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Introduction: Liver cancer is a leading cause of cancer-related mortality
worldwide, necessitating advanced tools for diagnosis and management.
Knowledge graphs (KGs) are crucial for advancing smart healthcare, but existing
liver cancer-specific KGs are mostly derived from literature or public databases,
lacking integration with real-world clinical data [e.g., Electronic Medical Records
(EMRs)], creating a critical gap. Furthermore, there is currently no publicly
available KGs specifically for liver cancer, creating a significant gap in structured
clinical knowledge resources.

Methods: This study proposes a novel framework to construct the first Chinese
liver cancer KG from Real-World Liver Cancer Electronic Medical Records (RLC-
EMRs). A new named entity recognition (NER) model, DERM-RoBERTa-wwm-
large-BiLSTM-CRF was developed that uses a Dynamic Entity Replacement
and Masking (DERM) strategy to address data scarcity. Knowledge fusion was
performed using the TF-IDF algorithm to standardize and integrate entities from
clinical records, the professional medical website www.XYWY.com, and the
CCMT-2019 terminology standard.

Results: The final constructed liver cancer KG contained 46,364 entities and
296,655 semantic relationships. The proposed NER model achieved a state-of-
the-art F1 score of 68.84% on the public CMeEE-v2 dataset. On the proprietary
RLC-EMRs dataset, the model demonstrated high effectiveness with a precision
of 93.23%, recall of 94.69%, and an F1 score of 93.96%. In addition, a KG-
based retrieval system was successfully developed to query for complications,
medications, and other related information.

Discussion: The findings demonstrated the effectiveness of the proposed
framework in constructing a comprehensive and clinically relevant liver cancer
KG. The novel DERM-based NER model significantly improved entity extraction
from complex medical texts. By successfully integrating real-world clinical data,
this study addresses a critical gap in existing liver cancer-specific KGs, which
are mostly derived from literature or public databases and lack integration with
real-world clinical information.
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1 Introduction

The 2025 American Cancer Society estimates that liver cancer
accounts for approximately 42,240 new cases (2.07% of all cancers),
ranking 14th among major cancer types (Siegel et al., 2025).
Furthermore, liver cancer accounts for 4.87% of all cancer-related
fatalities, equivalent to approximately 30,090 deaths, ranking 6th in
terms of cancer mortality. Particularly in China, liver cancer
remains a major burden, ranking fourth in new cancer cases
nationwide and second in cancer-related deaths, reflecting ongoing
challenges in both incidence and mortality rates despite national
prevention efforts (Chinese Society of Liver Cancer, 2025). The
most common type of primary liver cancer is hepatocellular
carcinoma (HCC), which accounts for 75-85% of (Bray et al., 2024).
Postsurgical complications of liver cancer include infection,
bleeding, liver failure, and various systemic complications. These
complications significantly affect patient outcomes and quality of
life, with some being potentially life-threatening. The complexity of
liver cancer management and its associated complications
necessitate a comprehensive understanding of the risk factors,
treatment outcomes, and potential complications. Hence, the
development of an evidence-based knowledge graph (KG) can
provide healthcare providers with a sophisticated tool for visualizing
and analyzing the intricate relationships between various risk
factors, complications, and treatment (Abu-Salih et al., 2023).

The KG was first proposed by Google in 2012 as a structured
knowledge representation of real-world entities (e.g., people,
address, events, etc.) and the relationships between them (e.g.,

» <

“lives in,” “works at,” “has,” etc.) as graphical structures. Since then,
KG has found extensive applications (Wang et al., 2020)
representation method that encodes entities (e.g., diseases,
medications, symptoms, and operations) and relationships between
entities (e.g., drug-disease treatment relationships, disease-
symptom association relationships, etc.) in the medical domain as
structured (Chen et al., 2019). Through the construction of a
medical KG, it is possible to efficiently organize, retrieve, and
reason medical knowledge, thereby facilitating applications such as
clinical decision support, medication recommendations, and
disease forecasting.

KG also uses visualization techniques to show how different
pieces of knowledge and their connections look. Specifically, it
organizes and represents knowledge using sets of “triples” that
consist of a subject, relationship, and object (Ferrucci et al., 2013).
These triples show different entities, and how they relate to each
other in each domain, where each triple is called a fact. In a KG,
nodes represent entities and edges illustrate the relationships
between them. For example, “liver cancer” can be treated as a
subject node, “right upper abdominal pain” can be treated as an
object node, and the relationship between “liver cancer” and “right
upper abdominal pain” is the “symptom” which can be treated as
an edge.

The construction of healthcare KGs is an active research area,
with many KGs being built from biomedical literature and public
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databases (Cui et al., 2025). For instance, large-scale KGs like the
Unified Medical Language System (UMLS) (Bodenreider, 2004) and
SemMedDB (Kilicoglu et al, 2012) provide broad-spectrum
medical knowledge by extracting relationships from scientific
publications. While incredibly valuable, these general biomedical
knowledge graphs are often too broad to capture the details required
for specific, complex diseases like liver cancer and lack the patient-
specific information found in clinical practice (Al Khatib et al.,
2024). Current research on medical KG construction predominantly
relies on medical literature and professional websites as data
sources, particularly in specialized disease domains such as diabetes
(Wang et al., 2020) and COVID-19 (Chatterjee et al., 2021). Recent
advancements in liver cancer-specific applications include graph-
based approaches for ontology enrichment and link prediction
(Essalah et al., 2024) and reviews of graph theory in liver disease
research (Hu et al.,, 2025). However, these works notably lack
integration with real clinical data. Specifically, systematic KG
research has been absent from the existing article on liver cancer.
Therefore, the construction of a comprehensive liver cancer KG that
incorporates real clinical data remains an urgent challenge.

To address these limitations, this paper proposes an innovative
framework for liver cancer KG construction. The main contributions
of this study are summarized as follows:

1. This paper proposes a comprehensive framework for
constructing a Chinese liver cancer KG using Real-World
Liver Cancer Electronic Medical Records (RLC-EMRs). This
approach addresses a critical gap by structuring unstructured
clinical narratives into a KG.

2. This paper proposes a tailored NER method, DERM-
RoBERTa-wwm-large-BiLSTM-CRE, which incorporates a
dynamic entity replacement and masking strategy (DERM).
The model significantly improves both accuracy and
robustness in extracting complex medical entities from
publicly dataset CMeEE-v2 and RLC-EMRs.

3. An intelligent system based on the KG is developed for
multi-hop retrieving information related to liver cancer, such
as complications, medications, foods, and so on related to
liver cancer.

2 Related work
2.1 Medical named entity recognition

NER represents a crucial aspect of natural language processing
(NLP), focusing on extracting entities with defined meanings,
including diseases, symptoms, and medicines, specifically within
medical literature. The evolution of deep learning methods has
significantly advanced Chinese medical NER in recent years. Prior
to the widespread adoption of deep learning, traditional approaches
in this field predominantly utilized rule-driven and statistical
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methodologies. Rule-based techniques rely on predefined rules and
domain-specific dictionaries for tasks like entity identification,
leveraging tools such as regular expressions and dictionary lookups.
Statistical models, including the Hidden Markov Model (HMM)
(Morwal, 2012), Maximum Entropy Markov Model (MEMM) (Saha
et al., 2009), and Conditional Random Field (CRF) (Sutton, 2012)
are frequently employed. These traditional methods offered benefits
such as straightforward implementation, notable accuracy, and
reduced computational demands in certain scenarios. These models
rely on rules and dictionaries formulated by domain experts,
require a lot of human involvement, have difficulty dealing with
complex and flexible linguistic phenomena, and have a weak
generalization ability. With the development of word vector
techniques (e.g., word2vec, Goldberg and Levy, 2014) and Glove
(Pennington et al., 2014), breakthroughs have been made in the
field of Chinese medical entity recognition (CMNER). Word vectors
can characterize words into continuous high-dimensional vectors,
thus improving the model’s ability to capture the semantics of
words. Through unsupervised learning, word vectors can be learned
from a large amount of unlabeled data, and the semantic
relationships between words can be captured effectively. However,
word vector representation is inaccurate for new words or words
with multiple meanings. In recent years, deep learning techniques
have been widely used in Chinese medical NER. The main methods
include convolutional neural networks (CNN) (Wu et al., 2017),
recurrent neural networks (RNN) (Sherstinsky, 2020), and long
short-term memory networks (LSTM) (Sherstinsky, 2020). These
methods can effectively capture the local features and long-distance
dependencies of text to improve the accuracy of NER. Automatic
learning of local features and long-distance dependencies of text
can provide better modeling of complex and flexible linguistic
phenomena. However, these methods require a large amount of
labeled data for training, and the training process is time-
consuming. With the emergence of pre-trained models, such as
BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019) and GPT3
(Brown et al., 2020), Chinese medical NER research has entered a
new era (Peng et al., 2023) introduces a TENER-based pre-trained
model that divides the NER task into two branches: one for
identifying entity boundaries and another for classifying entity
types (Tang et al., 2024) combines the Segmentation Synonym
Sentence Synthesis (SSSS) algorithm based on neighboring
vocabulary with RoOBERTa-BiLSTM-CRE The models achieved F1
scores of 91.30 and 91.35% on the CCKS-2017 dataset.

2.2 Construction of medical knowledge
graph

Medical KGs are characterized by dispersed knowledge
distribution, distinctive syntax, and non-standardized terminology,
which makes the construction of medical KGs more difficult. In
response to these challenges, researchers have undertaken diverse
approaches to construct a Chinese medical KG. For example, Zhang
et al. (2018) proposed a generative framework known as the
Conditional Relationship Variational Autoencoder, designed to
streamline data preprocessing and minimize the need for manual
annotation in the Chinese medical text corpus (Zhao et al., 2020).
To improve NER and relation extraction tasks in Clinical Electronic
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Medical Records (CEMRs), researchers have leveraged advanced
deep learning techniques. Sheng et al. (2019) developed a
comprehensive framework for a health KG, focusing on
cardiovascular disease Electronic Medical Records (EMRs). Zhou
et al. (2019) investigated developing and utilizing a “knowledge-
centric” traditional Chinese medicine KG derived from ancient
Chinese texts. However, one-way semantic relationships are
inadequate for fully representing the complexities of patient
medical processes. For example, semantic links between diseases
and diagnostic procedures include both identifying the illness and
uncovering it through detailed medical evaluation (Li et al., 2020a;
Li et al, 2020b; Li L. et al, 2020) introduces a structured
methodology for building medical KGs using large-scale EMRs,
resulting in a KG with nine distinct entity categories, 22,508
individual entities, and 579,094 quadruplets. Xiu et al. (2020)
develops a framework aimed at constructing a KG for digestive
system tumors derived from CEMRs, achieving a semantic-driven
digestive system tumor knowledge graph (DSTKG). Shang et al.
(2024) employed the Observational Medical Outcomes Partnership
(OMOP) vocabulary and a unified semantic framework to
standardize local EHR datasets for constructing KG.

Applications of medical KGs, as illustrated by the semantic web
for Chinese medicine, have captured significant interest from
researchers and the medical sector. Their value in smart use cases
like analytical data mining and personalized drug suggestions is
especially noteworthy. For example, Gong et al. (2021) introduced
a framework for Safe Medicine Recommendation (SMR), framing
the task as a link prediction challenge.

Our work on constructing liver cancer KG from CEMRs
distinguishes itself from previous efforts in several key aspects: (1)
it introduces the first KG specifically tailored for liver cancer,
diverging from the general medical KGs typically seen in prior
research; (2) it involves normalizing and interconnecting entities
like diseases, treatments, and surgical records in CEMRs with
online medical knowledge bases; and (3) adding the downstream
applications of the KG, rather than focusing only on the specific
steps of construction KG as in previous work.

3 Method

This section outlines a structured approach to construct the liver
KG from RLC-EMRs as illustrated in Figure legends (Figure 1).

3.1 Data preparation

The datasets used in this study include the publicly available
CMeEE-v2 dataset' and private dataset RLC-EMRs.

The CMeEE-v2 dataset is a widely used Chinese biomedical NER
benchmark, originally introduced in the CHIP 2020 challenge under
the CBLUE evaluation framework. It contains approximately 23,000
annotated medical sentences, including 15,000 for training, 5,000 for
development, and 3,000 for testing, with 81,020 entity mentions. The

1 https://tianchi.aliyun.com/dataset/95414
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The proposed framework of liver cancer KG construction. The procedure consists of seven key steps: (1) Data Preparation, (2) Conceptual Layer
Construction, (3) Data Preprocessing, (4) Entity Recognition, (5) Knowledge Fusion (KF), (6) KG construction, visualization and quality assessment,
(7) KG Application. It is important to note that Steps 3 and 4 often demand extensive practical experience with Chinese EMRs and online resources.

dataset covers nine medical entity categories: diseases, symptoms,
drugs, medical equipment, procedures, body parts, examination
items, microorganisms, and departments.

The RLC-EMRs dataset consisted of three parts: CEMRs, the
professional medical website XYW Y.com, and the Clinical Chinese
Medical Terminology 2019 edition (CCMT-2019). The CEMRs were
provided by the Zhujiang Hospital of Southern Medical University in
Guangzhou, containing EMRs of 304 liver cancer patients from 2015
to 2020. This recorded liver cancer patients’ information, including
admission records, medical records, surgical records, and
discharge summaries.

All patients enrolled in this study provided written informed
consent upon admission, permitting the use of their clinical data for
research purposes. To create a high-quality clinical corpus, we first
established a set of rigorous selection criteria in collaboration with
doctors from Zhujiang Hospital of Southern Medical University. For
inclusion, patient EMRs were required to have a postoperative
pathology report confirming a single, primary liver tumor and
complete immunohistochemistry results. Conversely, records were
excluded if the patient had received any form of preoperative anti-
tumor treatment, including radiofrequency ablation, hepatic artery
chemoembolization, targeted therapy, or immunotherapy, or if their
immunohistochemistry results for CK19 were missing. This stringent
selection process ensured the dataset consisted of well-documented,
primary liver cancer cases, thereby minimizing potential biases from
prior medical interventions or incomplete records.

XYWY.com is a public professional online Chinese website, it
provides comprehensive information on various diseases, including
food

recommendations, departments, and complications. In this research,

symptoms, diagnoses, treatments, medications,
semi-structured knowledge pertinent to liver cancer was extracted,
including the attributes of disease, five relationships between
symptoms and disease, disease and drugs, disease and complications,
disease and department, and disease and food.

The CCMT-2019 was published by the National Health

Commission of the People’s Republic of China. It aims to standardize
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medical terms, provide standardized medical records, classify and
code diseases, classify and code of surgical procedures, and standardize
of medical terms. In this study, non-standard entities, such as
operation recording, treatment options, disease, and symptoms in the
EMRs will be aligned with the standardized entities in the CCMT-
2019. Eventually, the aligned entities were fused with the entities from
XYWY.com to expand the dataset.

3.2 Conceptual layer design

Based on the recommendations of the hospital expert and the
characteristics of the RLC-EMRs dataset, 11 types of Liver cancer
entities were defined in this study, including patient, examination,
symptom, diseases, past history (PH), operation recording (OR),
treatment options (TO), physical examination (PE), food, drug, and
department. The source and specific definition of liver cancer entities
are shown in Table 1.

In accordance with the three-element principle of KG
construction, it is essential to define three core components during the
design of the conceptual layer: subject entity, relationship, and object
entity. With the help of hospital experts, 11 relationships between
entities and attributes are defined in this study, as shown in Figure 2.
The starting node of the arrow is the subject entity pointing to the
object entity, and the content on the arrow is the relationship. For
example, within the triad <disease-has_symptom-symptom>,
“disease” serves as the subject entity, “symptom” serves as the object
entity, and “has_symptom” denotes the relationship between the
subject and object.

3.3 Data preprocessing
The chosen EMRs underwent a de-identification process to

ensure patient privacy. Specifically, all personally identifiable
information, including patient names, ID numbers, addresses,
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TABLE 1 Eleven types of conceptual layer.

10.3389/frai.2025.1663877

Entity type Source Definition
Patient EMRs Patient ID and status (such as age >40)
Examination EMRs CT, MRI
Symptom EMRs and xywy.com Left upper abdominal pain, vomiting
Diseases EMRs and xywy.com Liver cancer
Past history EMRs Smoking history
Operation recording EMRs Cholecystectomy
Treatment options EMRs Laparoscopic right hepatic cancer resection
Physical examination EMRs Abdominal distension
Food Xywy.com Egg
Drug Xywy.com Luolian Jiaonang
Department Xywy.com Surgical oncology
FIGURE 2
The relationship between different conceptual layers.

and contact details, was removed or replaced with randomly
generated patient IDs. Each EMR was assigned a unique code to
preserve data traceability during annotation while preventing
re-identification.

In addition, normalization was applied to standardize the clinical
text and improve annotation consistency. This included unifying date
and time formats, standardizing measurement units and laboratory
values, correcting typographical errors and removing redundant
symbols or formatting inconsistencies.

Frontiers in Artificial Intelligence

Once the conceptual layer was designed, real-world Chinese EMRs
were annotated using Colabeler”. Figure 3 shows an example of
annotation in the “disease” entity. The annotation results were saved in
the Ann-Brat format, as shown in Figure 4. “T1” denotes the first entity
in the text, disease is the entity type. Numbers 280 and 291 are the start

2 https://www. jinglingbiaozhu.com/
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FIGURE 3
Example of a real-world liver cancer Chinese EMR annotation.

IMRE: BESKAKHEIBET I LAEEPERE, ZEMMEMKE, AR TEhemss, +#Z71.

TRNE: O, TREESKEE, TERE. EE. SEE0. FAEE, HEERR,

Tl #RIE 280 291

T2 FRIE 296 301

FIGURE 4
Ann-Brat format annotation.

ANEHERRBENE2E
B a1

and end positions of the disease entity in the text, respectively. The
phrase ‘dull pain in the right shoulder and back for 2 weeks’ is the disease
name of the entity. Finally, the annotated documents were converted to
the Ann-Brat format.

For the semi-structured data on the XYWY website, we crawled
information such as disease common knowledge, diagnostic methods,
and treatment plans. Through the hierarchy of paragraphs, titles, and
hyperlink information of subtitles, attributes of conditions can
be identified and extracted.

3.4 Named entity recognition

In this study, the DERM-RoBERTa-wwm-large-BiLSTM-CRF deep
learning model for liver cancer entity recognition was introduced. The
overall structure of this model is shown in Figure 5. First, the DERM
module replaces medical entities of the input sequence with standardized
terms or masks certain parts of the text. Then, the processed text is fed
into the RoOBERTa-wwm-large model to obtain high-dimension vector
representations. Next, the vector representations are fed into the BILSTM
network to extract the contextual dependencies of the sequence. Finally,
the output of the BILSTM layer is combined and passed to the CRF layer
for decoding to output label dependencies and ensure valid
label sequences.

DERM is a strategy used to process entities in NLP tasks, it helps to
address the scarcity and imbalance of data. First, dictionaries from the
Chinese Medical Entity Extraction dataset are constructed for different
entities, including disease, symptom, treatment, and examination, and
then dynamic entity replacement and masking are performed on the text
of the EMRs during the training process. The replacement and masking
strategies are shown in Figure 6. For all sequences in the EMRs, a random

3 https://tianchi.aliyun.com/dataset/144495
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number (0 < RN < 1) was used to determine whether the entity in the
sequence was replaced, masked, or did nothing. If RN < 0.3, the entities
in the constructed dictionary are selected to replace those in the
sequence. If 0.3 < RN < 0.6, a masking strategy is used. If RN > 0.6, the
entities in the sequence remain the same.

3.4.1 RoBERTa-wwm-large module

The RoBERTa-wwm-large model was selected for this study due to
its distinct advantages over other BERT-based variants, particularly for
processing Chinese text. The choice was guided by two primary factors.
First, its implementation of Whole Word Masking (WWM) is critical for
the Chinese language. Unlike standard masking that operates on
individual characters, WWM masks entire words, which is better suited
for capturing the holistic semantics of Chinese words that often comprise
multiple characters, thereby mitigating potential word segmentation
ambiguities. Second, ROBERTa features a more robust pre-training
methodology. It optimizes the original BERT architecture by training on
alarger corpus, using dynamic masking, and removing the next-sentence
prediction (NSP) objective. These enhancements lead to more powerful
and nuanced contextual embedding, which is especially beneficial for
specialized domains. RoBERTa-wwm-large leverages extensive
pre-training on a large-scale corpus of textual data. This -pre-training
enables the model to capture the contextual representations of the input
sequences. In this study, a 24-layer ROBERTa-wwm-large model is used,
which is a stack of 24 encoders.

First, the input sequences are tokenized into subworlds using Byte-
Pair Encoding (BPE), with special tokens [CLS] and [SEP] incorporated
to denote the beginning and end of each sequence. Each token is mapped
to a high-dimensional embedding of three features of tokens, which
includes token embedding (E;), position embedding (E,,), and segment
embedding (E). The resulting input to the RoOBERTa-wwm-large model
can be obtained by Equation 1:

Einput :Et+Ep+Es 1)

frontiersin.org
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FIGURE 5
The framework of DERM-RoBERTa-wwm-large-BiLSTM-CRF.

The Ejpput passes through multiple Transformer encoder layers,
and each layer updates the token representations using a self-attention
mechanism, as shown in Equation 2:

)

T
Attention(Q,K,V) = Softmax{QK]

dk

where Q, K, and V are the word vector matrices derived from Einput.
dk is the dimension of embedding. To capture diverse semantic
relationships, multiple parallel self-attention heads were employed, as
shown in Equation 3:

MultidHead (Q,K, V')

= Concat(headl,headz,. ..head,; .. .headn)WD (3)

where each head represents projections of Q, K, and V. W, is the
token embedding. Finally, the output of ROBERTa-wwm-large is a
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sequence of embedding, one for each token in the input, as shown
in Equation 4:

H=Hcys,Hi,Hy,.... Hy, Hsgp 4)
where H; eRY, d is the dimension of the embedding space. These
embeddings contain rich contextual information and serve as input
for the subsequent BiLSTM layer.

3.4.2 BiLSTM module

The BiLSTM module captures long-term dependencies and
from both the
backward directions of the input embedding. Each embedding H;

contextual information forward and
is fed into the BiLSTM as an input vector at the iy, time step. The
forward LSTM processes the embedding 7H1,H2,...,Hi,...Hn7 to
obtain the sequence of the forward hidden states h;. The
backward LSTM processes the embeddings to obtain
:Hn,Hn,l,. . .,Hi,...,Hz,HI; which is the sequence of the backward

hidden state Bi.

frontiersin.org


https://doi.org/10.3389/frai.2025.1663877
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Zhang et al. 10.3389/frai.2025.1663877
Symptom Disease
FFREATE
- =h
. - \ B
Dictionary 1. &
\ g
Replace
Dynamic p RIS, IBLE. B RN<0.3
Replacement
" ERNE: REMwE, TREEHKEE
Dynamic
masking mask 0.3<=RN<0.6
ERKE: [MASKIERRZEE, FoREEE[MASKIZEE
Do nothing BUTFAR: BERZERR (EFFE) RN>=0.6
:ig:zsdata augmentation strategy for the training set.

The two LSTMs operate independently but simultaneously to
capture both past and future dependencies in the sequence. At
each time step i, the forward hidden state Bi and backward hidden
state h; are concatenated to form a combined representation:
h; = Concat(ﬁi,ﬁi ), where h; € R?" andh is the dimension of the
hidden state in each LSTM. This concatenation ensures that each
token representation at every time step incorporates both the
preceding and succeeding contexts. On the sequence of scores
'$1,83...,8, | calculated by BiLSTM hidden states as shown in
}Iqualion 5.

S; =Whi+b (5)

where §; € R¥ is the score vector for k possible labels, and
W eR¥2P and b e R¥ are the trainable weights and biases.

3.4.3 CRF module

The CRF module plays a crucial role in NER. Instead of
making independent predictions for each token, CRF jointly
models the relationships across the entire sequence to ensure that
the predicted labels are consistent with one another. In this study,
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the CRF layer operates a score was assigned to the labels of the
input sequence, as shown in Equation 6:

n n-1
i=

Score(X,y)=YSiy + 2Ty 5. ©)
1 i-1

where X represents the input text sequence and y represents the
sequence of labels. Si,y, is the score of the ith label of the ith word,
T}y, denotes the score when label y; turns into label y;;;. The
probability of the prediction sequence is computed using Equation 7:

exp(Score(X,y))

Zy,exp(Score(X,y’)) @)

p(yIX)=

As a result, it computes the relative probability of a specific
sequence y compared to all other possible label sequences for the input
X. Finally, at inference time, the goal is to find the label sequence y*
with the highest score, as shown in Equation 8:

y* =argmax Score(X.y'") (8)
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3.5 Knowledge fusion

The KF addresses data redundancy, inconsistency, and
incompleteness in KG construction, thereby enhancing the quality
and utility of the resulting KG. KF performed after NER is applied
specifically to RLC-EMRs. This ensured the data are integrated
accurately and consistently.

In real-world Chinese EMRs, patient medical records are generally
written by different doctors. Because different doctors have different
recording habits and terminology, some entity names in EMRs are
inconsistent. In addition, there are some inconsistencies between the
entity names in EMRs and those of the professional website XY WY.
com. Therefore, the extracted entities are different. For example, while
EMRs often use Primary Hepatocellular Carcinoma( /it & 14 H- 4B it ),
healthcare websites such as XYWY.com use the simplified term
Hepatocellular Carcinoma (J &), In other cases, the
standardized surgical term Laparoscopic Liver Tumor Excision (/¥
S i UIBRK) also demonstrates term variation in clinical practice.
Some doctors document this term as Laparoscopic Liver Cancer
Resection (IR BIFR), while others record it as Laparoscopic
(EPEEHF R UBRAR)  in  their
EMR. Although both diseases and operations refer to the same entity,

Liver Tumor Resection
the difference in terminology results in the appearance of two different
entities. This discrepancy can cause problems in entity recognition,
information extraction, and KG construction. Therefore, a KF is
required to map different entities to a standard entity.

This study utilizes Term Frequency-Inverse Document Frequency
(TF-IDF) for the KE, a statistical technique commonly applied in text
mining and information retrieval to measure the relevance of entities
within a corpus. The TF-IDF approach is particularly useful in the task
of KE, where the goal is to identify and normalize entities that may
be expressed differently in various sources, such as medical records
and professional websites.

TF-IDF consists of two key elements: Term Frequency (TF),
which captures how often an entity appears in a document, and
Inverse Document Frequency (IDF). The formula for the TF is
outlined in Equation 9 as follows:

TF(1,d) = J;f;d ©)
d

where fi g represents the number of occurrences of entity t in
document d, and dd represents the total number of terms in document
d. The higher the TF(t,d) value, the more important the entity ¢ is
within that document.

The IDF measures the distinctiveness of an entity across the entire
corpus. The idea behind IDF is that common entities that appear in
many documents should be weighted less, as they do not provide as
much information in Equation 10:

(10)

N
IDF(t)=1 _
(t) Og[ldeD:tedJ

where N represents the total number of documents in the corpus, and
deD:t ed| represents the number of documents that contain an
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entity t. IDF assigns a higher weight to entities that are rare across the
corpus, making them more distinctive.

Then, the TF-IDF value for an entity t in a document d is obtained
by multiplying the TF and IDF values, as in Equation 11:

TF - IDF(t,d)=TF (t,d)* IDF(t) (11)

Finally, to normalize entities from the EMRs to the standard
entities found in XYWY.com and CCMT-2019, we computed the
cosine similarity between the TF-IDF vectors of entities in the input
vy and entity v, from the reference corpus. The cosine similarity
between two TF-IDF vectors vyand v, is calculated using Equation 12:

Vi-V,
iv,

consine similarity ( Vi,V ) = (12)

This measures the angle between the vectors, where a cosine
similarity closer to 1 indicates a high similarity between the two
entities. For disease and symptom entities, XYW Y.com serves as
a reference corpus for normalization, aligning entities with
EMRs. For other clinical entities, such as treatments and
operation recording. CCMT-2019 as a reference corpus only
normalizes these entities. This combined approach enables the
seamless integration of medical data from disparate sources.

To systematically implement this knowledge fusion process,
we propose Algorithm 1, which integrates the TF-IDF similarity
calculation with threshold-based decision making for automated
and manual entity mapping.

Algorithm 1 demonstrates the complete workflow for entity
normalization, where entities are first classified by type, then
similarity scores are computed using the TF-IDF approach
described in Equations 9-12, and finally mapped based on
predefined similarity thresholds.

This approach ensures high-confidence automatic mappings
(similarity > 0.75) while allowing manual review for borderline
cases (0.6 < similarity < 0.75). Entities with similarity scores
below 0.6 are considered as different entities that cannot
be reliably mapped to existing knowledge bases. The algorithm
employs a three-tier mapping strategy: (1) Automatic mapping
for high-confidence matches ensures efficiency in processing
clearly related entities; (2) Manual review for moderate-
confidence matches maintains accuracy by incorporating human
expertise for ambiguous cases; (3) Rejection for low-confidence
matches prevents false mappings that could introduce noise into
the knowledge graph. This balanced approach optimizes both
precision and recall in the entity normalization process while
maintaining computational efficiency.

3.6 Knowledge graph construction,
visualization and quality assessment

This study utilized the Neo4j graph database to construct the
liver cancer KG. Unlike traditional relational databases, a graph
database is designed to represent and store ontologically
structured knowledge, thereby enabling the visualization of
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Input: EMR_entities E, Knowledge bases K = {XYWY, CCMT-2019}
Output: Mapped_pairs M, Unmapped _entities U

1: Initialize M «— @, U «— @
2: for each entity e € E do

10: for each candidate c € K_target do
11:  TF e« ftd/dd

12:  TF_c « ft,d / dd for candidate ¢
13: IDF « log(N/|d e D:ted|)
14:  TFIDF e« TF e x IDF

15:  TFIDF ¢« TF ¢ x IDF

16: sim — (V1 - V2) / (IIV1]| [IV2]))
17: end for

16:

18:
19: if max_sim > 0.75 then

21: else if 0.6 <max_sim < 0.75 then

ALGORITHM 1
Knowledge fusion for EMR entity mapping.

3: if EntityType(e) = Disease V Symptom then
4: K target — XYWY

5: else

6: K target « CCMT-2019

7: endif

8:

9: // TF-IDF similarity calculation

18: best_match «— argmax(sim), maxim «— max(sim)

20: M «—MU {(e, best_match)} // Auto mapping

22:  result «— ManualReview(e, best_match, max_sim)
23: if result # null then

24: M — MU {(e, result)}  // Manual mapping
25: else

26: U«—UuU {e} // Reject

27: end if

28: else

29: U«—UU {e} // Different entity

30: endif

31: end for

32: return M, U

complex relationships between entities. Neo4j supports ACID-
compliant transactions, ensures data integrity, and uses Cypher,
a query language designed for querying graph data, which is both
simple in syntax and efficient, regardless of the size of dataset.
For this study, Neo4j was chosen to manage and visualize the data
in the Liver Cancer KG. To enhance the usability and readability
of the graph, the KG displays the top three-tier structure of the
liver cancer KG by default. Users can navigate through the graph
using the Neo4j node expansion feature to explore the different
layers of information. To enhance the visual clarity of the graph,
nodes at different levels were distinguished by color. For instance,
“Disease” nodes are represented in yellow, while “Symptom”
nodes are colored green. The treatment nodes are also depicted
in green. In addition, the semantic relationships between entities
are differentiated using specific color entities. The Liver Cancer
KG constructed in this study includes entities 46,364 and 296,655
semantic relationships, covering a wide range of liver cancer-
related topics such as symptoms, treatment options and
physical examination.

The factual quality of the KG was quantified using Triple Accuracy.
This metric is defined as the proportion of clinically correct triples
among all sampled triples deemed evaluable. S denote a set of sampled
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triples. For each triple i €S, an expert annotator assigned a label
yi € {Correct,Incorrect,Insufﬁcient Context (IC)} . The number of
evaluable triples (neff) and the number of correct triples (x) were
defined as Equation 13:

Meff = ZI{yi e {Correct,lncorrect}} JX= Zl{yi =Correct} (13)

ieS ieS

Where 1{0} is the indicator function. The Triple Accuracy (TAcc) was
subsequently calculated as:

TAcc=—— (14)

T’leﬁf

Triples labeled as IC were excluded from this calculation, and
their proportion was reported separately as an indicator of
documentation completeness or the need for alignment refinement.
A stratified random sample of 500 triples was drawn from the final,
de-identified KG. The stratification was based on major relation types
include ‘has_symptom, ‘accompany_with, ‘recommends_drug’
‘recommends_eat’ and ‘rels_diease.
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4 Results
4.1 Evaluation metrics

To quantitatively assess the performance of the NER model, these
metrics are defined in Equations 13-17. The True Positives (TP)
denote the number of predicted entities that exactly match the ground
truth in both type and boundary, False Positives (FP) represent
predicted entities that are not present in the ground truth (including
cases with incorrect type or boundary), and False Negatives (FN) refer
to ground-truth entities that were not detected by the model. Precision
measures the proportion of correctly identified entities among all
predicted entities. It indicates the model’s accuracy in positive
predictions. Recall measures the proportion of actual entities that the
model correctly identifies. It reflects the model’s ability to capture all
relevant instances. The F1 score is the harmonic mean of P and R. It
provides a balanced evaluation metric that accounts for both
FP and FN.

TP

10.3389/frai.2025.1663877

analysis. Table 2 presents the precision recall and F1 scores of multiple
models, including the proposed DERM-RoBERTa-wwm-large-
BiLSTM-CRF model, compared with several baseline models.

The comparison reveals that the DERM-RoBERTa-wwm-large-
BiLSTM-CRF model significantly outperforms existing baseline
models on the CMeEE-v2 dataset. The DERM-RoBERTa-wwm-large-
BiLSTM-CRF model achieved an F1 score of 68.84%. This represents
a substantial improvement over TPORE at 64.94% and FLAT at
64.03%. The recall performance of DERM-RoBERTa-wwm-large-
BiLSTM-CREF reaches 69.18% which is comparable to FLAT at 66.42%.
The model demonstrated exceptional precision at 68.50% and
surpassed all the other models. Additionally, our model exceeds the
performance of recent LLM-based approaches, including
ChatGLM-6B with advanced decoding strategies at 67.45% F1 score,
GPT-4 under few-shot prompting at 57.2% F1 score, and ChatGPT
GPT-3.5 under few-shot prompting at 46.9% F1 score. These results
indicate that DERM-RoBERTa-wwm-large-BiLSTM-CREF possesses
clear advantages for entity recognition tasks, showing significant
performance improvements compared to baseline models such as

p=— " (15)  Simple-Lexicon and Lattice-LSTMTo explore the contribution of each
TP+FP module within the DERM-RoBERTa-wwm-large-BiLSTM-CRF
T model, a series of ablation experiments were conducted. M1 represents
R= _r (16) DERM, and M2 represents the BiLSTM-CRF module. The
TP+EN experiments gradually removed different modules and compared the
changes in accuracy, recall, and F1 score. The results are presented in

2#(P*R)

Fl=—"\ "/ (17)  Table 3.

(P +R) In Experiment 1, both M1 and M2 were removed, leaving the

4.2 CMeEE-v2 experimental results and
analysis

The experimental results on the CMeEE-v2 dataset demonstrated
the performance of the different models through comprehensive

base RoBERTa-wwm-large model. The accuracy was 63.12%, the
recall was 60.22%, and the F1 score was 61.65%. In Experiment 2,
only the BILSTM-CRF module was used. The accuracy was 62.62%,
recall increased to 68.00%, and F1 score rose to 65.20%. In
Experiment 3, only the DERM module was used. The accuracy was
68.39%, the recall was 67.85%, and the F1 score was 68.13%. In
Experiment 4, all modules were kept, which was the full model
structure. The accuracy reached 68.50%, the recall was 69.18%, and

TABLE 2 Comparison of the proposed method with the prior works on CMeEE-v2.

Model Precision Recall F1

Lattice-LSTM (Zhang and Yang, 2018) 61.26% 62.33% 61.79%
Simple-Lexicon (Ma et al., 2019) 61.00% 60.31% 60.64%
FLAT (Li et al., 2020a; Li et al., 2020b; Li L. et al., 2020) 61.83% 66.42% 64.03%
TPORE (Emami et al., 2020) 63.73% 66.25% 64.94%
ChatGLM-6B (Xu et al,, 2024) - - 67.45%
GPT-4 (Yang et al., 2024) - - 65.42%
DERM-RoBERTa-wwm-large-BiLSTM-CRF (Ours) 68.50% 69.18% 68.84%

TABLE 3 Ablation study of the model on CMeEE-v2.

Experiment Precision Recall

number

Experiment 1 X X 63.12% 60.22% 61.65%
Experiment 2 X \/ 62.62% 68.00% 65.20%
Experiment 3 \/ X 68.39% 67.85% 68.13%
Experiment 4 v v 68.50% 69.18% 68.84%
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F1 score was 68.84%. This was the best performance among
all experiments.

The results show that adding any module improves model
performance. Compared to the baseline model, maintaining the
BiLSTM-CRF (Experiment 2) increased recall and F1 score. This
shows that BiLSTM-CRF is important for optimizing label
dependencies and improving entity coverage. The DERM strategy
(Experiment 3) led to a greater performance improvement. Its F1
score was close to the full model, indicating that DERM enhances
semantic modeling and contextual understanding. Finally, the
full model (Experiment 4) performed best in all three metrics.
This shows that the integration of M1 and M2 modules has
complementary advantages. The DERM strategy enhances the
generalization ability of model for complex entities. The
BiLSTM-CRF structure improves the modeling of label
sequence dependencies.

4.3 RLC-EMRs experimental results and
analysis

4.3.1 Entity recognition results and analysis

In this study, entity recognition was performed based on the
definitions provided in the conceptual layer. Table 4 presents a
comprehensive comparison of the entity counts before and after the
fusion process. The initial entity recognition identified 11 distinct
entity types with significant variations in their quantities. Notably,
after the fusion process, certain entity categories, such as
Examination, Diseases, and Symptoms, showed substantial increases
in their numbers. For example, the number of disease entities
increased from 449 to 9,037, while symptom entities expanded from
136 to 6,789. Additionally, new entity types emerged post-fusion,
including food (4,870), drug (3,828), and department (54). Table 5
provides detailed statistics on the relationships between different
entity types in the KG. The relationship distribution reveals that
“recommand_drug” and “has_symptom” are the most frequent
relationships, with 59,467 and 54,717 instances, respectively. Food
recommendations also played a significant role, with “recommand_
eat” (40,236), “no_eat” (22,247), and “do_eat” (22,238) relationships
being prominent. Clinical relationships, such as “rels_diseases”

TABLE 4 Statistics on the number of entities.

10.3389/frai.2025.1663877

(15,289) and “acompany_with” (12,029), demonstrate the complex
interconnections between different medical entities in the KG.

A Python script was then employed to transform the Ann-Brat
format to the BIO format, which is often used as the standard format
for NER tasks. The dataset was split into training, validation, and
testing subsets in an 8:1:1 ratio and subsequently fed into the deep
learning model for processing. We conducted experiments to evaluate
and compare the performance of the four models in recognizing
entities from EMRs. The models include DERM-RoBERTa-wwm-
large-BiLSTM-CRE, RoBERTa-wwm-large-BiLSTM-CRF (Cui et al.,
2023), DERM-BERT-large-BiLSTM-CRE, BERT-large-BiLSTM-CRF
(Dai et al., 2019), GPT-4, ChatGLM-6B and Word2vec-BiLSTM-CRF
(Luo et al,, 2018). The experiments focus on seven types of entities in
EMRs: Examination, Disease, Symptom, Past History, Operating
Recording, Treatment Options, and Physical Examination the results
of the four models are shown in Table 6.

The proposed DERM-RoBERTa-wwm-large-BiLSTM-CRF model
(F1 score: 94.65%, precision: 95.36%, recall: 93.94%) demonstrates
substantial improvements over the BERT-large-BiLSTM-CRF baseline
model (F1 score: 90.33%, precision: 89.69%, recall: 90.98%).
Specifically, the model achieves improvements of 4.3% in F1 score,
5.8% in precision, and 3.0% in recall compared to the baseline. These
significant improvements indicate the effectiveness of domain-specific
adaptations and advanced pre-training strategies.

The Word2vec-BiLSTM-CRF model (F1 score: 68.40%, precision:
69.29%, recall: 67.53%) showed considerably lower performance
compared to the DERM-BERT-large-BiLSTM-CRF model (F1 score:
93.96%, precision: 94.69%, recall: 93.24%), with differences of 25.97,
25.40, and 25.14% in precision, recall, and F1 score, respectively. This
demonstrates the superiority of contextualized word embedding over
static embedding in EMR entity recognition.

The RoBERTa-wwm-large-BiLSTM-CRF model (F1 score:
93.84%, precision: 94.46%, recall: 93.23%) also significantly
outperformed the Word2vec-BiLSTM-CRF baseline, showing
improvements of 25.04, 25.17, and 25.00% in precision, recall, and F1
score, respectively. This highlights the advantages of advanced
pre-training strategies in capturing contextualized features.

The  DERM-RoBERTa-wwm-large-BiLSTM-CRF
demonstrated consistent improvements over RoBERTa-large-
BiLSTM-CREF (F1 score: 93.84%, precision: 94.46%, recall: 93.23%),

model

Entity type Number (before fusion) Number (after fusion)
Patients 304 304

Examination 113 3,677

Diseases 449 9,037

Symptom 136 6,789

Past history 420 420

Operation recording 337 337

Treatment options 420 420

Physical examination 324 325

Food / 4,870

Drug / 3,828

Department / 54
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TABLE 5 Statistics on the relationship of entities.

10.3389/frai.2025.1663877

Relationship type Number

recommand_drug 59,467
has_symptom 54,717
recommand_eat 40,236
need_check 39,423
no_eat 22,247
do_eat 22,238
drugs_of 17,315
rels_diseases 15,289
common_drug 14,649
acompany_with 12,029
belongs_to 8,844
rels_body 1,536
rels_operation 752
rels_disease 695
rels_symptom 584
rels_check 377
rels_treatment 288
rels_condition 240

TABLE 6 Entity recognition evaluation result of different models in the EMRs.

Model Precision Recall FiScore
DERM-RoBERTa-wwm-large-BiLSTM-CRF (Ours) 95.36% 93.94% 94.65%
RoBERTa-wwm-large-BiLSTM-CRF 94.46% 92.23% 93.84%
DERM-BERT-large-BiLSTM-CRF 94.69% 93.24% 93.96%
BERT-large-BiLSTM-CRF 89.69% 90.98% 90.33%
GPT-4 88.42% 86.75% 87.58%
ChatGLM-6B 82.13% 79.86% 80.98%
Word2vec-BiLSTM-CRF 69.29% 67.53% 68.4%

with increases of 0.80, 0.90, and 0.70% in accuracy, recall, and F1
score. Similarly, when compared to DERM-BERT-large-BiLSTM-CRF
(F1 score: 93.96%, precision: 94.69%, recall: 93.24%), the model
showed improvements of 0.68, 0.73, and 0.70% across these metrics.

The GPT-4 model (F1 score: 87.58%, precision: 88.42%, recall:
86.75%) showed considerable performance gaps compared to our
proposed model, with differences of 7.07, 6.94, and 7.19% in F1 score,
precision, and recall, respectively. This demonstrates the limitations of
general-purpose large language models in specialized medical entity
recognition tasks, even when employing few-shot learning strategies.

The ChatGLM-6B model (F1 score: 80.98%, precision: 82.13%,
recall: 79.86%) exhibited even larger performance gaps compared to
the proposed model, with differences of 13.67, 13.23, and 14.08% in
F1 score, precision, and recall, respectively. These substantial
differences highlight the advantages of domain-specific pre-training
and task-specific architectural design over general-purpose language
models in medical NER applications.

Table 7 shows the application of the DERM-RoBERTa-wwm-
large-BiLSTM-CRF method to calculate F1 scores, precision, and
recall for each of the seven significant entities within the test dataset.
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Analysis of the table reveals that the operation entity achieved the
highest F1 score of 100%, while the symptoms entity recorded the
lowest with an F1 score of 86.06%. This result demonstrates the
model’s capacity for generalization in small sample datasets.

In conclusion, the DERM-Roberta-large-BiLSTM-CRF model
achieved the best performance among all evaluated models,
demonstrating that domain-specific fine-tuning combined with
advanced pre-training strategies significantly enhances entity
recognition in EMRs.

4.3.2 Knowledge fusion results and analysis

Figure 7 shows a heatmap of TF-IDF vector similarity scores
among different liver cancer-related terms. The similarity matrix
reveals significant semantic overlap between certain disease
entities. Notably, hepatocellular carcinoma (50 & M /H 4Bl )) is
in EMR, and the corpus content is primary peritoneal carcinoma
(& VERF), liver cancer (%), renal cell carcinoma ('S 40 ity
J#) and primary liver cancer of the elderly primary hepatocellular
carcinoma (&4 AJGUR MEIF 4B IIE)). Hepatocellular carcinoma
(S & VT 4B if194%) and primary peritoneal carcinoma (/7 & )i
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TABLE 7 Precision, recall, and F1 score in recognition of different entity types on DERM-RoBERTa-wwm-large-BiLSTM-CRF.

Entity type Precision Recall F1

Disease 92.49% 93.02% 92.75%
Body check 91.59% 92.03% 91.80%
Symptom 85.57% 86.56% 86.06%
Condition 88.47% 88.98% 88.72%
Check 92.13% 92.13% 92.13%
Treatment 94.47% 93.86% 94.16%
Operation 100% 100% 100%

[RA AT (Primary Liver Cancer)

B4 (Liver Cancer)

EEANRLKMFFRE (Elderly Primary Liver Cancer)

'EYBARYE (Renal Cell Carcinoma)

[R&Z MRS (Primary Hepatocellular Carcinoma)

[RAR AT B EEARRY SHERE RREFHRE
Primary Liver  Liver Cancer B Renal Cell b
Cancer Elderly Primary ~ Carcinoma Primary

FIGURE 7
Visualization of TF-IDF vectors.
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J#) demonstrate a high cosine similarity score of 0.75, indicating
substantial semantic equivalence. This strong correlation suggests
these terms refer to the same clinical entity despite variations in
terminology. Based on this high similarity score and medical
domain knowledge, these entities were merged into our KG to
maintain consistency and reduce redundancy. The fusion of these
entities not only standardizes the disease representation but also
enhances the overall quality and reliability of the KG structure.
Figures 8A,B illustrate the KG before and after KF for Patient
ID “2,490,513_1 This graph aligns disease and symptom entities
with XYWY.com website, significantly enhancing the patients’
related entities and relationships. Such enrichment not only adds
value to patient data but also facilitates future downstream
applications of KG. First, the TF-IDF algorithm computes the
vectorizer of the TF-IDF using the disease corpus of XYW Y.com
as input. Then, the disease entities appearing in the EMRs are used
as queries, and the cosine similarity between each query and the
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entities in the TF-IDF vectorizer is calculated. Finally, a certain
threshold is set, and the output with the highest similarity is used
as the target matching entity for the query, thus completing the
knowledge matching.

4.3.3 KG construction results and analysis

We manually reviewed the knowledge graph to evaluate its factual
accuracy. The overall triple accuracy was 93.5%. This high score
confirms that the constructed KG is reliable. For this assessment,
we sampled 500 triples from five major relation categories. Experts
found that only 10 triples had IC and were excluded from the accuracy
calculation. The remaining 490 triples were assessed for correctness
against established clinical guidelines. Table 8 presents the detailed
results. The analysis shows a consistently high accuracy across all
relation types, which indicates our method for building the graph is
robust. The ‘has_symptom’ relation had the highest accuracy at 94.3%.
Other key relations were also very accurate. For example,
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(A) KG before KF for Patient ID "2490513.” (B) KG after KF for Patient ID "2490513."

TABLE 8 Triple accuracy by relation type.

Relation type Sampled st e _Denominator Correct Incorrect Accuracy
context (=Sampled-IC)
has_symptom 160 2 158 149 9 94.30%
accompany_with 110 3 107 100 7 93.46%
recommand_drug 90 2 88 82 6 93.18%
recommand_eat 80 2 78 72 6 92.31%
rels_diseases 60 1 59 55 4 93.22%
Overall 500 10 490 458 32 93.47%

‘accompany_with’ scored 93.5%, ‘recommend_drug’ scored 93.2% and
‘recommend_eat’ were also highly reliable with an accuracy of 92.3%.
The expert-validated accuracy across diverse topics confirms the
factual integrity of the KG. Therefore, the graph provides a strong
foundation for developing future tools, such as systems for clinical
decision support or patient education.

Finally, we constructed a comprehensive liver cancer KG
containing 11 types of entities, with a total of 46,365 entities and
296,655 triples, as shown in Figure 9. The magnified section focuses
on patient ID “2622541_1,” displaying the connections between the
patient and their specific diseases, symptoms, and operation recording,
demonstrating the practical application of our KG in representing
individual patient cases. In addition, the patient entity has its basic
attributes, such as nation, age, and sex. For example, Figure 10 shows
that Patient 2,490,513 _1 is used as the center to associate the proxy
nodes, including examination, symptoms, diseases, past history,
operation recording, treatment options, and physical examination.
Then, based on these proxy nodes, specific disease, symptom, and
treatment nodes are identified.

Complication retrieval is an application of liver cancer KGs,
allowing the search and query of complications using keywords or
logical relationships. Complication retrieval provides insights and
references for medical professionals, helping to optimize diagnosis
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and treatment strategies. Utilizing KG for liver cancer, it can
efficiently associate patients with diseases and diseases with
complications in the form of a triple. Neo4j allows users to
customize advanced Cypher queries. For example, the Cypher
query statement can be used to query the diseases associated with
patient ID “2454356_3” and their related complication s through
the “rels_disease” and “accompany_with” relationships. As shown
in Figure 11, it is quick and easy to identify a disease that is
accompanied by complications.

5 Discussion

This study shows the feasibility and effectiveness of building
a domain-specific liver cancer KG from diverse Chinese real-
world data sources. We integrated EMRs, standardized medical
terms, and reliable online medical resources. Our DERM-
RoBERTa-wwm-large-BiLSTM-CRF model outperformed strong
baseline models in NER. It achieved this on both the public
CMeEE-v2 dataset and our private RLC-EMRs dataset. These
gains in entity recognition accuracy improve the KG’s overall
quality. Precise entity extraction supports reliable graph-based
clinical applications downstream.
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FIGURE 9
Overview of liver cancer KG.
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Our approach establishes a strong methodological baseline and
serves as a foundational step for future enhancement. The use of a
clinical knowledge base from a single medical center and website
provided a high-quality, internally consistent dataset, enabling
rigorous validation of our data extraction and KG construction
pipeline while demonstrating its effectiveness in capturing detailed
liver cancer insights. However, as real-world clinical data, our sample
of 304 liver cancer patients from a single institution may introduce
inherent biases. Furthermore, in broader real-world deployments,
conflicting or inconsistent information across data sources is
inevitable. While the current single-institution dataset largely
minimized this issue, future expansions will require explicit strategies
to ensure reliability.

Building on our solid proof-of-concept, the next logical steps are
designed to directly address these challenges above. To enhance
generalizability and mitigate bias, we will incorporate EMRs from
multiple, diverse partner institutions. To handle data conflicts,
we will implement explicit strategies such as source reliability
weighting and expert-in-the-loop adjudication. This dual approach
of expanding data diversity while ensuring its reliability is crucial for
creating a comprehensive and truly trustworthy multi-layered view
of liver cancer, especially as we integrate complex multi-modal data
like genomic information (Eralp and Sefer, 2024).
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Similarly, our current knowledge fusion process, which leverages
TF-IDF, proved highly effective for rapid and reliable lexical entity
normalization. To further elevate the graph’s semantic intelligence,
we plan to replace TF-IDF with large language model-based
contextual embedding to enable more nuanced entity linking and
knowledge integration (Yang et al., 2024). These models demonstrate
a superior ability to understand the complex semantics and context
of medical entities compared to traditional similarity measures.

Recognizing that the long-term value of a clinical knowledge
graph depends on its ability to evolve, we have also designed a
comprehensive strategy to transition our KG from a static snapshot
into a dynamic clinical asset. Building on our proposed incremental
update framework, which continuously processes new EMRs,
clinical guidelines, and emerging literature (Xu et al., 2024), we will
incorporate a human-in-the-loop validation workflow. This ensures
that as the graph scales, its clinical accuracy and trustworthiness are
maintained through expert review. This forward-looking
architecture, supported by the technical scalability of our graph
database, is crucial for sustained clinical relevance in a fast-moving
field like oncology.

Ultimately, the goal of this work is to create a dynamic
knowledge asset that can power advanced clinical decision support
systems. Once enhanced with multi-modal data and deeper
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inference capabilities, the KG could serve as the backbone for
sophisticated predictive models. For example, it could provide the
structured knowledge required to apply graph neural networks for
forecasting patient-specific outcomes, such as predicting drug
responses via diffusion-based graph attention networks (Sefer,
2025). This bridges the gap between foundational knowledge
representation and actionable, personalized medicine.

6 Conclusion

This study’s key contribution is the creation of a workflow that
extracts KGs from Chinese EMRs, aiming to support the
development and application of Traditional Chinese Medicine KGs
in disease diagnosis and treatment. In this study, the conceptual
layer of the KG was developed based on primary liver cancer
treatment guidelines and expert consultations. The DERM-
RoBERTa-wwm-large-BiLSTM-CRF model was used to extract
entities, including patients, examinations, symptoms, and
treatments, from EMRs. The model demonstrated strong
performance on the public CMeEE-v2 dataset with an F1 score of
68.84%, outperforming existing baseline models. When applied to
RLC-EMRs, the proposed approach achieved a 4.3% improvement
in the F1 score, along with a 5.8% increase in precision and a 3.0%
enhancement in recall compared to the baseline model. Next, the
entities were standardized using CCMT-2019 and combined with
XYWY.com for KF. The resulting triplets were subsequently stored

in the Neo4j database.

Frontiers in Artificial Intelligence 18

Utilizing this conceptual layer design, a KG was constructed to
enable intelligent diagnosis and treatment recommendations for liver
cancer. Through an evaluation of the conceptual layer design, data
layer construction, and application layer functionality, the rationality,
effectiveness, and practicality are validated. This study offers a
framework for efficiently designing and building KGs applicable to
diagnosing and treating other diseases.

Looking forward, our methodology can be generalized to other
complex diseases. Future work will focus on enriching the KG with
multi-center data for better representation and incorporating multi-
modal information for deeper insights. By developing automated
update mechanisms and integrating with advanced Al, this
framework can evolve into a dynamic and truly supportive clinical
knowledge resource.
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