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Transformer models pre-trained on self-supervised tasks and fine-tuned on
downstream objectives have achieved remarkable results across a variety of
domains. However, fine-tuning these models for clinical predictions from
longitudinal medical data, such as electronic health records (EHR), remains
challenging due to limited labeled data and the complex, event-driven
nature of medical sequences. While self-attention mechanisms are powerful
for capturing relationships within sequences, they may underperform when
modeling subtle dependencies between sparse clinical events under limited
supervision. We introduce a simple yet effective fine-tuning technique, Adaptive
Noise-Augmented Attention (ANAA), which injects adaptive noise directly into
the self-attention weights and applies a 2D Gaussian kernel to smooth the
resulting attention maps. This mechanism broadens the attention distribution
across tokens while refining it to emphasize more informative events. Unlike
prior approaches that require expensive modifications to the architecture and
pre-training phase, ANAA operates entirely during fine-tuning. Empirical results
across multiple clinical prediction tasks demonstrate consistent performance
improvements. Furthermore, we analyze how ANAA shapes the learned attention
behavior, offering interpretable insights into the model's handling of temporal
dependencies in EHR data.

KEYWORDS

Transformer, augmentation, adaptive noise, medical data, electronic health records
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1 Introduction

Foundation models, deep neural networks pre-trained on broad unlabeled data using
self-supervised methods, have significantly impacted various aspects of our lives, including
law, healthcare, education, and more (Bommasani et al., 2021; Guo et al., 2023; Wornow
et al., 2023). These models typically acquire general knowledge about the data through
pre-training a variant of the Transformer network on a self-supervised task like Masked
Language Model (MLM), and then adapt this knowledge to downstream tasks with only a
few labeled samples during the fine-tuning process. Researchers showed that pre-training,
even with limited data, can improve Transformers’ performance significantly (Amos et al.,
2023).

Pre-training Transformers have been employed with various self-supervised objectives
and domains. Common objectives include corrupted text reconstruction tasks like MLM
(Devlin et al.,, 2018; Lewis et al., 2019; Lan et al,, 2019) and standard language models
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such as next-word prediction (Radford et al., 2019; Brown et al,,
2020), which have been extensively utilized (Liu et al., 2023). These
models typically adopt a backbone architecture inspired by the
multi-head attention mechanism in Transformers (Vaswani et al.,
2017), known for its effectiveness in modeling complex interaction
between events (tokens) in a sequence (text). These foundation
models have been pre-trained on different domain data (Lan et al,,
2019; Radford et al.,, 2019), including structured temporal health
data as sequences of events (Li et al., 2020; Rasmy et al., 2021; Pang
etal., 2021).

Modeling Electronic Health Records (EHRs) trajectories
presents a critical opportunity for predicting health-related
outcomes, offering benefits like early intervention, cost reduction,
and improved public health. This field has attracted significant
attention from deep learning researchers (Xiao et al., 2018;
Amirahmadi et al., 2023; Boll et al., 2024; Li et al., 2024). Typically,
healthcare specific foundation models are pre-trained on publicly
available, unlabeled EHR data, and adapting these models through
fine-tuning consistently demonstrates superior performance across
various tasks (Li et al., 2020; Rasmy et al., 2021; Pang et al., 2021;
Ren et al., 2021; Li et al., 2022; Yuanyuan et al., 2025).

However, EHRs are often scarce, and training Transformers
to learn the complex relationships between medical events in
longitudinal EHRs requires either large amounts of data, or
advanced training techniques and augmentations (Dosovitskiy
et al., 2020; Touvron et al., 2021; Hassani et al., 2021, 2023). Due
to privacy concerns and the scarcity of publicly available datasets,
models often fail to learn the intricate dependencies between
events in a patients history. To address this, Choi et al. (2020)
proposed incorporating domain knowledge into the attention
mechanism, while Zhu and Razavian (2021) employed variational
regularization. Additionally, Amirahmadi et al. (2025) suggested
pre-training the Transformer on the MLM task and the ordering
of medical events in a patients history, and Kim and Lee (2024)
proposed using learnable, adaptive kernels in the attention matrices
to improve contextual representations and enhance the learned
structure through self-attention. Figures 1, 4 illustrate how these
various approaches impact self-attention behaviors in leaning the
relationships between events. However, these methods often come
with substantial computational costs and require extra effort for
implementation and design.

Data augmentation is another solution to tackle the data
scarcity challenge. Augmenting data with discrete data types, such
as series of medical codes or tokens in text, is challenging because
small perturbations can drastically alter semantic meaning, and
interpolation in discrete space is not feasible (Chen et al., 2020).
For example, replacing a code for “Type 1 diabetes” with “Type
2 diabetes,” or reordering diagnosis and procedure codes within
the same patient trajectory, can fundamentally change the clinical
context. As a result, researchers have proposed augmenting models
during training as an alternative (Jain et al., 2023; Zehui et al., 2019;
Wu et al., 2023).

In this study, we propose a simple two-step augmentation
(ANAA)—
that perturbs attention scores by injecting adaptive Gaussian

technique-Adaptive Noise-Augmented Attention

noise followed by smoothing with a Gaussian kernel. Our

investigation of attention distributions reveals that fine-tuned
Transformers tend to produce highly polarized attention
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scores—values clustering near the extremes (0 or 1), which restricts
the model’s capacity to explore diverse dependencies (see the
bottom row of Figure 4). By introducing controlled noise into
attention scores during fine-tuning, we encourage exploration
of alternative dependency paths between events. The subsequent
smoothing operation helps restore structural consistency while
preserving diversity, resulting in more balanced and informative
self-attention maps.
The main contributions are summarized as follows:

1. We proposed a simple self-attention augmentation method
that encourages the model to explore and learn more
complex attention patterns during fine-tuning. Importantly, this
approach does not modify the computational graph, making it
easily applicable to any pre-trained Transformer.

2. We conducted several evaluations on various downstream
tasks, examining the effect of the novel method on model
performance, model robustness with limited training samples,
and the balance of attention distribution between distant and
nearby events. Our results demonstrate how it improves the
performance of pre-trained Transformers.

2 Preliminary

2.1 Transformer encoder and self-attention

The core back-bone of Transformers encoder is the multi-head
self-attention. Each self-attention head is:

Qn = XW2. Ky = XWK, vj, = xw), 1)
KT

A, = softmax( Q hy (2)
Vi

Hj, = Self-attention(X) = A, Vj, 3)

Where, Q,K € R"™d and V € R™% and n is the length
of input sequence and dy and d, are dimenssion of Key and
Value. Ay is the attention score matrix and each A;; indicates
how much attention token x; put on xj. Transformer encoders,
is built on concatenation of | h | number attention heads in
parallel, so each one has its own weights. Then, the concatenation
is projected:

MultiHead(X) = Concat(Hj...., Hj, ) W° (4)

Where, WO ¢ RIIxd Multiple self-attention heads in
parallel, help the model to attend to information from different
representation subspaces (Vaswani et al., 2017; Hao et al., 2021).

2.2 Pre-training, fine-tuning

Pretraining typically involves the model acquiring general
knowledge, which is then used to initialize the final network.
Subsequently, the final network adjusts these weights to obtain
optimized weights for specific downstream tasks (Chen et al., 2021).
This approach has been extensively utilized for adapting foundation
models to downstream tasks (Lan et al., 2019; Liu et al., 2023).
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FIGURE 1

Visualization of attention score patterns for different models from previous studies and how their proposed methods helping a more complicated
structure in attention scores in Transformers. (a, b) Transformer trained from random weights vs. Transformer trained with domain knowledge (Zhu
and Razavian, 2021; Choi et al., 2020). (c, d) Encoder-decoder vs. VGNN using variational regularization (Zhu and Razavian, 2021). (e, f) Vanilla
Transformer vs. SAT with temporal priors (Kim and Lee, 2024). (g, h) Transformer pre-trained on MLM vs. MLM with trajectory order prediction

(Amirahmadi et al., 2025). (e, f) Had no color bars in the original papers.
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3 Related works

Advanced training techniques and data augmentation have
been widely adopted to improve the performance of Transformer
models, especially in settings with limited labeled data. These
methods aim to enhance the generalizability and robustness of
learned representations.

Several methods modify self-attention to better learn intricate
local and global attentions between different tokens. Hassani
et al. (2023) introduced a sliding window attention mechanism to
localize attention spans and improve efficiency. Ding et al. (2023)
reduced attention complexity by segmenting key, query, and value
inputs and sparsifying their interactions, allowing Transformers to
better model both short- and long-range dependencies. Positional
encoding has also been a target for improvement: Su et al. (2024)
and Press et al. (2021) enhanced distant token interaction by
encoding absolute positions with rotation matrices or distance-
based penalties on query-key attention scores. While these methods
are effective, they often require structural changes to the attention
mechanism, making them less compatible with pre-trained models
and harder to integrate into existing pipelines.

Data augmentation is another solution to tackle the data
scarcity challenge, but it is particularly challenging in discrete
domains like medical codes or text, where small changes can
drastically alter semantic meaning and interpolation is not
well-defined (Chen et al., 2020).
have proposed augmenting models during training or fine-

To address this, researchers

tuning by injecting noise into internal representations (Jain
2023; Zehui et al., 2019; Yuan et al, 2022; Wornow
2023; Wu et al, 2023). Injecting Gaussian noise into

et al,
et al,
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activations has been shown to help models converge to smoother
minima, improving generalization, calibration, and robustness to
perturbations (Camuto et al., 2020). Zhu et al. (2019) enhanced
the performance of BERT (Devlin et al., 2018) and RoBERTa (Liu
et al., 2019) by adding adversarial noise to word embeddings,
a technique later extended to graph neural networks by Kong
etal. (2022) for improved out-of-distribution generalization. In the
self-attention space, Zehui et al. (2019) proposed DropAttention,
which randomly masks and expands attention scores to regularize
focus. Similarly, Wu et al. (2023) introduced adversarial structural
biases to attention matrices, though at the cost of increased
training complexity.

Wornow et al. (2023) injected Gaussian noise into the latent
space of an encoder-decoder model for better image captioning,
while Yuan et al. (2022) perturbed hidden representations during
fine-tuning to marginally improve language model performance.
Most notably, Jain et al. (2023) introduced NEFTune, which
adds calibrated uniform noise to embedding vectors during fine-
tuning—resulting in significant improvements for models like
LLaMA-1 and LLaMA-2. Inspired by these efforts, we compare
our method with NEFTune and propose a new approach that
directly perturbs the attention scores, encouraging the model
to learn richer contextual dependencies across sequences. Here,
We investigate augmenting the self-attention scores—central
to modeling event dependencies—by injecting and smoothing
adaptive Gaussian noise. Unlike prior methods that perturb
embeddings or hidden states, our approach directly improves
attention behavior without changing the model architecture,
enhancing the learned representation in a lightweight and
effective way.
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4 Methods

4.1 Adaptive noise-augmented attention

In this subsection, we introduce, Adaptive Noise-Augmented
Attention (ANAA), a simple yet effective two-step augmentation
technique designed to improve the learned representations in
Transformer models by directly augmenting the attention scores
during fine-tuning (Algorithm 1). This method enhances attention
dynamics without modifying the computational graph, making it
compatible with any pre-trained Transformer encoder.

ANAA operates by first injecting adaptive Gaussian noise into
the attention score matrix and then applying a smoothing operation
using a Gaussian kernel. This process encourages the model to
explore the attention patterns and strengthens context modeling.
The augmented attention is computed as:

ANAA = ((Ap+ ~ N (1, 083)) * 1, ) V (5)

Here, the Gaussian noise N (,u,,créN) is computed adaptivly
based on the learned attention during training:

1 n—1n—1
h= Ay ®
i=0 j=0
1 n—1n—1
— R 2
oo = | DD (Aij—n) (7)

i=0 j=0
The smoothing kernel n,, [i, ] is a 2D Gaussian distribution:

2
e "\ % (8)

2
2w o

Noy, [i»j] =

Input : Dfineftunlng={(xi:y1)}q/ tokenized dataset,
embedding layer emb(.), attention score
matrix A, normal noise N(u, od,),
two-dimensional Gaussian noise n,,,, rest of
the model f(-)

Parameter: Normal noise pu, agN calculated from Ap,

event horizon hyperparameter oo, based on the data

charecterstic needs to adjust the smoothing noise

—

Initialize 6 from a pre-trained model

2 repeat

Sample (Xi, Yi) ~ Dfine-tuning

Xemb < emb (X;)

5 for each Attention Head A, in Transformer
Block do

oW

6 A (Xattn) < An(Xemb) + N (1, UGZN)
7 Ap(Xattn) < Convolve(Ap(Xattn), Nog, )
8 Hh (Xattn) < Ap (Xattn)V

9 end for

10 MultiHead(H) < concat(Hg (Xattn), ---
11 Vi < f(MultiHead(H))

12 0 < opt(#, loss(yi, vi))

13 until Stopping criteria met or maximum iterations

) Hh (Xattn ))

reached

Algorithm 1. Fine-tuning Transformer encoder with ANAA.
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where og, is a tunable hyperparameter representing the event
horizon, controlling and adjusting the extent of the smoothing.
The convolution operation * applies this kernel over the noise-
augmented attention matrix:

l—

(%)f[i— m,j—n] (9)

1 -

flisflng lijl = 5 — YD e
m=1n=1
where k = 27 o is the kernel size.

This smoothing step modulates the added noise, reinforcing
stronger attention patterns while allowing for broader exploration
in attentions space. The noise parameters ;2 and oGy are computed
independently for each attention head to preserve head-specific
attention dynamics during training. Figure 2 illustrates the full
ANAA mechanism.

Adding adaptive Gaussian noise ~ N (1, oZy) to the attention
scores helps the model escape sub-optimal solutions and promotes
learning more diverse interactions between events. The subsequent
Gaussian convolution adjusts the magnitude and distribution of the
injected noise, encouraging the model to focus on more meaningful
and effective attention patterns.

During inference, stochasticity from the added noise is
removed by replacing it with its expected value u, ensuring
deterministic predictions:

ANAA = ((Ap + u) * ng, )V (10)

The computational complexity of ANAA is O(n?) (for more
details, see the Supplementary material Section 1.9, and since its
primarily used during fine-tuning with limited labeled samples, the
additional cost is negligible.

4.2 Mechanistic rationale: Why ANAA
works

Figure 4 reveals that, in the absence of augmentation, many
attention heads converge to a degenerate two-point distribution:
each weight is either exactly 0 (“oft”) or 1 (“on”), with masses
1 — o and «, respectively. ANAA first perturbs the Attention scores
with adaptive Gaussian noise whose variance scales as (1 — «)
(Supplementary material Section 1.5). So, every Dirac spike is
broadened into a narrow normal curve, turning the rigid on/oft
pattern into a bimodal continuous distribution that expresses
graded less-important vs. more-important scores. The subsequent
Gaussian ~ convolution  (Supplementary material Section 1.6)
behaves as a data-adaptive low-pass filter: it suppresses high-
frequency artifacts and interpolates between neighboring tokens,

so the random, isolated spikes introduced by the noise disappear.

Taken  together, ANAA can be viewed as a
variance-scaled, structured drop-connect regularizer
(Supplementary material Section 1.7), analogous to-but

more principled than-classical dropout, which disconnects
token pairs with an independent Bernoulli mask. ANAA
instead perturbs each attention score additively, so every
mini-batch sees a different, spatially smoothed view of the
inputs relations.
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( SoftMax ( .

FIGURE 2
Adaptive Noise-Augmented Attention (ANAA) mechanism.

v
’—\
) + ~N(mean, std) ) * n ) ﬁﬁm

5 Experiments
5.1 Datasets

In our study, we utilized medical data from two sources: the
MIMIC-IV (Johnson et al., 2020) hosp module and the Malmé
Diet and Cancer Cohort (MDC) (Berglund et al., 1993) dataset,
approved by the Ethics Review Board of Sweden (Dnr 2023-00503-
01). Each EHR trajectory represents a sequence of temporally
structured health events. The MIMIC-IV dataset includes 173,000
patient records across 407,000 visits from 2008 to 2019, with 10.6
million medical codes. The MDC dataset, from a cohort study
in Sweden, comprises 30,000 individuals with 531,000 visits from
1992 to 2020, offering a more extended patient history—257 codes
per patient on average, compared to MIMIC-IV’s 61. To ensure
consistency, we used only ICD and ATC codes, the only types
available in MDC at the beginning, aligning with prior work like
Med-BERT on diagnosis codes for risk prediction.

Both datasets use ICD and ATC codes for disease and
medication classification. We randomly split each cohort into 70%
for pre-training, 20% for fine-tuning, and 10% for testing. After
preprocessing, MIMIC-IV had 2,195 unique ICD-9 and 137 ATC-
5 codes, while MDC had 1,558 ICD-10 and 111 ATC-5 codes. To
assess the generalizability and robustness of our results, the fine-
tuning dataset was split into 5 folds. The model was fine-tuned on
4 folds with early stopping on the remaining fold, repeated 5 times
with different validation sets. We reported the mean and standard
deviation of the AUC on the unseen test dataset. For details, refer
to the dataset availability, specifications and implementation details
in the Supplementary material Sections 1.1, 1.2, 1.4.

5.2 Problem formulation

Each dataset D comprises a set of patients P, D =
(P, P%,..., PP}, In our study, we considered a total of |D| =
172,980 patients for MIMIC-IV and |D| = 29,664 patients for
the MDC cohort. We represent each patient’s longitudinal medical
trajectory through a structured set of visit encounters as a sequence
L VEL
where O represents the total number of visit encounters for patient

of events. This representation is denoted as P! = {V, Vé, ..
i. Each visit V]’ = I; U M; is the union of all diagnosis codes I; C I

and prescribed medications M; C M that are recorded for the P’ at
visit V]’ To reduce sparsity, we excluded less frequently occurring
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medical codes and retained only the initial 4 digits of ICD and
ATC codes.

To guide the model in understanding changes in encounter
times and the structure of each patient’s trajectory, similar to
BERT, we employed special tokens. A [CLS] token is placed at
the beginning of each patient’s trajectory, while a [SEP] token is
inserted between visits. Each visit represents a set of diagnoses
and medications recorded within a specific time span, and the
[SEP] token separates the sets of medical codes from one visit to
the next. Consequently, each patient’s trajectory is represented as
P\ = {([CLS], V},[SEP], V3, [SEP],..., V5, [SEP]}, providing the
model with valuable context for analysis and prediction.

Here, we evaluated our models on 3 downstream tasks ey
[Heart Failure (HF), Alzheimer’s Disease (AD), Prolonged Length
of Stay on the next visit (PLS) predictions], where the model
predicts the incidence of the first HF (Ix=gr) or AD (Iy=ap) ICD
codes or the presence of PLS (PLSy = 1) on the N visit, given
the patients previous history of medical codes, [V} :VL,_,], as a
sequence of temporally structured health events:

P(eg € VN | P' = {[CLS), Vi, [SEP], V4, [SEP], ..., V&_,, [SEP]})
(11)

For each patient’s trajectory, if there were no occurrences of
the target events ey, it is considered a negative case; otherwise,
we exclude the first visit with the target and all subsequent visits
and consider it a positive case. All ATC codes related to HF
treatment are excluded to avoid timing-related noise and non-
trivial predictions. Initially, models exhibited bias toward longer
visit histories, confounding risk predictions. To address this,
we excluded trajectories with fewer than 30 visits in the MDC
dataset and fewer than 10 visits in the MIMIC-IV dataset. This
ensured balanced visit histories between positive and negative
cases, resulting in averages of 19 visits in the MDC dataset and 9
visits in the MIMIC-1IV dataset, aligning with their overall dataset
averages prior to preprocessing. Table 1 summarizes the number of
positive and negative cases after these preprocessing steps.

5.3 List of models

To thoroughly investigate the impact of the proposed
ANAA augmentation, we compared the performance of following
conventional and deep learning models on downstream tasks of
HE AD, and PLS prediction using both the MDC and MIMIC-IV
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TABLE 1 Number of positive and negative samples in each downstream
task.

ENS Positive Negative
PLS prediction 2,429 6,360

HF prediction (MIMIC-1V) 243 641

AD prediction 245 2,628
HEF prediction (MDC) 103 301

datasets. These models were trained either from scratch or initiated
from pre-trained weights, fine-tuned on the fine-tuning dataset,
and evaluated on the test dataset. We set the tunable event horizon
parameter to o, = 1.0 (kernel size = 6) for the ANAA on the MDC
dataset and o, = 0.33 (kernel size = 2) on the MIMIC 1V after
fine-tuning on the fine-tuning dataset. Except fir HF prediction in
the MDC, different oy, slightly changes the ANAA performance.
For more details see Supplementary material Section 1.3.

5.3.1 Models with proposed RNA/ANAA
e Transformer with ANAA: This
ANAA
initialized Transformer.

model incorporates

into all self-attention heads of a randomly

e Transformer pre-trained on MLM with Raw Noise injected
Attention (RNA): In this approach, N (i, aéN) (normal noise
with adaptive parameters) is added to all self-attention heads
of a pre-trained Transformer. This experiment allows us to
isolate the impact of the noise injection from the smoothing
effect of Gaussian convolution.

e Transformer pre-trained on MLM with ANAA: This model
incorporates ANAA into all self-attention heads of the pre-
trained Transformer.

details and results are

Supplementary material Section 1.11.

Baseline model provided in

5.4 Evaluation on downstream tasks

The results are summarized in Table 2 and suggest that
adding ANAA improves the AUC of pre-trained Transformers,
potentially positioning them as one of the state-of-the-art methods
for outcome prediction on temporal structured health data.
Specifically, on the MDC dataset, the AUC for HF and AD
prediction increased to 74.5% and 73.2%, respectively, while on the
MIMIC-1V dataset, the AUC for HF prediction reached 87.2%. The
addition of ANAA resulted in statistically significant improvements
for HF prediction on both the MDC and MIMIC-IV datasets for
the MLM pre-trained Transformer. Furthermore, the improvement
in AD prediction was considerable, showcasing the effectiveness
of ANAA augmentation. However, incorporating ANAA did not
significantly alter the performance of PLS prediction. Additionally,
applying ANAA to randomly initialized Transformers boosted
the AUC for PLS prediction to 60.2%, with negligible effects
on other downstream tasks. To delve deeper into the impact of
each noise injection and smoothing augmentation term, we solely
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added the normal noise to the pre-trained Transformer. This
experiment revealed that the noise injection alone had a more
pronounced effect on downstream tasks in the MIMIC dataset,
whereas the combined (ANAA) terms exhibited greater impacts on
the downstream tasks in the MDC dataset, particularly associated
with its longer sequences.

5.5 Performance boost on data
insufficiency

One of the advantages of using pre-trained Transformers
is their robustness and performance in situations of data
insufficiency, observed in both NLP (Brown et al, 2020) and
temporal health data (Rasmy et al., 2021). Here, we investigated the
effect of applying ANAA on model performance for HF prediction
with reduced data sample sizes. We decreased the fine-tuning
sample size to 50%, 20%, and 10%, respectively. The performance
of the pre-trained Transformer with and without ANAA, was
compared on both the MDC and MIMIC-IV datasets. Figures 3a,
4 shows that ANAA improves the model performance by around
3% in HF prediction on the MIMIC-IV dataset across all data
sample sizes. Similarly, Figures 3b, 4 demonstrates that ANAA
consistently outperforms the baseline in HF prediction on the
MDC dataset, even with a 50% reduction in training samples.
However, its superiority diminishes with less data.

5.6 VS hidden representation
augmentation

We first compared ANAA with other hidden representation
augmentation methods proposed for augmenting different layers
of pre-trained Transformers. Specifically, we assess the impact of
injecting noise into various components of the network, such as
hidden layers and feedforward modules, as explored in works like
HyPe (Yuan et al, 2022) and Neftune (Jain et al., 2023). Our
objective is to evaluate whether augmenting self-attention scores,
where contextual dependencies are explicitly encoded, is more
effective than augmenting other internal representations.

As shown in Table 3, although NefTune (Jain et al., 2023)
enhances the performance of pre-trained Transformers in HF
prediction across both datasets, ANAA consistently outperforms
both NefTune and feedforward noise augmentation in predicting
outcomes. While ANAA demonstrates superior performance in
this context, NefTune has the advantage of being computationally
lighter. However, since both methods are applied during fine-
tuning, the computational demands are not a significant concern.

5.7 VS naive masking

Randomly masking the attention score matrix during training
can be seen as an extreme form of RNA augmentation. Instead of
adding normal noise to perturb relationships between events in a
sequence, naive masking directly disrupts these relationships by
summing each element with 0 or —Ay, , effectively breaking the
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TABLE 2 Average AUC values (%) and standard deviation for different methods for the HF prediction, AD prediction, and PLS prediction downstream
tasks on the test datasets.

Model/downstream task HF prediction AD prediction HF prediction
(MDC) (MDC) (MIMIC-1V) (MIMIC-1V.
Transformer 71.4(0.5) 70.5 (0.8) 84.2 (1.4) 54.4 (0.8)
Transformer+ ANAA 72.1(2.7) 70.4 (0.6) 83.2 (2.5) 60.2 (1.2)
Transformer pre-trained on MLM 72.2 (2.5) 72.2 (1.1) 85.2 (1.1) 60.3 (1.3)
Transformer pre-trained on MLM+ RNA 72.6 (1.9) 71.4 (1.0) 86.5(1.2) 60.7 (0.6)
Transformer pre-trained on MLM+ ANAA 74.5 (2.9) 73.2(0.3) 87.2 (0.4) 60.3 (0.7)
Boldface indicates the best-performing model.
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FIGURE 3

sizes on the MDC test set.

Impact of ANAA on AUC for HF prediction across different fine-tuning sample sizes in the MIMIC-1V and MDC datasets. The red line shows the AUC
of a Transformer model pre-trained on MLM without augmentation; the blue line shows the AUC of the same model augmented with ANAA. In
MIMIC-IV, MLM-+ANAA consistently outperforms the MLM baseline at all sample sizes. In MDC, MLM+ANAA outperforms the baseline up to the 50%
training size; at smaller sizes, its performance converges to that of the baseline due to the limited number of HF-positive samples in the MDC dataset.
(a) AUC values for HF prediction across fine-tuning sample sizes on the MIMIC-IV test set. (b) AUC values for HF prediction across fine-tuning sample

connections between tokens. We compared our method with naive
self-attention masking, as described by Wu et al. (2023), which
introduces a bias in the structure of self-attentions:

QK
Ap = softmax \;dl' + M), Me{o—oVN,  (12)
k
where M;; = —oo with p = 0.2, optimized based on

performance on the fine-tuning dataset. We extended it to
DropAttention (Zehui et al., 2019), which expands the mask with
a span length @ and we set @ = Kernel size. However, neither
naive masking nor DropAttention improved the performance of
the pre-trained Transformer for HF prediction on the MDC
and MIMIC-IV datasets. Instead, these methods only increased
the number of training iterations required for convergence (see
Table 3). While these techniques can help mitigate overfitting, their
overly aggressive regularization often disrupts critical dependencies
within sequences, leading to unstable training and poorer overall
performance, especially on complex healthcare prediction tasks. In
contrast, ANAA introduces controlled perturbations that balance
the attention distribution and prevent over-reliance on specific
patterns, thereby preserving essential relationships in the data
and promoting more robust and effective representations (see

Frontiersin Artificial Intelligence

Supplementary material Section 1.7 for a justification of ANAA as
a structured variant of dropout).

5.8 Effect of ANAA on self-attention
behavior

Analyzing self-attention weights and attention score matrices
can highlight how Transformers prioritize relationships between
events, shedding light on their internal logic and behavior (Clark
et al., 2019; Kovaleva et al., 2019; Hao et al., 2021). To assess the
effect of ANAA and compare it with normal noise injection (RNA),
we analyzed attention score distributions in models fine-tuned on
all downstream tasks.

We plotted histograms of attention scores across all heads and
samples from the test split, scaling each head’s scores to the [0,
1] range (Figure 4). In the bottom row of the figure, we observe
that attention scores from the fine-tuned vanilla Transformer
tend to cluster near 0 or 1, forming a near-binary (binomial-
like) distribution. This pattern suggests overconfidence and limited
exploration of dependencies across tokens.

In contrast, the middle row shows that RNA—
injecting Gaussian noise during training—broadens the
07 frontiersin.org
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Transformer. (1) Pre-trained Transformer.

Comparison of the impact of ANAA on self-attention score distributions in fine-tuned models. Attention scores from each head are individually
scaled to the [0, 1] range before plotting their distributions. (a) Pre-trained Transformer + Smoothed noise. (b) Pre-trained Transformer + ANAA. (c)
Pre-trained Transformer + ANAA. (d) Pre-trained Transformer + ANAA. (e) Pre-trained Transformer + RNA. (f) Pre-trained Transformer + RNA. (g)
Pre-trained Transformer + RNA. (h) Pre-trained Transformer + RNA. (i) Pre-trained Transformer. (j) Pre-trained Transformer. (k) Pre-trained

(k) M

distribution, encouraging attention heads to explore more
diverse and weaker connections. This leads to overlapping
attention patterns and increased representation diversity. A
mathematical explanation for this phenomenon is provided in
Supplementary material Section 1.5.

The top row demonstrates the effect of ANAA, which combines
noise injection with Gaussian smoothing. This operation retains
the diversity introduced by noise while stabilizing the attention
pattern, restoring smoother and more informative distributions.
The smoothing step dampens extreme noise while allowing the
model to refine its exploration of differnt interactions.

To further investigate, we visualized the attention score
matrices from models fine-tuned on a representative test
sample from the HF prediction task on the MDC dataset
(Figure 5). Comparing the original and smoothed attention scores,

Frontiersin Artificial Intelligence

we observe that ANAA promotes broader attention coverage,
with activation scores scaled to the [0, 1] range. Figure5
illustrates an attention head from the first layer, confirming that
ANAA leads to more distributed attention patterns. Additional
examples from the MIMIC-IV dataset are provided in the
Supplementary material Section 1.10.

However, it is important to note that the heat-maps in
Figures 4, 5 are intended as qualitative diagnostics of how ANAA
redistributes attention-not to explain the model’s decisions. As
shown in prior work, attention weights can often be manipulated
without affecting model outputs, meaning they are not a reliable
source of explanation (Hao et al, 2021; Jain and Wallace,
2019; Serrano and Smith, 2019). We therefore interpret these
visualizations only as evidence that ANAA breaks the near-
binary pattern observed in the baseline model; attributing clinical
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TABLE 3 Comparing ANAA with naive masking and other hidden
representation augmentation methods.

Model/downstream HF prediction = HF prediction
task (MDC) (MIMIC-1V)
Transformer pre-trained on 72.2(2.5) 85.2(1.1)
MLM

Transformer pre-trained on 70.00 (1.5) 85.1(0.7)
MLM-+ Naive masking

Transformer pre-trained on 69.7 (1.1) 84.9 (1.3)
MLM+ DropAttention

Transformer pre-trained on 73.6 (3.2) 85.2(0.7)
MLM+ NEFTune (@ = 5)

Transformer pre-trained on 73.1(1.7) 85.5(0.4)
MLM+ NEFTune (@ = 10)

Transformer pre-trained on 73.7(2.2) 85.0 (1.2)
MLM+ noise in the

feedforward (o = 5)

Transformer pre-trained on 72.5(4.4) 84.5(0.8)
MLM+ noise in the

feedforward (o = 10)

Transformer pre-trained on 74.5 (2.9) 87.2(0.4)
MLM+ ANAA

The table shows the average AUC values (%) and standard deviation across HF prediction
tasks on the MDC and MIMIC-1V datasets. Boldface indicates the best-performing model.

relevance to specific codes and specific codes with each other in
this context would require dedicated methods such as Integrated
Gradients (Sundararajan et al., 2017) and can be investigated
further in future work.

5.8.1 Effect of ANAA on the receptive field

The self-attention mechanism is designed to capture both long
and short-range dependencies effectively. To quantitatively assess
the impact of RNA and ANAA on the receptive field, we plot the
median values of attention score matrix Aj for each event with
respect to all previous and subsequent events (i — j, Ap,;) -ij are
positions of ¢;, ¢j in the sequence of events-across all test samples
for HF and AD predictions on the MDC (Figure 6). Transformers
pre-trained on MLM typically allocate more attention weight to
recent events, often in a monotonous fashion. Incorporating RNA
regularization reduces the steepness of this attention distribution,
allowing events to receive more balanced attention, not solely
based on their proximity to recent events. Ultimately, applying
ANAA, preserves the benefits of RNA by providing a more
equal distribution of attention within a local neighborhood,
while simultaneously reducing the emphasis on very distant
past events.

6 Discussion

This study demonstrates that ANAA—a simple two-step fine-
tuning augmentation—consistently enhances the discriminative
performance of pre-trained Transformers on longitudinal EHR
data, without altering their architecture. Compared to the
hidden representation augmentation and a range of established
regularizers, it yields superior results over vanilla fine-tuning.
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ANAA produced consistent AUC gains on HF and AD prediction
tasks in two different EHR corpora (MDC and MIMIC-IV).
On HF prediction, for example, the MLM-pre-trained baseline
rose from 72.2 to 74.5 AUC on MDC and from 85.2 to 87.2
AUC on MIMIC-1V after applying ANAA. These gains persisted
even under label-scarce conditions, maintaining ~3 percentage-
point improvements. These findings suggest that judicious noise
injection at the level of self-attention—followed by controlled
Gaussian smoothing—can encourage pre-trained transformers to
explore and learn more robust, generalizable patterns.

We further investigated that Transformers pre-trained via
MLM—while typically outperforming models without pre-
training—can exhibit overconfident, sparse attention patterns
during fine-tuning. Attention histograms reveal that conventional
fine-tuning drives many heads toward almost binary (0/1)
weights, indicating over-confident, brittle dependencies. ANAA
counteracts this by injecting adaptive Gaussian noise, which
broadens the attention distribution and encourages heads to
sample a richer set of relational cues. The subsequent smoothing
step restores coherent structure. As shown analytically in
Supplementary material Section 1.5, this mechanism effectively
acts as a variance-scaled, shifting the attention score distribution
from deterministic and binary to probabilistic and continuous, to
explore alternative dependencies.

Compared to other augmentation methods such as NEFTune
(Jain et al, 2023) and HyPe (Yuan et al, 2022)—which add
noise in the embedding or feed-forward layers—ANAA achieves
larger and more consistent performance gains. In contrast, naive
attention masking or DropAttention (Wu et al., 2023; Zehui et al,,
2019) degraded results. This highlights the importance of where
noise is injected: perturbing the self-attention scores—the core
mechanism for modeling token interactions—yields greater benefit
than altering downstream representations.

While ANAA consistently improves performance across
the two studied EHR datasets, several caveats remain. First,
all experiments were conducted on structured, diagnosis- and
medication-coded timelines (MIMIC-IV and MDC); Although our
experiments focus on a standard Transformer encoder for clarity
and control, ANAA is modular by design and can be integrated
into other clinical Transformer models such as BEHRT (Li et al.,
2020), Med-BERT (Rasmy et al., 2021), or Hi-BEHRT (Li et al,
2022); exploring such integrations is a promising direction for
future work. More broadly, how well ANAA generalizes to other
data modalities —such as free text, imaging, or genomics —and to
models pre-trained with alternative objectives such as contrastive
learning (e.g., BYOL; Grill et al., 2020) also remains to be explored.
Second, ANAA introduces additional hyperparameters. Although
the sensitivity analysis in Supplementary Table S3 suggests the
method is robust across a range of values, some tuning is still
required. Third, the computational overhead introduced by noise
injection and smoothing increases both memory usage and training
time, which may become a limitation for very long sequences
or resource-constrained environments. Fourth, in settings with
extremely low data regimes or highly unbalanced labels, ANAA’s
implicit Augmentation provides some benefit but is not sufficient
on its own. Finally, the effect of model augmentations, like ANAA,
on model interpretability warrants further study, particularly in
safety-critical applications.
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FIGURE 5

Comparing the impact of ANAA on the self-attention score weights for five fine-tuned models on HF prediction on the MDC dataset for a specific
test sample. Here, the attention scores are scaled within 0 and 1. (a) Transformer. (b) Transformer + ANAA. (c) Pre-trained Transformer. (d)

Pre-trained Transformer + RNA. (e) Pre-trained Transformer 4+ ANAA.
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Impact of ANAA on the receptive field of the self-attentions for HF and AD prediction on the MDC dataset.
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7 Conclusion

We introduced Adaptive Noise-Augmented Attention (ANAA),
a lightweight and effective method for enhancing the fine-tuning
of pre-trained Transformers. ANAA directly augments the self-
attention scores with adaptive Gaussian noise and applies a
smoothing convolution using a Gaussian kernel, encouraging the
model to explore more diverse attention patterns while preserving
critical dependencies.

We demonstrated that pre-trained Transformers, when fine-
tuned on limited EHR datasets, often converge to overly sharp
attention distributions—overfitting to local patterns and failing
to capture broader contextual relationships. ANAA mitigates this
by encouraging more diverse and stable attention distributions,
leading to better generalization across tasks and data regimes.
Extensive experiments on multiple clinical prediction tasks showed
that ANAA consistently outperforms conventional regularization
and hidden augmentation techniques.

ANAA offers a plug-and-play augmentation mechanism that
operates entirely within the attention computation, requiring no
modification to the model architecture or computational graph.
This makes it particularly suitable for integration with existing
pre-trained models.
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