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Introduction: Liver cancer is a leading cause of cancer-related mortality 
worldwide, necessitating advanced tools for diagnosis and management. 
Knowledge graphs (KGs) are crucial for advancing smart healthcare, but existing 
liver cancer-specific KGs are mostly derived from literature or public databases, 
lacking integration with real-world clinical data [e.g., Electronic Medical Records 
(EMRs)], creating a critical gap. Furthermore, there is currently no publicly 
available KGs specifically for liver cancer, creating a significant gap in structured 
clinical knowledge resources.
Methods: This study proposes a novel framework to construct the first Chinese 
liver cancer KG from Real-World Liver Cancer Electronic Medical Records (RLC-
EMRs). A new named entity recognition (NER) model, DERM-RoBERTa-wwm-
large-BiLSTM-CRF was developed that uses a Dynamic Entity Replacement 
and Masking (DERM) strategy to address data scarcity. Knowledge fusion was 
performed using the TF-IDF algorithm to standardize and integrate entities from 
clinical records, the professional medical website www.XYWY.com, and the 
CCMT-2019 terminology standard.
Results: The final constructed liver cancer KG contained 46,364 entities and 
296,655 semantic relationships. The proposed NER model achieved a state-of-
the-art F1 score of 68.84% on the public CMeEE-v2 dataset. On the proprietary 
RLC-EMRs dataset, the model demonstrated high effectiveness with a precision 
of 93.23%, recall of 94.69%, and an F1 score of 93.96%. In addition, a KG-
based retrieval system was successfully developed to query for complications, 
medications, and other related information.
Discussion: The findings demonstrated the effectiveness of the proposed 
framework in constructing a comprehensive and clinically relevant liver cancer 
KG. The novel DERM-based NER model significantly improved entity extraction 
from complex medical texts. By successfully integrating real-world clinical data, 
this study addresses a critical gap in existing liver cancer-specific KGs, which 
are mostly derived from literature or public databases and lack integration with 
real-world clinical information.
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1 Introduction

The 2025 American Cancer Society estimates that liver cancer 
accounts for approximately 42,240 new cases (2.07% of all cancers), 
ranking 14th among major cancer types (Siegel et  al., 2025). 
Furthermore, liver cancer accounts for 4.87% of all cancer-related 
fatalities, equivalent to approximately 30,090 deaths, ranking 6th in 
terms of cancer mortality. Particularly in China, liver cancer 
remains a major burden, ranking fourth in new cancer cases 
nationwide and second in cancer-related deaths, reflecting ongoing 
challenges in both incidence and mortality rates despite national 
prevention efforts (Chinese Society of Liver Cancer, 2025). The 
most common type of primary liver cancer is hepatocellular 
carcinoma (HCC), which accounts for 75–85% of (Bray et al., 2024). 
Postsurgical complications of liver cancer include infection, 
bleeding, liver failure, and various systemic complications. These 
complications significantly affect patient outcomes and quality of 
life, with some being potentially life-threatening. The complexity of 
liver cancer management and its associated complications 
necessitate a comprehensive understanding of the risk factors, 
treatment outcomes, and potential complications. Hence, the 
development of an evidence-based knowledge graph (KG) can 
provide healthcare providers with a sophisticated tool for visualizing 
and analyzing the intricate relationships between various risk 
factors, complications, and treatment (Abu-Salih et al., 2023).

The KG was first proposed by Google in 2012 as a structured 
knowledge representation of real-world entities (e.g., people, 
address, events, etc.) and the relationships between them (e.g., 
“lives in,” “works at,” “has,” etc.) as graphical structures. Since then, 
KG has found extensive applications (Wang et  al., 2020) 
representation method that encodes entities (e.g., diseases, 
medications, symptoms, and operations) and relationships between 
entities (e.g., drug-disease treatment relationships, disease-
symptom association relationships, etc.) in the medical domain as 
structured (Chen et  al., 2019). Through the construction of a 
medical KG, it is possible to efficiently organize, retrieve, and 
reason medical knowledge, thereby facilitating applications such as 
clinical decision support, medication recommendations, and 
disease forecasting.

KG also uses visualization techniques to show how different 
pieces of knowledge and their connections look. Specifically, it 
organizes and represents knowledge using sets of “triples” that 
consist of a subject, relationship, and object (Ferrucci et al., 2013). 
These triples show different entities, and how they relate to each 
other in each domain, where each triple is called a fact. In a KG, 
nodes represent entities and edges illustrate the relationships 
between them. For example, “liver cancer” can be  treated as a 
subject node, “right upper abdominal pain” can be treated as an 
object node, and the relationship between “liver cancer” and “right 
upper abdominal pain” is the “symptom” which can be treated as 
an edge.

The construction of healthcare KGs is an active research area, 
with many KGs being built from biomedical literature and public 

databases (Cui et al., 2025). For instance, large-scale KGs like the 
Unified Medical Language System (UMLS) (Bodenreider, 2004) and 
SemMedDB (Kilicoglu et  al., 2012) provide broad-spectrum 
medical knowledge by extracting relationships from scientific 
publications. While incredibly valuable, these general biomedical 
knowledge graphs are often too broad to capture the details required 
for specific, complex diseases like liver cancer and lack the patient-
specific information found in clinical practice (Al Khatib et al., 
2024). Current research on medical KG construction predominantly 
relies on medical literature and professional websites as data 
sources, particularly in specialized disease domains such as diabetes 
(Wang et al., 2020) and COVID-19 (Chatterjee et al., 2021). Recent 
advancements in liver cancer-specific applications include graph-
based approaches for ontology enrichment and link prediction 
(Essalah et al., 2024) and reviews of graph theory in liver disease 
research (Hu et  al., 2025). However, these works notably lack 
integration with real clinical data. Specifically, systematic KG 
research has been absent from the existing article on liver cancer. 
Therefore, the construction of a comprehensive liver cancer KG that 
incorporates real clinical data remains an urgent challenge.

To address these limitations, this paper proposes an innovative 
framework for liver cancer KG construction. The main contributions 
of this study are summarized as follows:

	 1.	 This paper proposes a comprehensive framework for 
constructing a Chinese liver cancer KG using Real-World 
Liver Cancer Electronic Medical Records (RLC-EMRs). This 
approach addresses a critical gap by structuring unstructured 
clinical narratives into a KG.

	 2.	 This paper proposes a tailored NER method, DERM-
RoBERTa-wwm-large-BiLSTM-CRF, which incorporates a 
dynamic entity replacement and masking strategy (DERM). 
The model significantly improves both accuracy and 
robustness in extracting complex medical entities from 
publicly dataset CMeEE-v2 and RLC-EMRs.

	 3.	 An intelligent system based on the KG is developed for 
multi-hop retrieving information related to liver cancer, such 
as complications, medications, foods, and so on related to 
liver cancer.

2 Related work

2.1 Medical named entity recognition

NER represents a crucial aspect of natural language processing 
(NLP), focusing on extracting entities with defined meanings, 
including diseases, symptoms, and medicines, specifically within 
medical literature. The evolution of deep learning methods has 
significantly advanced Chinese medical NER in recent years. Prior 
to the widespread adoption of deep learning, traditional approaches 
in this field predominantly utilized rule-driven and statistical 
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methodologies. Rule-based techniques rely on predefined rules and 
domain-specific dictionaries for tasks like entity identification, 
leveraging tools such as regular expressions and dictionary lookups. 
Statistical models, including the Hidden Markov Model (HMM) 
(Morwal, 2012), Maximum Entropy Markov Model (MEMM) (Saha 
et al., 2009), and Conditional Random Field (CRF) (Sutton, 2012) 
are frequently employed. These traditional methods offered benefits 
such as straightforward implementation, notable accuracy, and 
reduced computational demands in certain scenarios. These models 
rely on rules and dictionaries formulated by domain experts, 
require a lot of human involvement, have difficulty dealing with 
complex and flexible linguistic phenomena, and have a weak 
generalization ability. With the development of word vector 
techniques (e.g., word2vec, Goldberg and Levy, 2014) and Glove 
(Pennington et al., 2014), breakthroughs have been made in the 
field of Chinese medical entity recognition (CMNER). Word vectors 
can characterize words into continuous high-dimensional vectors, 
thus improving the model’s ability to capture the semantics of 
words. Through unsupervised learning, word vectors can be learned 
from a large amount of unlabeled data, and the semantic 
relationships between words can be captured effectively. However, 
word vector representation is inaccurate for new words or words 
with multiple meanings. In recent years, deep learning techniques 
have been widely used in Chinese medical NER. The main methods 
include convolutional neural networks (CNN) (Wu et al., 2017), 
recurrent neural networks (RNN) (Sherstinsky, 2020), and long 
short-term memory networks (LSTM) (Sherstinsky, 2020). These 
methods can effectively capture the local features and long-distance 
dependencies of text to improve the accuracy of NER. Automatic 
learning of local features and long-distance dependencies of text 
can provide better modeling of complex and flexible linguistic 
phenomena. However, these methods require a large amount of 
labeled data for training, and the training process is time-
consuming. With the emergence of pre-trained models, such as 
BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019) and GPT3 
(Brown et al., 2020), Chinese medical NER research has entered a 
new era (Peng et al., 2023) introduces a TENER-based pre-trained 
model that divides the NER task into two branches: one for 
identifying entity boundaries and another for classifying entity 
types (Tang et  al., 2024) combines the Segmentation Synonym 
Sentence Synthesis (SSSS) algorithm based on neighboring 
vocabulary with RoBERTa-BiLSTM-CRF. The models achieved F1 
scores of 91.30 and 91.35% on the CCKS-2017 dataset.

2.2 Construction of medical knowledge 
graph

Medical KGs are characterized by dispersed knowledge 
distribution, distinctive syntax, and non-standardized terminology, 
which makes the construction of medical KGs more difficult. In 
response to these challenges, researchers have undertaken diverse 
approaches to construct a Chinese medical KG. For example, Zhang 
et  al. (2018) proposed a generative framework known as the 
Conditional Relationship Variational Autoencoder, designed to 
streamline data preprocessing and minimize the need for manual 
annotation in the Chinese medical text corpus (Zhao et al., 2020). 
To improve NER and relation extraction tasks in Clinical Electronic 

Medical Records (CEMRs), researchers have leveraged advanced 
deep learning techniques. Sheng et  al. (2019) developed a 
comprehensive framework for a health KG, focusing on 
cardiovascular disease Electronic Medical Records (EMRs). Zhou 
et al. (2019) investigated developing and utilizing a “knowledge-
centric” traditional Chinese medicine KG derived from ancient 
Chinese texts. However, one-way semantic relationships are 
inadequate for fully representing the complexities of patient 
medical processes. For example, semantic links between diseases 
and diagnostic procedures include both identifying the illness and 
uncovering it through detailed medical evaluation (Li et al., 2020a; 
Li et  al., 2020b; Li L. et  al., 2020) introduces a structured 
methodology for building medical KGs using large-scale EMRs, 
resulting in a KG with nine distinct entity categories, 22,508 
individual entities, and 579,094 quadruplets. Xiu et  al. (2020) 
develops a framework aimed at constructing a KG for digestive 
system tumors derived from CEMRs, achieving a semantic-driven 
digestive system tumor knowledge graph (DSTKG). Shang et al. 
(2024) employed the Observational Medical Outcomes Partnership 
(OMOP) vocabulary and a unified semantic framework to 
standardize local EHR datasets for constructing KG.

Applications of medical KGs, as illustrated by the semantic web 
for Chinese medicine, have captured significant interest from 
researchers and the medical sector. Their value in smart use cases 
like analytical data mining and personalized drug suggestions is 
especially noteworthy. For example, Gong et al. (2021) introduced 
a framework for Safe Medicine Recommendation (SMR), framing 
the task as a link prediction challenge.

Our work on constructing liver cancer KG from CEMRs 
distinguishes itself from previous efforts in several key aspects: (1) 
it introduces the first KG specifically tailored for liver cancer, 
diverging from the general medical KGs typically seen in prior 
research; (2) it involves normalizing and interconnecting entities 
like diseases, treatments, and surgical records in CEMRs with 
online medical knowledge bases; and (3) adding the downstream 
applications of the KG, rather than focusing only on the specific 
steps of construction KG as in previous work.

3 Method

This section outlines a structured approach to construct the liver 
KG from RLC-EMRs as illustrated in Figure legends (Figure 1).

3.1 Data preparation

The datasets used in this study include the publicly available 
CMeEE-v2 dataset1 and private dataset RLC-EMRs.

The CMeEE-v2 dataset is a widely used Chinese biomedical NER 
benchmark, originally introduced in the CHIP 2020 challenge under 
the CBLUE evaluation framework. It contains approximately 23,000 
annotated medical sentences, including 15,000 for training, 5,000 for 
development, and 3,000 for testing, with 81,020 entity mentions. The 

1  https://tianchi.aliyun.com/dataset/95414
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dataset covers nine medical entity categories: diseases, symptoms, 
drugs, medical equipment, procedures, body parts, examination 
items, microorganisms, and departments.

The RLC-EMRs dataset consisted of three parts: CEMRs, the 
professional medical website XYWY.com, and the Clinical Chinese 
Medical Terminology 2019 edition (CCMT-2019). The CEMRs were 
provided by the Zhujiang Hospital of Southern Medical University in 
Guangzhou, containing EMRs of 304 liver cancer patients from 2015 
to 2020. This recorded liver cancer patients’ information, including 
admission records, medical records, surgical records, and 
discharge summaries.

All patients enrolled in this study provided written informed 
consent upon admission, permitting the use of their clinical data for 
research purposes. To create a high-quality clinical corpus, we first 
established a set of rigorous selection criteria in collaboration with 
doctors from Zhujiang Hospital of Southern Medical University. For 
inclusion, patient EMRs were required to have a postoperative 
pathology report confirming a single, primary liver tumor and 
complete immunohistochemistry results. Conversely, records were 
excluded if the patient had received any form of preoperative anti-
tumor treatment, including radiofrequency ablation, hepatic artery 
chemoembolization, targeted therapy, or immunotherapy, or if their 
immunohistochemistry results for CK19 were missing. This stringent 
selection process ensured the dataset consisted of well-documented, 
primary liver cancer cases, thereby minimizing potential biases from 
prior medical interventions or incomplete records.

XYWY.com is a public professional online Chinese website, it 
provides comprehensive information on various diseases, including 
symptoms, diagnoses, treatments, medications, food 
recommendations, departments, and complications. In this research, 
semi-structured knowledge pertinent to liver cancer was extracted, 
including the attributes of disease, five relationships between 
symptoms and disease, disease and drugs, disease and complications, 
disease and department, and disease and food.

The CCMT-2019 was published by the National Health 
Commission of the People’s Republic of China. It aims to standardize 

medical terms, provide standardized medical records, classify and 
code diseases, classify and code of surgical procedures, and standardize 
of medical terms. In this study, non-standard entities, such as 
operation recording, treatment options, disease, and symptoms in the 
EMRs will be aligned with the standardized entities in the CCMT-
2019. Eventually, the aligned entities were fused with the entities from 
XYWY.com to expand the dataset.

3.2 Conceptual layer design

Based on the recommendations of the hospital expert and the 
characteristics of the RLC-EMRs dataset, 11 types of Liver cancer 
entities were defined in this study, including patient, examination, 
symptom, diseases, past history (PH), operation recording (OR), 
treatment options (TO), physical examination (PE), food, drug, and 
department. The source and specific definition of liver cancer entities 
are shown in Table 1.

In accordance with the three-element principle of KG 
construction, it is essential to define three core components during the 
design of the conceptual layer: subject entity, relationship, and object 
entity. With the help of hospital experts, 11 relationships between 
entities and attributes are defined in this study, as shown in Figure 2. 
The starting node of the arrow is the subject entity pointing to the 
object entity, and the content on the arrow is the relationship. For 
example, within the triad <disease-has_symptom-symptom>, 
“disease” serves as the subject entity, “symptom” serves as the object 
entity, and “has_symptom” denotes the relationship between the 
subject and object.

3.3 Data preprocessing

The chosen EMRs underwent a de-identification process to 
ensure patient privacy. Specifically, all personally identifiable 
information, including patient names, ID numbers, addresses, 

FIGURE 1

The proposed framework of liver cancer KG construction. The procedure consists of seven key steps: (1) Data Preparation, (2) Conceptual Layer 
Construction, (3) Data Preprocessing, (4) Entity Recognition, (5) Knowledge Fusion (KF), (6) KG construction, visualization and quality assessment,  
(7) KG Application. It is important to note that Steps 3 and 4 often demand extensive practical experience with Chinese EMRs and online resources.
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and contact details, was removed or replaced with randomly 
generated patient IDs. Each EMR was assigned a unique code to 
preserve data traceability during annotation while preventing 
re-identification.

In addition, normalization was applied to standardize the clinical 
text and improve annotation consistency. This included unifying date 
and time formats, standardizing measurement units and laboratory 
values, correcting typographical errors and removing redundant 
symbols or formatting inconsistencies.

Once the conceptual layer was designed, real-world Chinese EMRs 
were annotated using Colabeler2. Figure  3 shows an example of 
annotation in the “disease” entity. The annotation results were saved in 
the Ann-Brat format, as shown in Figure 4. “T1” denotes the first entity 
in the text, disease is the entity type. Numbers 280 and 291 are the start 

2  https://www.jinglingbiaozhu.com/

FIGURE 2

The relationship between different conceptual layers.

TABLE 1  Eleven types of conceptual layer.

Entity type Source Definition

Patient EMRs Patient ID and status (such as age >40)

Examination EMRs CT, MRI

Symptom EMRs and xywy.com Left upper abdominal pain, vomiting

Diseases EMRs and xywy.com Liver cancer

Past history EMRs Smoking history

Operation recording EMRs Cholecystectomy

Treatment options EMRs Laparoscopic right hepatic cancer resection

Physical examination EMRs Abdominal distension

Food xywy.com Egg

Drug xywy.com Luolian Jiaonang

Department xywy.com Surgical oncology

https://doi.org/10.3389/frai.2025.1663877
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and end positions of the disease entity in the text, respectively. The 
phrase ‘dull pain in the right shoulder and back for 2 weeks’ is the disease 
name of the entity. Finally, the annotated documents were converted to 
the Ann-Brat format.

For the semi-structured data on the XYWY website, we crawled 
information such as disease common knowledge, diagnostic methods, 
and treatment plans. Through the hierarchy of paragraphs, titles, and 
hyperlink information of subtitles, attributes of conditions can 
be identified and extracted.

3.4 Named entity recognition

In this study, the DERM-RoBERTa-wwm-large-BiLSTM-CRF deep 
learning model for liver cancer entity recognition was introduced. The 
overall structure of this model is shown in Figure 5. First, the DERM 
module replaces medical entities of the input sequence with standardized 
terms or masks certain parts of the text. Then, the processed text is fed 
into the RoBERTa-wwm-large model to obtain high-dimension vector 
representations. Next, the vector representations are fed into the BiLSTM 
network to extract the contextual dependencies of the sequence. Finally, 
the output of the BiLSTM layer is combined and passed to the CRF layer 
for decoding to output label dependencies and ensure valid 
label sequences.

DERM is a strategy used to process entities in NLP tasks, it helps to 
address the scarcity and imbalance of data. First, dictionaries from the 
Chinese Medical Entity Extraction dataset3 are constructed for different 
entities, including disease, symptom, treatment, and examination, and 
then dynamic entity replacement and masking are performed on the text 
of the EMRs during the training process. The replacement and masking 
strategies are shown in Figure 6. For all sequences in the EMRs, a random 

3  https://tianchi.aliyun.com/dataset/144495

number (0 < RN < 1) was used to determine whether the entity in the 
sequence was replaced, masked, or did nothing. If RN < 0.3, the entities 
in the constructed dictionary are selected to replace those in the 
sequence. If 0.3 ≤ RN < 0.6, a masking strategy is used. If RN ≥ 0.6, the 
entities in the sequence remain the same.

3.4.1 RoBERTa-wwm-large module
The RoBERTa-wwm-large model was selected for this study due to 

its distinct advantages over other BERT-based variants, particularly for 
processing Chinese text. The choice was guided by two primary factors. 
First, its implementation of Whole Word Masking (WWM) is critical for 
the Chinese language. Unlike standard masking that operates on 
individual characters, WWM masks entire words, which is better suited 
for capturing the holistic semantics of Chinese words that often comprise 
multiple characters, thereby mitigating potential word segmentation 
ambiguities. Second, RoBERTa features a more robust pre-training 
methodology. It optimizes the original BERT architecture by training on 
a larger corpus, using dynamic masking, and removing the next-sentence 
prediction (NSP) objective. These enhancements lead to more powerful 
and nuanced contextual embedding, which is especially beneficial for 
specialized domains. RoBERTa-wwm-large leverages extensive 
pre-training on a large-scale corpus of textual data. This -pre-training 
enables the model to capture the contextual representations of the input 
sequences. In this study, a 24-layer RoBERTa-wwm-large model is used, 
which is a stack of 24 encoders.

First, the input sequences are tokenized into subworlds using Byte-
Pair Encoding (BPE), with special tokens [CLS] and [SEP] incorporated 
to denote the beginning and end of each sequence. Each token is mapped 
to a high-dimensional embedding of three features of tokens, which 
includes token embedding ( tE ), position embedding ( pE ), and segment 
embedding ( sE ). The resulting input to the RoBERTa-wwm-large model 
can be obtained by Equation 1:

	 = + +input t p sE E E E 	 (1)

FIGURE 3

Example of a real-world liver cancer Chinese EMR annotation.

FIGURE 4

Ann-Brat format annotation.

https://doi.org/10.3389/frai.2025.1663877
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://tianchi.aliyun.com/dataset/144495


Zhang et al.� 10.3389/frai.2025.1663877

Frontiers in Artificial Intelligence 07 frontiersin.org

The inputE  passes through multiple Transformer encoder layers, 
and each layer updates the token representations using a self-attention 
mechanism, as shown in Equation 2:

	
( )

 
=   

 
, , Softmax

TQKAttention Q K V
dk 	

(2)

where Q, K, and V are the word vector matrices derived from inputE . 
dk is the dimension of embedding. To capture diverse semantic 
relationships, multiple parallel self-attention heads were employed, as 
shown in Equation 3:

	

( )
( )i n o

MultidHead Q K V
Concat head head head head W1 2

, ,
, ,= … …

	 (3)

where each head represents projections of Q, K , and V . oW  is the 
token embedding. Finally, the output of RoBERTa-wwm-large is a 

sequence of embedding, one for each token in the input, as shown 
in Equation 4:

	 = …1 2, , , , ,CLS n SEPH H H H H H 	 (4)

where ∈ d
iH R , d is the dimension of the embedding space. These 

embeddings contain rich contextual information and serve as input 
for the subsequent BiLSTM layer.

3.4.2 BiLSTM module
The BiLSTM module captures long-term dependencies and 

contextual information from both the forward and 
backward directions of the input embedding. Each embedding Hi 
is fed into the BiLSTM as an input vector at the ith time step. The 
forward LSTM processes the embedding … …  1 2 i nH ,H , ,H , H  to 
obtain the sequence of the forward hidden states 



ih . The 
backward LSTM processes the embeddings to obtain 

− … …  n n 1 i 2 1H ,H , ,H , ,H ,H , which is the sequence of the backward 
hidden state 



ih .

FIGURE 5

The framework of DERM-RoBERTa-wwm-large-BiLSTM-CRF.
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The two LSTMs operate independently but simultaneously to 
capture both past and future dependencies in the sequence. At 
each time step i, the forward hidden state 



ih  and backward hidden 
state 



ih  are concatenated to form a combined representation: 
( )=
 

i i ih Concat h ,h , where ∈ 2h
ih R , and h  is the dimension of the 

hidden state in each LSTM. This concatenation ensures that each 
token representation at every time step incorporates both the 
preceding and succeeding contexts. On the sequence of scores 

…  1 2 ns ,s ,s  calculated by BiLSTM hidden states as shown in 
Equation 5.

	 = +i iS Wh b	 (5)

where ∈ k
iS R  is the score vector for k  possible labels, and 

∗∈ k 2hW R  and ∈ kb R  are the trainable weights and biases.

3.4.3 CRF module
The CRF module plays a crucial role in NER. Instead of 

making independent predictions for each token, CRF jointly 
models the relationships across the entire sequence to ensure that 
the predicted labels are consistent with one another. In this study, 

the CRF layer operates a score was assigned to the labels of the 
input sequence, as shown in Equation 6:

	
( )

+

−

= =
= +∑ ∑i 1

1

i,y ,
1 1

, S
i i

n n

y y
i i

Score X y T
	

(6)

where X represents the input text sequence and y represents the 
sequence of labels. 

ii,yS  is the score of the ith label of the ith word, 

+1,i iy yT denotes the score when label iy  turns into label +1iy . The 
probability of the prediction sequence is computed using Equation 7:

	
( ) ( )( )

( )( )′

=
′∑

exp ,
|

exp ,y

Score X y
p y X

Score X y
	

(7)

As a result, it computes the relative probability of a specific 
sequence y compared to all other possible label sequences for the input 
X. Finally, at inference time, the goal is to find the label sequence ∗y  
with the highest score, as shown in Equation 8:

	 ( )∗ ′=  ,y argmax Score X y 	 (8)

FIGURE 6

Hybrid data augmentation strategy for the training set.

https://doi.org/10.3389/frai.2025.1663877
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Zhang et al.� 10.3389/frai.2025.1663877

Frontiers in Artificial Intelligence 09 frontiersin.org

3.5 Knowledge fusion

The KF addresses data redundancy, inconsistency, and 
incompleteness in KG construction, thereby enhancing the quality 
and utility of the resulting KG. KF performed after NER is applied 
specifically to RLC-EMRs. This ensured the data are integrated 
accurately and consistently.

In real-world Chinese EMRs, patient medical records are generally 
written by different doctors. Because different doctors have different 
recording habits and terminology, some entity names in EMRs are 
inconsistent. In addition, there are some inconsistencies between the 
entity names in EMRs and those of the professional website XYWY.
com. Therefore, the extracted entities are different. For example, while 
EMRs often use Primary Hepatocellular Carcinoma(原发性肝细胞癌), 
healthcare websites such as XYWY.com use the simplified term 
Hepatocellular Carcinoma (原发性肝癌). In other cases, the 
standardized surgical term Laparoscopic Liver Tumor Excision (腹腔
镜肝肿瘤切除术) also demonstrates term variation in clinical practice. 
Some doctors document this term as Laparoscopic Liver Cancer 
Resection (腹腔镜肝癌切除), while others record it as Laparoscopic 
Liver Tumor Resection (腹腔镜肝肿物切除术) in their 
EMR. Although both diseases and operations refer to the same entity, 
the difference in terminology results in the appearance of two different 
entities. This discrepancy can cause problems in entity recognition, 
information extraction, and KG construction. Therefore, a KF is 
required to map different entities to a standard entity.

This study utilizes Term Frequency-Inverse Document Frequency 
(TF-IDF) for the KF, a statistical technique commonly applied in text 
mining and information retrieval to measure the relevance of entities 
within a corpus. The TF-IDF approach is particularly useful in the task 
of KF, where the goal is to identify and normalize entities that may 
be expressed differently in various sources, such as medical records 
and professional websites.

TF-IDF consists of two key elements: Term Frequency (TF), 
which captures how often an entity appears in a document, and 
Inverse Document Frequency (IDF). The formula for the TF is 
outlined in Equation 9 as follows:

	
( ) = ,, t d

d

f
TF t d

f 	
(9)

where t,df  represents the number of occurrences of entity t in 
document d , and dd represents the total number of terms in document 
d. The higher the ( )TF t,d  value, the more important the entity t  is 
within that document.

The IDF measures the distinctiveness of an entity across the entire 
corpus. The idea behind IDF is that common entities that appear in 
many documents should be weighted less, as they do not provide as 
much information in Equation 10:

	
( )

 
=   ∈ ∈ 

log
:

NIDF t
d D t d 	

(10)

where N represents the total number of documents in the corpus, and 
∈ ∈:d D t d  represents the number of documents that contain an 

entity t. IDF assigns a higher weight to entities that are rare across the 
corpus, making them more distinctive.

Then, the TF-IDF value for an entity t  in a document d is obtained 
by multiplying the TF and IDF values, as in Equation 11:

	 ( ) ( ) ( )− = ∗, ,TF IDF t d TF t d IDF t 	 (11)

Finally, to normalize entities from the EMRs to the standard 
entities found in XYWY.com and CCMT-2019, we  computed the 
cosine similarity between the TF-IDF vectors of entities in the input 

1v  and entity 2v  from the reference corpus. The cosine similarity 
between two TF-IDF vectors 1v  and 2v  is calculated using Equation 12:

	
( ) 1 2

1 2
1 2

V Vconsine similarity V ,V
V V
⋅

=
	

(12)

This measures the angle between the vectors, where a cosine 
similarity closer to 1 indicates a high similarity between the two 
entities. For disease and symptom entities, XYWY.com serves as 
a reference corpus for normalization, aligning entities with 
EMRs. For other clinical entities, such as treatments and 
operation recording. CCMT-2019 as a reference corpus only 
normalizes these entities. This combined approach enables the 
seamless integration of medical data from disparate sources.

To systematically implement this knowledge fusion process, 
we propose Algorithm 1, which integrates the TF-IDF similarity 
calculation with threshold-based decision making for automated 
and manual entity mapping.

Algorithm 1 demonstrates the complete workflow for entity 
normalization, where entities are first classified by type, then 
similarity scores are computed using the TF-IDF approach 
described in Equations 9–12, and finally mapped based on 
predefined similarity thresholds.

This approach ensures high-confidence automatic mappings 
(similarity > 0.75) while allowing manual review for borderline 
cases (0.6 ≤ similarity ≤ 0.75). Entities with similarity scores 
below 0.6 are considered as different entities that cannot 
be reliably mapped to existing knowledge bases. The algorithm 
employs a three-tier mapping strategy: (1) Automatic mapping 
for high-confidence matches ensures efficiency in processing 
clearly related entities; (2) Manual review for moderate-
confidence matches maintains accuracy by incorporating human 
expertise for ambiguous cases; (3) Rejection for low-confidence 
matches prevents false mappings that could introduce noise into 
the knowledge graph. This balanced approach optimizes both 
precision and recall in the entity normalization process while 
maintaining computational efficiency.

3.6 Knowledge graph construction, 
visualization and quality assessment

This study utilized the Neo4j graph database to construct the 
liver cancer KG. Unlike traditional relational databases, a graph 
database is designed to represent and store ontologically 
structured knowledge, thereby enabling the visualization of 
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complex relationships between entities. Neo4j supports ACID-
compliant transactions, ensures data integrity, and uses Cypher, 
a query language designed for querying graph data, which is both 
simple in syntax and efficient, regardless of the size of dataset. 
For this study, Neo4j was chosen to manage and visualize the data 
in the Liver Cancer KG. To enhance the usability and readability 
of the graph, the KG displays the top three-tier structure of the 
liver cancer KG by default. Users can navigate through the graph 
using the Neo4j node expansion feature to explore the different 
layers of information. To enhance the visual clarity of the graph, 
nodes at different levels were distinguished by color. For instance, 
“Disease” nodes are represented in yellow, while “Symptom” 
nodes are colored green. The treatment nodes are also depicted 
in green. In addition, the semantic relationships between entities 
are differentiated using specific color entities. The Liver Cancer 
KG constructed in this study includes entities 46,364 and 296,655 
semantic relationships, covering a wide range of liver cancer-
related topics such as symptoms, treatment options and 
physical examination.

The factual quality of the KG was quantified using Triple Accuracy. 
This metric is defined as the proportion of clinically correct triples 
among all sampled triples deemed evaluable. S denote a set of sampled 

triples. For each triple ∈i S , an expert annotator assigned a label 
( ){ }∈ ,Incorrect,Insufficient Context ICiy Correct . The number of 

evaluable triples ( effn ) and the number of correct triples (x) were 
defined as Equation 13:

	
{ }{ } { }

∈ ∈
= ∈ = =∑ ∑1 , , 1eff i i

i S i S
n y Correct Incorrect x y Correct

	
(13)

Where { }1  is the indicator function. The Triple Accuracy (TAcc) was 
subsequently calculated as:

	
=TAcc

eff

x
n 	

(14)

Triples labeled as IC were excluded from this calculation, and 
their proportion was reported separately as an indicator of 
documentation completeness or the need for alignment refinement. 
A stratified random sample of 500 triples was drawn from the final, 
de-identified KG. The stratification was based on major relation types 
include ‘has_symptom’, ‘accompany_with’, ‘recommends_drug’ 
‘recommends_eat’ and ‘rels_diease’.

ALGORITHM 1

Knowledge fusion for EMR entity mapping.
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4 Results

4.1 Evaluation metrics

To quantitatively assess the performance of the NER model, these 
metrics are defined in Equations 13–17. The True Positives (TP) 
denote the number of predicted entities that exactly match the ground 
truth in both type and boundary, False Positives (FP) represent 
predicted entities that are not present in the ground truth (including 
cases with incorrect type or boundary), and False Negatives (FN) refer 
to ground-truth entities that were not detected by the model. Precision 
measures the proportion of correctly identified entities among all 
predicted entities. It indicates the model’s accuracy in positive 
predictions. Recall measures the proportion of actual entities that the 
model correctly identifies. It reflects the model’s ability to capture all 
relevant instances. The F1 score is the harmonic mean of P and R. It 
provides a balanced evaluation metric that accounts for both 
FP and FN.

	
=

+
TPP

TP FP 	
(15)

	
=

+
TPR

TP FN 	
(16)

	

( )
( )
∗ ∗

=
+

2
1

P R
F

P R 	
(17)

4.2 CMeEE-v2 experimental results and 
analysis

The experimental results on the CMeEE-v2 dataset demonstrated 
the performance of the different models through comprehensive 

analysis. Table 2 presents the precision recall and F1 scores of multiple 
models, including the proposed DERM-RoBERTa-wwm-large-
BiLSTM-CRF model, compared with several baseline models.

The comparison reveals that the DERM-RoBERTa-wwm-large-
BiLSTM-CRF model significantly outperforms existing baseline 
models on the CMeEE-v2 dataset. The DERM-RoBERTa-wwm-large-
BiLSTM-CRF model achieved an F1 score of 68.84%. This represents 
a substantial improvement over TPORE at 64.94% and FLAT at 
64.03%. The recall performance of DERM-RoBERTa-wwm-large-
BiLSTM-CRF reaches 69.18% which is comparable to FLAT at 66.42%. 
The model demonstrated exceptional precision at 68.50% and 
surpassed all the other models. Additionally, our model exceeds the 
performance of recent LLM-based approaches, including 
ChatGLM-6B with advanced decoding strategies at 67.45% F1 score, 
GPT-4 under few-shot prompting at 57.2% F1 score, and ChatGPT 
GPT-3.5 under few-shot prompting at 46.9% F1 score. These results 
indicate that DERM-RoBERTa-wwm-large-BiLSTM-CRF possesses 
clear advantages for entity recognition tasks, showing significant 
performance improvements compared to baseline models such as 
Simple-Lexicon and Lattice-LSTMTo explore the contribution of each 
module within the DERM-RoBERTa-wwm-large-BiLSTM-CRF 
model, a series of ablation experiments were conducted. M1 represents 
DERM, and M2 represents the BiLSTM-CRF module. The 
experiments gradually removed different modules and compared the 
changes in accuracy, recall, and F1 score. The results are presented in 
Table 3.

In Experiment 1, both M1 and M2 were removed, leaving the 
base RoBERTa-wwm-large model. The accuracy was 63.12%, the 
recall was 60.22%, and the F1 score was 61.65%. In Experiment 2, 
only the BiLSTM-CRF module was used. The accuracy was 62.62%, 
recall increased to 68.00%, and F1 score rose to 65.20%. In 
Experiment 3, only the DERM module was used. The accuracy was 
68.39%, the recall was 67.85%, and the F1 score was 68.13%. In 
Experiment 4, all modules were kept, which was the full model 
structure. The accuracy reached 68.50%, the recall was 69.18%, and 

TABLE 2  Comparison of the proposed method with the prior works on CMeEE-v2.

Model Precision Recall F1

Lattice-LSTM (Zhang and Yang, 2018) 61.26% 62.33% 61.79%

Simple-Lexicon (Ma et al., 2019) 61.00% 60.31% 60.64%

FLAT (Li et al., 2020a; Li et al., 2020b; Li L. et al., 2020) 61.83% 66.42% 64.03%

TPORE (Emami et al., 2020) 63.73% 66.25% 64.94%

ChatGLM-6B (Xu et al., 2024) – – 67.45%

GPT-4 (Yang et al., 2024) – – 65.42%

DERM-RoBERTa-wwm-large-BiLSTM-CRF (Ours) 68.50% 69.18% 68.84%

TABLE 3  Ablation study of the model on CMeEE-v2.

Experiment 
number

With Precision Recall F1

M1 M2

Experiment 1 × × 63.12% 60.22% 61.65%

Experiment 2 × √ 62.62% 68.00% 65.20%

Experiment 3 √ × 68.39% 67.85% 68.13%

Experiment 4 √ √ 68.50% 69.18% 68.84%
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F1 score was 68.84%. This was the best performance among 
all experiments.

The results show that adding any module improves model 
performance. Compared to the baseline model, maintaining the 
BiLSTM-CRF (Experiment 2) increased recall and F1 score. This 
shows that BiLSTM-CRF is important for optimizing label 
dependencies and improving entity coverage. The DERM strategy 
(Experiment 3) led to a greater performance improvement. Its F1 
score was close to the full model, indicating that DERM enhances 
semantic modeling and contextual understanding. Finally, the 
full model (Experiment 4) performed best in all three metrics. 
This shows that the integration of M1 and M2 modules has 
complementary advantages. The DERM strategy enhances the 
generalization ability of model for complex entities. The 
BiLSTM-CRF structure improves the modeling of label 
sequence dependencies.

4.3 RLC-EMRs experimental results and 
analysis

4.3.1 Entity recognition results and analysis
In this study, entity recognition was performed based on the 

definitions provided in the conceptual layer. Table  4 presents a 
comprehensive comparison of the entity counts before and after the 
fusion process. The initial entity recognition identified 11 distinct 
entity types with significant variations in their quantities. Notably, 
after the fusion process, certain entity categories, such as 
Examination, Diseases, and Symptoms, showed substantial increases 
in their numbers. For example, the number of disease entities 
increased from 449 to 9,037, while symptom entities expanded from 
136 to 6,789. Additionally, new entity types emerged post-fusion, 
including food (4,870), drug (3,828), and department (54). Table 5 
provides detailed statistics on the relationships between different 
entity types in the KG. The relationship distribution reveals that 
“recommand_drug” and “has_symptom” are the most frequent 
relationships, with 59,467 and 54,717 instances, respectively. Food 
recommendations also played a significant role, with “recommand_
eat” (40,236), “no_eat” (22,247), and “do_eat” (22,238) relationships 
being prominent. Clinical relationships, such as “rels_diseases” 

(15,289) and “acompany_with” (12,029), demonstrate the complex 
interconnections between different medical entities in the KG.

A Python script was then employed to transform the Ann-Brat 
format to the BIO format, which is often used as the standard format 
for NER tasks. The dataset was split into training, validation, and 
testing subsets in an 8:1:1 ratio and subsequently fed into the deep 
learning model for processing. We conducted experiments to evaluate 
and compare the performance of the four models in recognizing 
entities from EMRs. The models include DERM-RoBERTa-wwm-
large-BiLSTM-CRF, RoBERTa-wwm-large-BiLSTM-CRF (Cui et al., 
2023), DERM-BERT-large-BiLSTM-CRF, BERT-large-BiLSTM-CRF 
(Dai et al., 2019), GPT-4, ChatGLM-6B and Word2vec-BiLSTM-CRF 
(Luo et al., 2018). The experiments focus on seven types of entities in 
EMRs: Examination, Disease, Symptom, Past History, Operating 
Recording, Treatment Options, and Physical Examination the results 
of the four models are shown in Table 6.

The proposed DERM-RoBERTa-wwm-large-BiLSTM-CRF model 
(F1 score: 94.65%, precision: 95.36%, recall: 93.94%) demonstrates 
substantial improvements over the BERT-large-BiLSTM-CRF baseline 
model (F1 score: 90.33%, precision: 89.69%, recall: 90.98%). 
Specifically, the model achieves improvements of 4.3% in F1 score, 
5.8% in precision, and 3.0% in recall compared to the baseline. These 
significant improvements indicate the effectiveness of domain-specific 
adaptations and advanced pre-training strategies.

The Word2vec-BiLSTM-CRF model (F1 score: 68.40%, precision: 
69.29%, recall: 67.53%) showed considerably lower performance 
compared to the DERM-BERT-large-BiLSTM-CRF model (F1 score: 
93.96%, precision: 94.69%, recall: 93.24%), with differences of 25.97, 
25.40, and 25.14% in precision, recall, and F1 score, respectively. This 
demonstrates the superiority of contextualized word embedding over 
static embedding in EMR entity recognition.

The RoBERTa-wwm-large-BiLSTM-CRF model (F1 score: 
93.84%, precision: 94.46%, recall: 93.23%) also significantly 
outperformed the Word2vec-BiLSTM-CRF baseline, showing 
improvements of 25.04, 25.17, and 25.00% in precision, recall, and F1 
score, respectively. This highlights the advantages of advanced 
pre-training strategies in capturing contextualized features.

The DERM-RoBERTa-wwm-large-BiLSTM-CRF model 
demonstrated consistent improvements over RoBERTa-large-
BiLSTM-CRF (F1 score: 93.84%, precision: 94.46%, recall: 93.23%), 

TABLE 4  Statistics on the number of entities.

Entity type Number (before fusion) Number (after fusion)

Patients 304 304

Examination 113 3,677

Diseases 449 9,037

Symptom 136 6,789

Past history 420 420

Operation recording 337 337

Treatment options 420 420

Physical examination 324 325

Food / 4,870

Drug / 3,828

Department / 54
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with increases of 0.80, 0.90, and 0.70% in accuracy, recall, and F1 
score. Similarly, when compared to DERM-BERT-large-BiLSTM-CRF 
(F1 score: 93.96%, precision: 94.69%, recall: 93.24%), the model 
showed improvements of 0.68, 0.73, and 0.70% across these metrics.

The GPT-4 model (F1 score: 87.58%, precision: 88.42%, recall: 
86.75%) showed considerable performance gaps compared to our 
proposed model, with differences of 7.07, 6.94, and 7.19% in F1 score, 
precision, and recall, respectively. This demonstrates the limitations of 
general-purpose large language models in specialized medical entity 
recognition tasks, even when employing few-shot learning strategies.

The ChatGLM-6B model (F1 score: 80.98%, precision: 82.13%, 
recall: 79.86%) exhibited even larger performance gaps compared to 
the proposed model, with differences of 13.67, 13.23, and 14.08% in 
F1 score, precision, and recall, respectively. These substantial 
differences highlight the advantages of domain-specific pre-training 
and task-specific architectural design over general-purpose language 
models in medical NER applications.

Table  7 shows the application of the DERM-RoBERTa-wwm-
large-BiLSTM-CRF method to calculate F1 scores, precision, and 
recall for each of the seven significant entities within the test dataset. 

Analysis of the table reveals that the operation entity achieved the 
highest F1 score of 100%, while the symptoms entity recorded the 
lowest with an F1 score of 86.06%. This result demonstrates the 
model’s capacity for generalization in small sample datasets.

In conclusion, the DERM-Roberta-large-BiLSTM-CRF model 
achieved the best performance among all evaluated models, 
demonstrating that domain-specific fine-tuning combined with 
advanced pre-training strategies significantly enhances entity 
recognition in EMRs.

4.3.2 Knowledge fusion results and analysis
Figure 7 shows a heatmap of TF-IDF vector similarity scores 

among different liver cancer-related terms. The similarity matrix 
reveals significant semantic overlap between certain disease 
entities. Notably, hepatocellular carcinoma (原发性肝细胞癌) is 
in EMR, and the corpus content is primary peritoneal carcinoma 
(原发性肝癌), liver cancer (肝癌), renal cell carcinoma (肾细胞
癌) and primary liver cancer of the elderly primary hepatocellular 
carcinoma (老年人原发性肝细胞癌). Hepatocellular carcinoma 
(原发性肝细胞癌) and primary peritoneal carcinoma (原发性肝

TABLE 5  Statistics on the relationship of entities.

Relationship type Number

recommand_drug 59,467

has_symptom 54,717

recommand_eat 40,236

need_check 39,423

no_eat 22,247

do_eat 22,238

drugs_of 17,315

rels_diseases 15,289

common_drug 14,649

acompany_with 12,029

belongs_to 8,844

rels_body 1,536

rels_operation 752

rels_disease 695

rels_symptom 584

rels_check 377

rels_treatment 288

rels_condition 240

TABLE 6  Entity recognition evaluation result of different models in the EMRs.

Model Precision Recall F1Score

DERM-RoBERTa-wwm-large-BiLSTM-CRF (Ours) 95.36% 93.94% 94.65%

RoBERTa-wwm-large-BiLSTM-CRF 94.46% 92.23% 93.84%

DERM-BERT-large-BiLSTM-CRF 94.69% 93.24% 93.96%

BERT-large-BiLSTM-CRF 89.69% 90.98% 90.33%

GPT-4 88.42% 86.75% 87.58%

ChatGLM-6B 82.13% 79.86% 80.98%

Word2vec-BiLSTM-CRF 69.29% 67.53% 68.4%
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癌) demonstrate a high cosine similarity score of 0.75, indicating 
substantial semantic equivalence. This strong correlation suggests 
these terms refer to the same clinical entity despite variations in 
terminology. Based on this high similarity score and medical 
domain knowledge, these entities were merged into our KG to 
maintain consistency and reduce redundancy. The fusion of these 
entities not only standardizes the disease representation but also 
enhances the overall quality and reliability of the KG structure.

Figures 8A,B illustrate the KG before and after KF for Patient 
ID “2,490,513_1.” This graph aligns disease and symptom entities 
with XYWY.com website, significantly enhancing the patients’ 
related entities and relationships. Such enrichment not only adds 
value to patient data but also facilitates future downstream 
applications of KG. First, the TF-IDF algorithm computes the 
vectorizer of the TF-IDF using the disease corpus of XYWY.com 
as input. Then, the disease entities appearing in the EMRs are used 
as queries, and the cosine similarity between each query and the 

entities in the TF-IDF vectorizer is calculated. Finally, a certain 
threshold is set, and the output with the highest similarity is used 
as the target matching entity for the query, thus completing the 
knowledge matching.

4.3.3 KG construction results and analysis
We manually reviewed the knowledge graph to evaluate its factual 

accuracy. The overall triple accuracy was 93.5%. This high score 
confirms that the constructed KG is reliable. For this assessment, 
we sampled 500 triples from five major relation categories. Experts 
found that only 10 triples had IC and were excluded from the accuracy 
calculation. The remaining 490 triples were assessed for correctness 
against established clinical guidelines. Table 8 presents the detailed 
results. The analysis shows a consistently high accuracy across all 
relation types, which indicates our method for building the graph is 
robust. The ‘has_symptom’ relation had the highest accuracy at 94.3%. 
Other key relations were also very accurate. For example, 

FIGURE 7

Visualization of TF-IDF vectors.

TABLE 7  Precision, recall, and F1 score in recognition of different entity types on DERM-RoBERTa-wwm-large-BiLSTM-CRF.

Entity type Precision Recall F1

Disease 92.49% 93.02% 92.75%

Body check 91.59% 92.03% 91.80%

Symptom 85.57% 86.56% 86.06%

Condition 88.47% 88.98% 88.72%

Check 92.13% 92.13% 92.13%

Treatment 94.47% 93.86% 94.16%

Operation 100% 100% 100%

https://doi.org/10.3389/frai.2025.1663877
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://XYWY.com
http://XYWY.com


Zhang et al.� 10.3389/frai.2025.1663877

Frontiers in Artificial Intelligence 15 frontiersin.org

‘accompany_with’ scored 93.5%, ‘recommend_drug’ scored 93.2% and 
‘recommend_eat’ were also highly reliable with an accuracy of 92.3%. 
The expert-validated accuracy across diverse topics confirms the 
factual integrity of the KG. Therefore, the graph provides a strong 
foundation for developing future tools, such as systems for clinical 
decision support or patient education.

Finally, we  constructed a comprehensive liver cancer KG 
containing 11 types of entities, with a total of 46,365 entities and 
296,655 triples, as shown in Figure 9. The magnified section focuses 
on patient ID “2622541_1,” displaying the connections between the 
patient and their specific diseases, symptoms, and operation recording, 
demonstrating the practical application of our KG in representing 
individual patient cases. In addition, the patient entity has its basic 
attributes, such as nation, age, and sex. For example, Figure 10 shows 
that Patient 2,490,513_1 is used as the center to associate the proxy 
nodes, including examination, symptoms, diseases, past history, 
operation recording, treatment options, and physical examination. 
Then, based on these proxy nodes, specific disease, symptom, and 
treatment nodes are identified.

Complication retrieval is an application of liver cancer KGs, 
allowing the search and query of complications using keywords or 
logical relationships. Complication retrieval provides insights and 
references for medical professionals, helping to optimize diagnosis 

and treatment strategies. Utilizing KG for liver cancer, it can 
efficiently associate patients with diseases and diseases with 
complications in the form of a triple. Neo4j allows users to 
customize advanced Cypher queries. For example, the Cypher 
query statement can be used to query the diseases associated with 
patient ID “2454356_3” and their related complication s through 
the “rels_disease” and “accompany_with” relationships. As shown 
in Figure  11, it is quick and easy to identify a disease that is 
accompanied by complications.

5 Discussion

This study shows the feasibility and effectiveness of building 
a domain-specific liver cancer KG from diverse Chinese real-
world data sources. We integrated EMRs, standardized medical 
terms, and reliable online medical resources. Our DERM-
RoBERTa-wwm-large-BiLSTM-CRF model outperformed strong 
baseline models in NER. It achieved this on both the public 
CMeEE-v2 dataset and our private RLC-EMRs dataset. These 
gains in entity recognition accuracy improve the KG’s overall 
quality. Precise entity extraction supports reliable graph-based 
clinical applications downstream.

FIGURE 8

(A) KG before KF for Patient ID “2490513.” (B) KG after KF for Patient ID “2490513.”

TABLE 8  Triple accuracy by relation type.

Relation type Sampled
Insufficient 

context
Denominator 

(=Sampled−IC)
Correct Incorrect Accuracy

has_symptom 160 2 158 149 9 94.30%

accompany_with 110 3 107 100 7 93.46%

recommand_drug 90 2 88 82 6 93.18%

recommand_eat 80 2 78 72 6 92.31%

rels_diseases 60 1 59 55 4 93.22%

Overall 500 10 490 458 32 93.47%
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FIGURE 9

Overview of liver cancer KG.
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Our approach establishes a strong methodological baseline and 
serves as a foundational step for future enhancement. The use of a 
clinical knowledge base from a single medical center and website 
provided a high-quality, internally consistent dataset, enabling 
rigorous validation of our data extraction and KG construction 
pipeline while demonstrating its effectiveness in capturing detailed 
liver cancer insights. However, as real-world clinical data, our sample 
of 304 liver cancer patients from a single institution may introduce 
inherent biases. Furthermore, in broader real-world deployments, 
conflicting or inconsistent information across data sources is 
inevitable. While the current single-institution dataset largely 
minimized this issue, future expansions will require explicit strategies 
to ensure reliability.

Building on our solid proof-of-concept, the next logical steps are 
designed to directly address these challenges above. To enhance 
generalizability and mitigate bias, we will incorporate EMRs from 
multiple, diverse partner institutions. To handle data conflicts, 
we  will implement explicit strategies such as source reliability 
weighting and expert-in-the-loop adjudication. This dual approach 
of expanding data diversity while ensuring its reliability is crucial for 
creating a comprehensive and truly trustworthy multi-layered view 
of liver cancer, especially as we integrate complex multi-modal data 
like genomic information (Eralp and Sefer, 2024).

Similarly, our current knowledge fusion process, which leverages 
TF-IDF, proved highly effective for rapid and reliable lexical entity 
normalization. To further elevate the graph’s semantic intelligence, 
we  plan to replace TF-IDF with large language model-based 
contextual embedding to enable more nuanced entity linking and 
knowledge integration (Yang et al., 2024). These models demonstrate 
a superior ability to understand the complex semantics and context 
of medical entities compared to traditional similarity measures.

Recognizing that the long-term value of a clinical knowledge 
graph depends on its ability to evolve, we  have also designed a 
comprehensive strategy to transition our KG from a static snapshot 
into a dynamic clinical asset. Building on our proposed incremental 
update framework, which continuously processes new EMRs, 
clinical guidelines, and emerging literature (Xu et al., 2024), we will 
incorporate a human-in-the-loop validation workflow. This ensures 
that as the graph scales, its clinical accuracy and trustworthiness are 
maintained through expert review. This forward-looking 
architecture, supported by the technical scalability of our graph 
database, is crucial for sustained clinical relevance in a fast-moving 
field like oncology.

Ultimately, the goal of this work is to create a dynamic 
knowledge asset that can power advanced clinical decision support 
systems. Once enhanced with multi-modal data and deeper 

FIGURE 10

Patient ID “2490513_1” KG.
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inference capabilities, the KG could serve as the backbone for 
sophisticated predictive models. For example, it could provide the 
structured knowledge required to apply graph neural networks for 
forecasting patient-specific outcomes, such as predicting drug 
responses via diffusion-based graph attention networks (Sefer, 
2025). This bridges the gap between foundational knowledge 
representation and actionable, personalized medicine.

6 Conclusion

This study’s key contribution is the creation of a workflow that 
extracts KGs from Chinese EMRs, aiming to support the 
development and application of Traditional Chinese Medicine KGs 
in disease diagnosis and treatment. In this study, the conceptual 
layer of the KG was developed based on primary liver cancer 
treatment guidelines and expert consultations. The DERM-
RoBERTa-wwm-large-BiLSTM-CRF model was used to extract 
entities, including patients, examinations, symptoms, and 
treatments, from EMRs. The model demonstrated strong 
performance on the public CMeEE-v2 dataset with an F1 score of 
68.84%, outperforming existing baseline models. When applied to 
RLC-EMRs, the proposed approach achieved a 4.3% improvement 
in the F1 score, along with a 5.8% increase in precision and a 3.0% 
enhancement in recall compared to the baseline model. Next, the 
entities were standardized using CCMT-2019 and combined with 
XYWY.com for KF. The resulting triplets were subsequently stored 
in the Neo4j database.

Utilizing this conceptual layer design, a KG was constructed to 
enable intelligent diagnosis and treatment recommendations for liver 
cancer. Through an evaluation of the conceptual layer design, data 
layer construction, and application layer functionality, the rationality, 
effectiveness, and practicality are validated. This study offers a 
framework for efficiently designing and building KGs applicable to 
diagnosing and treating other diseases.

Looking forward, our methodology can be generalized to other 
complex diseases. Future work will focus on enriching the KG with 
multi-center data for better representation and incorporating multi-
modal information for deeper insights. By developing automated 
update mechanisms and integrating with advanced AI, this 
framework can evolve into a dynamic and truly supportive clinical 
knowledge resource.
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