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Objectives: Uterine cancer originates from the cells lining the uterus and 
can develop through abnormal cell growth, potentially leading to damage in 
surrounding tissues and the formation of precancerous cells. Early detection 
significantly improves prognosis. Despite advancements in deep learning-based 
diagnostic methods, challenges remain, including the dependence on expert 
input and the need for more accurate classification models. This study aims to 
address these limitations by proposing a novel and efficient methodology for 
diagnosing uterine cancer using an integrated deep learning pipeline optimized 
through a nature-inspired algorithm.
Methods: This study introduces the Whale Optimization Algorithm-based 
Ensemble Network (WOAENet), a deep learning pipeline that classifies uterine 
MRI into three classes: malignant, benign, and normal. The Whale Optimization 
Algorithm (WOA) is used to fine-tune the hyperparameters of three deep learning 
models: MobileNetV2, DenseNet121, and a lightweight vision model (LVM). Each 
model is trained with its optimized settings, and its outputs are combined using 
a Soft Voting Ensemble method that calculates the average of the predicted 
probabilities to arrive at the final classification.
Results: The WOAENet framework was evaluated using a uterine cancer MRI 
dataset obtained from King Abdullah University Hospital. Our proposed model 
outperformed standard pre-trained models across several performance metrics. 
It achieved an accuracy of 88.57%, a specificity of 94.29%, and an F1 score of 
88.54%, indicating superior performance in diagnosing uterine cancer.
Conclusion: WOAENet demonstrates a high level of accuracy and reliability in 
classifying uterine MRI images, marking a significant advancement by utilizing 
a novel dataset. The findings support the potential of AI-driven approaches in 
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enhancing the diagnosis and treatment of gynecological conditions, paving the 
way for more accessible and accurate clinical tools.
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1 Introduction

One of the most common tumors of the female reproductive 
system is uterine cancer. It is brought on by the uterine lining’s 
abnormal cell proliferation, which damages the surrounding tissue as 
the cells divide (Esmaeilzadeh and Nasirzadeh, 2023). While uterine 
cancer is less common in Africa and Asia, it is more common in the 
Americas and Europe. Experts attribute this to environmental risk 
factors and obesity. Women between the ages of 40 and 60 are more 
likely to have the illness (Felix and Brinton, 2018). It is the fifteenth 
most common type of cancer in the general population (Hamoud 
et al., 2023). The most studied symptom of uterine cancer is abnormal 
uterine bleeding in premenopausal, postmenopausal, and 
perimenopausal women (Boeckstaens et  al., 2020). Obesity is a 
significant risk factor for uterine cancer, with women who are 
overweight or obese being two to four times more likely to develop 
endometrial cancer compared to women with a lower body mass 
index (Somasegar et al., 2023).

The advancement of uterine cancer may make diagnosis and 
treatment more difficult, which could result in a poor prognosis. 
Tumor staging is therefore essential. There are three stages of this 
disease: low, intermediate, and high risk. Like other cancers, uterine 
cancer must be detected early (Dong et al., 2020). Based on their 
morphological and functional characteristics, analysis that depends 
on diagnostic accuracy can help classify tissues as either malignant or 
non-malignant (Keall et  al., 2022). In modern clinical practice, 
magnetic resonance imaging (MRI) is frequently used for several 
purposes, such as the clinical staging of malignant tumors and the 
differentiation of benign from malignant gynecological problems (Lu 
and Broaddus, 2020). The primary method for determining the 
anatomical origin of uterine cancer is magnetic resonance imaging. 
MRI is necessary to differentiate between endometrial and cervical 
sources of uterine tumors when clinical and histological tests are not 
feasible (Gui et al., 2022). Ultrasonography is increasingly used to 
evaluate tissue elasticity to diagnose and treat clinical uterine cancers 
and other issues (Wang et al., 2022).

In recent years, artificial intelligence (AI) has been increasingly 
applied in medicine, particularly for diagnosis (Akazawa and 
Hashimoto, 2021). Deep learning and image processing techniques 
are utilized to improve the early detection of uterine cancer and 
determine if it is benign, malignant, or subclassified. Eventually, this 
will lead to stronger treatments that save lives (Maheswari et al., 2024). 
Convolutional neural network (CNN)-based deep learning 
approaches, also known as deep CNNs (DCNN), have recently 
produced impressive results in picture pattern recognition 
(Lundervold and Lundervold, 2019). Deep learning has been applied 
to a variety of computer vision applications, including segmentation 
(Soffer et al., 2019), classification (Fujioka et al., 2020), and lesion 
detection (Shin et al., 2016).

The use of MRI-based AI in gynecology for uterine cancer 
detection has not been adequately documented. Furthermore, some 

studies use a limited approach to tumor diagnosis. Therefore, this 
study presents an effective method that combines deep learning 
models and uses the WOA to optimize them. By automatically 
selecting the optimal set of hyperparameters, including learning rate, 
batch size, number of units in dense layers, and dropout rate, this 
method improves the performance of deep learning models. The main 
contributions of this paper are summarized as follows: This paper 
introduces a new integrated deep learning pipeline called WOAENet, 
which leverages the WOA for uterine cancer diagnosis.

	•	 The outputs of the optimized models are combined using a Soft 
Voting Ensemble strategy, which increases classification 
robustness and accuracy by averaging the predicted probabilities.

	•	 WOAENet was trained and evaluated on a new uterine MRI 
dataset from King Abdullah University Hospital, achieving 
superior performance (88.57% accuracy, 94.29% specificity, and 
88.54% F1 score) compared to previously trained models.

	•	 This study pioneers the use of deep learning to classify uterine 
tumors using a new dataset, highlighting the potential of artificial 
intelligence to improve the diagnosis and treatment of 
gynecological diseases.

The techniques employed, a thorough explanation of the dataset, 
the suggested research approach, and training regimens are all covered 
in Section 2. The data are analyzed, and the effectiveness of the 
suggested model in uterine cancer diagnostic tests is assessed in 
Section 3. The most significant studies in the diagnosis of uterine 
cancer are covered in Section 4, and Section 5 ends with crucial 
conclusions and recommendations for further study.

2 Materials and methods

The study follows a complete deep learning pipeline-based 
framework, WOAENet (Whale Optimization Algorithm-based 
Ensemble Network), optimized by the WOA algorithm for uterus 
image classification. As shown in Figure 1, three candidate models 
were built: MobileNetV2, DenseNet121, and a custom lightweight 
vision model (LVM). Each model contained tunable hyperparameters, 
such as learning rate, dropout rate, dense units, weight decay, 
activation function, and optimizer type. Each model contained 
tunable hyperparameters such as learning rate, dropout rate, dense 
units, weight decay, activation function, and optimizer type. All these 
components were controlled and fine-tuned via hyperparameters 
optimized using the Whale Optimization Algorithm (WOA), which 
was employed to minimize the validation loss by conducting an 
iterative population-based search over an 11-dimensional normalized 
hyperparameter space. The search was stopped at a small number of 
iterations and whales to maintain a balance between efficiency and 
performance. All the models were trained on a uterus MRI dataset. 
For performance evaluation, during WOA optimization, the candidate 
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models were trained for only a few epochs, followed by further 
training of all candidates based on the very best hyperparameters 
found. After completing training, WOAENet applied a soft voting 
ensemble scheme to average class probabilities predicted by all 
individual models to improve robustness and classification accuracy.

2.1 Data acquisition

This study was approved by the Institutional Review Board (IRB) 
at King Abdullah University Hospital, Jordan University of Science 
and Technology (JUST). Radiologists retrospectively diagnosed 
patients using MRI data collected over 4 years, from early 2020 to 
early November 2024. Image extraction and dataset assembly were 
finalized during the data collection window between December 2024 
and March 2025, during which anonymized and pre-evaluated images 
were organized into a structured dataset. The dataset comprises 1,814 
MRI images collected from 450 female patients, aged between 18 and 
85 years. The cases were classified into three diagnostic categories: 
normal, benign, and malignant, with each case represented by three 
imaging planes—sagittal, coronal, and axial. All images were acquired 
using the Ingenia Ambition 1.5 T Sand MRI scanner and exported in 
JPG format at a standard resolution of 720 × 720 pixels. To ensure the 
accuracy of the classification, KAUH obstetrics and gynecology 
physicians independently reviewed the imaging data. Table 1 shows 
the distribution of the KAUH-UCM dataset, with a representative 
sample from each group shown in Figure 2.

2.2 Preprocessing

In medical image analysis, and specifically in uterine cancer 
diagnosis via MRI, pre-processing holds paramount importance in 
establishing a strong foundation that will directly influence the 
accuracy and robustness of the classification models. This phase 
involves working on the input image resolution, encoding class labels, 
and stratified data splits to preserve class balance. To achieve class 
balance (699 images per class), we applied targeted data augmentation 
techniques—including shear, zoom, and horizontal flip—only to the 

training set. This was done to synthetically increase samples in 
underrepresented classes (normal and malignant) without duplicating 
existing images, avoiding potential overfitting, with 699 for each class: 
normal, benign, and malignant. To prevent data leakage and ensure 
generalizability, the data splitting was performed at the patient level. 
MRI images from different scanners and clinical sites are variable in 
size, resolution, and intensity profile (Moradmand et al., 2020). To 
standardize the inputs of a CNN, all images are resized to 224 × 224 
fixed pixels compatible with popular pre-trained architectures such as 
MobileNetV2 and DenseNet121. The resizing operation is expressed 
in the following, as shown in Equation 1:

	 ( )∀ ∈ → ×, Resize ,224 224x x x 	 (1)

Beyond resizing, pixel intensity values are normalized to the range 
0,1    by scaling all pixel values with a factor of 

1
255 , this normalization 

ensures numerical stability during training and helps the optimization 
algorithms converge more efficiently (Li et al., 2021), as shown in 
Equation 2:

	
= raw

normalized 255
xx

	
(2)

Overfitting reduction and increased model robustness through 
major data augmentation are situated within real-time training-
oriented interventions considered under Keras’ Image Data 
Generator (Um et  al., 2019). The arguments applied to the 
augmentations include a Shearing Transformation with shear 

FIGURE 1

Overview of the WOAENet framework for uterine cancer MRI image classification using optimized ensemble deep learning.

TABLE 1  The quantity and distribution of images in each KAUH-UCM 
category.

Case Quantity of images

Normal 497

Benign 699

Malignant 618

Total 1,814
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intensity limited to 0.2 to mimic minor affine distortions, slight 
irregularities or imperfections in shape, Random Zooming while 
zooming on random areas of the image to help the model identify 
localized tumor features at varying scales, Horizontal Flipping: 
allowing random horizontal flips, whereby the model learns spatially 
invariant features, i.e., recognizing patterns that are symmetric to 
one another. Essentially, these augmentations generate great diversity 
and variability for the training data and enhance the generalization 
of the models to unseen cases. With the three categories for each 
MRI scan class being clinically relevant, normal, benign tumor, or 
malignant tumor, the categorical labels are transformed into integer 
indices for the model, as shown in Equation 3:

	

( )
 =
= =
 =

0, if Normal
Label _ Index 1, if Benign

2, if Malignant

y
y y

y 	

(3)

Such encoding permits the network to consider labels as 
numerical tensors during training and evaluation. To avoid systematic 

biases and guarantee balance of representations across classes, the 
entire dataset is divided into train, validation, and test subsets while 
keeping the same class distributions (stratified splitting). The training 
set, train , is formed from 80% of the full data. The validation set, val  
comprises 10%. Test set, test  comprises 10%. If kN  is the number of 
samples in class k, the split obeys the, as shown in Equation 4, 5:

	 ( ){ } =
=

1
, N

i i i
x y 	 (4)

	
= = =train testval0.8 , 0.1 , 0.1k k k

k k kN N N  
	

(5)

Each subset is therefore a true representation of the entire dataset, 
ensuring no bias is created for the majority classes and thus trustworthy 
evaluation metrics. Preprocessing for uterine tumor MRI images 
consists of uniform resizing, pixel normalization, advanced data 
augmentation, error-free label encoding, and balanced data splitting. 
Together, these steps enrich model stability, improve generalization, 
and build a strong footing toward downstream classification tasks.

Normal

Benign

Malignant
FIGURE 2

An example from the KAUH-UCM image dataset.
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2.3 Whale optimization algorithm (WOA) 
for hyperparameter tuning

The Whale Optimization Algorithm (WOA) is used as a nature-
inspired metaheuristic optimization tool within this study for the 
automated hyperparameter tuning of deep networks classifying 
uterine tumors from MRI images (Mirjalili and Lewis, 2016). Accurate 
classification depends not only on very high-capacity models, but also, 
more importantly, on the hyperparameter choices such as learning 
rates, batch sizes, regularization strengths, dropout rates, and 
architectural parameters such as the number of convolutional filters 
or dense units (Brodzicki et al., 2021). These hyperparameters greatly 
influence the model’s generalization ability, especially when competing 
with complicated, high-dimensional medical imaging data, such as 
MRI scans.

Traditional tools such as grid-search methods or manual 
examinations have become almost impossible in this modern context, 
simply due to prohibitive computational costs plaguing them 
(Brodzicki et al., 2021). WOA, thus, solves the problem by conjecturing 
therein an intelligent exploration of the high-dimensional parameter 
space, with the behavior of humpback whales searching for food in the 
natural world being the inspiration.

2.3.1 Motivation for metaheuristic-based 
optimization

In MRI tumor classification, a series of challenges are faced: high 
variability in anatomical structures, a limited dataset, and a need to 
generalize models strongly. In the application concerned, the 
hyperparameter shows a non-linear correlation with performance, 
interdependence, which renders brute force methods practically 
helpless (Nadimi-Shahraki et  al., 2021). Thus, metaheuristic 
algorithms like the WOA are fitted with respect to ensure the escape 
from local minima and to perform efficient global search without the 
need to keep track of gradient information or convex assumptions.

2.3.2 Mathematical modeling of WOA
The Whale Optimization Algorithm (WOA) simulates the 

bubble-net hunting strategy of humpback whales and involves three 
primary mechanisms: to encircle the prey (Rana et  al., 2020), to 
bubble-net attack (exploit), and to search for prey (explore). Here, the 
solution space is defined by dR , where d is the number of 
hyperparameters needing optimization. Each whale in the population 
stands for a possible solution vector ∈

 dX R .
Encircling Prey (Exploitation), the whales regard the current best 

solution as the prey and update their positions accordingly (Nadimi-
Shahraki et  al., 2023). Where ∗X  is the position of the best solution 
obtained so far. ( )



X t  is the current location of the whale. = −




12 ·A a r a , 
=




22·C r  are coefficient vectors, a is a linearly decreased factor from 2 to 0 
throughout iterations, and ( )∼

 

1 2, 0,1r r U  are random vectors, as shown 
in Equations 6, 7. The mechanism traverses toward intensification (local 
search) as the whales try to move toward the best solution.

	 ( )∗= −
  

·D C X X t∣ ∣	 (6)

	 ( ) ∗+ = −
  

1 ·X t X A D	 (7)

Bubble-Net Attacking Strategy (Exploitation) this simulates the 
spiral-shaped bubble-net behavior. Where b is a constant defining the 
logarithmic spiral shape (commonly set to 1), ∼ −  1,1l U  is a random 
number. The algorithm stochastically chooses between spiral update 
and encircling with probability [ ]0,1p∈ , as shown in Equation 8. This 
probabilistic behavior enhances the search diversity and mimics the 
natural behavior of whales, varying between exploration 
and exploitation.

	 ( ) ( )π ∗+ = +
  

1 · ·cos 2blX t D e l X 	 (8)

Searching for Prey (Exploration) if ≥


1A∣∣ , the whale randomly 
chooses another whale and updates its position. Here, 



randX is a 
randomly selected whale (Abualigah et al., 2024). This mechanism 
ensures the exploration of the global search space to avoid premature 
convergence, as shown in Equations 9, 10:

	
( )= −

  

· randD C X X t
	 (9)

	 ( )+ = −
  

1 ·randX t X A D 	 (10)

2.3.3 Fitness function for hyperparameter 
optimization

The fitness of each whale (candidate hyperparameter set) is 
evaluated using a partial training strategy (Pham et al., 2020), where 
a deep learning model (MobileNetV2, DenseNet121, or LVM) is 
trained for a limited number of epochs 10 epochs, and the validation 
loss is recorded as the objective function (Mohammed et al., 2019). 
Where ∈

 11X R  is the hyperparameter vector, valL  is the validation loss, 
θ  are the model parameters, as shown in Equation 11. This formulation 
allows WOA to identify hyperparameter configurations that minimize 
validation loss and hence maximize generalization on unseen 
MRI scans.

	 ( ) ( )θ=
 

valFitness ;X L X 	 (11)

2.3.4 Parameter encoding and normalization
Each dimension in the whale’s position vector 



X  corresponds to a 
hyperparameter. To ensure scalability and uniformity in the search, all 
hyperparameters are normalized to   0,1  and decoded during 
evaluation. For example Nadimi-Shahraki et  al. (2023), such 
normalization allows WOA to operate uniformly across parameters 
with different physical scales and types, as shown in Equations 12–14:

	 Learning rate: − += 05 310 xlr 	 (12)

	 Dropout: = + 20.1 0.4dr x 	 (13)

	 Dense units: = + 364 448du x 	 (14)

To appropriately tune the deep learning architectures for uterine 
tumor classification from MRI images, the WOA was used to perform a 
search on a multidimensional hyperparameter space. Table 2 summarizes 
the hyperparameters that were optimized with WOA, along with their 
corresponding search ranges and encoding strategies. This set includes 
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learning rate, batch size, dropout rate, and number of dense units, along 
with convolutional filters (specific to the LVM model), as well as 
categorical variables such as optimizer and activation function (Aljarah 
et al., 2018). The normalized search spaces were mapped onto [0,1] and 
decoded accordingly during every fitness evaluation to allow thorough 
investigation of the configuration landscape.

2.3.5 Computational efficiency and convergence
Since deep learning algorithms have more computational 

requirements, the number of whales (2–5) and iterations (5–10) were 
selected based on preliminary trials that aimed to minimize 
computational overhead while maintaining classification performance. 
These values proved sufficient for stable convergence due to the 
limited feature dimensionality and the pre-trained nature of the 
backbone network (Nadimi-Shahraki et al., 2023). The optimization 
process terminated either when the maximum number of iterations 
was reached or when no improvement in validation loss was observed 
for several consecutive iterations (early stopping). WOA stays efficient 
due to its good exploration and exploitation balance and its 
applicability to non-differentiable and noisy objective spaces, which 
generally characterize deep learning hyperparameter landscapes. 
Convergence behavior is monitored through a fitness curve. Here, T  
represents the total number of iterations, as shown in Equation 15. 
Such a curve provides insights into the sequence of optimization steps 
taken and how stable the search process has been.

	

( )
=

  =     



1
Convergence Curve minFitness

T
t

ii t
X

	
(15)

Integrating WOA into the hyperparameter tuning pipeline turned 
out to be a more scalable and flexible system capable of autogenerating 
optimized deep learning models for the classification of uterine 

tumors from MRI images (Liu and Zhang, 2022). By way of contrast 
with grid search, which is exhaustive, and manual trial-and-error 
methods, WOA substantially improves model performance while 
improving generalization and minimizing training costs. That is 
particularly important in medical imaging, where diagnosis may favor 
or disfavor a clinician depending on how brain power is expended. 
Figure  3 represents the basic steps of the Whale Optimization 
Algorithm (WOA).

2.4 Model architectures

Three CNN architectures, MobileNetV2, DenseNet121, and an 
in-house Lightweight Vision Model (LVM), were adopted to classify 
uterine cancer based on MRI images. Each of the architectures is 
parameterized and dynamically instantiated based on 
hyperparameters tuned with the WOA, including the learning rate, 
dropout rate, dense units, activation functions, and regularization 
strength. Hence, the design allows for flexibility, scalability, and 
adaptability of the model to domain-specific data such as MRI scans, 
which require careful treatment of spatial and structural features.

2.4.1 MobileNetV2 model
MobileNetV2 is a lightweight deep convolutional neural network 

architecture specifically meant for efficiency on mobile and embedded 
platforms (Sandler et al., 2018), while maintaining a good level of 
performance on image classification problems. Considering uterine 
tumor classification with MRI images, MobileNetV2 thus stands as a 
strong backbone, for it seems to be the only one that balances the 
computational efficiency and representational power that are crucial 
in medical image analysis with constrained annotated data. 
MobileNetV2 improves upon its predecessor by introducing two key 
innovations: inverted residuals with linear bottlenecks and depth-wise 
separable convolutions. Each block in MobileNetV2 is defined by an 
inverted residual structure wherein the input and output are thin 
bottleneck layers, and the intermediate expansion layer is of high 
dimensionality. Hence, features are preserved at a low 
computational cost.

Let × ×∈ H W Cx R  be the input tensor, where H , W , and C  are the 
height, width, and number of channels, respectively. Each 
MobileNetV2 bottleneck block applies the following transformations: 
expansion (Pointwise Convolution) where t  is the expansion factor 
(typically = 6t ) as Equation 16, depthwise convolution as in 
Equation 17, projection (Linear Pointwise Convolution) as 
Equation 18, and residual connection as Equation 19. This inverted 
residual block allows the network to maintain gradient flow, preserve 
spatial features, and reduce the number of parameters and operations 
(Dong et al., 2020).

	 ( ) × × ×= ∗ ∈ 1 1
1 1 1ReLU6 , C tCx x W W R 	 (16)

	

( )( )=2 1ReLU6 DWConv ,
DWConv : separate kernel per channel

x x

	 (17)

	
× ′× ×= ∗ ∈ 1 1

3 2 3 3, tC Cx x W W R 	 (18)

TABLE 2  Hyperparameter search space for WOA-based deep learning 
optimization.

Hyperparameter Search 
range/values

Encoding/notes

Learning rate −10 5– −10 2 = − +10 5 3lr x, log-scaled

Batch size 16–128 ( )= +int 16 112bs x , linear

Dropout rate 0.1–0.5 = +0.1 0.4dr x , linear

Dense units 64–512 (integers) ( )= +int 64 448du x , linear

Optimizer type
{Adam, SGD, 

RMSprop}

Index: 

( ) { }= ∈2 0,1,2idx round x

Activation function
{ReLU, 

LeakyReLU, ELU}

Index: 

( ) { }= ∈2 0,1,2idx round x

Weight decay (L2) −10 6– −10 3 = − +10 6 3wd x , log-scaled

Momentum (SGD only) 0.5–0.95
Only used if optimizer = SGD: 

= +0.5 0.45mom x

Conv1 filters (LVM) 16–96 ( )( )= × +int 32 0.5 1.51f x

Conv2 filters (LVM) 32–192 ( )( )= × +int 64 0.5 1.52f x

Conv3 filters (LVM) 64–384 ( )( )= × +int 128 0.5 1.53f x
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	 = = ′+ =3,if stride 1andy x x C C 	 (19)

Model customization with WOA in this study, MobileNetV2 is 
used as a feature extractor by setting include_top = False and freezing 
the pretrained layers (weights initialized on ImageNet). The extracted 
features are passed through.

Global average pooling. This reduces each channel to a single 
value, lowering overfitting risk and model complexity, as shown in 
Equations 20, 21. Dense layer (WOA-optimized units [ ]64,512u∈ ) 
where φ  is an activation function (ReLU, LeakyReLU, or ELU) 
selected by WOA. Dropout layer (WOA-optimized rate [ ]0.1,0.5d∈
) to reduce overfitting (Xiang et al., 2019), as shown in Equations 22, 
23. Softmax classification layer where = 3K  is the number of tumor 
classes (Benign, Malignant, Normal).

	 = =
= ∑∑ ,

1 1

1
·

H W

i j
i j

z x
H W

	
(20)

	 ( )φ= +h Wz b 	 (21)

	 ( )′ = =Dropout ,rateh h d 	 (22)
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(23)

Training configuration of the network is compiled using the 
Adam optimizer or alternatives (SGD, RMSprop) as determined by 
WOA. The loss function used is sparse categorical cross-entropy, 
where y is the true class index. The learning rate, batch size, 
regularization weight decay, and other hyperparameters are 
dynamically chosen by the WOA metaheuristic, ensuring model 
robustness and optimal convergence during training. Figure  4 
illustrates the working architecture of the model, as shown in 
Equation 24:

	 ( )= − lo ˆg yL y 	 (24)

2.4.2 DenseNet121 model
DenseNet121 is a Dense Connected Convolutional Network deep 

structural architecture designed for maximum feature reuse and 
rampant gradient propagation in disjoint data communities like 
uterine MRI (Swaminathan et al., 2021). In this work, DenseNet121 is 
used as the backbone network to extract high-level features that 
discriminate between benign, malignant, and normal uterine tumors 
for classification.

Contrary to other conventional CNN architectures, where each 
layer takes input only from its preceding layer, DenseNet connects each 
layer to all its preceding layers in a feed-forward fashion. This means 
the actual input to any layer l consists of the feature maps of all 
preceding layers −…0 1 1, , , lx x x from previous layers Hewlett-Packard 
(Liu et  al., 2021). ( )·lH  represents some composite function of 
operations of the form Batch Normalization → ReLU → Convolution. 
  ·  indicates concatenation, rather than summation, as shown in 
Equation 25. By using dense connectivity, this strengthens the gradient 
flow through the network. Moreover, it encourages feature reuse, 
thereby cutting down on the total number of parameters. Thus, this 
also alleviates the problem of gradient vanishing, especially for very 
deep networks such as DenseNet121. It starts with a convolution and 
pooling layer. Then, four dense blocks with transition layers (1 × 1 conv 
+ 2 × 2 average pooling) after each one. Finally, it uses global average 
pooling and a fully connected softmax layer. They are distributed 
among the four dense blocks as 6, 12, 24, and 16 layers, respectively.

	 ( )−= …  0 1 1, , ,l l lx H x x x 	 (25)

For feature extraction and customization for this classification 
task, we utilize DenseNet121 pretrained on ImageNet as a frozen 
feature extractor (include_top = False). The last convolutional block 
output is passed through a GlobalAveragePooling2D layer, where cz  is 
the pooled feature for channel c, , ,i j cx  is the activation at spatial 
location ( ),i j  in channel c, H  and W  are height and width of the 
feature map (Uemura et  al., 2020). This operation reduces spatial 
dimensions, producing a vector of size equal to the number of 
channels, improving generalization and reducing overfitting. This 
operation reduces spatial dimensions, producing a vector of size equal 
to the number of channels, improving generalization and reducing 
overfitting, as shown in Equation 26:

FIGURE 3

Flowchart of the whale optimization algorithm (WOA) for iterative 
solution refinement.
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WOA-optimized classification heads the extracted features are 
passed through a classification head that is parameterized dynamically 
using WOA Dense Layer φ  activation function (ReLU, LeakyReLU, or 
ELU), ×∈1

u dH R : weight matrix (with ∈  64,512u ),e  pooled features 
from DenseNet backbone, as shown in Equations 27, 28. Dropout 
∈  0.1,0.5p  dropout rate optimized by WOA. Softmax Output Layer 
= 3K  number of uterine tumor classes and ko  logit corresponding to 

class k. Loss Function ky  is the one-hot encoded true label (Zhang 
et al., 2019), as shown in Equations 29, 30. Optimizer chosen among 
{Adam, SGD, RMSprop} as per WOA-optimized index. Regularization 
L2 weight decay (search range −610  to −310 ) applied on trainable dense 
weights, as shown in Equation 31:

	 ( )φ= +1 1h H e b 	 (27)

	 ( )′ = =Dropout ,rateh h p 	 (28)
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(30)

	 λ= +  

2
total CE 1 2L L W 	 (31)

DenseNet121 has many advantages when used in the classification 
of uterine tumors from MRI. Increased feature propagation enables 
improved encoding of tissue textures and the lesion border. Fewer 
parameters mean better training with the given medical data since it 
is fewer. WOA-based parametrization helps adapt the architecture, so 

it generalizes best for the dataset at hand. Figure  5 illustrates the 
working architecture of the model.

2.4.3 Lightweight vision model (LVM)
For scenarios with limited computing machines or smaller 

datasets that are mostly found in medical imaging facilities, this study 
introduces a custom-built Lightweight Vision Model (LVM) (Jiang 
et al., 2025). The LVM is a modular, parameterizable convolutional 
neural network designed for uterine tumor classification from MRI 
images. While it could have used large-scale pretrained models, 
training the LVM from scratch allows it to fine-tune itself directly on 
the texture and contrast patterns inherent to uterine MRI images.

The LVM architecture follows a typical hierarchical paradigm of 
feature extraction, having three convolution + pooling blocks arranged 
in series, followed by a fully connected classifier. This allows for the 
extraction of low-level features such as edges and textures, along with 
high-level features that involve shapes and boundaries important for 
tumor detection. Parameters in each layer, such as the number of filters, 
activation function, and dropout rate, are all subject to optimization 
based on the Whale Optimization Algorithm (WOA) so that the best 
validation results may be achieved (Zhang et al., 2023). This ensures a 
trade-off between simplicity and robustness in classification, especially 
when imbalanced or small datasets in the medical domain are considered.

Network architecture and equations let the input image 
× ×∈ 224 224 3X R  be  an RGB MRI slice. The model consists of 

convolutional block 1, ∈  1 16,96F : number of filters (WOA-tuned) 
φ : Activation function (ReLU / LeakyReLU /ELU), as shown in 
Equations 32, 33. Output shape × × 1112 112 F . Convolutional block 2 
∈  2 32,192F  WOA-optimized, as shown in Equations 34, 35. 

Convolutional block 3 ∈  3 64,384F : WOA-optimized, output from 
( ) × ×∈ 33 28 28 FA R , as shown in Equations 36, 37:

	
( ) ( ) ( )( ) ( )φ × × ×= ∗ + ∈ 11 1 1 1 3 3 3, FZ X W b W R

	
(32)

	
( ) ( )( )= ×1 1MaxPool ,2 2A Z

	
(33)

FIGURE 4

MobileNetV2 model structure.
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( ) ( ) ( ) ( )( ) ( )φ × × ×= ∗ + ∈ 1 22 1 2 2 2 3 3, F FZ A W b W R

	
(34)

	
( ) ( )( )= ×2 2MaxPool ,2 2A Z

	
(35)

	
( ) ( ) ( ) ( )( ) ( )φ × × ×= ∗ + ∈ 2 33 2 3 3 3 3 3, F FZ A W b W R

	
(36)

	
( ) ( )( )= ×3 3MaxPool ,2 2A Z

	
(37)

Following the final convolutional block of the LVM, the output 
feature maps are flattened into a one-dimensional vector for 
classification purposes (Fan et al., 2023). This flattened feature vector 
then passes through one fully connected dense layer whose number of 
output units is treated as a hyperparameter, ranging from 64 to 512. The 
activation function used here is selected through WOA; under different 
scenarios, it can be ReLU, Leaky ReLU, or ELU. The dropout layer has 
been included after dense transformations to avoid overfitting. The 
dropout rate is set in the range of 0.1–0.5. The final classification is done 
through a softmax layer to produce probability scores on the three 
classes of uterine tumors: benign, malignant, and normal. The predicted 
class will be the one having the highest softmax score.

The training of the model is achieved by minimizing the 
sparse categorical cross-entropy loss function between the 
predicted probability distribution and the true class label (Nie 
et al., 2023). Also, L2 regularization (weight decay) is applied to 
every trainable layer of the network, with the coefficient λ being 
optimized by the WOA as well. Regularization prevents over-
fitting by penalizing large magnitudes of weights, thereby 
encouraging models to behave more generally. LVM for Medical 
Imaging is fully customizable. Your WOA will allow you to adapt 
filters, activation functions, dropout rate, or dense units. The 
model is lightweight with a minimal memory footprint, making it 
suitable for developing real-time diagnostics and mobile 
applications in clinical environments. It also learns directly from 
MRI data without bias induced by pretrained natural image 
datasets. LVM is a flexible and interpretable alternative to deep 

pretrained models while facilitating domain-specific tunings for 
optimizing accuracy and resource usage in uterine tumor 
classification. Figure  6 illustrates the working architecture of 
the model.

2.5 Ensemble via soft voting

The proposed ensemble learning strategy is based on soft voting 
and aims to enhance the classification performance, improve stability, 
and increase diagnostic robustness in the automatic detection of 
uterine tumors from MRI images (Salur and Aydın, 2022). Ensemble 
models use the strength that comes from diversity among different 
classifiers to achieve higher generalizations and accuracies than any 
individual classifier. Within the framework, three diverse CNNs-
MobileNetV2, DenseNet121, and a custom-built Lightweight Vision 
Model (LVM)-are individually trained and optimized with Whale 
Optimization Algorithm and then combined, through soft voting, to 
give the final classification output.

Each model outputs the probability distribution of classes for 
an input image. Let there be M models in an ensemble; then the 
model m is expected to produce the predicted probabilities vector 
( ) ( ) ( ) ( ) = …  1 2, , ,m m mm

Cp p p p  with C  denoting the total number of 

classes: in this case = 3C  (Benign, Malignant, Normal), and 
( )

=
=∑

1
1

C
m

k
k

p
. The soft voting mechanism determines the average 

predicted probability for each class from all models, and the final 
predicted class ŷ is given by the index max of the average probability 
(Jaradat et al., 2024). This ensures that output from each model has a 
say in the final decision and that class probabilities correspond to the 
ensemble’s head count confidence, as shown in Equations 38, 39:

	

( )

=
= = …∑

1

1 , for 1,2, ,
M

m
k k

m
p p k C

M

ˉ

	
(38)

	
= arg m xˆ a kk

y p
ˉ

	
(39)

FIGURE 5

DenseNet121 model structure.
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Generalization is enhanced by building an ensemble out of 
different architectures, thus reducing variance and model-
specific overfitting. Greater Diagnostic Confidence soft voting 
preserves probability information, while double-checking adds a 
safety layer to mimic expert consensus. Real-World Robustness 
tackles noise, different tumor morphology, and subtle contrast 
differences commonly observed in MRI scans of uterine tissues. 
This ensemble system gives a clinical-quality trade-off between 
precision and reliability for uterine cancer classification with 
WOA-tuned models and double verification.

The Soft Voting Ensemble combines the predicted class probabilities 
from MobileNetV2, DenseNet121, and LVM. For each input MRI scan, 
the three models independently generate probability distributions over 
the classes (normal, benign, malignant). These probabilities are then 
averaged across models with equal weights, producing a consensus 
probability distribution. The final classification is assigned to the class 
with the highest average probability. This strategy leverages the 
complementary strengths of the individual models, reduces bias toward 
any single model, and significantly improves the robustness and 
accuracy of the overall system, as demonstrated in Figure 7.

3 Results analysis

3.1 Experimental setup and measurement

To evaluate and validate the proposed methodology, the 
dataset was divided into three groups: 10% for testing, 10% for 
validation, and 80% for training. Tests were conducted using 
images as input. Several statistical indicators, such as true 
negative (TN), true positive (TP), false negative (FN), and false 
positive (FP), can be  used to evaluate the effectiveness of the 
proposed technique. This section presents several metrics for 
evaluating the effectiveness of the proposed model and 
pre-trained models for detecting uterine cancer using MRI 

images. The mathematical calculations for the various evaluation 
metrics are presented in the following Equations 40–44:

	
Accuracy TP TN

TP TN FP FN
+

=
+ + + 	

(40)

	
=

+
Precision TP

TP FP 	
(41)

	
=

+
Sensitivity TP

TP FN 	
(42)

	
=

+
Specificity TN

TN FP 	
(43)

	

∗
= ∗

+
Precision Sensitivity

F1Score 2
Precision Sensitivity 	

(44)

For a more in-depth probe into model accuracy, the Confidence 
Interval (CI) is derived by this formula, as shown in Equation 45:

	 µ σ µ σ= − +  ˆ ˆ. , . ,CI z z 	 (45)

Given the accuracy mean, the value of critical 95% confidence, 
along with the standard deviations from measurement error, as shown 
in Equation 46:

	
( )µ µ

σ
−

=
1ˆ ˆ

n 	
(46)

By incorporating such assessments, the proposed model provides 
reliable image classification across benign, malignant, and normal 
categories, thereby significantly contributing to medical diagnosis.

FIGURE 6

LVM model structure.
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3.2 The hyperparameter configuration

Hyperparameters for different neural networks are compared in 
Table 3. Dropout rates, input layers, optimization techniques, and 
other pertinent variables are all included in the analysis. These were 
the best hyperparameters that produced the best performance, and 
they were chosen after several trials until the best outcome 
was attained.

WOAENet is a soft voting ensemble made of three deep learning 
architectures: MobileNetV2, DenseNet121, and a lightweight vision 
model (LVM), custom-designed. These sub-models were optimally 
tuned independently using the Whale Optimization Algorithm 
(WOA). Such an algorithm is an application of metaheuristic 
optimization for finding an approximate or near-optimum 
hyperparameter configuration by simultaneously exploiting and 
exploring the search space.

The ensemble models used the same preprocessing dimension of 
224 × 224 × 3 to have a standard input image size and to enable 
compatibility among the architectures. Both MobileNetV2 and 
DenseNet121 underwent the ReLU activation; they were trained with 
a batch size of 45 and 65 and learning rates of 1.95 × 10−4 and 
7.26 × 10−4, respectively.

The LVM aimed for computational efficiency with LeakyReLU 
activation, 133 dense units, and convolution blocks with 31, 55, and 93 
filters, respectively, across layers. VGG16 and VGG19 were also 
assessed independently and trained with dropout rates of 0.25 and 0.30, 
with learning rates of 1.2 × 10−4 and 1.5 × 10−4. Adam optimizer was 
used for LVM and VGG16, whereas SGD was considered for 

MobileNetV2 and VGG19 due to its momentum-based updates. The 
weight decay regularize was applied to all the models for improving 
generalization. Inside WOAENet, the optimized model connotes the 
kind of strength metaheuristic-based hyperparameter tuning can 
provide for leading to an enhancement of the classification performance 
and robustness on the multi-class uterine MRI image dataset.

3.3 Model performance evaluation and 
analysis

This study aims to develop an effective model for uterine cancer 
diagnosis utilizing advanced deep learning techniques. It introduces 
an ensemble model known as the WOAENet, which relies on the WOA 
algorithm to fine-tune model parameters. This framework comprises 
a set of deep neural network models, including MobileNetV2, 
DenseNet121, and a custom CNN model (LVM), whose results are 
combined using Soft Voting to provide a final, high-accuracy 
prediction. The proposed WOAENet approach is compared to 
pre-trained deep learning models such as MobileNetV2, DenseNet121, 
LVM, VGG16, and VGG19, using the KAUH-UCM dataset.

All experiments in this study were conducted on a Python-based 
laptop equipped with an i7-12700k processor, an NVIDIA GeForce 
RTX 4060Ti graphics card, 8GB of RAM, 48GB of storage, and a 2 TB 
SSD. Table 4 shows the performance of all models and the WOAENet 
network on the real KAUH-UCM dataset, which was first collected 
from King Abdullah University Hospital for uterine cancer diagnosis. 
The results showed that WOAENet outperformed the pre-trained 
models with an accuracy of 88.57%, a specificity of 94.29%, and an F1 
score of 88.54%, while MobileNetV2 achieved an accuracy of 75.24%. 
The DenseNet121 model achieved an accuracy of 79.76%, while the 
LVM model achieved an accuracy of 74.76%. This indicates that the 
proposed approach, WOAENet, provides high accuracy and 
significant improvements in uterine cancer detection compared to 
MobileNetV2, DenseNet121, and LVM. The Whale Optimization 
Algorithm (WOA) improves the performance of deep learning models 
by intelligently searching for the best combination of hyperparameters, 
such as learning rate, batch size, number of units in dense layers, and 
dropout rate. Additionally, the VGG16 and VGG19 models were 
tested, with the latter achieving the lowest accuracy of 70.95%, while 
the VGG16 model performed relatively well at 77.14%. Figure  8 
illustrates the model’s effectiveness.

Compared to individual models such as MobileNetV2, 
DenseNet121, and LVM, WOAENet offers clear advantages by 
combining their complementary strengths through WOA-guided 
hyperparameter tuning and soft voting, achieving higher sensitivity 
and specificity, both of which are critical for cancer diagnosis. Unlike 
standalone lightweight models, which sacrifice accuracy for efficiency, 
or heavier models like DenseNet121, which increase computational 
costs, WOAENet strikes a balance between diagnostic reliability and 
scalability. This makes it more suitable for real-world use as a clinical 
decision support tool, capable of assisting radiologists in accurate 
second-opinion classifications while maintaining feasible 
computational requirements.

Figure 9 shows confusion matrices for six distinct models used to 
visualize the models’ performance in classifying uterine images into three 
categories: benign, malignant, and normal. The numbers within each cell 
indicate the number of samples belonging to the actual category (rows) 

FIGURE 7

Soft voting-based ensemble classification of uterine MRI images 
using MobileNetV2, DenseNet121, and LVM.
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and predicted as the corresponding category (columns). For example, in 
the VGG16 matrix, the top-left value of 57 indicates that 57 benign cases 
were accurately classified as benign. Values ​along the main diagonal 
(shaded in light red) represent correct predictions, while off-diagonal 
values (other numbers in red and blue) indicate misclassifications. 
Together, these matrices demonstrate the effectiveness of each model in 
distinguishing between different cases, with higher diagonal values ​​
reflecting superior accuracy in correctly classifying each category.

Comparing the models, the proposed WOAENet model 
demonstrates significantly superior performance. When compared to 
the VGG16, VGG19, MobileNetV2, DenseNet121, and LVM models, 
WOAENet demonstrates an exceptional ability to accurately classify 
malignant cases, achieving 64 accurate predictions for this class. This 
number outperforms all other models (e.g., 56 for VGG16, 47 for 
VGG19, 45 for MobileNetV2, 55 for DenseNet121, and 60 for LVM). 
This indicates that the WOAENet framework, enhanced by the WOA 
optimization algorithm, has successfully extracted more effective and 
specific features for cancer image classification, which is crucial in 
medical diagnosis. Furthermore, WOAENet maintains strong 
performance in classifying both benign and normal cases, making it 
a more comprehensive and accurate model for this uterine 
image classification.

3.4 Performance analysis of the WOAENet 
by category

The Soft Voting Ensemble-based WOAENet model demonstrated 
strong and balanced performance in classifying uterine tumors and 
detecting cancer using MRI across three categories: benign, malignant, 
and normal. The model performed well across all categories, as shown 
in Table 5. The highest sensitivity was in malignant classification at 
91.43%, indicating the model’s high ability to detect malignant cases. 
It also achieved the highest accuracy in the same category at 90.14%. 
Furthermore, the model demonstrated a good balance in classifying 
normal and benign cases, with an accuracy ranging from 87.5 to 
88.06%, and a sensitivity of 90% for normal cases and 84.29% for 
benign cases. Overall, the accuracy, sensitivity, specificity, and F1 
coefficient indicators reflect the advanced performance of the model, 
making it a promising and reliable tool for classifying cases with 
uterine diseases.

3.5 Statistical analysis

The accuracy of several deep learning models, including the 
suggested WOAENet model, for the uterine cancer image identification 
task is compared in Table 6. The performance of a particular model is 
shown in each row, along with the 95% confidence interval, the 
accuracy difference from WOAENet, and the total accuracy percentage. 
The accuracy values show what proportion of each model’s predictions 
were accurate. DenseNet121, for instance, achieved an accuracy of 
79.05%, whereas WOAENet achieved 88.57%. A clear indicator of 
performance disparity is provided by the “Difference from WOAENet 
column, which shows how much lower each model’s accuracy was 
when compared to WOAENet. The model’s actual accuracy is likely to 
lie within the range provided by the 95% confidence interval, which 
shows the statistical performance of a particular model in each row, 
along with the 95% confidence interval, the accuracy difference from 
WOAENet, and the total accuracy percentage. The accuracy values 
show what proportion of each model’s predictions were accurate.

This demonstrates that the proposed WOAENet model significantly 
outperforms all other evaluated models in terms of accuracy. With an 
accuracy of 88.57%, WOAENet shows a significant improvement, 
achieving 9.52% higher accuracy than the best model, DenseNet121 
(79.05%). The accuracy gap is even more evident when compared to 
models like VGG19, which lags by a significant 17.62%. WOAENet 
consistently has high accuracy and a narrow confidence interval (84.26, 
92.87), indicating that the Whale Optimization Algorithm (WOA)-
optimized baseline framework is highly effective in optimizing the deep 
learning pipeline for uterine image classification. This superior 
performance confirms WOAENet’s potential as a more reliable and robust 
solution for this critical medical diagnostic task compared to established 
frameworks like VGG16, MobileNetV2, DenseNet121, and LVM.

3.6 Evaluating the model in clinical 
environments

To evaluate the real-world clinical applicability of the 
WOAENet model, we  conducted a prospective validation on a 
cohort of 30 anonymized uterine cancer cases from King Abdullah 
University Hospital. These cases were not part of the training or 
validation datasets. The model’s predictions were compared against 

TABLE 3  Optimized hyper parameters for deep learning models tuned via whale optimization algorithm (WOA).

Hyperparameter MobileNetV2 DenseNet121 LVM VGG16 VGG19

Learning rate 1.95 × 10−4 7.26 × 10−4 8.74 × 10−5 1.2 × 10−4 1.5 × 10−4

Batch size 45 65 22 32 28

Dropout rate 0.29 0.18 0.27 0.25 0.30

Dense units 415 170 133 256 192

Optimizer SGD RMSprop Adam Adam SGD

Activation ReLU ReLU LeakyReLU ReLU ReLU

Weight decay 2.48 × 10−5 2.05 × 10−5 1.19 × 10−5 1.0 × 10−5 2.0 × 10−5

Momentum 0.68 – – – –

Conv1 filters – – 31 – –

Conv2 filters – – 55 – –

Conv3 filters – – 93 – –
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the final clinical diagnoses made by expert radiologists. WOAENet 
correctly classified 23 out of 30 cases (76.7%), aligning with the 
radiologists’ final diagnoses. The remaining seven cases (23.3%) 
showed discrepancies, which we analyzed in detail: three cases were 
false positives, where the model flagged malignant patterns in 
images that were ultimately diagnosed as benign. These cases often 
involved atypical fibroids or inflammatory tissue that mimicked 
malignancy features on MRI. Four cases were false negatives, where 
the model failed to detect malignancy. Most of these involved small 
lesion sizes, diffuse tumor margins, or overlapping intensity 
features with benign conditions, highlighting challenges in early-
stage or non-mass-forming malignancies. These error patterns 
provide critical insight into the model’s current limitations, 
especially in handling ambiguous or subtle findings, and will 
inform targeted improvements in future model iterations. 
Additionally, to assess the model’s practical impact on clinical 
workflow, we  conducted a preliminary time-efficiency study 
involving two experienced radiologists. Each radiologist reviewed 
15 cases with and without the WOAENet system, using a 
randomized and blinded setup. The results showed: Average 
interpretation time without WOAENet: 9.4 min per case. Average 
interpretation time with WOAENet assistance: 5.7 min per case. 
Time reduction: Approximately 39.4%, equating to an average 
savings of 3.7 min per case.

This demonstrates that WOAENet not only enhances diagnostic 
confidence but also provides substantial time-saving benefits, which 
can scale meaningfully across high-volume clinical settings. Clinician 
feedback emphasized that WOAENet was especially helpful in 
identifying regions of interest quickly and offering a second-look 
validation in equivocal cases. The system was particularly valued in 
time-sensitive contexts such as pre-surgical assessments and 
emergency diagnostics.

4 Discussion

The results of this study demonstrate the effectiveness of the 
WOAENet framework in diagnosing uterine tumors and detecting 
cancer from MRI images. The proposed methodology achieved 
accuracy and specificity, outperforming single models such as 
MobileNetV2 (75.24%), DenseNet121 (79.76%), and LVM 
(74.76%). This result highlights the known limitations of single-
model classifiers, especially when they are not precision-
optimized. The ensemble’s seamless voting mechanism further 
enhanced decision reliability by leveraging the complementary 
strengths of the constituent models, ultimately achieving an 
accuracy of 88.57%, a specificity of 94.29%, and an F1 score 
of 88.54%.

TABLE 4  Performance and analysis models.

Model Accuracy Precision Sensitivity Specificity F1 score

VGG16 77.14 78.13 77.14 88.57 77.20

VGG19 70.95 72.39 70.95 85.48 70.86

MobileNetV2 75.24 77.46 75.24 87.62 75.18

DenseNet121 79.05 79.83 79.05 89.53 78.93

LVM 74.76 76.00 74.76 87.38 74.59

WOAENet 88.57 88.57 88.57 94.29 88.54

FIGURE 8

Comparison of performance metrics of different models.
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These results align with previous work that emphasizes the 
importance of domain adaptation and model customization in uterine 
imaging. For instance, Mulliez et al. (2023) demonstrated that even well-
established CNN architectures like VGG16 and VGG11 require careful 
tuning and adaptation to the specific challenges of uterine MRIs, 
including anatomical variability and contrast ambiguity. Interestingly, 
despite using a similar CNN backbone (VGG16), their fully automated 
uterus measurement tool achieved high agreement with manual readings 
(OKS = 0.96), reinforcing the idea that model success in uterine imaging 
hinges on task-specific optimization.

Further support comes from Davarpanah et al. (2016), who evaluated 
diffusion-weighted MRI to distinguish benign from malignant uterine 
masses. Their results showed that while DWI provides qualitative 
diagnostic value, quantitative ADC metrics alone are not sufficient for 
reliable uterine malignancy classification due to significant feature overlap. 
This underscores the necessity of ensemble approaches like WOAENet that 
combine structural image features with optimized learning mechanisms.

Recent efforts have also explored integrating clinical, radiomic, 
and conventional MRI features to distinguish uterine leiomyosarcoma 
(LMS) from leiomyoma (LM). Roller et al. (2024) found that models 
combining radiomics with clinical and imaging features outperformed 
those based on imaging alone, achieving an AUC of 0.989. Although 
WOAENet currently focuses on image-based classification, this 
suggests future extensions could further benefit from incorporating 
structured clinical variables to enhance predictive power.

From an imaging quality perspective, Hausmann et al. (2025) 
demonstrated that deep learning-accelerated MRI sequences such as 
DL-VIBE significantly improve lesion delineation and diagnostic 
confidence in uterine MRI compared to traditional sequences. As 
image quality directly influences model input fidelity, incorporating 

FIGURE 9

Confusion matrices for models in uterine tumors classification.

TABLE 5  Class-wise performance metrics of the WOAENet model on the 
KAUH-UCM dataset.

Class Precision Sensitivity Specificity F1 
score

Benign 88.06% 84.29% 94.29% 86.13%

Malignant 90.14% 91.43% 95.00% 90.78%

Normal 87.50% 90.00% 93.57% 88.73%

Overall 88.57% 88.57% 94.29% 88.54%

TABLE 6  Model accuracy evaluation, with 95% confidence interval and 
deviations from the WOAENet.

Model Accuracy 
(%)

Difference 
from the 

WOAENet

95% 
confidence 

interval

WOAENet 88.57 0.0 (84.26, 92.87)

DenseNet121 79.05 9.52 (73.54, 84.55)

VGG16 77.14 11.43 (71.46, 82.82)

MobileNetV2 75.24 13.33 (69.40, 81.07)

LVM 74.76 13.81 (68.88, 80.63)

VGG19 70.95 17.62 (64.81, 77.09)
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DL-enhanced sequences into preprocessing could further boost 
WOAENet’s robustness.

Additionally, the work by Hodneland et al. (2024) draws attention 
to the variability of radiomic features due to differences in MRI 
protocols and highlights the need for normalization strategies. Their 
comparative analysis of z-score and linear regression model (LRM) 
normalization revealed that normalization has a strong impact on 
radiomic clustering and downstream prognostic modeling. This 
finding is particularly relevant as WOAENet may benefit from 
radiomic integration in future iterations, where normalization 
becomes critical for model generalizability across centers.

4.1 Generalization across different data 
sets

While the primary evaluation was conducted on the uterine MRI 
dataset, we also validated the WOAENet network on another dataset, 
the KAUH-OCM ovarian cancer MRI dataset (Amin et al., 2025). This 
dataset contained 478 images for each class (normal, benign, 
malignant) after processing, and the same preprocessing and 
classification methodology was applied.

These results demonstrate that WOAENet maintains strong 
performance when applied to an external dataset, as shown in Table 7, 
especially with high accuracy and F1 scores. This confirms the 
generalizability of the proposed framework to various gynecological 
MRI datasets, supporting its broader clinical applicability. Figure 10 
shows the confusion matrix of the proposed WOAENet model.

4.2 Limitations of the study

Our study has several limitations that should be acknowledged. 
First, obtaining a balanced dataset for classification was a significant 
challenge. The dataset, collected exclusively from King Abdullah 
University Hospital in Jordan, was inherently imbalanced because it 
reflected the distribution of real cases, with some tumor types being 
much more common than others. To mitigate this, we applied data 
augmentation techniques to enhance the representation of 
underrepresented classes. However, such strategies cannot fully replace 
the value of a larger, more balanced, and diverse dataset. Second, while 
WOAENet showed promising results, its robustness against noisy or 
incomplete MRI data has not been extensively evaluated. Real-world 
clinical environments often face issues such as imaging artifacts, 
variability in acquisition protocols, and missing data, which could 
impact model reliability. Furthermore, although WOAENet has 
demonstrated efficiency in a controlled research setting, its scalability 
and interoperability with clinical imaging systems require further 
validation to ensure seamless integration into hospital workflows.

Future work should address these challenges by incorporating 
larger, multi-center datasets, integrating clinical and demographic 
data to enrich decision-making, and exploring transfer learning 
strategies to improve generalization across populations. Additionally, 
enhancing model interpretability through explainable AI techniques 
will be essential for building trust among clinicians and supporting its 
adoption in clinical practice.

The computational complexity of the methodology was another 
issue with this effort. Although the computational workload was 

managed using cloud-based technologies, the free version had 
limitations regarding runtime and processing power. Although it 
enabled us to finish the study within the limitations of our resources, 
these limitations posed significant difficulties. Access to a more powerful 
local computing setup or a professional version of these programs would 
have resolved these issues and expedited the process. To enhance the 
performance and application of the proposed methodology, future 
efforts should focus on obtaining more balanced and diverse datasets, 
as well as access to sophisticated computational resources.

Overall, the superior performance of WOAENet, achieved without 
prolonged training or extensive pre- or post-processing, positions it as 
a clinically viable tool. Its efficiency and accuracy make it suitable for 
real-world settings with limited computational resources. Furthermore, 
its ensemble architecture and optimization via WOA offer a flexible 
foundation for future enhancements, such as multimodal data fusion, 
radiomic incorporation, or transfer learning from DL-accelerated MRI.

5 Conclusion and future work

This study presents a comprehensive method for uterine cancer 
detection using MRI data. The proposed approach is based on an 
integrated deep learning pipeline framework, WOAENet (Whale 
Optimization Algorithm-based Ensemble Network), which is 
optimized using the WOA algorithm to classify uterine images into 
malignant, benign, and normal categories. Furthermore, we propose a 
WOA algorithm for fine-tuning the hyperparameters of deep learning 
models, including MobileNetV2, DenseNet121, and a custom CNN 
(LVM), by minimizing the validation loss. Each model is trained using 
its optimized parameters, and their outputs are combined using a 
smooth voting set, which calculates the average predicted probabilities 
across all models to arrive at a final prediction. We use the KAUH-UCM 
dataset of uterine MRI images from King Abdullah University Hospital 
to evaluate the proposed WOAENet model. The WOAENet model 
demonstrates the highest classification accuracy. Tests indicate that the 
proposed model is a successful tool for classifying uterine tumors, 
achieving an accuracy of 88.57%, outperforming all pre-trained models.

Beyond its experimental performance, WOAENet holds promise for 
clinical integration. Its lightweight architecture makes it feasible for 
deployment in hospital imaging systems, where it could assist radiologists 
by providing second-opinion classifications in real time. Nevertheless, 
certain challenges remain, including the need for large-scale validation 
across diverse populations, ensuring interoperability with existing 
medical imaging infrastructure, and addressing regulatory and ethical 
considerations before clinical adoption.

Our goal in future work is to evaluate the effectiveness of the 
WOAENet model using diverse hybrid datasets. Furthermore, future 

TABLE 7  Performance evaluation of the proposed WOAENet model on 
the KAUH-OCM.

Class Precision Sensitivity Specificity F1 
score

Benign 82.98 79.59 92.31 81.25

Malignant 96.08 1.000 98.31 98.00

Normal 83.67 83.67 92.31 83.67

Overall 87.58 87.75 94.31 87.64
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research will focus on expanding datasets, incorporating data from 
other sources, improving model interpretability, and cross-validating 
it in a broader clinical setting. Finally, we will examine the effectiveness 
of the proposed model in other diagnostic tasks.
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