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Background: Timely and e�cient allocation of deceased donor kidneys is a

persistent challenge in transplantation. Traditional sequential o�er systems often

lead to extended delays and high nonuse rates, asmany kidneys undergomultiple

refusals before being accepted. Simultaneously expiring o�ers, where a kidney is

o�ered to a batch of centers with synchronized response deadlines, o�er a more

e�cient alternative. However, fixed batch sizes fail to account for variability in

o�er requirements, potentially introducing new ine�ciencies or overwhelming

transplant professionals with excessive notifications.

Methods: We investigated the use of machine learning-based survival models to

dynamically predict the number of o�ers a kidney will require before acceptance.

Utilizing data on over 16,000 deceased donor kidneys from the national organ

o�er dataset, we engineered predictive features from both donor profiles

and recipient pool characteristics. We trained and evaluated multiple survival

models using time-dependent concordance indices along with other survival

and regression performance metrics.

Results: The Random Survival Forest model achieved the best performance,

with a time-dependent C-index of 0.882, e�ectively estimating the required

o�er volume for kidney placement. Feature importance analysis revealed that

waitlist characteristics, such as mean Estimated Post-Transplant Survival (EPTS),

mean Calculated Panel Reactive Antibody (CPRA), time on dialysis, and waitlist

duration, were among the most influential predictors. When integrated into

a dynamic simultaneous o�er system, these predictions have the potential to

reduce average placement delays from 17.37 h to 1.59 h while maintaining a

manageable level of extraneous o�ers.

Discussion: Our results demonstrate that survival-based predictive modeling

can meaningfully improve the e�ciency of simultaneously expiring o�ers in

kidney allocation. By personalizing batch sizes based on expected o�er burden,

such models can reduce delays without overwhelming transplant professionals.

These findings underscore the value of integrating real-time, data-driven tools

into organ allocation systems to improve operational e�ciency and facilitate

practical implementation.
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organ nonuse, simultaneously expiring o�ers, survival models, decision support,
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1 Introduction

Kidney transplantation is the preferred treatment for end-

stage kidney disease, offering superior survival and quality-of-

life outcomes compared to dialysis (Wolfe et al., 1999), along

with substantial long-term cost savings (Laupacis et al., 1996).

Yet despite the growing need, kidney nonuse remains a major

challenge. In 2023, the nonuse rate reached a record high of

27.9 (Israni et al., 2025). The allocation of deceased donor kidneys

is a complex, time-sensitive process involving real-time decisions

by transplant centers, shaped by donor characteristics, recipient

compatibility, and institutional constraints (Zhang et al., 2023). As

a result, many kidneys undergo extended sequences of refusals:

one-quarter of transplanted kidneys are first offered to at least

73 candidates. These delays increase Cold Ischemia Time (CIT)—

the duration an organ remains preserved before transplantation—

which is associated with reduced graft function and survival (Lum

et al., 2023). Prolonged offer sequences also create significant

logistical burdens. Some transplant centers receive up to 700 offers

per month (Reddy et al., 2022), contributing to operational fatigue

and resource strain. Ultimately, this inefficiency delays patient

access to transplantation and increases the risk of graft failure or

kidney nonuse.

Despite ongoing policy reforms, the kidney allocation

system continues to face significant challenges in improving

organ utilization (Israni et al., 2025). Most recently, the 2021

implementation of KAS250 replaced regional boundaries with a

250-nautical-mile radius allocation framework, aiming to reduce

geographic disparities. However, this change has introduced new

logistical burdens and operational inefficiencies for transplant

centers (Yu et al., 2025). Although there is broad recognition

among patients and clinicians of the need to reduce kidney

nonuse, support for more risk-tolerant allocation policies

remains divided (Mehrotra et al., 2020). National efforts to

expand the donor pool—such as increased use of donation after

circulatory death and the adoption of hypothermic machine

perfusion to extend acceptable CIT—have not yielded the

expected improvements in utilization (McKenney et al., 2024).

Compounding these issues is the substantial variation in acceptance

behavior, not only across transplant centers but also among

clinicians within the same center, even after adjusting for organ

quality (Green et al., 2025). This inconsistency further limits the

effectiveness of policy-level interventions and underscores the need

for more adaptive, data-driven approaches to kidney allocation.

Simultaneously expiring offers have been proposed as a strategy

to reduce kidney nonuse and accelerate organ placement. Under

this system, a kidney is offered to multiple transplant centers

simultaneously, with each center required to respond within a fixed

time window. This contrasts with traditional sequential offers and

allows more offers to be made within a shorter period (Mankowski

et al., 2019). Simulation studies suggest that this approach can

improve organ utilization and reduce delays. However, current

implementations typically apply a fixed batch size across all

offers, regardless of donor quality or anticipated placement

difficulty. This uniform approach can lead to inefficiencies: high-

quality kidneys may be over-offered, while marginal kidneys

may still face long placement times. Additionally, offering organs

too broadly increases the likelihood that centers invest time

evaluating an offer only to be bypassed—contributing to decision

fatigue and diminishing willingness to fully engage with future

offers (Carminati, 2020), considering that a center accepting an

organ offer can be ultimately bypassed due to a higher-priority

acceptance on the match run.

Clinical decision-making in organ transplantation imposes

a substantial cognitive load on providers, who must quickly

interpret complex and uncertain information under time pressure.

In kidney transplantation, offers often arrive unpredictably and in

bursts, requiring repeated assessments of donor quality, recipient

compatibility, and logistical feasibility. This high volume of time-

sensitive decisions contributes to decision fatigue—the gradual

decline in decision quality resulting from sustained mental

effort (Pignatiello et al., 2020). The adoption of simultaneously

expiring offers, while aimed at improving allocation efficiency,

has been shown to further increase cognitive demands on

clinicians (Mankowski et al., 2019; Erazo et al., 2022). The

consequences of decision fatigue are well-documented in clinical

settings and include susceptibility to cognitive biases, reduced

persistence, impulsivity, and avoidant behavior (Grignoli et al.,

2025). In transplantation, these effects may manifest as delayed or

suboptimal responses to offers, prolonged wait times, and missed

opportunities for organ placement—outcomes with serious clinical

and operational costs.

Recent work by Erazo et al. (2022) introduced a simulation-

optimization framework to determine optimal batch sizes for organ

offers, accounting for organ quality and location. Their policy

assigns batch sizes based on predefined organ categories (e.g.,

KDRI ranges for kidneys) and Organ Procurement Organization

(OPO) location, using simulation outcomes to maximize system-

wide utility. While this approach demonstrates clear improvements

in organ utilization and time-to-allocation over fixed batch-size

policies, it relies heavily on extensive simulation infrastructure and

does not produce organ-level predictions. Instead, it applies group-

level policies determined offline, without incorporating real-time

donor- or match-run-specific context. As a result, while effective in

aggregate, these strategies may miss opportunities for more precise,

data-driven tailoring of batch sizes that reflect individual offer

complexity or waitlist dynamics.

The growing availability of rich, high-dimensional clinical data

has enabled the use of machine learning to improve predictive

modeling in healthcare (Ravindhran et al., 2023). Recent studies

in transplantation have leveraged machine learning to address

diverse prediction tasks, such as pre-transplant mortality, organ

nonuse, graft survival, post-transplant complications, and long-

term patient outcomes (Massie et al., 2010; Marrero et al., 2017;

Li et al., 2024; Gotlieb et al., 2022; Connor et al., 2021; Berry et al.,

2024; Ge et al., 2023). However, most existing work focuses on post-

transplant predictions and does not address logistical challenges

during the allocation process. In contrast, our study introduces a

novel application of machine learning to pre-transplant logistics:

predicting the number of offers a specific kidney will require

before acceptance. To our knowledge, this is the first effort to

develop organ-level predictions of offer burden as a mechanism

to guide dynamic batch sizing in simultaneously expiring offers.

By moving beyond fixed or category-based batching strategies, our
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approach enables real-time, individualized offer design based on

donor, waitlist, and match-run context.

In addition to predictive accuracy, clinical deployment of such

models requires interpretability. As machine learning models grow

in complexity, transparency in decision-making is essential to

build trust among clinicians. While traditional models like the

Cox Proportional Hazards model offer intrinsic interpretability,

recent efforts have increasingly adopted more flexible models

combined with post-hoc explanation techniques, such as SHAP

(SHapley Additive exPlanations) (Berchuck et al., 2024; Gogoi and

Valan, 2024). Our framework leverages this paradigm to provide

both predictive power and actionable insights into the drivers of

offer burden.

The aim of this study is to leverage survival-based machine

learning models to predict how many offers a deceased donor

kidney will require before acceptance, and to show how these

predictions can inform dynamic, organ-specific batch sizing

for more efficient allocation. We note that the individualized

predictions by the survival models offer a flexible alternative

to static, fixed-size offer groups in simultaneously expiring

offers. Using comprehensive national transplant data, we simulate

multiple allocation strategies, including the current sequential

match run and a range of fixed-size batch policies, and compare

them in terms of offer delays and the number of extraneous

offers made after an acceptance. Our results demonstrate that

dynamic, prediction-informed batching can significantly reduce

placement times while limiting unnecessary workload on transplant

centers. To enhance interpretability and support clinical adoption,

we use SHAP analysis to identify key features influencing model

predictions, providing insight into the factors that drive variation

in acceptance timelines.

2 Methodology

In this section, we first describe the dataset and feature

construction process, then introduce our modeling framework and

survival prediction setup. We next present the evaluation metrics

used to assess model performance, followed by a simulation-based

evaluation of batch policy alternatives. Finally, we discuss the

interpretability methods used to explain model predictions.

2.1 Data description

We construct a unique dataset composed of the deceased

donor data and the Potential Transplant Recipient dataset from

Organ Procurement and Transplantation Network (OPTN) which

documents all kidney offers to patients on the U.S. waiting list.

The feature set was informed by prior research and domain

expertise, aiming to balance donor-specific characteristics with

aggregated proposed recipient features from the OPTN dataset to

capture both organ quality and waitlist context. Donors missing key

features which are used in the analysis are excluded. The dataset is

composed of both key donor features, as well as summary features

created through analysis of the potential recipients to whom

the kidney was offered. These aggregate features approximate

properties of the local match run or offer pool and serve as a proxy

for the waitlist.

For the purposes of our experiment we have taken a subset of

the proposed transplant recipient dataset consisting of 20 million

offers made up of 16,408 distinct donors, covering the period from

February, 2018 to August, 2019, thus excluding the COVID-19

period to avoid potential anomalies. After extracting the data chunk

from thematch run data, the corresponding offers are aggregated to

just one observation per donor kidney; these aggregate feature are

mostly composed of the mean, min, and max values of the waitlist.

Offers without a corresponding entry to the deceased donor file

were also removed, as we could not make use of several features

contained therein. In addition to standard donor characteristics

and waitlist-derived statistics, we incorporated several engineered

features to enrich the predictive modeling process. These include

candidates time on the waitlist and their distance to the transplant

center, as well as two measures of center-specific acceptance

patterns. The first, the age-count heuristic, counts kidneys of

similar quality accepted for recipients of a similar age at the same

center in the previous 2 years. The second, the 2-year greater-

creatinine heuristic, counts kidneys with higher serum creatinine

accepted at the same center during that period.

The complete set of continuous and categorical features used

in this analysis are listed in Tables 1, 2, respectively. For the

continuous features, we include detailed statistics including min,

max, mean and median values to provide a clear picture of data

distribution. Prior to model training, all categorical features were

one-hot encoded, that is, converted into separate binary columns

for each category and all continuous features were standardized.

For categorical variables, all levels shown in Table 2 were retained

as they appear in the OPTN source data including “Unknown”

values. Furthermore, one-hot encoding these features ensures

interpretability and fair comparison, as some models are less

resilient to alternative encodings of categorical variables. Of note

is the high variability of some of the features. For instance, CIT

ranges from 0 indicating an offer was made before clamp time all

the way up to rare extreme values exceeding 34,000 minutes, which

are clinically implausible and likely reflect data entry anomalies.

However, because we use the minimum CIT across all offers for

a donor in the model, such extreme values are exceedingly rare

and were retained to preserve fidelity to the original registry

data and reflect real-world data conditions, under which this

decision-support tool would operate. Similarly the prevalence of

0’s in the min value column have clear interpretations within the

dataset: donor age 0 corresponds to a small number of neonatal

donors, distance 0 reflects scenarios where donor and recipient

were located in the same center, and waitlist time 0 indicates

candidates who received an offer on the same day they were

listed, often in urgent cases. Several features in our dataset are

calculated in real time for each individual offer event, prior to

aggregation at the donor level, including CIT, donor-recipient

distance, candidate waitlist duration, time on dialysis, and a center-

specific heuristic that captures the number of kidneys with higher

serum creatinine accepted over the preceding 2 years (i.e., 2-

Year Greater Creatinine). These required extensive preprocessing,

such as aligning donor and candidate timelines, computing offer-

specific values (e.g., cold ischemia from cross-clamp time), and
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TABLE 1 Summary statistics for continuous features.

Feature Mean (SD) Min 25% Median 75% Max

Min cold ischemia (Minutes) 28.76 (448.38) 0.000 0.000 0.000 0.000 34,851.000

Min KDRI 1.37 (0.49) 0.604 0.996 1.268 1.641 4.837

Min age count heuristic 216.99 (503.56) 0.000 4.564 41.274 191.387 6,385.519

Min distance (KM) 8.18 (19.98) 0.000 0.000 1.000 7.000 507.000

Min time waitlisted (Days) 314.35 (637.08) 0.000 3.000 32.000 277.250 8,875.000

Min initial EPTS 10.24 (21.16) 0.000 0.000 0.000 8.000 100.000

Min years on dialysis 1.899 (3.099) 0.000 0.000 0.000 3.105 33.791

Min recipient age (Years) 32.53 (18.20) 0.334 19.567 30.576 46.480 88.977

Min CPRA 3.577 (16.641) 0.000 0.000 0.000 0.000 100.000

Min 2-year greater creatinine 0.07 (0.41) 0.000 0.000 0.000 0.000 15.000

Mean age count heuristic 569.50 (770.83) 0.000 53.711 226.186 814.552 7,260.661

Mean distance (KM) 18.63 (24.68) 0.000 3.562 10.446 24.500 507.000

Mean time waitlisted (Days) 881.44 (650.74) 0.000 470.333 748.000 1,170.557 8,875.000

Mean initial EPTS 32.71 (20.70) 0.000 16.600 35.344 45.001 100.000

Mean years on dialysis 4.285 (2.838) 0.026 2.287 3.443 5.676 33.791

Mean recipient age (Years) 51.40 (12.23) 1.071 48.108 54.617 58.960 88.977

Mean CPRA 6.835 (17.767) 0.000 0.000 0.489 2.750 100.000

Mean 2-year greater creatinine 0.16 (0.48) 0.000 0.000 0.000 0.046 15.000

Max age count heuristic 1,319.05 (1,702.88) 0.000 92.256 429.516 2,345.306 9,476.486

Max distance (KM) 47.98 (68.77) 0.000 8.000 23.000 58.000 521.000

Max time waitlisted (Days) 2,223.30 (1,582.93) 0.000 940.000 2,101.000 3,212.000 11,790.000

Max initial EPTS 65.57 (36.87) 0.000 31.000 83.000 98.000 100.000

Max years on dialysis 9.746 (6.786) 0.000 4.884 8.631 13.303 42.122

Max recipient age (Years) 64.97 (17.50) 1.071 55.090 68.981 78.418 91.883

Max CPRA 75.582 (29.106) 1.000 60.000 89.000 99.000 100.000

Max 2-year greater creatinine 0.670 (1.283) 0.000 0.000 0.000 1.000 16.000

Donor age (Years) 40.20 (16.83) 0.000 28.000 41.000 54.000 87.000

Donor creatinine 1.45 (1.41) 0.020 0.700 1.000 1.590 35.000

CIT, Cold Ischemia Time; KDRI, Kidney Donor Risk Index; EPTS, Estimated Post-Transplant Survival; CPRA, Calculated Panel Reactive Antibody.

handling inconsistencies across sources. Several other features such

as waitlist time, dialysis duration and CPRA display were heavily

skewed, reflecting wide differences across patients, and further

support the use of feature standardization. Among the categorical

features substance use indicators, such as history of IV drug use

or cocaine use, are non-negligible, highlighting the inclusion of

extended criteria donors. Most clinical variables contain low levels

of missing data (typically< 2%), coded as “Unknown” and retained

as distinct levels.

To give a clearer picture of the study population, we

report some key demographic and clinical characteristics for

the recipients. The mean recipient age was 55.73 years with

a standard deviation of 12.33 years. Table 3 summarizes the

distributions of blood type, race/ethnicity, gender, and primary

diagnosis. The most common blood type was O (66.60%), followed

by A (24.67%). The largest racial/ethnic groups were White

(35.22%), Black (30.80%), and Hispanic (23.38%). The most

frequent primary diagnoses were Type II diabetes mellitus (36.88%)

and hypertensive nephrosclerosis (21.01%). These distributions are

broadly in line with what might be expected in a kidney transplant

recipient population.

2.2 Modeling approach

The organ offer process is inherently time-dependent, offers

are sent to centers sequentially until one is accepted or the

organ is removed from match run and not used. Crucially, the

quality of the organ deteriorates over time due to increasing CIT,

which is known to negatively impact transplant outcomes. As

such, allocation is effectively a race against time, where delays

reduce both the likelihood of acceptance and post-transplant

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2025.1662960
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Berry et al. 10.3389/frai.2025.1662960

TABLE 2 Summary statistics for categorical features.

Feature Level Mean

Hypertension history No 0.660

Unknown 0.010

Yes 0.330

Cancer history No 0.959

Unknown 0.009

Yes 0.032

Cigarette use No 0.768

Unknown 0.021

Yes 0.211

DCD status No 0.928

Yes 0.072

MI history No 0.946

Unknown 0.012

Yes 0.041

Cocaine use No 0.747

Unknown 0.019

Yes 0.234

IV drug use No 0.854

Unknown 0.016

Yes 0.130

Donor ethnicity White 0.670

Black 0.148

Hispanic 0.139

Asian 0.024

American Indian/Alaska Native 0.005

Native Hawaiian/Pacific Islander 0.003

Multiracial 0.010

Donor gender Female 0.392

Male 0.608

Donor blood type Category A 0.161

Category A1 0.169

Category A1B 0.011

Category A2 0.036

Category A2B 0.005

Category AB 0.018

Category B 0.122

Category O 0.477

DCD, Donation after Circulatory Death.

viability. Traditional classification or regression approaches fail

to capture the uncertainty involved in this process. We adopt

survival modeling techniques well suited tomodeling time-to-event

outcomes, where event is defined as the acceptance of the organ.

TABLE 3 Distributions of blood type, race/ethnicity, gender, and primary

diagnosis for recipients.

Feature Level Mean

Blood type

O 0.666

A 0.247

B 0.061

AB 0.021

A1 0.004

A2 0.001

A1B 0.000

A2B 0.000

Race/Ethnicity

White 0.352

Black 0.308

Hispanic 0.234

Asian 0.087

American Indian/Alaska Native 0.007

Native Hawaiian/Other Pac. Islander 0.004

Multiracial 0.008

Gender

Male 0.681

Female 0.319

Primary diagnosis

Diabetes mellitus—type II 0.369

Hypertensive nephrosclerosis 0.210

Polycystic kidneys 0.070

Other specify / unknown 0.069

Focal glomerular sclerosis (FSGS) 0.052

IgA nephropathy 0.040

Diabetes mellitus—type I 0.028

Retransplant / graft failure 0.028

Systemic lupus erythematosus 0.023

Chronic glomerulonephritis, unspecified 0.015

Other diagnoses (each < 1%) 0.097

This allows us to leverage censored data and produce risk scores

estimating the acceptance over time.

Unlike traditional classification or regression approaches,

survival models are well suited for modeling time-to-event data

outcomes with censoring. In our setting where observations are

made up of donor kidneys and the aim is to predict offer burden,

censoring occurs when the kidney is removed from the offer pool

without acceptance. Crucially, these censored observations account

for ∼ 25% of all donor kidneys in the dataset. Ignoring them

would exclude a substantial portion of the allocation process and

systematically bias predictions toward cases with faster placement.
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TABLE 4 Illustrative example survival data in the context of kidney o�ers.

Kidney ID O�ers made Accepted Censored

A 2 Yes No

B 5 No Yes

C 1 Yes No

D 3 Yes No

E 4 No Yes

Traditional regression models (e.g., OLS, random forests, or

gradient boosting) can be trained on observed offer counts but

typically ignore censored data and treat the target as fully observed,

which may bias predictions for non-utilized organs. Survival

models provide a natural framework for this task by jointly

modeling the probability and timing of events while incorporating

censored observations. Their established utility in kidney graft

survival analysis further supports their application in modeling

offer dynamics (Riley et al., 2022).

Table 4 illustrates a small survival dataset representing how

many offers were made before each kidney was either accepted or

labeled as non-utilized. Kidneys A, C, and D were accepted after

2, 1, and 3 offers respectively, while kidneys B and E were never

accepted and are thus right-censored. Survival models leverage this

structure by treating censored examples as partial observations, i.e.,

the kidney remained unaccepted up to at least the reported number

of offers. In contrast, a standard regression or classification model

cannot properly handle censored observations. It would typically

need to either discard these examples entirely or assign them a

fixed label, treating them as if the event did occur (at the last

observed time).

Survival models can be further separated into classical survival

models such as Cox Proportional Hazards (CPH) or Weibull

Accelerated Failure Time and machine learning-based approaches.

The classical approaches assume parametric or semi-parametric

forms for the hazard or survival function and rely on strong

assumptions such as proportional hazards or specific distributional

forms. These models perform well in certain settings but may

be too rigid to capture complex interactions or non-linear effects

in the allocation data. Machine learning-based survival models,

such as DeepSurv (Katzman et al., 2018) and Random Survival

Forests (RSF) (Pölsterl, 2020), offer a hybrid approach: they handle

censoring like classical models but allow for greater flexibility in

learning nonlinear patterns and feature interactions (Garcia-Lopez

et al., 2025; Kang, 2024). For example, the assumption of log-

linearity and proportional hazards means that the effect of a high

CPRA score is assumed constant over time, whereas a RSF or

DeepSurv model, by contrast, can learn that CPRA interacts with

factors like EPTS or CIT to change acceptance risk dynamically.

The models considered in our empirical analysis include CPH,

Weibull, RSF, and DeepSurv. Although we initially evaluated

DeepHit, it was ultimately excluded due to consistently lower

performance on time-dependent concordance metrics relative to

the other models. A key limitation of DeepHit is its reliance on

discretizing the event timeline into a fixed number of intervals,

which reduces the time dependent resolution of the predicted

survival curves and may hinder its ability to capture nuanced event

dynamics. For all remaining models, time-to-event predictions are

computed consistently using the median survival time, defined as

the time point at which the predicted survival probability falls

below 0.5.

2.3 Evaluation metrics for survival models

To evaluate model performance in predicting time to kidney

acceptance, we employed the time-dependent concordance index

(C-index), a metric designed for survival analysis settings where

event times may be censored. Unlike the standard concordance

index, which assesses a model’s ability to rank survival outcomes

across the entire dataset, the time-dependent version evaluates

the model’s ranking ability at each observed event time. This is

particularly well-suited to our application, where the timing of

organ acceptance, not just whether acceptance occurs, is of critical

importance for operational decisions and policy development.

The time-dependent concordance index is defined as:

C-index =

∑n
i=1 δi

∑

j∈R(Ti)
1

(

Ŝ(Ti | xi) < Ŝ(Ti | xj)
)

∑n
i=1 δi ·

∣

∣R(Ti)
∣

∣

(1)

where n denotes the total number of donor kidneys, and δi is an

event indicator that equals 1 if kidney i was accepted (i.e., the event

occurred) and 0 if it was censored (i.e., removed from consideration

without being accepted). Ti is the acceptance time for kidney i, and

Ŝ(Ti | x) represents the predicted survival probability at time Ti

given the feature vector x. The set R(Ti) consists of kidneys that

are still at risk (i.e., not yet accepted or censored) at time Ti, and the

indicator function 1(·) evaluates to 1 if the model correctly ranks

kidney i as more likely to be accepted earlier than kidney j, based

on survival probabilities at that time.

This metric captures the proportion of correctly ordered pairs

among all comparable donor kidneys, averaged over all actual

acceptance times. By incorporating censoring and focusing on

pairwise comparisons at each event time, C-index offers a time

sensitive and policy-relevant measure of predictive performance.

This is particularly valuable in the context of organ allocation,

where reducing CIT and improving the timing of placements are as

critical as the acceptance itself. Accurately ranking which kidneys

are likely to be accepted sooner allows for better offer planning

and more efficient use of the donor pool. Thus, C-index provides

a robust and context-appropriate metric for evaluating survival-

based models in this domain.

In addition to C-index, we evaluate model performance

using the Integrated Brier Score (IBS) and Negative Binomial

Log-Likelihood (NBLL). IBS measures the mean squared error

between predicted survival probabilities and observed acceptance

outcomes across time whereas NBLL evaluates how well the model

predicts the number of offers before acceptance by comparing the

predicted and observed distributions. Several regressionmetrics are

considered as well, including Mean Absolute Error (MAE) which

reflects the average magnitude of the difference in offers seen vs.

offers predicted, and Mean Absolute Percentage Error (MAPE)

which expresses MAE as a relative percentage of the observed

values. We also report Root Mean Squared Error (RMSE), and
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Normalized RMSE (NRMSE) which measure difference between

actual and predicted offer burden while more heavily penalizing

larger deviations NRMSE scales this by the range of observed values

for comparability. Finally we report the coefficient of determination

(R2) which indicates the proportion of variation in observed offer

burden explained by the model. These metrics together capture not

only the models ability to rank risks accurately but also the models

ability to make accurate time to event predictions.

For each model we report the mean and standard deviation of

performance across the ten evaluation folds. Model performance

is also assessed using 5 × 2 repeated cross-validation. Specifically,

to assess whether observed performance differences are statistically

meaningful, we conduct paired t-tests comparing one model

against another across the 5× 2 cross-validation folds.

2.4 Batch policy evaluation

To evaluate the potential impact of alternative batching

strategies, we provide a counterfactual analysis under alternative

batch designs. In the observed match run, kidneys are offered

sequentially, one candidate at a time, until an acceptance or

the organ is deemed unusable. We investigate two alternative

batching modes: static batch sizes where a fixed number of

candidates are offered simultaneously regardless of organ or

potential recipient characteristics, and dynamic batch sizes,

in which the number of concurrent offers is set based on

the survival model’s predicted offer burden for each organ.

These batch sizes are derived from the predicted median

survival time or quantile-based adjustments on the predicted

survival curve.

In all simulations we apply a simplified set of assumptions

namely each batch is assumed to be sent at the same timestamp

with a fixed 1-h expiration period, after which a new batch is

issued if acceptance has not occurred. A batch is considered

successful if any candidate within would have accepted the offer

using the original match run as the ground truth. We then

evaluate the outcomes of the policy by computing two metrics

per organ, the total time elapsed until acceptance and the number

of extraneous offers defined as offers made after the ground

truth acceptance point. The first reflects potential delays in the

placement process, which could increase CIT or risk nonuse. The

second captures the additional workload imposed on centers by

offering to candidates who, in practice, would not have received

an offer under sequential offering. The ground truth acceptance

time per organ is not assumed, but directly observed from the

data, reflecting real-world offer sequences. Under this baseline

extraneous offers are zero by definition, since organs are accepted

in strict sequential order.

These metrics allow us to compare both the potential average

decrease in wait time as well as the potential average cost in terms of

offers that would not have been sent under the original match run.

In particular, we are interested in whether using model-informed

dynamic batch sizes can speed up organ placement while avoiding a

large increase in unnecessary offers. The approach of tailoring batch

sizes to each individual organ may reduce delay with less additional

workload compared to static batch sizing.

2.5 Interpretability methods

To support interpretability in our analysis, we restricted the

explanatory feature set to a curated subset of variables. Although

the RSF model is capable of handling a large number of input

features without overfitting, a property that makes it attractive

for complex prediction tasks, this flexibility can come at the cost

of interpretability. To address this, we also experimented with

a reduced feature set based on domain expertise, prioritizing

variables that contribute meaningfully to predictive performance

while also providing clinically relevant insights.

A limitation of RSF in this context is its lack of built-in feature

importance metrics or native support for post-hoc interpretation

techniques commonly used in tree-based models. Prior studies,

such as in graft failure prediction, have used permutation-based

importance measures to assess relative feature relevance (Einecke

et al., 2021). However, due to the limited robustness and

granularity of such methods, we instead employed SHAP, a model-

agnostic framework that provides local explanations grounded in

cooperative game theory. SHAP assigns each feature a contribution

value for a specific prediction, ensuring consistency and local

accuracy in how feature effects are attributed. More specifically, we

used Kernel SHAP (Lundberg and Lee, 2017), a general-purpose,

model-agnostic variant well-suited for non-differentiable models

like RSF. To tailor SHAP to our prediction goal, we defined the

model output as the predicted median survival time, ensuring that

SHAP values reflected the influence of input features on the final

time-to-event prediction.

Our interpretability analysis includes both local and global

SHAP explanations. Local explanations provide insight into feature

contributions for individual donor cases, which is critical for our

proposed application of dynamic, donor-specific batch sizing, while

global explanations reveal the average impact of each feature across

the dataset. Together, these perspectives allow us to understand

which features extend or reduce expected time to acceptance in

specific cases, and which variables drive model behavior overall.

3 Numerical results

This section presents the results of our experimental evaluation

across three core areas. First, we assess survival model performance

using standard survival and regression metrics to identify the

best performing model. Next, we investigate the clinical utility

of the proposed dynamic batching framework, highlighting its

potential to reduce allocation delay while minimizing extraneous

offers. Finally, we explore model interpretability using SHAP-based

explanations to illustrate how different features influence predicted

offer burden.

3.1 Comparative performance analysis

A comparative analysis of all model performances across

survival and error-based metrics is presented in Table 5. The RSF

model outperformed all others, achieving the highest concordance

index (C-index = 0.869) and the lowest prediction errors across

multiple metrics, including MAE (0.410), MAPE (15.14), RMSE
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(0.326), and NRMSE (0.041). RSF also achieved the highest

coefficient of determination (R2 = 0.923), indicating strong

agreement between predicted and observed time-to-acceptance.

Statistical comparisons confirm RSF’s superior performance across

nearly all metrics. With respect to pairwise statistical comparisons

between RSF and each other model, all differences were statistically

significant except for three cases: RSF vs. CPH on IBS (p = 0.058),

RSF vs. DeepSurv on NBLL (p = 0.137), and RSF vs. Weibull

on NBLL (p = 0.142). In addition, CPH achieved a significantly

lower NBLL than RSF (p < 0.001). Despite this, RSF consistently

demonstrated the strongest overall performance across themajority

of metrics and model comparisons.

To further evaluate model performance, we plot kernel density

estimates of the RSF model’s predicted, observed, and extraneous

offers in Figure 1. This visualization serves two purposes. First,

it illustrates the alignment between predicted and actual offer

burdens. The close overlap between the predicted distribution

(orange) and the observed distribution (blue) indicates strong

agreement across most of the range, demonstrating the model’s

ability to accurately estimate offer burden. Second, the sharp

peak near zero in the extraneous offers distribution highlights

the model’s conservative batching behavior, favoring smaller

batch sizes that minimize unnecessary offers while still achieving

timely placements.

3.2 Evaluating clinical utility

A key strength of our approach is its ability to generate

organ-level predictions that inform real-time decisions in kidney

allocation. To evaluate the practical impact of these predictions,

we simulate allocation under a range of fixed batch sizes and

compare outcomes against our dynamic batching model. As

shown in Figure 2, smaller fixed batches limit the number of

extraneous offers, potentially reducing decision fatigue, but result

in substantial allocation delays. At the other extreme, large batch

sizes significantly shorten placement times but generate excessive

numbers of unnecessary offers, increasing cognitive burden on

transplant teams. The current sequential match run system, which

sends offers to one candidate at a time, minimizes extraneous offers

entirely but leads to the longest delays. In contrast, our model offers

a favorable trade-off between these extremes. By tailoring batch

sizes based on predicted offer burden, it reduces the average time to

allocation from 17.3 h to 1.59 h, while maintaining a low number of

extraneous offers. This balance enables faster placement of organs

without overwhelming clinicians, offering a scalable, data-driven

alternative to one-size-fits-all batching strategies.

3.2.1 OPO-configurable batch control
A critical contribution of our work is providing transplant

professionals with flexible control over batching decisions, enabling

practical adoption of our predictive framework.While our dynamic

batching approach significantly improves organ placement times,

and consequently the outcomes, clinical workflows often require

adaptability to differing operational priorities. For instance, OPOs

may seek to reduce simultaneous offer volume to mitigate decision

fatigue and disappointment among surgeons and candidates.

Alternatively, OPOsmanaging kidneys at high risk of nonusemight

prioritize rapid allocation to minimize CIT.

To address these clinical needs, we propose two practical

extensions: (i) a quantile-based survival threshold, allowing

planners to shift predictions earlier or later in the match

run, and (ii) a global batch-size multiplier, enabling direct

adjustment of recommended batch sizes. These controls empower

OPOs to tune batching aggressiveness according to institutional

preferences, balancing allocation speed against operational and

cognitive burden.

Figure 3 demonstrates the effect of applying a conservative

batching policy using a 90% survival threshold (α = 0.9).

By shifting the predicted acceptance point earlier, the

average allocation delay modestly increases to 2.09 h, while

extraneous offers decrease substantially to 31.11. Figure 4

further illustrates a more conservative scenario combining

α = 0.8 with a batch-size multiplier of 0.5, resulting in

just 14.15 extraneous offers at the cost of 4.96 h average

delay, outperforming even a fixed batch size of 25 across

both dimensions.

These results underscore the model’s ability to adapt

dynamically to varied clinical objectives. OPOs can strategically

choose more conservative configurations to limit decision fatigue

and candidate disappointment or opt for aggressive settings to

expedite placement when appropriate. By integrating such OPO-

and organ-centric flexibility directly into the predictive framework,

our approach serves as an effective decision-support tool tailored to

real-world operational demands, ultimately facilitating smoother

adoption in clinical practice.

3.3 Interpretability analysis

We conducted an interpretability analysis to better understand

the contribution of individual features to model predictions and to

assess whether a simpler, more transparent model could achieve

comparable performance. As a first step, we evaluated a reduced

feature set informed by clinical intuition and domain expertise. The

motivation for this reduction is that simpler models, when carefully

constructed, can improve interpretability, facilitate validation by

clinicians, and increase trust in model outputs.

The reduced set includes mean values for several recipient

and system-level characteristics: time on the waitlist, initial EPTS,

distance from the donor hospital, and recipient age. To retain

predictive strength, we also include mean CPRA and mean years

on dialysis, along with their more extreme counterparts, namely,

minimum CPRA and maximum years on dialysis, which capture

additional heterogeneity in the recipient pool. Finally, key donor

characteristics are represented by minimum Kidney Donor Risk

Index (KDRI) and minimum CIT. This subset was selected to

balance clinical relevance, interpretability, and predictive power.

Table 6 demonstrates that the reduced set retains strong

predictive accuracy. Compared to the full model, the reduction

yields only modest drops in time-dependent concordance (from

0.869 to 0.863) andR2 (from 0.923 to 0.915). Thismarginal decrease

in performance greatly increases transparency and explainability.
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TABLE 5 Comparison of model performance across eight evaluation metrics.

Model C-index IBS NBLL MAE MAPE NRMSE R2 RMSE

CPH 0.857

(0.005)

0.039

(0.002)

0.127

(0.006)

0.468

(0.021)

18.856

(0.769)

0.051

(0.005)

0.903

(0.009)

0.407

(0.041)

DeepSurv 0.835

(0.018)

0.048

(0.008)

0.154

(0.025)

0.563

(0.099)

22.660

(4.258)

0.079

(0.033)

0.850

(0.066)

0.628

(0.272)

RSF 0.869

(0.004)

0.040

(0.002)

0.141

(0.006)

0.410

(0.015)

15.137

(0.701)

0.041

(0.003)

0.923

(0.004)

0.326

(0.019)

Weibull 0.851

(0.009)

0.046

(0.003)

0.159

(0.032)

0.531

(0.029)

22.238

(2.020)

0.096

(0.016)

0.861

(0.051)

0.755

(0.113)

Reported values are the mean and standard deviation (in parentheses) over 10-fold cross-validation. Bolded values indicate the best-performing model for each metric.

FIGURE 1

Kernel density estimates of o�er burden for ground truth (blue), RSF model predictions (orange), and extraneous o�ers (green). The close alignment

between predicted and observed distributions indicates strong model calibration. The distribution of extraneous o�ers is sharply skewed toward the

left, suggesting that excess o�ers tend to cluster soon after the predicted acceptance point.

To understand the contribution of individual features to the

predicted time until organ offer acceptance, we employed SHAP

values. Figure 5 presents a global SHAP summary of the feature

subset (left) as well as the top ten features in the full dataset ranked

by their scaled mean absolute SHAP values. Notably, both the

maximum and mean years on dialysis were the most influential

predictors, reinforcing the clinical intuition that centers under

pressure from long-waiting candidates are more likely to accept

offers quickly. The strong overlap in the top-ranked features across

both models indicates the reduced feature set retains many of the

core drivers of model behavior. By emphasizing mean aggregations

over extremes or percentiles, the reduced model may further

enhance interpretability. Moreover, the model trained over feature

subset performs comparably to the original model, supporting its

use in settings where interpretability is deemed essential.

The interpretability gains from using a reduced feature

set become particularly apparent when examining predictions

for individual donor kidneys. To provide meaningful local

explanations, we adapt the model’s output so that SHAP values

reflect the marginal contribution of each feature to the predicted

number of offers required before acceptance. While the original

model produces a risk score where higher values imply shorter

time-to-event, this representation is less intuitive for SHAP-based

interpretation. Instead, we apply a filtering function to output the

predicted median number of offers, making the explanations more

actionable and interpretable in the context of organ allocation.

Figures 6, 7, and 8 present local SHAP explanations for three

kidneys with varying predicted offer burdens. Each plot visualizes

the influence of individual features, showing how they either

increase or decrease the predicted number of offers relative to a

dataset-specific baseline.

3.3.1 Example 1: high predicted o�er burden
(328 o�ers)

Figure 6 illustrates a case with a high predicted offer burden.

Several features contribute significantly to increasing the number

of expected offers before acceptance. Most notably, this includes

themaximum years on dialysis, highlighting a candidate who began

dialysis over 19 years ago, paired with a mean dialysis duration of

2.08 years across the pool. An elevated mean EPTS score (37.92)

and recipient age (54.25) further reinforce the model’s prediction

of slow placement. Conversely, favorable allocation indicators such

as a low mean time on the waitlist (499.4 days), minimal CPRA,

and short donor-recipient distance serve to reduce the predicted

value. This case reflects a complex trade-off between competing

clinical signals.
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FIGURE 2

Impact of batch size on allocation e�ciency. (a) Delay decreases

with larger batches, but (b) extraneous o�ers increase.

Ground-truth (B = 1) is shown as a ×, and model predictions are in

red dashed lines.

3.3.2 Example 2: low predicted o�er burden (5
o�ers)

Figure 7 presents a highly favorable allocation scenario. All

dominant features exert downward pressure on the prediction,

resulting in a very low expected number of offers. The model

attributes this to a combination of highly favorable recipient and

donor characteristics, including a mean CPRA of 0, an elevated

mean dialysis duration of 7.71 years, and a low KDRI of 1.39.

Additionally, a CIT of 0 suggests that offers were initiated promptly,

enhancing the chances of early acceptance. This case highlights a

scenario where both medical urgency and organ quality align to

produce fast placement.

3.3.3 Example 3: moderate predicted o�er
burden (65 o�ers)

Figure 8 presents a more balanced case with a moderate

predicted offer burden. The strongest positive influence comes

from a maximum dialysis duration of 23.13 years—suggesting at

least one difficult-to-place candidate in the offer pool. However, this

is partially counteracted by several favorable features, including a

FIGURE 3

Predicted impact of early intervention policy. A survival threshold of

90% triggers earlier predictions, leading to smaller estimated batch

sizes. (a) Delay is reduced, but (b) extraneous o�ers increase.

Ground-truth is shown with a ×; model targets with red dashed

lines.

low minimum CPRA, a low initial EPTS of 18.01, and an elevated

mean dialysis duration of 7.02 years. This case demonstrates how

the model integrates both conflicting and reinforcing signals to

produce a nuanced, context-sensitive estimate.

4 Discussion and conclusion

In the current kidney allocation system, offers are typically

made sequentially. While this limits decision fatigue by stopping

the process once an organ is accepted, it often results in substantial

delays and contributes to high rates of organ nonuse. To mitigate

these delays, simultaneously expiring offers have been proposed

as an alternative. However, when implemented with a fixed

batch size, this approach can overwhelm transplant teams with

excessive evaluations, leading to decision fatigue and diminished

effectiveness. To balance the strengths of both strategies, we

developed a machine learning framework that predicts the number

of offers a deceased donor kidney will likely require before

acceptance. These individualized predictions enable dynamic batch

sizing tailored to each organ. Using real-world match run data,
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FIGURE 4

Predicted outcomes with conservative policy. This configuration

uses an 80% survival threshold with a policy multiple of 0.5, scaling

down batch size recommendations. (a) The resulting strategy delays

fewer recipients, while (b) it also produces fewer extraneous o�ers.

Ground-truth (B = 1) is marked with a ×, and model-based targets

are shown in red dashed lines.

we demonstrated strong predictive accuracy and evaluated the

operational impact of our method through simulations. The results

show that dynamically adjusted batch sizes can substantially reduce

placement delays while controlling the number of unnecessary

offers. To support clinical transparency and trust, we employed

SHAP values to interpret the model’s predictions and highlight the

most influential features driving offer burden.

Previous studies on batching strategies in kidney allocation

typically applied static batch sizing or relied on large-scale

simulations to optimize batches based on predefined organ

categories or locations (Erazo et al., 2022; Mankowski et al., 2019).

In contrast, our work introduces the novel use of survival-based

machine learning algorithms to generate real-time, individualized

predictions at the organ level. This dynamic approach enables

fine-tuned allocation strategies, balancing efficiency and clinical

workload to reduce organ nonuse rates without overwhelming

transplant professionals. Our simulation results demonstrate clear

advantages over static batching policies. The proposed dynamic

batching method reduced average offer delay from 17.37 h

(under sequential allocation) to just 1.59 h, achieving outcomes

FIGURE 5

Global SHAP feature importance comparison. Each bar represents a

feature’s mean absolute SHAP value, scaled so that the most

important feature is normalized to 1.0. (a) shows SHAP importances

for the reduced feature set, while (b) shows the top 10 importances

from the full feature set.

comparable to very large batch sizes but with significantly fewer

extraneous offers, similar to smaller batches.

The developed framework serves as a clinical decision-support

tool, helping transplant professionals navigate the complexities

introduced by circle-based allocation (Adler et al., 2021; Jay

and Stratta, 2023). Configurable parameters such as model

aggressiveness and batch-size multipliers allow clinicians to adjust

predictions according to operational priorities. Additionally, the

incorporation of local and global SHAP interpretations enhances

clinical trust by providing transparent explanations that align

predictions with clinical intuition (Nasarian et al., 2024). Real-

world deployment would require operational and policy alignment.

The model would need to be integrated into existing allocation

systems ideally with the capability to update predictions in real

time asmatch runs progress. Implementation would further require
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TABLE 6 Comparison of RSF performance using all features vs. a reduced feature subset.

Feature set C-index IBS NBLL MAE MAPE NRMSE R2 RMSE

All features 0.869 0.040 0.141 0.410 15.137 0.041 0.923 0.326

Feature subset 0.863 0.0319 0.105 0.405 15.536 0.041 0.915 0.329

FIGURE 6

Local SHAP explanation for Example 1: a kidney with a high predicted o�er burden of 328 o�ers. Strong upward pressure from maximum dialysis

time and recipient frailty is partially o�set by favorable pool-level features.

FIGURE 7

Local SHAP explanation for Example 2: a case with a low predicted o�er burden of 5 o�ers. All key features contribute toward rapid acceptance.

FIGURE 8

Local SHAP explanation for Example 3: a moderately di�cult placement scenario with a predicted o�er burden of 65. The model balances both

positive and negative predictors to arrive at this estimate.

coordination with OPOs, transplant centers, and regulatory bodies

to ensure compliance with allocation policy and avoid unintended

inequities in access.

Despite promising outcomes, several limitations exist for our

work. First, our model’s performance is derived from retrospective

registry data; thus, real-world validation through prospective

studies or controlled pilots is necessary to confirm practical

feasibility and broader system-level benefits. Second, because we

aggregate offers at the donor level, CIT is treated statically at

the initial offer stage rather than as a dynamically accumulating

constraint. Future models should explicitly account for evolving

CIT and its impact on downstream acceptance probabilities. Third,

our engineered features summarize characteristics of candidate

pools based on actual offer history, potentially biasing predictions

since candidate composition may change depending on acceptance

timing. Since we use the offer history, candidate pool features

do not account for potential changes in waitlist composition

over time. Conversely, this approach captures actual operational

constraints and decision processes that are often absent from

studies relying entirely on simulated candidate lists. Relatedly,

reliance on historical allocation and acceptance data may embed

biases from prior allocation practices and center decision-making

behaviors. While this grounding in observed behavior reflects real-

world operational constraints, it also risks perpetuating inequities

present in historical patterns. Future extensions could mitigate

this limitation by incorporating explicit center-level modeling or

by testing the framework prospectively. Furthermore, our model

implicitly incorporates historical center decision-making behaviors

without explicitly modeling these patterns or adapting dynamically

to shifts in behavior over time. Exploring novel models that

allow for incorporating explicit center identifiers is left for future

research. Finally, we note that the model is trained exclusively

on U.S. kidney allocation data. Adapting to other operational

infrastructures would likely requiremodel retraining and validation

in those contexts.

In future research, we aim to validate this framework

through prospective simulation studies or pilot implementation

to provide robust evidence of clinical feasibility and impact.

Additionally, extending the current model to incorporate iterative,

auto-regressive predictions within individual match runs could

further enhance real-world applicability. Specifically, integrating

prior batch outcomes, accumulated CIT, and evolving candidate

pool characteristics into subsequent predictions could improve

adaptive decision-making. Lastly, exploring integration strategies
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into existing clinical decision-support systems represents a critical

step toward practical implementation in transplant workflows.
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