoidal (i.e., wrong).

On the other hand, plain aggregation of correlation results
over many (arbitrarily selected) phenomena, as done here following
BrainScore (Schrimpf et al., 2018), has an obvious impact on the
power of the descriptor. Bootstrap experiments on the results of the
quantitative table illustrate this fact in Supplementary material.

In summary, the goal of the proposed “visual” Turing Tests
is to allow one to “experience” the shape of the response curves
by looking at the test stimuli generated by the software; however,
the suggested quantification also allows a blind assessment of the
alignment between networks and humans. Nevertheless, like any
cost function, the value of the specific aggregated quantitative
descriptor has to be taken with caution, and it is essential to always
check that it properly captures the relevant qualitative (visual)
behavior.

5 Discussion: what can be learned
from the proposed methodology?

In this section, we discuss the benefits of the proposed
Decalogue for generic artificial models. Benefits go beyond the
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evaluation of the human nature of models: even if we don’t need
a certain model to be similar to humans, the behaviors described
by the human-like curves elicited by the stimuli in the Decalogue
imply human-like bottlenecks and adaptation properties that one
would like in efficient and robust artificial vision systems. Similarly,
we also discuss the benefits of the architectures from classical vision
science models that reproduce such behaviors.

5.1 (Non-human) curves suggest changes
in the models

Failures to achieve the expected result in the proposed
Test may suggest changes in the parameters of the models
or even in their architecture. This is easy to see in the
models considered here because they are relatively simple and
interpretable, but this may also be the case in more recent (more
complex) models.

First, consider, for instance, the non-human (not-right)
behavior of the BioMultiLayer in the perception of color in the
central panel of Figure 14. In that case, it displays too non-linear
(too-sharp) responses to YB and RG stimuli in the no-adaptation
case (curves in gray). As this model is made of interpretable divisive
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(Top) Human-like saturation behavior in contrast response (Property 6) happening in generic shallow autoencoders (Li et al., 2022).
(Bottom) Human-like behavior obtained in image segmentation U-Nets when they are equipped with bio-inspired divisive normalization to improve

their performance (Hernandez-Camara et al., 2025b).
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normalization layers'!, the strength of the non-linearity can be
modulated by the relative weight of the pool in the denominator.
Following that intuition, we made two modifications to the original
configuration of the first layer of the BioMultiLayer: we decreased
and increased the parameter b; that controls the relative weight
of the pool in the denominator. By doing so, and re-computing
the responses to the color stimuli in the test) we get the behaviors
shown in the left and right panels of Figure 14: the interventions
either alleviate the problem (right panel) or make it worse (left
panel). This can be seen both in the qualitative shape of the
curves and in the quantitative scores. The same rationale can
be applied to other failures (e.g., too sharp/smooth responses in
Figure 12, subplot P for textures) as suggested in Martinez et al.
(2019).

When measuring the response of conventional networks using
the spatially and chromatically calibrated stimuli proposed here,
one can get human-like behaviors such as the ones shown in
Section 3. For instance, shallow autoencoders optimized for image
deblurring and denoising display human-like saturation when
responding to achromatic and chromatic gratings of controlled
spatial frequency: see Figure 15 (top), reproduced from Li et al.
(2022). In this case, the slope of the response of these autoencoders

11 Thedivisive normalization transform (Carandini and Heeger, 1994, 2012)
is a function y = f(x) with this generic sigmoidal form: y; = K; - % in
which each output y; is driven by the corresponding input x;, normalized by
a pool of the activity of the neighbor responses. It is a sort of local batch

normalization (Krizhevsky et al., 2012a).
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(their sensitivity) is bigger for achromatic gratings than for red-
green and yellow-blue gratings (Properties 3 and 4), and it reduces
with the contrast of the gratings, just as in humans (Property 6).

As shown in the example above, this adaptive behavior and
its benefits can be enforced in conventional networks by changing
their architecture, for instance, by including divisive normalization
or alternative bio-inspired non-linear layers. Examples include
benefits in autoencoding and compression (Malo et al., 2006; Ballé
et al., 2017), denoising and enhancement (Gutiérrez et al., 20065
Laparraetal,, 2017), segmentation (Herndndez-Cémara et al., 2023;
Herndandez-Camara et al., 2025b), classification (Coen-Cagli and
Schwartz, 2013; Bertalmio et al., 2020; Miller et al., 2022), or
robustness to adversarial attacks with few layers given the strong
non-linearity due to this kind of biological computation (Bertalmio
et al., 2020). Moreover, the inclusion of these non-linearities, if
done parametrically, (e.g., by using parametric expressions) reduces
the training time and increases generalization because of the drastic
reduction in the number of parameters of the network (Vila-Tomds
etal., 2025).

Of course, for more complex (non-interpretable) models, the
interventions may not be that simple. However, enforcing the
behaviors shown here, for instance by imposing certain band-pass
behaviors (similar to properties 3 and 4) through regularization,
will change the models and may improve their results. For example,
complex vision-language models with human-like CSFs also have
human-like responses to some adversarial attacks (Hernandez-
Cdmara et al., 2025a). Testing vision-language models with the
stimuli in the proposed test is particularly interesting because one
can interact with the model verbally (as done in humans) and ask if
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(Left) Adaptation in the CSFs in autoencoders obtained from training in the proper (colormetrically calibrated) environments for color adaptation (Li
et al., 2022). (Right) Improved contrast perception by using bio-inspired divisive normalization (with adaptive contrast responses such as the ones
described in our proposal) in the model (Hernandez-Camara et al., 2023). Images reproduced with permission from: M. Cordts, M. Omran, S. Ramos,
T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele, “The Cityscapes Dataset for Semantic Urban Scene Understanding,” in Proc.
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

there are visible patterns in the images. In that way, sensitivities can
be derived via psychometric functions (Hernandez-Cdmara et al.,
2025a) as opposed to using (arguable) distortion metrics in the
internal representations of the model [as done, for instance, in Li
et al. (2022) and Akbarinia et al. (2023) and illustrated in Section 2
of Supplementary material].

5.2 Changes in the optimization goal or
data statistics to achieve human-like
adaptation

Misalignment with human behavior in proposed tests may also
suggest changes in the optimization goal and in the statistics of the
training data.

For instance, it is known that information maximization
arguments lead to the emergence of Gabor-like receptive
fields
directions (Hyvarinen et al., 2009; Gutmann et al., 2014). However,

tuned to achromatic and opponent-chromatic
that sensible goal can be complemented with denoising-deblurring
tasks so that center-surround cells and proper contrast sensitivity
do emerge (Atick et al., 1992; Karklin and Simoncelli, 2011; Lindsey
etal, 2019; Liet al.,, 2022). Moreover, if the contrast non-linearities
do not emerge, they may be enforced by the segmentation goal in
the encoder, as in Herndndez-Camara et al. (2025b; see Figure 15,
bottom), which shows curves where excitation is moderated by
the presence of active neighbors. Regarding the poor emergence of
plausible receptive fields in the considered non-parametric models
(PerceptNet and BioUNet), this error makes sense in the context
of the recently proposed feature-spreading problem (Vila-Tomds
et al,, 2025): if the goal is not demanding enough (as is usual in

conventional goals), the features spread along all layers of the net
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in a way that the weak goal(s) is (are) fulfilled, but the layers remain
biologically non-plausible.

Regarding suggestions on the training data, the behavior of
the achromatic and chromatic CSFs proposed here was checked
in Li et al. (2022) in scenes with well-controlled illumination.
The behavior found in the autoencoder CSFs in those cases
resembles Von Kries adaptation, as anticipated in Gutmann et al.
(2014). Figure 16 (left) shows that under low-temperature (reddish)
illumination, the red-tuned channel is relatively attenuated with
regard to the blue-tuned channel, and the other way around under
high-temperature (bluish) illumination, as would happen using a
Von Kries computation (Fairchild, 2013) or imposing the shifts in
the response curves (Krauskopf and Gegenfurtner, 1992) shown in
the Decalogue.

Finally, the emergence of the contrast-dependent non-
linearities of property 8 (or the ability for contrast enhancement)
may be enforced by including low-contrast images in the training
of regular networks. For example, Figure 16 (right) shows that a
network using Div. Norm. leads to contrast enhancement despite
it not being trained on high-fog images, as anticipated by the
contrast-dependent non-linearities shown in Figure 15 (bottom).
However, in regular UNets (that do not include Div. Norm.), this
behavior can be obtained (to a lesser degree) by including high-fog
images in the training (Hernandez-Camara et al., 2023). In fact, the
behavior in the BioUNet that includes Div. Norm. is not completely
human (plot 12.N is ok but plots 12.0 or 12.U are not). This may be
in part due to a lack of constraints in the Div. Norm. [free kernels
in Herndndez-Cadmara et al. (2023) and Hernandez-Cémara et al.
(2025b) as opposed to more sensible parametric kernels in Martinez
et al. (2018, 2019)], but also because its behavior was obtained by
training only with good-quality (clear day) images.

Of course, the limitations imposed by low-dynamic range
and 8-bit quantized images imply that the artificial systems
face scenes with limited variability, and hence, they may not
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being trained with few samples (Hepburn et al.,, 2022).

(Top) Image PDF factorization from the contrast non-linearites (div. norm.) illustrated in Figures 7, 8, as shown in Malo and Laparra (2010). (Bottom)
autoencoders trained with distortion metrics based on the contrast non-linearities described in our proposal capture natural image statistics despite

develop certain non-linearities that are more pronounced (or
conspicuous) in humans. In fact, including biologically inspired
non-linear layers to cope with such variability (as suggested
in Section 5.1) is an easy way to improve the efficiency
of gamut mapping techniques (Laparra et al, 2017) and the
robustness of networks devoted to vision (Hernindez-Cémara
et al., 2023; Herndndez-Cdmara et al.,, 2025b; Bertalmio et al.,
2020).

5.3 Human-like curves imply better priors
for natural image statistics

Two examples may illustrate how the non-linear responses
to Gabor stimuli shown in textured contexts as presented in the
proposed Decalogue capture the statistics of natural images: the
described non-linear behaviors are a robust prior that may benefit
anynetwork intended to work in vision.

First, in Figure 17 (top) we show that the energy of neighbor
Gabor-like
probabilities of Gabor coefficients
reported in Schwartz and Simoncelli (2001)], but the non-
linear responses in textured backgrounds make the resulting

correlated [bow-tie conditional

in natural

coeflicients is

images, as
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coefficients independent (Malo and Laparra, 2010). In this regard,
interactions between coefficients (e.g., as in Div. Norm.) are
strictly required to remove redundancy because it is known that
mutual information (redundancy) is invariant under point-wise
transforms (Laparra et al., 2025).

Second, non-Euclidean metrics based on the non-linear
responses to the stimuli presented here [e.g., metrics like
those reported in Laparra et al. (2010, 2017); Martinez et al.
(2019); Malo et al. (2024)] represent a robust prior of the
PDF of natural images as illustrated by the fact shown in
Figure 17 (bottom): in autoencoders with access to very few
samples, the use of this kind of perceptual metric in the
loss function, makes the reconstruction of images much more
robust than those using (naive) Euclidean metrics because
the perceptual metric is already capturing the statistics of
natural images, although samples are missing (Hepburn et al,
2022).

6 Final remarks

First, we noted that there are many open problems when we
evaluate the human nature of artificial networks: there is a non-
trivial relationship between the training environment, the task,
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and the architecture (Poggio, 2021; Malo and Herndndez-Cédmara,
2024; Herndndez-Cdmara et al., 2025¢). That complexity implies
it is difficult to choose the layer(s) to measure from and the
read-out mechanism to check the human nature of the model
responses. These problems point out the need for new tests of
human alignment that are independent of the training data and
goal.

This motivates our proposal: a set of stimuli, a Decalogue,
based on classical low-level vision science. The stimuli and
associated human responses describe the adaptive information
bottleneck in the retina-V1 pathway. On the one hand, some
of the sensitivity surfaces are standardized (Wyszecki and Stiles,
2000; Watson and Ramirez, 2000; Watson and Malo, 2002;
Mullen, 1985; Daly, 1990; Malo et al., 1997; Kelly, 1979),
or data is readily available (Blakemore and Campbell, 1969;
Diez-Ajenjo et al, 2011) and allow quantitative comparison
[namely properties 1, 3, 4, 5, 6], as done in Vila-Tomads et al.
(2023), Li et al. (2022), Akbarinia et al. (2023), Hammou et al.
(2025), and Cai et al. (2025). On the other hand, we showed
that the responses involving tests in different illuminations or
textured backgrounds (namely properties 2, 7-10) have clear
qualitative trends that allow a quantitative assessment of the
rank of the curves. As a consequence, we proposed a numerical
description of the alignment combining Pearson and Kendall
correlations.

This qualitative/quantitative analysis of the responses was
applied to evaluate and rank three illustrative models: (1) a
parametric one based on physiology, classical psychophysics, and
maximum differentiation measurements (Martinez et al., 2018,
2019; Gomez-Villa et al., 2020a; Malo et al., 2024), (2) a non-
parametric model, the PerceptNet (Hepburn et al, 2020), that
includes trainable divisive normalization to reproduce human
opinion on subjective image quality, and (3) a U-net with
the same encoder as the PerceptNet but trained for image
segmentation (Herndndez-Cdmara et al., 2023; Herndndez-Camara
etal., 2025b). Experiments show that the proposed tests illustrate in
easy-to-see ways the impact of the read-out location and strategy.
Moreover, the quantitative and qualitative results are consistent and
successfully rank the models according to their different origins: the
two models with less alignment have been trained for tasks that are
not enough to fully explain human behavior or are too flexible so
that they easily develop non-human behavior.

Finally, in the discussion, we have seen that the proposed
test can be useful to modify the architecture of the networks,
both in their linear and non-linear parts. The test is useful
to question the tasks or restrictions that are used in training
(e.g., infoMax, noise, compression bottlenecks, classification, and
segmentation). It is also useful to question the data used in
the training, either in their generality or balance. Moreover, we
discussed how the use of human behaviors represented by the data
in the proposed test gives rise to priors related to the statistics of
natural images.

In summary, we argue that the analysis of any kind
of network, not only those that are specifically dedicated
to modeling human vision, but any devoted to vision, can
benefit, in great measure, from seeing how they respond to the
proposed test.
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