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Background: Timely and efficient allocation of deceased donor kidneys is a
persistent challenge in transplantation. Traditional sequential offer systems often
lead to extended delays and high nonuse rates, as many kidneys undergo multiple
refusals before being accepted. Simultaneously expiring offers, where a kidney is
offered to a batch of centers with synchronized response deadlines, offer a more
efficient alternative. However, fixed batch sizes fail to account for variability in
offer requirements, potentially introducing new inefficiencies or overwhelming
transplant professionals with excessive notifications.

Methods: We investigated the use of machine learning-based survival models to
dynamically predict the number of offers a kidney will require before acceptance.
Utilizing data on over 16,000 deceased donor kidneys from the national organ
offer dataset, we engineered predictive features from both donor profiles
and recipient pool characteristics. We trained and evaluated multiple survival
models using time-dependent concordance indices along with other survival
and regression performance metrics.

Results: The Random Survival Forest model achieved the best performance,
with a time-dependent C-index of 0.882, effectively estimating the required
offer volume for kidney placement. Feature importance analysis revealed that
waitlist characteristics, such as mean Estimated Post-Transplant Survival (EPTS),
mean Calculated Panel Reactive Antibody (CPRA), time on dialysis, and waitlist
duration, were among the most influential predictors. When integrated into
a dynamic simultaneous offer system, these predictions have the potential to
reduce average placement delays from 17.37 h to 1.59 h while maintaining a
manageable level of extraneous offers.

Discussion: Our results demonstrate that survival-based predictive modeling
can meaningfully improve the efficiency of simultaneously expiring offers in
kidney allocation. By personalizing batch sizes based on expected offer burden,
such models can reduce delays without overwhelming transplant professionals.
These findings underscore the value of integrating real-time, data-driven tools
into organ allocation systems to improve operational efficiency and facilitate
practical implementation.
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1 Introduction

Kidney transplantation is the preferred treatment for end-
stage kidney disease, offering superior survival and quality-of-
life outcomes compared to dialysis (Wolfe et al., 1999), along
with substantial long-term cost savings (Laupacis et al., 1996).
Yet despite the growing need, kidney nonuse remains a major
challenge. In 2023, the nonuse rate reached a record high of
27.9 (Israni et al.,, 2025). The allocation of deceased donor kidneys
is a complex, time-sensitive process involving real-time decisions
by transplant centers, shaped by donor characteristics, recipient
compatibility, and institutional constraints (Zhang et al., 2023). As
a result, many kidneys undergo extended sequences of refusals:
one-quarter of transplanted kidneys are first offered to at least
73 candidates. These delays increase Cold Ischemia Time (CIT)—
the duration an organ remains preserved before transplantation—
which is associated with reduced graft function and survival (Lum
et al, 2023). Prolonged offer sequences also create significant
logistical burdens. Some transplant centers receive up to 700 offers
per month (Reddy et al., 2022), contributing to operational fatigue
and resource strain. Ultimately, this inefficiency delays patient
access to transplantation and increases the risk of graft failure or
kidney nonuse.

Despite ongoing policy reforms, the kidney allocation
system continues to face significant challenges in improving
organ utilization (Israni et al., 2025). Most recently, the 2021
implementation of KAS250 replaced regional boundaries with a
250-nautical-mile radius allocation framework, aiming to reduce
geographic disparities. However, this change has introduced new
logistical burdens and operational inefficiencies for transplant
centers (Yu et al,, 2025). Although there is broad recognition
among patients and clinicians of the need to reduce kidney
nonuse, support for more risk-tolerant allocation policies
remains divided (Mehrotra et al., 2020). National efforts to
expand the donor pool—such as increased use of donation after
circulatory death and the adoption of hypothermic machine
perfusion to extend acceptable CIT—have not yielded the
expected improvements in utilization (McKenney et al., 2024).
Compounding these issues is the substantial variation in acceptance
behavior, not only across transplant centers but also among
clinicians within the same center, even after adjusting for organ
quality (Green et al., 2025). This inconsistency further limits the
effectiveness of policy-level interventions and underscores the need
for more adaptive, data-driven approaches to kidney allocation.

Simultaneously expiring offers have been proposed as a strategy
to reduce kidney nonuse and accelerate organ placement. Under
this system, a kidney is offered to multiple transplant centers
simultaneously, with each center required to respond within a fixed
time window. This contrasts with traditional sequential offers and
allows more offers to be made within a shorter period (Mankowski
et al., 2019). Simulation studies suggest that this approach can
improve organ utilization and reduce delays. However, current
implementations typically apply a fixed batch size across all
offers, regardless of donor quality or anticipated placement
difficulty. This uniform approach can lead to inefficiencies: high-
quality kidneys may be over-offered, while marginal kidneys
may still face long placement times. Additionally, offering organs
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too broadly increases the likelihood that centers invest time
evaluating an offer only to be bypassed—contributing to decision
fatigue and diminishing willingness to fully engage with future
offers (Carminati, 2020), considering that a center accepting an
organ offer can be ultimately bypassed due to a higher-priority
acceptance on the match run.

Clinical decision-making in organ transplantation imposes
a substantial cognitive load on providers, who must quickly
interpret complex and uncertain information under time pressure.
In kidney transplantation, offers often arrive unpredictably and in
bursts, requiring repeated assessments of donor quality, recipient
compatibility, and logistical feasibility. This high volume of time-
sensitive decisions contributes to decision fatigue—the gradual
decline in decision quality resulting from sustained mental
effort (Pignatiello et al.,, 2020). The adoption of simultaneously
expiring offers, while aimed at improving allocation efficiency,
has been shown to further increase cognitive demands on
clinicians (Mankowski et al., 2019; Erazo et al., 2022). The
consequences of decision fatigue are well-documented in clinical
settings and include susceptibility to cognitive biases, reduced
persistence, impulsivity, and avoidant behavior (Grignoli et al.,
2025). In transplantation, these effects may manifest as delayed or
suboptimal responses to offers, prolonged wait times, and missed
opportunities for organ placement—outcomes with serious clinical
and operational costs.

Recent work by Erazo et al. (2022) introduced a simulation-
optimization framework to determine optimal batch sizes for organ
offers, accounting for organ quality and location. Their policy
assigns batch sizes based on predefined organ categories (e.g.,
KDRI ranges for kidneys) and Organ Procurement Organization
(OPO) location, using simulation outcomes to maximize system-
wide utility. While this approach demonstrates clear improvements
in organ utilization and time-to-allocation over fixed batch-size
policies, it relies heavily on extensive simulation infrastructure and
does not produce organ-level predictions. Instead, it applies group-
level policies determined offline, without incorporating real-time
donor- or match-run-specific context. As a result, while effective in
aggregate, these strategies may miss opportunities for more precise,
data-driven tailoring of batch sizes that reflect individual offer
complexity or waitlist dynamics.

The growing availability of rich, high-dimensional clinical data
has enabled the use of machine learning to improve predictive
modeling in healthcare (Ravindhran et al., 2023). Recent studies
in transplantation have leveraged machine learning to address
diverse prediction tasks, such as pre-transplant mortality, organ
nonuse, graft survival, post-transplant complications, and long-
term patient outcomes (Massie et al., 2010; Marrero et al., 2017;
Li et al., 2024; Gotlieb et al., 2022; Connor et al., 2021; Berry et al.,
2024; Ge etal., 2023). However, most existing work focuses on post-
transplant predictions and does not address logistical challenges
during the allocation process. In contrast, our study introduces a
novel application of machine learning to pre-transplant logistics:
predicting the number of offers a specific kidney will require
before acceptance. To our knowledge, this is the first effort to
develop organ-level predictions of offer burden as a mechanism
to guide dynamic batch sizing in simultaneously expiring offers.
By moving beyond fixed or category-based batching strategies, our
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approach enables real-time, individualized offer design based on
donor, waitlist, and match-run context.

In addition to predictive accuracy, clinical deployment of such
models requires interpretability. As machine learning models grow
in complexity, transparency in decision-making is essential to
build trust among clinicians. While traditional models like the
Cox Proportional Hazards model offer intrinsic interpretability,
recent efforts have increasingly adopted more flexible models
combined with post-hoc explanation techniques, such as SHAP
(SHapley Additive exPlanations) (Berchuck et al., 2024; Gogoi and
Valan, 2024). Our framework leverages this paradigm to provide
both predictive power and actionable insights into the drivers of
offer burden.

The aim of this study is to leverage survival-based machine
learning models to predict how many offers a deceased donor
kidney will require before acceptance, and to show how these
predictions can inform dynamic, organ-specific batch sizing
for more efficient allocation. We note that the individualized
predictions by the survival models offer a flexible alternative
to static, fixed-size offer groups in simultaneously expiring
offers. Using comprehensive national transplant data, we simulate
multiple allocation strategies, including the current sequential
match run and a range of fixed-size batch policies, and compare
them in terms of offer delays and the number of extraneous
offers made after an acceptance. Our results demonstrate that
dynamic, prediction-informed batching can significantly reduce
placement times while limiting unnecessary workload on transplant
centers. To enhance interpretability and support clinical adoption,
we use SHAP analysis to identify key features influencing model
predictions, providing insight into the factors that drive variation
in acceptance timelines.

2 Methodology

In this section, we first describe the dataset and feature
construction process, then introduce our modeling framework and
survival prediction setup. We next present the evaluation metrics
used to assess model performance, followed by a simulation-based
evaluation of batch policy alternatives. Finally, we discuss the
interpretability methods used to explain model predictions.

2.1 Data description

We construct a unique dataset composed of the deceased
donor data and the Potential Transplant Recipient dataset from
Organ Procurement and Transplantation Network (OPTN) which
documents all kidney offers to patients on the U.S. waiting list.
The feature set was informed by prior research and domain
expertise, aiming to balance donor-specific characteristics with
aggregated proposed recipient features from the OPTN dataset to
capture both organ quality and waitlist context. Donors missing key
features which are used in the analysis are excluded. The dataset is
composed of both key donor features, as well as summary features
created through analysis of the potential recipients to whom
the kidney was offered. These aggregate features approximate

Frontiersin Artificial Intelligence

10.3389/frai.2025.1662960

properties of the local match run or offer pool and serve as a proxy
for the waitlist.

For the purposes of our experiment we have taken a subset of
the proposed transplant recipient dataset consisting of 20 million
offers made up of 16,408 distinct donors, covering the period from
February, 2018 to August, 2019, thus excluding the COVID-19
period to avoid potential anomalies. After extracting the data chunk
from the match run data, the corresponding offers are aggregated to
just one observation per donor kidney; these aggregate feature are
mostly composed of the mean, min, and max values of the waitlist.
Offers without a corresponding entry to the deceased donor file
were also removed, as we could not make use of several features
contained therein. In addition to standard donor characteristics
and waitlist-derived statistics, we incorporated several engineered
features to enrich the predictive modeling process. These include
candidates time on the waitlist and their distance to the transplant
center, as well as two measures of center-specific acceptance
patterns. The first, the age-count heuristic, counts kidneys of
similar quality accepted for recipients of a similar age at the same
center in the previous 2 years. The second, the 2-year greater-
creatinine heuristic, counts kidneys with higher serum creatinine
accepted at the same center during that period.

The complete set of continuous and categorical features used
in this analysis are listed in Tables I, 2, respectively. For the
continuous features, we include detailed statistics including min,
max, mean and median values to provide a clear picture of data
distribution. Prior to model training, all categorical features were
one-hot encoded, that is, converted into separate binary columns
for each category and all continuous features were standardized.
For categorical variables, all levels shown in Table 2 were retained
as they appear in the OPTN source data including “Unknown”
values. Furthermore, one-hot encoding these features ensures
interpretability and fair comparison, as some models are less
resilient to alternative encodings of categorical variables. Of note
is the high variability of some of the features. For instance, CIT
ranges from 0 indicating an offer was made before clamp time all
the way up to rare extreme values exceeding 34,000 minutes, which
are clinically implausible and likely reflect data entry anomalies.
However, because we use the minimum CIT across all offers for
a donor in the model, such extreme values are exceedingly rare
and were retained to preserve fidelity to the original registry
data and reflect real-world data conditions, under which this
decision-support tool would operate. Similarly the prevalence of
0’s in the min value column have clear interpretations within the
dataset: donor age 0 corresponds to a small number of neonatal
donors, distance 0 reflects scenarios where donor and recipient
were located in the same center, and waitlist time 0 indicates
candidates who received an offer on the same day they were
listed, often in urgent cases. Several features in our dataset are
calculated in real time for each individual offer event, prior to
aggregation at the donor level, including CIT, donor-recipient
distance, candidate waitlist duration, time on dialysis, and a center-
specific heuristic that captures the number of kidneys with higher
serum creatinine accepted over the preceding 2 years (i.e., 2-
Year Greater Creatinine). These required extensive preprocessing,
such as aligning donor and candidate timelines, computing offer-
specific values (e.g., cold ischemia from cross-clamp time), and
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TABLE 1 Summary statistics for continuous features.

10.3389/frai.2025.1662960

Feat Mean (SD) Min AV Median 75% Max
Min cold ischemia (Minutes) 28.76 (448.38) 0.000 0.000 0.000 0.000 34,851.000
Min KDRI 1.37 (0.49) 0.604 0.996 1.268 1.641 4.837
Min age count heuristic 216.99 (503.56) 0.000 4.564 41.274 191.387 6,385.519
Min distance (KM) 8.18 (19.98) 0.000 0.000 1.000 7.000 507.000
Min time waitlisted (Days) 314.35 (637.08) 0.000 3.000 32.000 277.250 8,875.000
Min initial EPTS 10.24 (21.16) 0.000 0.000 0.000 8.000 100.000
Min years on dialysis 1.899 (3.099) 0.000 0.000 0.000 3.105 33.791
Min recipient age (Years) 32.53(18.20) 0.334 19.567 30.576 46.480 88.977
Min CPRA 3.577 (16.641) 0.000 0.000 0.000 0.000 100.000
Min 2-year greater creatinine 0.07 (0.41) 0.000 0.000 0.000 0.000 15.000
Mean age count heuristic 569.50 (770.83) 0.000 53.711 226.186 814.552 7,260.661
Mean distance (KM) 18.63 (24.68) 0.000 3.562 10.446 24.500 507.000
Mean time waitlisted (Days) 881.44 (650.74) 0.000 470.333 748.000 1,170.557 8,875.000
Mean initial EPTS 32.71 (20.70) 0.000 16.600 35.344 45.001 100.000
Mean years on dialysis 4.285 (2.838) 0.026 2.287 3.443 5.676 33.791
Mean recipient age (Years) 51.40 (12.23) 1.071 48.108 54.617 58.960 88.977
Mean CPRA 6.835 (17.767) 0.000 0.000 0.489 2.750 100.000
Mean 2-year greater creatinine 0.16 (0.48) 0.000 0.000 0.000 0.046 15.000
Max age count heuristic 1,319.05 (1,702.88) 0.000 92.256 429.516 2,345.306 9,476.486
Max distance (KM) 47.98 (68.77) 0.000 8.000 23.000 58.000 521.000
Max time waitlisted (Days) 2,223.30 (1,582.93) 0.000 940.000 2,101.000 3,212.000 11,790.000
Max initial EPTS 65.57 (36.87) 0.000 31.000 83.000 98.000 100.000
Max years on dialysis 9.746 (6.786) 0.000 4.884 8.631 13.303 42.122
Max recipient age (Years) 64.97 (17.50) 1.071 55.090 68.981 78.418 91.883
Max CPRA 75.582 (29.106) 1.000 60.000 89.000 99.000 100.000
Max 2-year greater creatinine 0.670 (1.283) 0.000 0.000 0.000 1.000 16.000
Donor age (Years) 40.20 (16.83) 0.000 28.000 41.000 54.000 87.000
Donor creatinine 1.45 (1.41) 0.020 0.700 1.000 1.590 35.000

CIT, Cold Ischemia Time; KDRI, Kidney Donor Risk Index; EPTS, Estimated Post-Transplant Survival; CPRA, Calculated Panel Reactive Antibody.

handling inconsistencies across sources. Several other features such
as waitlist time, dialysis duration and CPRA display were heavily
skewed, reflecting wide differences across patients, and further
support the use of feature standardization. Among the categorical
features substance use indicators, such as history of IV drug use
or cocaine use, are non-negligible, highlighting the inclusion of
extended criteria donors. Most clinical variables contain low levels
of missing data (typically < 2%), coded as “Unknown” and retained
as distinct levels.

To give a clearer picture of the study population, we
report some key demographic and clinical characteristics for
the recipients. The mean recipient age was 55.73 years with
a standard deviation of 12.33 years. Table 3 summarizes the
distributions of blood type, race/ethnicity, gender, and primary
diagnosis. The most common blood type was O (66.60%), followed
by A (24.67%). The largest racial/ethnic groups were White
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(35.22%), Black (30.80%), and Hispanic (23.38%). The most
frequent primary diagnoses were Type II diabetes mellitus (36.88%)
and hypertensive nephrosclerosis (21.01%). These distributions are
broadly in line with what might be expected in a kidney transplant
recipient population.

2.2 Modeling approach

The organ offer process is inherently time-dependent, offers
are sent to centers sequentially until one is accepted or the
organ is removed from match run and not used. Crucially, the
quality of the organ deteriorates over time due to increasing CIT,
which is known to negatively impact transplant outcomes. As
such, allocation is effectively a race against time, where delays
reduce both the likelihood of acceptance and post-transplant
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TABLE 2 Summary statistics for categorical features.

Feature Level Mean ‘
Hypertension history | No 0.660
Unknown 0.010
Yes 0.330
Cancer history No 0.959
Unknown 0.009
Yes 0.032
Cigarette use No 0.768
Unknown 0.021
Yes 0.211
DCD status No 0.928
Yes 0.072
MI history No 0.946
Unknown 0.012
Yes 0.041
Cocaine use No 0.747
Unknown 0.019
Yes 0.234
IV drug use No 0.854
Unknown 0.016
Yes 0.130
Donor ethnicity White 0.670
Black 0.148
Hispanic 0.139
Asian 0.024
American Indian/Alaska Native 0.005
Native Hawaiian/Pacific Islander 0.003
Multiracial 0.010
Donor gender Female 0.392
Male 0.608
Donor blood type Category A 0.161
Category Al 0.169
Category A1B 0.011
Category A2 0.036
Category A2B 0.005
Category AB 0.018
Category B 0.122
Category O 0.477

DCD, Donation after Circulatory Death.

viability. Traditional classification or regression approaches fail
to capture the uncertainty involved in this process. We adopt
survival modeling techniques well suited to modeling time-to-event
outcomes, where event is defined as the acceptance of the organ.
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TABLE 3 Distributions of blood type, race/ethnicity, gender, and primary
diagnosis for recipients.

‘ Feature Level Mean ‘
Blood type
(6] 0.666
A 0.247
B 0.061
AB 0.021
Al 0.004
A2 0.001
AlB 0.000
A2B 0.000
Race/Ethnicity
White 0.352
Black 0.308
Hispanic 0.234
Asian 0.087
American Indian/Alaska Native 0.007
Native Hawaiian/Other Pac. Islander 0.004
Multiracial 0.008
Gender
Male 0.681
Female 0.319
Primary diagnosis
Diabetes mellitus—type II 0.369
Hypertensive nephrosclerosis 0.210
Polycystic kidneys 0.070
Other specify / unknown 0.069
Focal glomerular sclerosis (FSGS) 0.052
IgA nephropathy 0.040
Diabetes mellitus—type I 0.028
Retransplant / graft failure 0.028
Systemic lupus erythematosus 0.023
Chronic glomerulonephritis, unspecified 0.015
Other diagnoses (each < 1%) 0.097

This allows us to leverage censored data and produce risk scores
estimating the acceptance over time.

Unlike traditional classification or regression approaches,
survival models are well suited for modeling time-to-event data
outcomes with censoring. In our setting where observations are
made up of donor kidneys and the aim is to predict offer burden,
censoring occurs when the kidney is removed from the offer pool
without acceptance. Crucially, these censored observations account
for ~ 25% of all donor kidneys in the dataset. Ignoring them
would exclude a substantial portion of the allocation process and
systematically bias predictions toward cases with faster placement.
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TABLE 4 Illustrative example survival data in the context of kidney offers.

Kidney ID Offers made Accepted Censored
A 2 Yes No
B 5 No Yes
C 1 Yes No
D 3 Yes No
E 4 No Yes

Traditional regression models (e.g., OLS, random forests, or
gradient boosting) can be trained on observed offer counts but
typically ignore censored data and treat the target as fully observed,
which may bias predictions for non-utilized organs. Survival
models provide a natural framework for this task by jointly
modeling the probability and timing of events while incorporating
censored observations. Their established utility in kidney graft
survival analysis further supports their application in modeling
offer dynamics (Riley et al., 2022).

Table 4 illustrates a small survival dataset representing how
many offers were made before each kidney was either accepted or
labeled as non-utilized. Kidneys A, C, and D were accepted after
2, 1, and 3 offers respectively, while kidneys B and E were never
accepted and are thus right-censored. Survival models leverage this
structure by treating censored examples as partial observations, i.e.,
the kidney remained unaccepted up to at least the reported number
of offers. In contrast, a standard regression or classification model
cannot properly handle censored observations. It would typically
need to either discard these examples entirely or assign them a
fixed label, treating them as if the event did occur (at the last
observed time).

Survival models can be further separated into classical survival
models such as Cox Proportional Hazards (CPH) or Weibull
Accelerated Failure Time and machine learning-based approaches.
The classical approaches assume parametric or semi-parametric
forms for the hazard or survival function and rely on strong
assumptions such as proportional hazards or specific distributional
forms. These models perform well in certain settings but may
be too rigid to capture complex interactions or non-linear effects
in the allocation data. Machine learning-based survival models,
such as DeepSurv (Katzman et al, 2018) and Random Survival
Forests (RSF) (Polsterl, 2020), offer a hybrid approach: they handle
censoring like classical models but allow for greater flexibility in
learning nonlinear patterns and feature interactions (Garcia-Lopez
et al,, 2025; Kang, 2024). For example, the assumption of log-
linearity and proportional hazards means that the effect of a high
CPRA score is assumed constant over time, whereas a RSF or
DeepSurv model, by contrast, can learn that CPRA interacts with
factors like EPTS or CIT to change acceptance risk dynamically.

The models considered in our empirical analysis include CPH,
Weibull, RSE, and DeepSurv. Although we initially evaluated
DeepHit, it was ultimately excluded due to consistently lower
performance on time-dependent concordance metrics relative to
the other models. A key limitation of DeepHit is its reliance on
discretizing the event timeline into a fixed number of intervals,
which reduces the time dependent resolution of the predicted
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survival curves and may hinder its ability to capture nuanced event
dynamics. For all remaining models, time-to-event predictions are
computed consistently using the median survival time, defined as
the time point at which the predicted survival probability falls
below 0.5.

2.3 Evaluation metrics for survival models

To evaluate model performance in predicting time to kidney
acceptance, we employed the time-dependent concordance index
(C-index), a metric designed for survival analysis settings where
event times may be censored. Unlike the standard concordance
index, which assesses a model’s ability to rank survival outcomes
across the entire dataset, the time-dependent version evaluates
the model’s ranking ability at each observed event time. This is
particularly well-suited to our application, where the timing of
organ acceptance, not just whether acceptance occurs, is of critical
importance for operational decisions and policy development.

The time-dependent concordance index is defined as:

S8 ey (ST 1 %) < S(Ti | %)

C-index =
index ST s |72(T,-)‘

(1

where #n denotes the total number of donor kidneys, and §; is an
event indicator that equals 1 if kidney 7 was accepted (i.e., the event
occurred) and 0 if it was censored (i.e., removed from consideration
without being accepted). T; is the acceptance time for kidney i, and
S(T; | x) represents the predicted survival probability at time T;
given the feature vector x. The set R(T;) consists of kidneys that
are still at risk (i.e., not yet accepted or censored) at time Tj, and the
indicator function 1(-) evaluates to 1 if the model correctly ranks
kidney i as more likely to be accepted earlier than kidney j, based
on survival probabilities at that time.

This metric captures the proportion of correctly ordered pairs
among all comparable donor kidneys, averaged over all actual
acceptance times. By incorporating censoring and focusing on
pairwise comparisons at each event time, C-index offers a time
sensitive and policy-relevant measure of predictive performance.
This is particularly valuable in the context of organ allocation,
where reducing CIT and improving the timing of placements are as
critical as the acceptance itself. Accurately ranking which kidneys
are likely to be accepted sooner allows for better offer planning
and more efficient use of the donor pool. Thus, C-index provides
a robust and context-appropriate metric for evaluating survival-
based models in this domain.

In addition to C-index, we evaluate model performance
using the Integrated Brier Score (IBS) and Negative Binomial
Log-Likelihood (NBLL). IBS measures the mean squared error
between predicted survival probabilities and observed acceptance
outcomes across time whereas NBLL evaluates how well the model
predicts the number of offers before acceptance by comparing the
predicted and observed distributions. Several regression metrics are
considered as well, including Mean Absolute Error (MAE) which
reflects the average magnitude of the difference in offers seen vs.
offers predicted, and Mean Absolute Percentage Error (MAPE)
which expresses MAE as a relative percentage of the observed
values. We also report Root Mean Squared Error (RMSE), and
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Normalized RMSE (NRMSE) which measure difference between
actual and predicted offer burden while more heavily penalizing
larger deviations NRMSE scales this by the range of observed values
for comparability. Finally we report the coefficient of determination
(R?) which indicates the proportion of variation in observed offer
burden explained by the model. These metrics together capture not
only the models ability to rank risks accurately but also the models
ability to make accurate time to event predictions.

For each model we report the mean and standard deviation of
performance across the ten evaluation folds. Model performance
is also assessed using 5 x 2 repeated cross-validation. Specifically,
to assess whether observed performance differences are statistically
meaningful, we conduct paired t-tests comparing one model
against another across the 5 x 2 cross-validation folds.

2.4 Batch policy evaluation

To evaluate the potential impact of alternative batching
strategies, we provide a counterfactual analysis under alternative
batch designs. In the observed match run, kidneys are offered
sequentially, one candidate at a time, until an acceptance or
the organ is deemed unusable. We investigate two alternative
batching modes: static batch sizes where a fixed number of
candidates are offered simultaneously regardless of organ or
potential recipient characteristics, and dynamic batch sizes,
in which the number of concurrent offers is set based on
the survival model’s predicted offer burden for each organ.
These batch sizes are derived from the predicted median
survival time or quantile-based adjustments on the predicted
survival curve.

In all simulations we apply a simplified set of assumptions
namely each batch is assumed to be sent at the same timestamp
with a fixed 1-h expiration period, after which a new batch is
issued if acceptance has not occurred. A batch is considered
successful if any candidate within would have accepted the offer
using the original match run as the ground truth. We then
evaluate the outcomes of the policy by computing two metrics
per organ, the total time elapsed until acceptance and the number
of extraneous offers defined as offers made after the ground
truth acceptance point. The first reflects potential delays in the
placement process, which could increase CIT or risk nonuse. The
second captures the additional workload imposed on centers by
offering to candidates who, in practice, would not have received
an offer under sequential offering. The ground truth acceptance
time per organ is not assumed, but directly observed from the
data, reflecting real-world offer sequences. Under this baseline
extraneous offers are zero by definition, since organs are accepted
in strict sequential order.

These metrics allow us to compare both the potential average
decrease in wait time as well as the potential average cost in terms of
offers that would not have been sent under the original match run.
In particular, we are interested in whether using model-informed
dynamic batch sizes can speed up organ placement while avoiding a
large increase in unnecessary offers. The approach of tailoring batch
sizes to each individual organ may reduce delay with less additional
workload compared to static batch sizing.
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2.5 Interpretability methods

To support interpretability in our analysis, we restricted the
explanatory feature set to a curated subset of variables. Although
the RSF model is capable of handling a large number of input
features without overfitting, a property that makes it attractive
for complex prediction tasks, this flexibility can come at the cost
of interpretability. To address this, we also experimented with
a reduced feature set based on domain expertise, prioritizing
variables that contribute meaningfully to predictive performance
while also providing clinically relevant insights.

A limitation of RSF in this context is its lack of built-in feature
importance metrics or native support for post-hoc interpretation
techniques commonly used in tree-based models. Prior studies,
such as in graft failure prediction, have used permutation-based
importance measures to assess relative feature relevance (Einecke
et al, 2021). However, due to the limited robustness and
granularity of such methods, we instead employed SHAP, a model-
agnostic framework that provides local explanations grounded in
cooperative game theory. SHAP assigns each feature a contribution
value for a specific prediction, ensuring consistency and local
accuracy in how feature effects are attributed. More specifically, we
used Kernel SHAP (Lundberg and Lee, 2017), a general-purpose,
model-agnostic variant well-suited for non-differentiable models
like RSF. To tailor SHAP to our prediction goal, we defined the
model output as the predicted median survival time, ensuring that
SHAP values reflected the influence of input features on the final
time-to-event prediction.

Our interpretability analysis includes both local and global
SHAP explanations. Local explanations provide insight into feature
contributions for individual donor cases, which is critical for our
proposed application of dynamic, donor-specific batch sizing, while
global explanations reveal the average impact of each feature across
the dataset. Together, these perspectives allow us to understand
which features extend or reduce expected time to acceptance in
specific cases, and which variables drive model behavior overall.

3 Numerical results

This section presents the results of our experimental evaluation
across three core areas. First, we assess survival model performance
using standard survival and regression metrics to identify the
best performing model. Next, we investigate the clinical utility
of the proposed dynamic batching framework, highlighting its
potential to reduce allocation delay while minimizing extraneous
offers. Finally, we explore model interpretability using SHAP-based
explanations to illustrate how different features influence predicted
offer burden.

3.1 Comparative performance analysis

A comparative analysis of all model performances across
survival and error-based metrics is presented in Table 5. The RSF
model outperformed all others, achieving the highest concordance
index (C-index = 0.869) and the lowest prediction errors across
multiple metrics, including MAE (0.410), MAPE (15.14), RMSE
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(0.326), and NRMSE (0.041). RSF also achieved the highest
coefficient of determination (R? = 0.923), indicating strong
agreement between predicted and observed time-to-acceptance.
Statistical comparisons confirm RSF’s superior performance across
nearly all metrics. With respect to pairwise statistical comparisons
between RSF and each other model, all differences were statistically
significant except for three cases: RSF vs. CPH on IBS (p = 0.058),
RSF vs. DeepSurv on NBLL (p = 0.137), and RSF vs. Weibull
on NBLL (p = 0.142). In addition, CPH achieved a significantly
lower NBLL than RSF (p < 0.001). Despite this, RSF consistently
demonstrated the strongest overall performance across the majority
of metrics and model comparisons.

To further evaluate model performance, we plot kernel density
estimates of the RSF model’s predicted, observed, and extraneous
offers in Figure 1. This visualization serves two purposes. First,
it illustrates the alignment between predicted and actual offer
burdens. The close overlap between the predicted distribution
(orange) and the observed distribution (blue) indicates strong
agreement across most of the range, demonstrating the model’s
ability to accurately estimate offer burden. Second, the sharp
peak near zero in the extraneous offers distribution highlights
the model’s conservative batching behavior, favoring smaller
batch sizes that minimize unnecessary offers while still achieving
timely placements.

3.2 Evaluating clinical utility

A key strength of our approach is its ability to generate
organ-level predictions that inform real-time decisions in kidney
allocation. To evaluate the practical impact of these predictions,
we simulate allocation under a range of fixed batch sizes and
compare outcomes against our dynamic batching model. As
shown in Figure 2, smaller fixed batches limit the number of
extraneous offers, potentially reducing decision fatigue, but result
in substantial allocation delays. At the other extreme, large batch
sizes significantly shorten placement times but generate excessive
numbers of unnecessary offers, increasing cognitive burden on
transplant teams. The current sequential match run system, which
sends offers to one candidate at a time, minimizes extraneous offers
entirely but leads to the longest delays. In contrast, our model offers
a favorable trade-off between these extremes. By tailoring batch
sizes based on predicted offer burden, it reduces the average time to
allocation from 17.3 h to 1.59 h, while maintaining a low number of
extraneous offers. This balance enables faster placement of organs
without overwhelming clinicians, offering a scalable, data-driven
alternative to one-size-fits-all batching strategies.

3.2.1 OPO-configurable batch control

A critical contribution of our work is providing transplant
professionals with flexible control over batching decisions, enabling
practical adoption of our predictive framework. While our dynamic
batching approach significantly improves organ placement times,
and consequently the outcomes, clinical workflows often require
adaptability to differing operational priorities. For instance, OPOs
may seek to reduce simultaneous offer volume to mitigate decision
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fatigue and disappointment among surgeons and candidates.
Alternatively, OPOs managing kidneys at high risk of nonuse might
prioritize rapid allocation to minimize CIT.

To address these clinical needs, we propose two practical
extensions: (i) a quantile-based survival threshold, allowing
planners to shift predictions earlier or later in the match
run, and (ii) a global batch-size multiplier, enabling direct
adjustment of recommended batch sizes. These controls empower
OPOs to tune batching aggressiveness according to institutional
preferences, balancing allocation speed against operational and
cognitive burden.

Figure 3 demonstrates the effect of applying a conservative
0.9).
earlier, the

batching policy using a 90% survival threshold (¢ =
By shifting the
average allocation delay modestly increases to 2.09 h, while

predicted acceptance point

extraneous offers
further
o =

decrease substantially to 31.11. Figure 4

illustrates a more conservative scenario combining
0.8 with a batch-size multiplier of 0.5, resulting in
just 14.15 extraneous offers at the cost of 4.96 h average
delay, outperforming even a fixed batch size of 25 across
both dimensions.

These results underscore the model’s ability to adapt
dynamically to varied clinical objectives. OPOs can strategically
choose more conservative configurations to limit decision fatigue
and candidate disappointment or opt for aggressive settings to
expedite placement when appropriate. By integrating such OPO-
and organ-centric flexibility directly into the predictive framework,
our approach serves as an effective decision-support tool tailored to
real-world operational demands, ultimately facilitating smoother
adoption in clinical practice.

3.3 Interpretability analysis

We conducted an interpretability analysis to better understand
the contribution of individual features to model predictions and to
assess whether a simpler, more transparent model could achieve
comparable performance. As a first step, we evaluated a reduced
feature set informed by clinical intuition and domain expertise. The
motivation for this reduction is that simpler models, when carefully
constructed, can improve interpretability, facilitate validation by
clinicians, and increase trust in model outputs.

The reduced set includes mean values for several recipient
and system-level characteristics: time on the waitlist, initial EPTS,
distance from the donor hospital, and recipient age. To retain
predictive strength, we also include mean CPRA and mean years
on dialysis, along with their more extreme counterparts, namely,
minimum CPRA and maximum years on dialysis, which capture
additional heterogeneity in the recipient pool. Finally, key donor
characteristics are represented by minimum Kidney Donor Risk
Index (KDRI) and minimum CIT. This subset was selected to
balance clinical relevance, interpretability, and predictive power.

Table 6 demonstrates that the reduced set retains strong
predictive accuracy. Compared to the full model, the reduction
yields only modest drops in time-dependent concordance (from
0.869 to 0.863) and R? (from 0.923 to 0.915). This marginal decrease
in performance greatly increases transparency and explainability.
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TABLE 5 Comparison of model performance across eight evaluation metrics.

Model C-index IBS NBLL MAE MAPE NRMSE R2 RMSE
CPH 0.857 0.039 0.127 0.468 18.856 0.051 0.903 0.407
(0.005) (0.002) (0.006) (0.021) (0.769) (0.005) (0.009) (0.041)
DeepSury 0.835 0.048 0.154 0.563 22.660 0.079 0.850 0.628
(0.018) (0.008) (0.025) (0.099) (4.258) (0.033) (0.066) (0.272)
RSF 0.869 0.040 0.141 0.410 15.137 0.041 0.923 0.326
(0.004) (0.002) (0.006) (0.015) (0.701) (0.003) (0.004) (0.019)
Weibull 0.851 0.046 0.159 0.531 22.238 0.096 0.861 0.755
(0.009) (0.003) (0.032) (0.029) (2.020) (0.016) (0.051) (0.113)

Reported values are the mean and standard deviation (in parentheses) over 10-fold cross-validation. Bolded values indicate the best-performing model for each metric.
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FIGURE 1
Kernel density estimates of offer burden for ground truth (blue), RSF model predictions (orange), and extraneous offers (green). The close alignment
between predicted and observed distributions indicates strong model calibration. The distribution of extraneous offers is sharply skewed toward the
left, suggesting that excess offers tend to cluster soon after the predicted acceptance point.

To understand the contribution of individual features to the
predicted time until organ offer acceptance, we employed SHAP
values. Figure 5 presents a global SHAP summary of the feature
subset (left) as well as the top ten features in the full dataset ranked
by their scaled mean absolute SHAP values. Notably, both the
maximum and mean years on dialysis were the most influential
predictors, reinforcing the clinical intuition that centers under
pressure from long-waiting candidates are more likely to accept
offers quickly. The strong overlap in the top-ranked features across
both models indicates the reduced feature set retains many of the
core drivers of model behavior. By emphasizing mean aggregations
over extremes or percentiles, the reduced model may further
enhance interpretability. Moreover, the model trained over feature
subset performs comparably to the original model, supporting its
use in settings where interpretability is deemed essential.

The interpretability gains from using a reduced feature
set become particularly apparent when examining predictions
for individual donor kidneys. To provide meaningful local
explanations, we adapt the model’s output so that SHAP values
reflect the marginal contribution of each feature to the predicted
number of offers required before acceptance. While the original
model produces a risk score where higher values imply shorter
time-to-event, this representation is less intuitive for SHAP-based
interpretation. Instead, we apply a filtering function to output the

Frontiers in Artificial Intelligence 09

predicted median number of offers, making the explanations more
actionable and interpretable in the context of organ allocation.
Figures 6, 7, and 8 present local SHAP explanations for three
kidneys with varying predicted offer burdens. Each plot visualizes
the influence of individual features, showing how they either
increase or decrease the predicted number of offers relative to a
dataset-specific baseline.

3.3.1 Example 1: high predicted offer burden
(328 offers)

Figure 6 illustrates a case with a high predicted offer burden.
Several features contribute significantly to increasing the number
of expected offers before acceptance. Most notably, this includes
the maximum years on dialysis, highlighting a candidate who began
dialysis over 19 years ago, paired with a mean dialysis duration of
2.08 years across the pool. An elevated mean EPTS score (37.92)
and recipient age (54.25) further reinforce the model’s prediction
of slow placement. Conversely, favorable allocation indicators such
as a low mean time on the waitlist (499.4 days), minimal CPRA,
and short donor-recipient distance serve to reduce the predicted
value. This case reflects a complex trade-off between competing
clinical signals.
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FIGURE 2

Impact of batch size on allocation efficiency. (a) Delay decreases
with larger batches, but (b) extraneous offers increase.
Ground-truth (B = 1) is shown as a x, and model predictions are in
red dashed lines.

3.3.2 Example 2: low predicted offer burden (5
offers)

Figure 7 presents a highly favorable allocation scenario. All
dominant features exert downward pressure on the prediction,
resulting in a very low expected number of offers. The model
attributes this to a combination of highly favorable recipient and
donor characteristics, including a mean CPRA of 0, an elevated
mean dialysis duration of 7.71 years, and a low KDRI of 1.39.
Additionally, a CIT of 0 suggests that offers were initiated promptly,
enhancing the chances of early acceptance. This case highlights a
scenario where both medical urgency and organ quality align to
produce fast placement.

3.3.3 Example 3: moderate predicted offer
burden (65 offers)

Figure 8 presents a more balanced case with a moderate
predicted offer burden. The strongest positive influence comes
from a maximum dialysis duration of 23.13 years—suggesting at
least one difficult-to-place candidate in the offer pool. However, this
is partially counteracted by several favorable features, including a
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FIGURE 3

Predicted impact of early intervention policy. A survival threshold of
90% triggers earlier predictions, leading to smaller estimated batch
sizes. (a) Delay is reduced, but (b) extraneous offers increase.
Ground-truth is shown with a x; model targets with red dashed
lines.

low minimum CPRA, a low initial EPTS of 18.01, and an elevated
mean dialysis duration of 7.02 years. This case demonstrates how
the model integrates both conflicting and reinforcing signals to
produce a nuanced, context-sensitive estimate.

4 Discussion and conclusion

In the current kidney allocation system, offers are typically
made sequentially. While this limits decision fatigue by stopping
the process once an organ is accepted, it often results in substantial
delays and contributes to high rates of organ nonuse. To mitigate
these delays, simultaneously expiring offers have been proposed
as an alternative. However, when implemented with a fixed
batch size, this approach can overwhelm transplant teams with
excessive evaluations, leading to decision fatigue and diminished
effectiveness. To balance the strengths of both strategies, we
developed a machine learning framework that predicts the number
of offers a deceased donor kidney will likely require before
acceptance. These individualized predictions enable dynamic batch
sizing tailored to each organ. Using real-world match run data,
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FIGURE 4

Predicted outcomes with conservative policy. This configuration
uses an 80% survival threshold with a policy multiple of 0.5, scaling
down batch size recommendations. (a) The resulting strategy delays
fewer recipients, while (b) it also produces fewer extraneous offers.
Ground-truth (B = 1) is marked with a x, and model-based targets
are shown in red dashed lines.

we demonstrated strong predictive accuracy and evaluated the
operational impact of our method through simulations. The results
show that dynamically adjusted batch sizes can substantially reduce
placement delays while controlling the number of unnecessary
offers. To support clinical transparency and trust, we employed
SHAP values to interpret the model’s predictions and highlight the
most influential features driving offer burden.

Previous studies on batching strategies in kidney allocation
typically applied static batch sizing or relied on large-scale
simulations to optimize batches based on predefined organ
categories or locations (Erazo et al., 2022; Mankowski et al., 2019).
In contrast, our work introduces the novel use of survival-based
machine learning algorithms to generate real-time, individualized
predictions at the organ level. This dynamic approach enables
fine-tuned allocation strategies, balancing efficiency and clinical
workload to reduce organ nonuse rates without overwhelming
transplant professionals. Our simulation results demonstrate clear
advantages over static batching policies. The proposed dynamic
batching method reduced average offer delay from 17.37 h
(under sequential allocation) to just 1.59 h, achieving outcomes
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FIGURE 5

Global SHAP feature importance comparison. Each bar represents a
feature’s mean absolute SHAP value, scaled so that the most
important feature is normalized to 1.0. (a) shows SHAP importances
for the reduced feature set, while (b) shows the top 10 importances
from the full feature set.

comparable to very large batch sizes but with significantly fewer
extraneous offers, similar to smaller batches.

The developed framework serves as a clinical decision-support
tool, helping transplant professionals navigate the complexities
introduced by circle-based allocation (Adler et al, 2021; Jay
and Stratta, 2023). Configurable parameters such as model
aggressiveness and batch-size multipliers allow clinicians to adjust
predictions according to operational priorities. Additionally, the
incorporation of local and global SHAP interpretations enhances
clinical trust by providing transparent explanations that align
predictions with clinical intuition (Nasarian et al., 2024). Real-
world deployment would require operational and policy alignment.
The model would need to be integrated into existing allocation
systems ideally with the capability to update predictions in real
time as match runs progress. Implementation would further require
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TABLE 6 Comparison of RSF performance using all features vs. a reduced feature subset.

10.3389/frai.2025.1662960

FIGURE 6

Feature set C-index IBS NBLL MAE MAPE NRMSE R2 RMSE
All features 0.869 0.040 0.141 0.410 15.137 0.041 0.923 0.326
Feature subset 0.863 0.0319 0.105 0.405 15.536 0.041 0.915 0.329
higher 2 lower
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Local SHAP explanation for Example 1: a kidney with a high predicted offer burden of 328 offers. Strong upward pressure from maximum dialysis
time and recipient frailty is partially offset by favorable pool-level features.
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Local SHAP explanation for Example 2: a case with a low predicted offer burden of 5 offers. All key features contribute toward rapid acceptance.
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coordination with OPOs, transplant centers, and regulatory bodies
to ensure compliance with allocation policy and avoid unintended
inequities in access.

Despite promising outcomes, several limitations exist for our
work. First, our model’s performance is derived from retrospective
registry data; thus, real-world validation through prospective
studies or controlled pilots is necessary to confirm practical
feasibility and broader system-level benefits. Second, because we
aggregate offers at the donor level, CIT is treated statically at
the initial offer stage rather than as a dynamically accumulating
constraint. Future models should explicitly account for evolving
CIT and its impact on downstream acceptance probabilities. Third,
our engineered features summarize characteristics of candidate
pools based on actual offer history, potentially biasing predictions
since candidate composition may change depending on acceptance
timing. Since we use the offer history, candidate pool features
do not account for potential changes in waitlist composition
over time. Conversely, this approach captures actual operational
constraints and decision processes that are often absent from
studies relying entirely on simulated candidate lists. Relatedly,
reliance on historical allocation and acceptance data may embed
biases from prior allocation practices and center decision-making
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behaviors. While this grounding in observed behavior reflects real-
world operational constraints, it also risks perpetuating inequities
present in historical patterns. Future extensions could mitigate
this limitation by incorporating explicit center-level modeling or
by testing the framework prospectively. Furthermore, our model
implicitly incorporates historical center decision-making behaviors
without explicitly modeling these patterns or adapting dynamically
to shifts in behavior over time. Exploring novel models that
allow for incorporating explicit center identifiers is left for future
research. Finally, we note that the model is trained exclusively
on U.S. kidney allocation data. Adapting to other operational
infrastructures would likely require model retraining and validation
in those contexts.

In future research, we aim to validate this framework
through prospective simulation studies or pilot implementation
to provide robust evidence of clinical feasibility and impact.
Additionally, extending the current model to incorporate iterative,
auto-regressive predictions within individual match runs could
further enhance real-world applicability. Specifically, integrating
prior batch outcomes, accumulated CIT, and evolving candidate
pool characteristics into subsequent predictions could improve
adaptive decision-making. Lastly, exploring integration strategies
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into existing clinical decision-support systems represents a critical
step toward practical implementation in transplant workflows.
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