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Objectives: Uterine cancer originates from the cells lining the uterus and
can develop through abnormal cell growth, potentially leading to damage in
surrounding tissues and the formation of precancerous cells. Early detection
significantly improves prognosis. Despite advancements in deep learning-based
diagnostic methods, challenges remain, including the dependence on expert
input and the need for more accurate classification models. This study aims to
address these limitations by proposing a novel and efficient methodology for
diagnosing uterine cancer using an integrated deep learning pipeline optimized
through a nature-inspired algorithm.

Methods: This study introduces the Whale Optimization Algorithm-based
Ensemble Network (WOAENet), a deep learning pipeline that classifies uterine
MRI into three classes: malignant, benign, and normal. The Whale Optimization
Algorithm (WOA) is used to fine-tune the hyperparameters of three deep learning
models: MobileNetV2, DenseNet121, and a lightweight vision model (LVM). Each
model is trained with its optimized settings, and its outputs are combined using
a Soft Voting Ensemble method that calculates the average of the predicted
probabilities to arrive at the final classification.

Results: The WOAENet framework was evaluated using a uterine cancer MRI
dataset obtained from King Abdullah University Hospital. Our proposed model
outperformed standard pre-trained models across several performance metrics.
It achieved an accuracy of 88.57%, a specificity of 94.29%, and an F1 score of
88.54%, indicating superior performance in diagnosing uterine cancer.
Conclusion: WOAENet demonstrates a high level of accuracy and reliability in
classifying uterine MRl images, marking a significant advancement by utilizing
a novel dataset. The findings support the potential of Al-driven approaches in
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enhancing the diagnosis and treatment of gynecological conditions, paving the
way for more accessible and accurate clinical tools.

KEYWORDS

obstetrics and gynecology, uterine cancer, soft voting, deep learning, diagnoses, MRI

1 Introduction

One of the most common tumors of the female reproductive
system is uterine cancer. It is brought on by the uterine lining’s
abnormal cell proliferation, which damages the surrounding tissue as
the cells divide (Esmaeilzadeh and Nasirzadeh, 2023). While uterine
cancer is less common in Africa and Asia, it is more common in the
Americas and Europe. Experts attribute this to environmental risk
factors and obesity. Women between the ages of 40 and 60 are more
likely to have the illness (Felix and Brinton, 2018). It is the fifteenth
most common type of cancer in the general population (Hamoud
etal., 2023). The most studied symptom of uterine cancer is abnormal
uterine bleeding in premenopausal, postmenopausal, and
perimenopausal women (Boeckstaens et al., 2020). Obesity is a
significant risk factor for uterine cancer, with women who are
overweight or obese being two to four times more likely to develop
endometrial cancer compared to women with a lower body mass
index (Somasegar et al., 2023).

The advancement of uterine cancer may make diagnosis and
treatment more difficult, which could result in a poor prognosis.
Tumor staging is therefore essential. There are three stages of this
disease: low, intermediate, and high risk. Like other cancers, uterine
cancer must be detected early (Dong et al., 2020). Based on their
morphological and functional characteristics, analysis that depends
on diagnostic accuracy can help classify tissues as either malignant or
non-malignant (Keall et al, 2022). In modern clinical practice,
magnetic resonance imaging (MRI) is frequently used for several
purposes, such as the clinical staging of malignant tumors and the
differentiation of benign from malignant gynecological problems (Lu
and Broaddus, 2020). The primary method for determining the
anatomical origin of uterine cancer is magnetic resonance imaging.
MRI is necessary to differentiate between endometrial and cervical
sources of uterine tumors when clinical and histological tests are not
feasible (Gui et al., 2022). Ultrasonography is increasingly used to
evaluate tissue elasticity to diagnose and treat clinical uterine cancers
and other issues (Wang et al., 2022).

In recent years, artificial intelligence (AI) has been increasingly
applied in medicine, particularly for diagnosis (Akazawa and
Hashimoto, 2021). Deep learning and image processing techniques
are utilized to improve the early detection of uterine cancer and
determine if it is benign, malignant, or subclassified. Eventually, this
will lead to stronger treatments that save lives (Maheswari et al., 2024).
Convolutional neural network (CNN)-based deep learning
approaches, also known as deep CNNs (DCNN), have recently
produced impressive results in picture pattern recognition
(Lundervold and Lundervold, 2019). Deep learning has been applied
to a variety of computer vision applications, including segmentation
(Soffer et al., 2019), classification (Fujioka et al., 2020), and lesion
detection (Shin et al., 2016).

The use of MRI-based AI in gynecology for uterine cancer
detection has not been adequately documented. Furthermore, some
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studies use a limited approach to tumor diagnosis. Therefore, this
study presents an effective method that combines deep learning
models and uses the WOA to optimize them. By automatically
selecting the optimal set of hyperparameters, including learning rate,
batch size, number of units in dense layers, and dropout rate, this
method improves the performance of deep learning models. The main
contributions of this paper are summarized as follows: This paper
introduces a new integrated deep learning pipeline called WOAENet,
which leverages the WOA for uterine cancer diagnosis.

« The outputs of the optimized models are combined using a Soft
Voting Ensemble strategy, which increases classification
robustness and accuracy by averaging the predicted probabilities.

o WOAENet was trained and evaluated on a new uterine MRI
dataset from King Abdullah University Hospital, achieving
superior performance (88.57% accuracy, 94.29% specificity, and
88.54% F1 score) compared to previously trained models.

« This study pioneers the use of deep learning to classify uterine
tumors using a new dataset, highlighting the potential of artificial
intelligence to improve the diagnosis and treatment of
gynecological diseases.

The techniques employed, a thorough explanation of the dataset,
the suggested research approach, and training regimens are all covered
in Section 2. The data are analyzed, and the effectiveness of the
suggested model in uterine cancer diagnostic tests is assessed in
Section 3. The most significant studies in the diagnosis of uterine
cancer are covered in Section 4, and Section 5 ends with crucial
conclusions and recommendations for further study.

2 Materials and methods

The study follows a complete deep learning pipeline-based
framework, WOAENet (Whale Optimization Algorithm-based
Ensemble Network), optimized by the WOA algorithm for uterus
image classification. As shown in Figure 1, three candidate models
were built: MobileNetV2, DenseNet121, and a custom lightweight
vision model (LVM). Each model contained tunable hyperparameters,
such as learning rate, dropout rate, dense units, weight decay,
activation function, and optimizer type. Each model contained
tunable hyperparameters such as learning rate, dropout rate, dense
units, weight decay, activation function, and optimizer type. All these
components were controlled and fine-tuned via hyperparameters
optimized using the Whale Optimization Algorithm (WOA), which
was employed to minimize the validation loss by conducting an
iterative population-based search over an 11-dimensional normalized
hyperparameter space. The search was stopped at a small number of
iterations and whales to maintain a balance between efficiency and
performance. All the models were trained on a uterus MRI dataset.
For performance evaluation, during WOA optimization, the candidate
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FIGURE 1

Overview of the WOAENet framework for uterine cancer MRI image classification using optimized ensemble deep learning.

models were trained for only a few epochs, followed by further
training of all candidates based on the very best hyperparameters
found. After completing training, WOAENet applied a soft voting
ensemble scheme to average class probabilities predicted by all
individual models to improve robustness and classification accuracy.

2.1 Data acquisition

This study was approved by the Institutional Review Board (IRB)
at King Abdullah University Hospital, Jordan University of Science
and Technology (JUST). Radiologists retrospectively diagnosed
patients using MRI data collected over 4 years, from early 2020 to
early November 2024. Image extraction and dataset assembly were
finalized during the data collection window between December 2024
and March 2025, during which anonymized and pre-evaluated images
were organized into a structured dataset. The dataset comprises 1,814
MRI images collected from 450 female patients, aged between 18 and
85 years. The cases were classified into three diagnostic categories:
normal, benign, and malignant, with each case represented by three
imaging planes—sagittal, coronal, and axial. All images were acquired
using the Ingenia Ambition 1.5 T Sand MRI scanner and exported in
JPG format at a standard resolution of 720 x 720 pixels. To ensure the
accuracy of the classification, KAUH obstetrics and gynecology
physicians independently reviewed the imaging data. Table 1 shows
the distribution of the KAUH-UCM dataset, with a representative
sample from each group shown in Figure 2.

2.2 Preprocessing

In medical image analysis, and specifically in uterine cancer
diagnosis via MRI, pre-processing holds paramount importance in
establishing a strong foundation that will directly influence the
accuracy and robustness of the classification models. This phase
involves working on the input image resolution, encoding class labels,
and stratified data splits to preserve class balance. To achieve class
balance (699 images per class), we applied targeted data augmentation
techniques—including shear, zoom, and horizontal flip—only to the
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TABLE 1 The quantity and distribution of images in each KAUH-UCM
category.

Case Quantity of images

Normal 497
Benign 699
Malignant 618
Total 1,814

training set. This was done to synthetically increase samples in
underrepresented classes (normal and malignant) without duplicating
existing images, avoiding potential overfitting, with 699 for each class:
normal, benign, and malignant. To prevent data leakage and ensure
generalizability, the data splitting was performed at the patient level.
MRI images from different scanners and clinical sites are variable in
size, resolution, and intensity profile (Moradmand et al., 2020). To
standardize the inputs of a CNN, all images are resized to 224 x 224
fixed pixels compatible with popular pre-trained architectures such as
MobileNetV2 and DenseNet121. The resizing operation is expressed
in the following, as shown in Equation 1:

VxeX, x— Resize(x,224><224) (1)

Beyond resizing, pixel intensity values are normalized to the range
[0,1] by scaling all pixel values with a factor of 755, this normalization
ensures numerical stability during training and helps the optimization
algorithms converge more efficiently (Li et al., 2021), as shown in
Equation 2:

Xraw

255

2

Xnormalized =

Overfitting reduction and increased model robustness through
major data augmentation are situated within real-time training-
oriented interventions considered under Keras' Image Data
Generator (Um et al., 2019). The arguments applied to the
augmentations include a Shearing Transformation with shear
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FIGURE 2
An example from the KAUH-UCM image dataset

Malignant

intensity limited to 0.2 to mimic minor affine distortions, slight
irregularities or imperfections in shape, Random Zooming while
zooming on random areas of the image to help the model identify
localized tumor features at varying scales, Horizontal Flipping:
allowing random horizontal flips, whereby the model learns spatially
invariant features, i.e., recognizing patterns that are symmetric to
one another. Essentially, these augmentations generate great diversity
and variability for the training data and enhance the generalization
of the models to unseen cases. With the three categories for each
MRI scan class being clinically relevant, normal, benign tumor, or
malignant tumor, the categorical labels are transformed into integer
indices for the model, as shown in Equation 3:

0, if y=Normal
Label _ Index(y) =41, if y=Benign (3)
2, if y =Malignant

Such encoding permits the network to consider labels as
numerical tensors during training and evaluation. To avoid systematic
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biases and guarantee balance of representations across classes, the
entire dataset is divided into train, validation, and test subsets while
keeping the same class distributions (stratified splitting). The training
set, Dyyain, is formed from 80% of the full data. The validation set, Dy,
comprises 10%. Test set, Dies comprises 10%. If N is the number of
samples in class k, the split obeys the, as shown in Equation 4, 5:

N
D:{(x,-,y,')}izl 4
|Dt’§ain —0.8N, |DE|=0.1Ny, |Dt’gst =0.1N} )

Each subset is therefore a true representation of the entire dataset,
ensuring no bias is created for the majority classes and thus trustworthy
evaluation metrics. Preprocessing for uterine tumor MRI images
consists of uniform resizing, pixel normalization, advanced data
augmentation, error-free label encoding, and balanced data splitting.
Together, these steps enrich model stability, improve generalization,
and build a strong footing toward downstream classification tasks.
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2.3 Whale optimization algorithm (WOA)
for hyperparameter tuning

The Whale Optimization Algorithm (WOA) is used as a nature-
inspired metaheuristic optimization tool within this study for the
automated hyperparameter tuning of deep networks classifying
uterine tumors from MRI images (Mirjalili and Lewis, 2016). Accurate
classification depends not only on very high-capacity models, but also,
more importantly, on the hyperparameter choices such as learning
rates, batch sizes, regularization strengths, dropout rates, and
architectural parameters such as the number of convolutional filters
or dense units (Brodzicki et al., 2021). These hyperparameters greatly
influence the model’s generalization ability, especially when competing
with complicated, high-dimensional medical imaging data, such as
MRI scans.

Traditional tools such as grid-search methods or manual
examinations have become almost impossible in this modern context,
simply due to prohibitive computational costs plaguing them
(Brodzickietal., 2021). WOA, thus, solves the problem by conjecturing
therein an intelligent exploration of the high-dimensional parameter
space, with the behavior of humpback whales searching for food in the
natural world being the inspiration.

2.3.1 Motivation for metaheuristic-based
optimization

In MRI tumor classification, a series of challenges are faced: high
variability in anatomical structures, a limited dataset, and a need to
generalize models strongly. In the application concerned, the
hyperparameter shows a non-linear correlation with performance,
interdependence, which renders brute force methods practically
helpless (Nadimi-Shahraki et al, 2021). Thus, metaheuristic
algorithms like the WOA are fitted with respect to ensure the escape
from local minima and to perform efficient global search without the
need to keep track of gradient information or convex assumptions.

2.3.2 Mathematical modeling of WOA

The Whale Optimization Algorithm (WOA) simulates the
bubble-net hunting strategy of humpback whales and involves three
primary mechanisms: to encircle the prey (Rana et al., 2020), to
bubble-net attack (exploit), and to search for prey (explore). Here, the
solution space is defined by R, where d is the number of
hyperparameters needing optimization. Each whale in the population
stands for a possible solution vector X e R%.

Encircling Prey (Exploitation), the whales regard the current best
solution as the prey and update their positions accordingly (Nadimi-
Shahraki et al., 2023). Where X" is the position of the best solution
obtained so far. X (t) is the current location of the whale. A = 2a-/ —a,
C =27 are coefficient vectors, a is a linearly decreased factor from 2 to 0
throughout iterations, and A}, 7 ~ U(O,l) are random vectors, as shown
in Equations 6, 7. The mechanism traverses toward intensification (local
search) as the whales try to move toward the best solution.

D=IGX - X(t) ©)

X(t+1)=X"-AD (7)
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Bubble-Net Attacking Strategy (Exploitation) this simulates the
spiral-shaped bubble-net behavior. Where b is a constant defining the
logarithmic spiral shape (commonly set to 1), 1~ U[—l,l] is a random
number. The algorithm stochastically chooses between spiral update
and encircling with probability p€[0.1], as shown in Equation 8. This
probabilistic behavior enhances the search diversity and mimics the
natural behavior of whales,

varying between exploration

and exploitation.

)—((t+1):D-ehl-cos(27z'l)+)—(* (8)

Searching for Prey (Exploration) if | A [>1, the whale randomly
chooses another whale and updates its position. Here, X,qq is a
randomly selected whale (Abualigah et al., 2024). This mechanism
ensures the exploration of the global search space to avoid premature

convergence, as shown in Equations 9, 10:

<

D =|C-Xpana ~ X (¢ ©)

X(t+1)=X,qna — A-D (10)

2.3.3 Fitness function for hyperparameter
optimization

The fitness of each whale (candidate hyperparameter set) is
evaluated using a partial training strategy (Pham et al., 2020), where
a deep learning model (MobileNetV2, DenseNet121, or LVM) is
trained for a limited number of epochs 10 epochs, and the validation
loss is recorded as the objective function (Mohammed et al., 2019).
Where X € R'is the hyperparameter vector, Ly, is the validation loss,
6 are the model parameters, as shown in Equation 11. This formulation
allows WOA to identify hyperparameter configurations that minimize
validation loss and hence maximize generalization on unseen
MRI scans.

Fitness(f() =Ly (H;X) (11)

2.3.4 Parameter encoding and normalization

Each dimension in the whale’s position vector X corresponds to a
hyperparameter. To ensure scalability and uniformity in the search, all
hyperparameters are normalized to 0,1 and decoded during
evaluation. For example Nadimi-Sh ahraki et al. (2023), such
normalization allows WOA to operate uniformly across parameters
with different physical scales and types, as shown in Equations 12-14:

Learning rate; Ir =107">% (12)
Dropout: 7 =0.1+0.4x, (13)
Dense units: du =64 +448x3 (14)

To appropriately tune the deep learning architectures for uterine
tumor classification from MRI images, the WOA was used to perform a
search on a multidimensional hyperparameter space. Table 2 summarizes
the hyperparameters that were optimized with WOA, along with their
corresponding search ranges and encoding strategies. This set includes

frontiersin.org


https://doi.org/10.3389/frai.2025.1664201
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Altal et al.

learning rate, batch size, dropout rate, and number of dense units, along
with convolutional filters (specific to the LVM model), as well as
categorical variables such as optimizer and activation function (Aljarah
etal., 2018). The normalized search spaces were mapped onto [0,1] and
decoded accordingly during every fitness evaluation to allow thorough
investigation of the configuration landscape.

2.3.5 Computational efficiency and convergence

Since deep learning algorithms have more computational
requirements, the number of whales (2-5) and iterations (5-10) were
selected based on preliminary trials that aimed to minimize
computational overhead while maintaining classification performance.
These values proved sufficient for stable convergence due to the
limited feature dimensionality and the pre-trained nature of the
backbone network (Nadimi-Shahraki et al., 2023). The optimization
process terminated either when the maximum number of iterations
was reached or when no improvement in validation loss was observed
for several consecutive iterations (early stopping). WOA stays efficient
due to its good exploration and exploitation balance and its
applicability to non-differentiable and noisy objective spaces, which
generally characterize deep learning hyperparameter landscapes.
Convergence behavior is monitored through a fitness curve. Here, T
represents the total number of iterations, as shown in Equation 15.
Such a curve provides insights into the sequence of optimization steps
taken and how stable the search process has been.

T
Convergence Curve = [mjn Fitness (X ,(t) ﬂ (15)
i t=1

Integrating WOA into the hyperparameter tuning pipeline turned
out to be a more scalable and flexible system capable of autogenerating
optimized deep learning models for the classification of uterine

TABLE 2 Hyperparameter search space for WOA-based deep learning
optimization.

Hyperparameter Search Encoding/notes
range/values

Learning rate 10791072 Ir=1079+3x , log-scaled

Batch size 16-128 bs =int (1 6+11 2X), linear

Dropout rate 0.1-0.5 dr =0.1+0.4x, linear

Dense units 64-512 (integers) du =int(64 +448x), linear

o {Adam, SGD, Index:

timizer type

P P RMSprop} idx = round (ZX) e {0,1,2}
{ReLU, Index:

Activation function

LeakyReLU, ELU} | idx = round (2x) € {012}

Weight decay (L2) 1076-1073 wd =1070+3X log-scaled
Only used if optimizer = SGD:
Momentum (SGD only) 0.5-0.95
mom =0.5+0.45x
Convl filters (LVM) 16-96 A= int (32 « (0.5 +1 '5)())
Conv2 filters (LVM) 32-192 fo =int(64x (0.5 +1.5x))
Conv3 filters (LVM) 64-384

3 =int(128x(0.5+1.5x))
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tumors from MRI images (Liu and Zhang, 2022). By way of contrast
with grid search, which is exhaustive, and manual trial-and-error
methods, WOA substantially improves model performance while
improving generalization and minimizing training costs. That is
particularly important in medical imaging, where diagnosis may favor
or disfavor a clinician depending on how brain power is expended.
Figure 3 represents the basic steps of the Whale Optimization
Algorithm (WOA).

2.4 Model architectures

Three CNN architectures, MobileNetV2, DenseNet121, and an
in-house Lightweight Vision Model (LVM), were adopted to classify
uterine cancer based on MRI images. Each of the architectures is
parameterized and dynamically instantiated based on
hyperparameters tuned with the WOA, including the learning rate,
dropout rate, dense units, activation functions, and regularization
strength. Hence, the design allows for flexibility, scalability, and
adaptability of the model to domain-specific data such as MRI scans,

which require careful treatment of spatial and structural features.

2.4.1 MobileNetV2 model

MobileNetV2 is a lightweight deep convolutional neural network
architecture specifically meant for efficiency on mobile and embedded
platforms (Sandler et al., 2018), while maintaining a good level of
performance on image classification problems. Considering uterine
tumor classification with MRI images, MobileNetV2 thus stands as a
strong backbone, for it seems to be the only one that balances the
computational efficiency and representational power that are crucial
in medical image analysis with constrained annotated data.
MobileNetV2 improves upon its predecessor by introducing two key
innovations: inverted residuals with linear bottlenecks and depth-wise
separable convolutions. Each block in MobileNetV2 is defined by an
inverted residual structure wherein the input and output are thin
bottleneck layers, and the intermediate expansion layer is of high
dimensionality. Hence, features are preserved at a low
computational cost.

Let x € RW*C be the input tensor, where H, W, and C are the
height, width, and number of channels, respectively. Each
MobileNetV2 bottleneck block applies the following transformations:
expansion (Pointwise Convolution) where ¢ is the expansion factor
(typically t=6) as Equation 16, depthwise convolution as in
Equation 17, projection (Linear Pointwise Convolution) as
Equation 18, and residual connection as Equation 19. This inverted
residual block allows the network to maintain gradient flow, preserve
spatial features, and reduce the number of parameters and operations

(Dong et al., 2020).

x; =ReLU6(x +W; ), W; € RPC1C (16)

x; =ReLU6 (DWConv (x1 )),
DWConv : separate kernel per channel (17)

X3 = xp ¥ W3, W3 € R1><1><tC><C' (18)
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FIGURE 3
Flowchart of the whale optimization algorithm (WOA) for iterative
solution refinement.

y=x+x3,if stride=land C=C’ (19)

Model customization with WOA in this study, MobileNetV2 is
used as a feature extractor by setting include_top = False and freezing
the pretrained layers (weights initialized on ImageNet). The extracted
features are passed through.

Global average pooling. This reduces each channel to a single
value, lowering overfitting risk and model complexity, as shown in
Equations 20, 21. Dense layer (WOA-optimized units u €[64,512] )
where ¢ is an activation function (ReLU, LeakyReLU, or ELU)
selected by WOA. Dropout layer (WOA-optimized rate d €[0.1,0.5]
) to reduce overfitting (Xiang et al., 2019), as shown in Equations 22,
23. Softmax classification layer where K =3 is the number of tumor
classes (Benign, Malignant, Normal).

1 HW
= o 20
“THW Z']Z:lx”f 20
h=¢(Wz+b) (1)
W= Dropout(h,rate = d) (22)
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Oy
j;k:;—,fork:I,Z,...,K (23)

o

e

Jj=1

Training configuration of the network is compiled using the
Adam optimizer or alternatives (SGD, RMSprop) as determined by
WOA. The loss function used is sparse categorical cross-entropy,
where y is the true class index. The learning rate, batch size,
regularization weight decay, and other hyperparameters are
dynamically chosen by the WOA metaheuristic, ensuring model
robustness and optimal convergence during training. Figure 4
illustrates the working architecture of the model, as shown in
Equation 24:

L:—log(j/y) (24)

2.4.2 DenseNet121 model

DenseNet121 is a Dense Connected Convolutional Network deep
structural architecture designed for maximum feature reuse and
rampant gradient propagation in disjoint data communities like
uterine MRI (Swaminathan et al., 2021). In this work, DenseNet121 is
used as the backbone network to extract high-level features that
discriminate between benign, malignant, and normal uterine tumors
for classification.

Contrary to other conventional CNN architectures, where each
layer takes input only from its preceding layer, DenseNet connects each
layer to all its preceding layers in a feed-forward fashion. This means
the actual input to any layer I consists of the feature maps of all
preceding layers x¢,x,...,x;_1 from previous layers Hewlett-Packard
(Liu et al,, 2021). H; () represents some composite function of
operations of the form Batch Normalization — ReLU — Convolution.
" indicates concatenation, rather than summation, as shown in
i%:qualion 25. By using dense connectivity, this strengthens the gradient
flow through the network. Moreover, it encourages feature reuse,
thereby cutting down on the total number of parameters. Thus, this
also alleviates the problem of gradient vanishing, especially for very
deep networks such as DenseNet121. It starts with a convolution and
pooling layer. Then, four dense blocks with transition layers (1 x 1 conv
+ 2 x 2 average pooling) after each one. Finally, it uses global average
pooling and a fully connected softmax layer. They are distributed
among the four dense blocks as 6, 12, 24, and 16 layers, respectively.

x;=H; ([xo XL .,xl_1:|) (25)

For feature extraction and customization for this classification
task, we utilize DenseNet121 pretrained on ImageNet as a frozen
feature extractor (include_top = False). The last convolutional block
output is passed through a GlobalAveragePooling2D layer, where z is
the pooled feature for channel ¢, x; ;. is the activation at spatial
location (i,j) in channel ¢, H and W are height and width of the
feature map (Uemura et al., 2020). This operation reduces spatial
dimensions, producing a vector of size equal to the number of
channels, improving generalization and reducing overfitting. This
operation reduces spatial dimensions, producing a vector of size equal
to the number of channels, improving generalization and reducing
overfitting, as shown in Equation 26:
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FIGURE 4
MobileNetV2 model structure.
1 2w it generalizes best for the dataset at hand. Figure 5 illustrates the
Ze = HW sz i,jxc (26) working architecture of the model.

i=1j=1

WOA-optimized classification heads the extracted features are
passed through a classification head that is parameterized dynamically
using WOA Dense Layer ¢ activation function (ReLU, LeakyReLU, or
ELU), H, R, weight matrix (with u 6[64,512]),6 pooled features
from DenseNet backbone, as shown in Equations 27, 28. Dropout
p e[O. 1,0.5 dropout rate optimized by WOA. Softmax Output Layer
K =3 number of uterine tumor classes and o logit corresponding to
class k. Loss Function yy is the one-hot encoded true label (Zhang
etal., 2019), as shown in Equations 29, 30. Optimizer chosen among
{Adam, SGD, RMSprop} as per WOA-optimized index. Regularization
L2 weight decay (search range 10" t010™%) applied on trainable dense
weights, as shown in Equation 31:

h=¢(Hie+b) 27)
K= Dropout(h,rate = p) (28)
o= olo) (29)
exp(o;)
j=1
K
Leg == yklog(3x) (30)
k=1
Liotal = Leg + 41| Wi B (31)

DenseNet121 has many advantages when used in the classification
of uterine tumors from MRI. Increased feature propagation enables
improved encoding of tissue textures and the lesion border. Fewer
parameters mean better training with the given medical data since it
is fewer. WOA-based parametrization helps adapt the architecture, so

Frontiers in Artificial Intelligence

2.4.3 Lightweight vision model (LVM)

For scenarios with limited computing machines or smaller
datasets that are mostly found in medical imaging facilities, this study
introduces a custom-built Lightweight Vision Model (LVM) (Jiang
et al,, 2025). The LVM is a modular, parameterizable convolutional
neural network designed for uterine tumor classification from MRI
images. While it could have used large-scale pretrained models,
training the LVM from scratch allows it to fine-tune itself directly on
the texture and contrast patterns inherent to uterine MRI images.

The LVM architecture follows a typical hierarchical paradigm of
feature extraction, having three convolution + pooling blocks arranged
in series, followed by a fully connected classifier. This allows for the
extraction of low-level features such as edges and textures, along with
high-level features that involve shapes and boundaries important for
tumor detection. Parameters in each layer, such as the number of filters,
activation function, and dropout rate, are all subject to optimization
based on the Whale Optimization Algorithm (WOA) so that the best
validation results may be achieved (Zhang et al., 2023). This ensures a
trade-off between simplicity and robustness in classification, especially
when imbalanced or small datasets in the medical domain are considered.

Network architecture and equations let the input image
X eR¥P2%3 pe an RGB MRI slice. The model consists of
convolutional block 1, i 6[16,96-: number of filters (WOA-tuned)
¢: Activation function (ReLU / _LeakyReLU /ELU), as shown in
Equations 32, 33. Output shape 112x112 x F. Convolutional block 2
B 6[32,192] WOA-optimized, as shown in Equations 34, 35.
Convolutional block 3 Fy 6[64,384:: WOA-optimized, output from

A(s) e R28X28XF3, as shown in Equations 36, 37:

7 =¢(x*w(l) +b(1)),w(1) < R (32)

A(l) =MaxPool(Z(1),2><2) (33)
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FIGURE 5
DenseNet121 model structure.

72 _ ¢( AW @) +1,(2)),W(2) < RIXEXE, (34)
A% MaxPool(Z(z),sz) (35)
703) _ ¢( PORTEON b(3)),W(3) < RIIXEXF, (36)
AG) :MaXPool(Z(3),2><2) (37)

Following the final convolutional block of the LVM, the output
feature maps are flattened into a one-dimensional vector for
classification purposes (Fan et al., 2023). This flattened feature vector
then passes through one fully connected dense layer whose number of
output units is treated as a hyperparameter, ranging from 64 to 512. The
activation function used here is selected through WOA; under different
scenarios, it can be ReLU, Leaky ReLU, or ELU. The dropout layer has
been included after dense transformations to avoid overfitting. The
dropout rate is set in the range of 0.1-0.5. The final classification is done
through a softmax layer to produce probability scores on the three
classes of uterine tumors: benign, malignant, and normal. The predicted
class will be the one having the highest softmax score.

The training of the model is achieved by minimizing the
sparse categorical cross-entropy loss function between the
predicted probability distribution and the true class label (Nie
et al., 2023). Also, L2 regularization (weight decay) is applied to
every trainable layer of the network, with the coefficient A being
optimized by the WOA as well. Regularization prevents over-
fitting by penalizing large magnitudes of weights, thereby
encouraging models to behave more generally. LVM for Medical
Imaging is fully customizable. Your WOA will allow you to adapt
filters, activation functions, dropout rate, or dense units. The
model is lightweight with a minimal memory footprint, making it
suitable for developing real-time diagnostics and mobile
applications in clinical environments. It also learns directly from
MRI data without bias induced by pretrained natural image
datasets. LVM is a flexible and interpretable alternative to deep
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pretrained models while facilitating domain-specific tunings for
optimizing accuracy and resource usage in uterine tumor
classification. Figure 6 illustrates the working architecture of
the model.

2.5 Ensemble via soft voting

The proposed ensemble learning strategy is based on soft voting
and aims to enhance the classification performance, improve stability,
and increase diagnostic robustness in the automatic detection of
uterine tumors from MRI images (Salur and Aydin, 2022). Ensemble
models use the strength that comes from diversity among different
classifiers to achieve higher generalizations and accuracies than any
individual classifier. Within the framework, three diverse CNNs-
MobileNetV2, DenseNet121, and a custom-built Lightweight Vision
Model (LVM)-are individually trained and optimized with Whale
Optimization Algorithm and then combined, through soft voting, to
give the final classification output.

Each model outputs the probability distribution of classes for
an input image. Let there be M models in an ensemble; then the
model m is expected to produce the predicted probabilities vector
p(m) _ [pl(m),pgm),...,p(cm)} with C denoting the total number of

classes: in this case C=3 (Benign, Malignant, Normal), and
ip(m) -1 The soft voting mechanism determines the average
=

]f)}ledicted probability for each class from all models, and the final
predicted class y is given by the index max of the average probability
(Jaradat et al., 2024). This ensures that output from each model has a
say in the final decision and that class probabilities correspond to the
ensemble’s head count confidence, as shown in Equations 38, 39:

- M
pk:i Zpl(cm),fork:I,Z,...,C (38)
Mm—l

j/:argml?.xpk (39)
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LVM model structure.

Generalization is enhanced by building an ensemble out of
different architectures, thus reducing variance and model-
specific overfitting. Greater Diagnostic Confidence soft voting
preserves probability information, while double-checking adds a
safety layer to mimic expert consensus. Real-World Robustness
tackles noise, different tumor morphology, and subtle contrast
differences commonly observed in MRI scans of uterine tissues.
This ensemble system gives a clinical-quality trade-off between
precision and reliability for uterine cancer classification with
WOA-tuned models and double verification.

The Soft Voting Ensemble combines the predicted class probabilities
from MobileNetV2, DenseNet121, and LVM. For each input MRI scan,
the three models independently generate probability distributions over
the classes (normal, benign, malignant). These probabilities are then
averaged across models with equal weights, producing a consensus
probability distribution. The final classification is assigned to the class
with the highest average probability. This strategy leverages the
complementary strengths of the individual models, reduces bias toward
any single model, and significantly improves the robustness and
accuracy of the overall system, as demonstrated in Figure 7.

3 Results analysis
3.1 Experimental setup and measurement

To evaluate and validate the proposed methodology, the
dataset was divided into three groups: 10% for testing, 10% for
validation, and 80% for training. Tests were conducted using
images as input. Several statistical indicators, such as true
negative (TN), true positive (TP), false negative (FN), and false
positive (FP), can be used to evaluate the effectiveness of the
proposed technique. This section presents several metrics for
evaluating the effectiveness of the proposed model and
pre-trained models for detecting uterine cancer using MRI
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images. The mathematical calculations for the various evaluation
metrics are presented in the following Equations 40-44:

Accuracy=— TETIN
YT IPYINTFPTEN (40)
Precision = e (41)
TP+ FP
TP
Sensitivity = ———— (42)
TP+ FN
TN
Specificity =—— 43
P Y TN + FP (43)
Precision * Sensitivity
F1Score =2 (44)

Precision + Sensitivity

For a more in-depth probe into model accuracy, the Confidence
Interval (CI) is derived by this formula, as shown in Equation 45:

Cl=[jii-z0,u+z.0] (45)

Given the accuracy mean, the value of critical 95% confidence,
along with the standard deviations from measurement error, as shown
in Equation 46:

(46)

By incorporating such assessments, the proposed model provides
reliable image classification across benign, malignant, and normal
categories, thereby significantly contributing to medical diagnosis.
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FIGURE 7
Soft voting-based ensemble classification of uterine MRI images
using MobileNetV2, DenseNet121, and LVM.

3.2 The hyperparameter configuration

Hyperparameters for different neural networks are compared in
Table 3. Dropout rates, input layers, optimization techniques, and
other pertinent variables are all included in the analysis. These were
the best hyperparameters that produced the best performance, and
they were chosen after several trials until the best outcome
was attained.

WOAENEet is a soft voting ensemble made of three deep learning
architectures: MobileNetV2, DenseNet121, and a lightweight vision
model (LVM), custom-designed. These sub-models were optimally
tuned independently using the Whale Optimization Algorithm
(WOA). Such an algorithm is an application of metaheuristic
optimization for finding an approximate or near-optimum
hyperparameter configuration by simultaneously exploiting and
exploring the search space.

The ensemble models used the same preprocessing dimension of
224 x 224 x 3 to have a standard input image size and to enable
compatibility among the architectures. Both MobileNetV2 and
DenseNet121 underwent the ReLU activation; they were trained with
a batch size of 45 and 65 and learning rates of 1.95x 10~ and
7.26 x 107, respectively.

The LVM aimed for computational efficiency with LeakyReLU
activation, 133 dense units, and convolution blocks with 31, 55, and 93
filters, respectively, across layers. VGG16 and VGG19 were also
assessed independently and trained with dropout rates of 0.25 and 0.30,
with learning rates of 1.2 x 10 and 1.5 x 10~*. Adam optimizer was
used for LVM and VGG16, whereas SGD was considered for
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MobileNetV2 and VGG19 due to its momentum-based updates. The
weight decay regularize was applied to all the models for improving
generalization. Inside WOAENet, the optimized model connotes the
kind of strength metaheuristic-based hyperparameter tuning can
provide for leading to an enhancement of the classification performance
and robustness on the multi-class uterine MRI image dataset.

3.3 Model performance evaluation and
analysis

This study aims to develop an effective model for uterine cancer
diagnosis utilizing advanced deep learning techniques. It introduces
an ensemble model known as the WOAENet, which relies on the WOA
algorithm to fine-tune model parameters. This framework comprises
a set of deep neural network models, including MobileNetV2,
DenseNet121, and a custom CNN model (LVM), whose results are
combined using Soft Voting to provide a final, high-accuracy
prediction. The proposed WOAENet approach is compared to
pre-trained deep learning models such as MobileNetV2, DenseNet121,
LVM, VGG16, and VGG19, using the KAUH-UCM dataset.

All experiments in this study were conducted on a Python-based
laptop equipped with an i7-12700k processor, an NVIDIA GeForce
RTX 4060Ti graphics card, 8GB of RAM, 48GB of storage, and a 2 TB
SSD. Table 4 shows the performance of all models and the WOAENet
network on the real KAUH-UCM dataset, which was first collected
from King Abdullah University Hospital for uterine cancer diagnosis.
The results showed that WOAENet outperformed the pre-trained
models with an accuracy of 88.57%, a specificity of 94.29%, and an F1
score of 88.54%, while MobileNetV?2 achieved an accuracy of 75.24%.
The DenseNet121 model achieved an accuracy of 79.76%, while the
LVM model achieved an accuracy of 74.76%. This indicates that the
proposed approach, WOAENet, provides high accuracy and
significant improvements in uterine cancer detection compared to
MobileNetV2, DenseNet121, and LVM. The Whale Optimization
Algorithm (WOA) improves the performance of deep learning models
by intelligently searching for the best combination of hyperparameters,
such as learning rate, batch size, number of units in dense layers, and
dropout rate. Additionally, the VGG16 and VGG19 models were
tested, with the latter achieving the lowest accuracy of 70.95%, while
the VGG16 model performed relatively well at 77.14%. Figure 8
illustrates the model’s effectiveness.

Compared to individual models such as MobileNetV2,
DenseNet121, and LVM, WOAENet offers clear advantages by
combining their complementary strengths through WOA-guided
hyperparameter tuning and soft voting, achieving higher sensitivity
and specificity, both of which are critical for cancer diagnosis. Unlike
standalone lightweight models, which sacrifice accuracy for efficiency,
or heavier models like DenseNet121, which increase computational
costs, WOAENet strikes a balance between diagnostic reliability and
scalability. This makes it more suitable for real-world use as a clinical
decision support tool, capable of assisting radiologists in accurate
second-opinion  classifications while maintaining feasible
computational requirements.

Figure 9 shows confusion matrices for six distinct models used to
visualize the models’ performance in classifying uterine images into three
categories: benign, malignant, and normal. The numbers within each cell
indicate the number of samples belonging to the actual category (rows)
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TABLE 3 Optimized hyper parameters for deep learning models tuned via whale optimization algorithm (WOA).

10.3389/frai.2025.1664201

Hyperparameter MobileNetV2 DenseNet121 LVM VGG16 VGG19
Learning rate 1.95x 107 7.26 x 107* 8.74 x 107 1.2x10™* 1.5x 107"
Batch size 45 65 22 32 28
Dropout rate 0.29 0.18 0.27 0.25 0.30
Dense units 415 170 133 256 192
Optimizer SGD RMSprop Adam Adam SGD
Activation ReLU ReLU LeakyReLU ReLU ReLU
Weight decay 248 x107° 2.05%107° 1.19x 107 1.0 x 107° 20x107°
Momentum 0.68 - - - -
Convl filters - - 31 - -
Conv2 filters - - 55 - -
Conva3 filters - - 93 - -

and predicted as the corresponding category (columns). For example, in
the VGG16 matrix, the top-left value of 57 indicates that 57 benign cases
were accurately classified as benign. Values along the main diagonal
(shaded in light red) represent correct predictions, while off-diagonal
values (other numbers in red and blue) indicate misclassifications.
Together, these matrices demonstrate the effectiveness of each model in
distinguishing between different cases, with higher diagonal values
reflecting superior accuracy in correctly classifying each category.

Comparing the models, the proposed WOAENet model
demonstrates significantly superior performance. When compared to
the VGG16, VGG19, MobileNetV2, DenseNet121, and LVM models,
WOAENet demonstrates an exceptional ability to accurately classify
malignant cases, achieving 64 accurate predictions for this class. This
number outperforms all other models (e.g., 56 for VGG16, 47 for
VGGI19, 45 for MobileNetV2, 55 for DenseNet121, and 60 for LVM).
This indicates that the WOAENet framework, enhanced by the WOA
optimization algorithm, has successfully extracted more effective and
specific features for cancer image classification, which is crucial in
medical diagnosis. Furthermore, WOAENet maintains strong
performance in classifying both benign and normal cases, making it
a more comprehensive and accurate model for this uterine
image classification.

3.4 Performance analysis of the WOAENet
by category

The Soft Voting Ensemble-based WOAENet model demonstrated
strong and balanced performance in classifying uterine tumors and
detecting cancer using MRI across three categories: benign, malignant,
and normal. The model performed well across all categories, as shown
in Table 5. The highest sensitivity was in malignant classification at
91.43%, indicating the model’s high ability to detect malignant cases.
It also achieved the highest accuracy in the same category at 90.14%.
Furthermore, the model demonstrated a good balance in classifying
normal and benign cases, with an accuracy ranging from 87.5 to
88.06%, and a sensitivity of 90% for normal cases and 84.29% for
benign cases. Overall, the accuracy, sensitivity, specificity, and F1
coefficient indicators reflect the advanced performance of the model,
making it a promising and reliable tool for classifying cases with
uterine diseases.
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3.5 Statistical analysis

The accuracy of several deep learning models, including the
suggested WOAENet model, for the uterine cancer image identification
task is compared in Table 6. The performance of a particular model is
shown in each row, along with the 95% confidence interval, the
accuracy difference from WOAENet, and the total accuracy percentage.
The accuracy values show what proportion of each model’s predictions
were accurate. DenseNet121, for instance, achieved an accuracy of
79.05%, whereas WOAENet achieved 88.57%. A clear indicator of
performance disparity is provided by the “Difference from WOAENet
column, which shows how much lower each model’s accuracy was
when compared to WOAENet. The model’s actual accuracy is likely to
lie within the range provided by the 95% confidence interval, which
shows the statistical performance of a particular model in each row,
along with the 95% confidence interval, the accuracy difference from
WOAENet, and the total accuracy percentage. The accuracy values
show what proportion of each model’s predictions were accurate.

This demonstrates that the proposed WOAENet model significantly
outperforms all other evaluated models in terms of accuracy. With an
accuracy of 88.57%, WOAENet shows a significant improvement,
achieving 9.52% higher accuracy than the best model, DenseNet121
(79.05%). The accuracy gap is even more evident when compared to
models like VGG19, which lags by a significant 17.62%. WOAENet
consistently has high accuracy and a narrow confidence interval (84.26,
92.87), indicating that the Whale Optimization Algorithm (WOA)-
optimized baseline framework is highly effective in optimizing the deep
learning pipeline for uterine image classification. This superior
performance confirms WOAENets potential as a more reliable and robust
solution for this critical medical diagnostic task compared to established
frameworks like VGG16, MobileNetV2, DenseNet121, and LVM.

3.6 Evaluating the model in clinical
environments

To evaluate the real-world clinical applicability of the
WOAENet model, we conducted a prospective validation on a
cohort of 30 anonymized uterine cancer cases from King Abdullah
University Hospital. These cases were not part of the training or
validation datasets. The model’s predictions were compared against
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TABLE 4 Performance and analysis models.

10.3389/frai.2025.1664201

Accuracy Precision Sensitivity Specificity F1 score
VGGl16 77.14 78.13 77.14 88.57 77.20
VGG19 70.95 72.39 70.95 85.48 70.86
MobileNetV2 75.24 77.46 75.24 87.62 75.18
DenseNet121 79.05 79.83 79.05 89.53 78.93
LVM 74.76 76.00 74.76 87.38 74.59
WOAENet 88.57 88.57 88.57 94.29 88.54
i Comparison of Model Performance Metrics
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FIGURE 8
Comparison of performance metrics of different models.

the final clinical diagnoses made by expert radiologists. WOAENet
correctly classified 23 out of 30 cases (76.7%), aligning with the
radiologists” final diagnoses. The remaining seven cases (23.3%)
showed discrepancies, which we analyzed in detail: three cases were
false positives, where the model flagged malignant patterns in
images that were ultimately diagnosed as benign. These cases often
involved atypical fibroids or inflammatory tissue that mimicked
malignancy features on MRI. Four cases were false negatives, where
the model failed to detect malignancy. Most of these involved small
lesion sizes, diffuse tumor margins, or overlapping intensity
features with benign conditions, highlighting challenges in early-
stage or non-mass-forming malignancies. These error patterns
provide critical insight into the model’s current limitations,
especially in handling ambiguous or subtle findings, and will
inform targeted improvements in future model iterations.
Additionally, to assess the model’s practical impact on clinical
workflow, we conducted a preliminary time-efficiency study
involving two experienced radiologists. Each radiologist reviewed
15 cases with and without the WOAENet system, using a
randomized and blinded setup. The results showed: Average
interpretation time without WOAENet: 9.4 min per case. Average
interpretation time with WOAENet assistance: 5.7 min per case.
Time reduction: Approximately 39.4%, equating to an average
savings of 3.7 min per case.
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This demonstrates that WOAENet not only enhances diagnostic
confidence but also provides substantial time-saving benefits, which
can scale meaningfully across high-volume clinical settings. Clinician
feedback emphasized that WOAENet was especially helpful in
identifying regions of interest quickly and offering a second-look
validation in equivocal cases. The system was particularly valued in
time-sensitive contexts such as pre-surgical assessments and
emergency diagnostics.

4 Discussion

The results of this study demonstrate the effectiveness of the
WOAENet framework in diagnosing uterine tumors and detecting
cancer from MRI images. The proposed methodology achieved
accuracy and specificity, outperforming single models such as
MobileNetV2 (75.24%), DenseNetl21 (79.76%), and LVM
(74.76%). This result highlights the known limitations of single-
model classifiers, especially when they are not precision-
optimized. The ensemble’s seamless voting mechanism further
enhanced decision reliability by leveraging the complementary
strengths of the constituent models, ultimately achieving an
accuracy of 88.57%, a specificity of 94.29%, and an F1 score
of 88.54%.
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TABLE 5 Class-wise performance metrics of the WOAENet model on the
KAUH-UCM dataset.

Class Precision  Sensitivity = Specificity F1
score
Benign 88.06% 84.29% 94.29% 86.13%
Malignant 90.14% 91.43% 95.00% 90.78%
Normal 87.50% 90.00% 93.57% 88.73%
Overall 88.57% 88.57% 94.29% 88.54%

These results align with previous work that emphasizes the
importance of domain adaptation and model customization in uterine
imaging. For instance, Mulliez et al. (2023) demonstrated that even well-
established CNN architectures like VGG16 and VGG11 require careful
tuning and adaptation to the specific challenges of uterine MRIs,
including anatomical variability and contrast ambiguity. Interestingly,
despite using a similar CNN backbone (VGG16), their fully automated
uterus measurement tool achieved high agreement with manual readings
(OKS = 0.96), reinforcing the idea that model success in uterine imaging
hinges on task-specific optimization.

Further support comes from Davarpanah et al. (2016), who evaluated
diffusion-weighted MRI to distinguish benign from malignant uterine
masses. Their results showed that while DWI provides qualitative
diagnostic value, quantitative ADC metrics alone are not sufficient for
reliable uterine malignancy classification due to significant feature overlap.
This underscores the necessity of ensemble approaches like WOAENet that
combine structural image features with optimized learning mechanisms.
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TABLE 6 Model accuracy evaluation, with 95% confidence interval and
deviations from the WOAENet.

Model Accuracy Difference 95%
(VA from the confidence
WOAENet interval

WOAENet 88.57 0.0 (84.26, 92.87)
DenseNet121 79.05 9.52 (73.54, 84.55)
VGG16 77.14 11.43 (71.46, 82.82)
MobileNetV2 75.24 1333 (69.40, 81.07)
LVM 74.76 13.81 (68.88, 80.63)
VGG19 70.95 17.62 (64.81,77.09)

Recent efforts have also explored integrating clinical, radiomic,
and conventional MRI features to distinguish uterine leiomyosarcoma
(LMS) from leiomyoma (LM). Roller et al. (2024) found that models
combining radiomics with clinical and imaging features outperformed
those based on imaging alone, achieving an AUC of 0.989. Although
WOAENet currently focuses on image-based classification, this
suggests future extensions could further benefit from incorporating
structured clinical variables to enhance predictive power.

From an imaging quality perspective, Hausmann et al. (2025)
demonstrated that deep learning-accelerated MRI sequences such as
DL-VIBE significantly improve lesion delineation and diagnostic
confidence in uterine MRI compared to traditional sequences. As
image quality directly influences model input fidelity, incorporating
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DL-enhanced sequences into preprocessing could further boost
WOAENet’s robustness.

Additionally, the work by Hodneland et al. (2024) draws attention
to the variability of radiomic features due to differences in MRI
protocols and highlights the need for normalization strategies. Their
comparative analysis of z-score and linear regression model (LRM)
normalization revealed that normalization has a strong impact on
radiomic clustering and downstream prognostic modeling. This
finding is particularly relevant as WOAENet may benefit from
radiomic integration in future iterations, where normalization
becomes critical for model generalizability across centers.

4.1 Generalization across different data
sets

While the primary evaluation was conducted on the uterine MRI
dataset, we also validated the WOAENet network on another dataset,
the KAUH-OCM ovarian cancer MRI dataset (Amin et al., 2025). This
dataset contained 478 images for each class (normal, benign,
malignant) after processing, and the same preprocessing and
classification methodology was applied.

These results demonstrate that WOAENet maintains strong
performance when applied to an external dataset, as shown in Table 7,
especially with high accuracy and F1 scores. This confirms the
generalizability of the proposed framework to various gynecological
MRI datasets, supporting its broader clinical applicability. Figure 10
shows the confusion matrix of the proposed WOAENet model.

4.2 Limitations of the study

Our study has several limitations that should be acknowledged.
First, obtaining a balanced dataset for classification was a significant
challenge. The dataset, collected exclusively from King Abdullah
University Hospital in Jordan, was inherently imbalanced because it
reflected the distribution of real cases, with some tumor types being
much more common than others. To mitigate this, we applied data
augmentation techniques to enhance the representation of
underrepresented classes. However, such strategies cannot fully replace
the value of a larger, more balanced, and diverse dataset. Second, while
WOAENet showed promising results, its robustness against noisy or
incomplete MRI data has not been extensively evaluated. Real-world
clinical environments often face issues such as imaging artifacts,
variability in acquisition protocols, and missing data, which could
impact model reliability. Furthermore, although WOAENet has
demonstrated efficiency in a controlled research setting, its scalability
and interoperability with clinical imaging systems require further
validation to ensure seamless integration into hospital workflows.

Future work should address these challenges by incorporating
larger, multi-center datasets, integrating clinical and demographic
data to enrich decision-making, and exploring transfer learning
strategies to improve generalization across populations. Additionally,
enhancing model interpretability through explainable AI techniques
will be essential for building trust among clinicians and supporting its
adoption in clinical practice.

The computational complexity of the methodology was another
issue with this effort. Although the computational workload was
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managed using cloud-based technologies, the free version had
limitations regarding runtime and processing power. Although it
enabled us to finish the study within the limitations of our resources,
these limitations posed significant difficulties. Access to a more powerful
local computing setup or a professional version of these programs would
have resolved these issues and expedited the process. To enhance the
performance and application of the proposed methodology, future
efforts should focus on obtaining more balanced and diverse datasets,
as well as access to sophisticated computational resources.

Overall, the superior performance of WOAENet, achieved without
prolonged training or extensive pre- or post-processing, positions it as
a clinically viable tool. Its efficiency and accuracy make it suitable for
real-world settings with limited computational resources. Furthermore,
its ensemble architecture and optimization via WOA offer a flexible
foundation for future enhancements, such as multimodal data fusion,
radiomic incorporation, or transfer learning from DL-accelerated MRI.

5 Conclusion and future work

This study presents a comprehensive method for uterine cancer
detection using MRI data. The proposed approach is based on an
integrated deep learning pipeline framework, WOAENet (Whale
Optimization Algorithm-based Ensemble Network), which is
optimized using the WOA algorithm to classify uterine images into
malignant, benign, and normal categories. Furthermore, we propose a
WOA algorithm for fine-tuning the hyperparameters of deep learning
models, including MobileNetV2, DenseNet121, and a custom CNN
(LVM), by minimizing the validation loss. Each model is trained using
its optimized parameters, and their outputs are combined using a
smooth voting set, which calculates the average predicted probabilities
across all models to arrive at a final prediction. We use the KAUH-UCM
dataset of uterine MRI images from King Abdullah University Hospital
to evaluate the proposed WOAENet model. The WOAENet model
demonstrates the highest classification accuracy. Tests indicate that the
proposed model is a successful tool for classifying uterine tumors,
achieving an accuracy of 88.57%, outperforming all pre-trained models.

Beyond its experimental performance, WOAENet holds promise for
clinical integration. Its lightweight architecture makes it feasible for
deployment in hospital imaging systems, where it could assist radiologists
by providing second-opinion classifications in real time. Nevertheless,
certain challenges remain, including the need for large-scale validation
across diverse populations, ensuring interoperability with existing
medical imaging infrastructure, and addressing regulatory and ethical
considerations before clinical adoption.

Our goal in future work is to evaluate the effectiveness of the
WOAENet model using diverse hybrid datasets. Furthermore, future

TABLE 7 Performance evaluation of the proposed WOAENet model on
the KAUH-OCM.

Class Precision = Sensitivity = Specificity F1
score
Benign 82.98 79.59 92.31 81.25
Malignant 96.08 1.000 98.31 98.00
Normal 83.67 83.67 92.31 83.67
Overall 87.58 87.75 94.31 87.64
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research will focus on expanding datasets, incorporating data from
other sources, improving model interpretability, and cross-validating
itin a broader clinical setting. Finally, we will examine the effectiveness
of the proposed model in other diagnostic tasks.
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