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Introduction: In Alzheimer's disease (AD) research, clinical, neuroimaging,
genetic, and biomarker data are vital for advancing its understanding and
treatment. However, privacy concerns and limited datasets complicate data
sharing. Federated learning (FL) offers a solution by enabling collaborative
research while preserving data privacy.

Methods: This study analyzed data from patients assessed at the Memory Unit
of the Ace Alzheimer Center Barcelona who completed a standardized digital
speech protocol. Acoustic features extracted from these recordings were used
to distinguish between cognitively unimpaired (CU) and cognitively impaired
(Cl) individuals. The aim was to evaluate how data heterogeneity impacted
the FL model performance across three scenarios: (1) equal contributions and
class ratios, (2) unequal contributions, and (3) imbalanced class ratios. In each
scenario, the performance of local models trained using an MLP feed-forward
neural network on institutional data was analyzed and compared to a global
model created by aggregating these local models using Federated Averaging
(FedAvg) and Iterative Data Aggregation (IDA).

Results: The cohort included 2,239 participants: 221 CU individuals (mean age
66.8, 64.7% female) and 2,018 Cl subjects, comprising 1,219 with mild cognitive
impairment (mean age 74.3, 61.9% female) and 799 with mild AD dementia
(mean age 80.8, 64.8% female). In scenarios 1 and 3, FL provided modest gains
in accuracy and AUC. In scenario 2, FL markedly improved performance for the
smaller dataset (balanced accuracy rising from 0.51 to 0.80) while preserving
0.86 accuracy in the larger dataset, highlighting scalability across heterogeneous
conditions.
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Conclusion: These findings demonstrate the potential of FL to enable
collaborative modeling of speech-based biomarkers for cognitive impairment
detection, even under conditions of data imbalance and institutional disparity.
This work highlights FL as a scalable and privacy-preserving approach for
advancing digital health research in neurodegenerative diseases.

KEYWORDS

deep learning, Alzheimer's disease, cognitive impairments, speech acoustics,

federated learning

1 Introduction

Dementia, particularly Alzheimer’s disease (AD), poses a
growing global health challenge among the aging population. In
the United States alone, over 6.9 million individuals aged 65 and
older are estimated to be living with AD, a number projected to
nearly double to 13.8 million by 2060 (Alzheimer's Association,
2024). Notably, 10.9% of this demographic is affected by the
disease (Alzheimer's Association, 2024), underscoring its
increasing impact.

Accurate diagnosis and effective treatment are complicated by the
multifaceted nature of dementia, which is influenced by demographic,
environmental, genetic, and biological factors. Artificial intelligence
has emerged as a promising tool for cognitive-impairment screening,
with machine learning (ML) and natural language processing applied
to neuroimaging, electronic health records, speech, and other digital
biomarkers. These methods show strong predictive performance and
potential to improve diagnostic accuracy and efficiency, though
concerns remain about misdiagnosis, confidentiality, and the
psychological burden of screening (Wurtz et al., 2025; Arya et al,,
2023). Among them, automated speech analysis has emerged as a
non-invasive tool for detecting early cognitive decline (Hajjar et al.,
2023). Language impairments associated with dementia manifest as
difficulties in both speech production and comprehension (Bucks
etal., 2000). However, large-scale studies leveraging speech data face
significant obstacles, including concerns about patient privacy,
speech de-identification, data sharing, and the need for collaboration
across multiple research centers.

Federated learning (FL) has emerged as a promising ML approach
for addressing these challenges by enabling multi-institutional data
analysis while preserving patient confidentiality. Unlike traditional
centralized methods, FL allows decentralized model training, ensuring
sensitive information remains local (Kairouz et al., 2021; Hardy et al.,
2017). This framework is particularly well-suited for privacy-sensitive
domains such as healthcare, facilitating collaborative research while
mitigating data security risks.

Although FL has shown promise in various healthcare applications
(Teo etal., 2024), its use for speech-based dementia detection remains
scarce and underdeveloped. Traditional centralized approaches face
limitations due to restricted data access, ethical concerns, and biased
representation, while variability in language, demographics, and
recording conditions undermines generalization (Garcia Gutiérrez
etal,, 2024; Sharafeldeen et al., 2025). FL offers a potential solution to
these challenges, yet it introduces its own complexities. A key issue is
data heterogeneity, where variations in dataset size and class
distribution across institutions can negatively impact model fairness
and overall performance (Hardy et al., 2017).
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To our knowledge, until now there exists only a single prior work
examining speech-based AD diagnosis within FL frameworks, which
demonstrates its feasibility for AD detection from speech, with
decentralized models achieving competitive performance while
preserving privacy. However, these efforts rely on small, homogeneous
datasets, and the impact of real-world heterogeneity on accuracy and
fairness remains largely unexamined (Meerza et al., 2022).

To address this limitation, our study builds upon and significantly
extends previous research by conducting a comprehensive evaluation
of FL for dementia detection. Leveraging a substantially larger and
more diverse dataset, we systematically evaluate model performance
under various realistic scenarios, particularly emphasizing the
challenges posed by data heterogeneity. Specifically, we investigate how
data heterogeneity influences predictive accuracy and robustness. Our
approach employs acoustic speech features within a multi-layer
perceptron (MLP) neural network framework to distinguish between
cognitively unimpaired (CU) and cognitively impaired (CI) individuals.

By examining the interplay between data variability and FL
efficacy on a broader scale, this research provides deeper insights into
optimizing FL models for real-world applications, ensuring both
robust performance and equitable outcomes across diverse datasets.

2 Methods
2.1 Study participants

This study included data from individuals evaluated at the
Memory Clinic from Ace Alzheimer Center Barcelona (Ace) between
March 2022 and April 2023 (Table 1). All participants were diagnosed

by a multidisciplinary team comprising neurologists,

TABLE 1 Clinical and sociodemographic characteristics of the sample
stratified by clinical condition.

Variable Ccu Cl (MCI) Cl (ADD)
Sample size (%) 221 (9.9) 1,219 (54.4) 799 (35.7)
Age (mean, SD) 66.8 (10.2) 74.3 (9.4) 80.8 (6.8)
Sex (% Female) 64.7 61.9 64.8
Years of formal

education (mean, 12.3(3.9) 8.8 (4.6) 7.7 (4.6)
SD)

MMSE (mean, SD) 29.2(0.9) 26.9 (2.6) 21.6 (3.5)

CU, cognitively unimpaired; CI, cognitively impaired; MCI, mild cognitive impairment;
ADD, Alzheimer’s disease dementia; MMSE, Mini-Mental State Examination; SD, standard
deviation.
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neuropsychologists, and social workers after completing a series of
neurological, neuropsychological, and social assessments. Further
details of the evaluation protocols are available elsewhere (Garcia
Gutiérrez et al., 2024; Alegret et al., 2011; Boada et al., 2014).

2.2 Speech protocol and automated
speech analysis

All participants completed a brief speech protocol using the
acceXible app platform on a tablet in a quiet and controlled
environment under the supervision of a neuropsychologist. The
protocol comprised two tasks: first, the description of The Cookie
Theft Picture in approximately 1 min, a common language assessment
test (Cummings, 2019); and second, a semantic verbal fluency test
where participants listed as many animals as possible within 1 min.

Speech recordings were standardized to 16 kHz, with silence
segments removed and noise reduction applied using the model in
(Defossez et al., 2020). From the processed audio, in image description
and verbal fluency tasks independently, various physical acoustic
features were extracted, covering parameters related to frequency
(pitch, jitter, formant 1,2, and 3 frequency and formant 1 bandwidth),
signal energy/amplitude (shimmer, loudness and harmonics-to-noise
ratio), and spectral parameters (alpha ratio, hammarberg index,
spectral slope 0-500 Hz and 500-1500 Hz, formant 1,2, and 3 relative
energy and harmonic difference H1-H2 and H1-A3). The extracted
variables corresponded to those described in the extended Geneva
Minimalistic Acoustic Parameter Set (eGeMAPS) (Eyben et al., 2015),
a standardized set of acoustic parameters linked to physiological voice
changes, often used in neurological disease contexts (Garcia Gutiérrez
et al., 2024; Garcia Gutiérrez et al., 2023). Feature extraction was
performed using the OpenSmile (v2.5.0) (Eyben et al., 2010) library,
with a three-frame symmetric moving average across eighteen
low-level descriptors, resulting in a total of 176 variables per
participant. The full set of extracted features was carried forward to
the analyses, with no dimensionality reduction or cross-site
adjustments applied at the extraction stage. Further details on feature
calculation are available in (Abyane et al., 2022).

2.3 Virtual scenarios

Using the initial data specified in Sections 2.1 and 2.2 from the
Ace Alzheimer Center Barcelona, we simulated a FL environment
involving two virtual independent institutions (Institution 1 and

10.3389/frai.2025.1662859

Institution 2). The institutions provided speech acoustic features,
along with CU and CI labels, for their respective patients. Each
institution uploaded its data to its computing node, and three
scenarios were designed to comprehensively analyze how dataset
characteristics affect model performance. These scenarios, detailed
in Table 2, varied by dataset size and class proportions at each
institution, enabling an evaluation of their impact on FL
model effectiveness.

Two different conditions were examined for each scenario: (1)
individual training, where each institution trained its model using
only local data, and (2) federated training, where both institutions
collaborated to train a global model using FL.

In the individual training condition, each institution trained a
model exclusively on its local data and evaluated on both its own and
the other institution’s data. This setup, yielding two distinct models
trained on separate datasets, allowed for the assessment of how data
volume and quality variations at each institution influenced model
performance, particularly in scenarios of limited data availability.
Conversely, in the federated training condition, a collaborative model
was trained on data from both institutions, leveraging data diversity
to enhance model robustness and generalizability. This approach
capitalized on the combined dataset, improving the models
overall performance.

2.3.1 Scenario 1: uniform sample size

In scenario 1, each institution contributes an equal amount of
data with a uniform ratio of CI to CU cases. This setup ensures
consistency in sample size and class distribution across
institutions, allowing for an evaluation of the FL model’s
under balanced and

performance evenly distributed

data conditions.

2.3.2 Scenario 2: varying sample size

In scenario 2, institutions have varying data sizes, but the ratio of
CI to CU cases remains consistent. This setup evaluates the FL model’s
performance under imbalanced data distribution, focusing on its
robustness and generalizability across institutions with unequal
dataset sizes.

2.3.3 Scenario 3: imbalanced class ratio

In scenario 3, institutions differ in their class distributions, with
one having more CI cases and another more CU cases. This setup
examines the FL model’s ability to handle class distribution
imbalances, reflecting real-world challenges where institutional data
often lacks uniformity.

TABLE 2 Distribution of total, cognitive impaired (Cl) and cognitive unimpaired (CU) cases per institution across different scenarios.

Scenario Node Percentage of total Percentage of Cl cases Percentage of CU
cases cases
Node 1 50% 90% 10%
Scenario 1
Node 2 50% 90% 10%
Node 1 10% 90% 10%
Scenario 2
Node 2 90% 90% 10%
Node 1 67% 97% 3%
Scenario 3
Node 2 37% 78% 22%
Frontiers in Artificial Intelligence 03 frontiersin.org
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2.4 Neural network architecture and
federated learning setup

In FL, designing an effective network requires balancing local
device limitations, like computational capacity and data availability,
with the need for coordinated global model updates to ensure
convergence (Abyane et al., 2022). The goal is not necessarily the
highest model accuracy, but overcoming challenges of cross-
institution collaboration while maintaining data privacy. This
highlights the advantages and challenges of secure, collaborative data
sharing in heterogeneous environments, along with issues of privacy
and model convergence.

To address these challenges, we employed a feed-forward MLP as
the local model architecture. The MLP consisted of an input layer with
176 neurons, each corresponding to an input acoustic feature, followed

10.3389/frai.2025.1662859

by two hidden layers with 20 neurons each, utilizing ReLU activation
functions. The output layer comprised a single neuron with a sigmoid
activation function for binary classification. The network architecture
is illustrated in Figure 1 in the local model framework.

Local models were trained using stochastic gradient descent
(Wojtowytsch, 2021) with an initial learning rate of 0.01. To enhance
convergence stability, an exponential learning rate scheduler with a
decay factor of 0.95 per step was applied. Training was conducted with
a batch size of 32 over 150 epochs. Hyperparameters were not
systematically tuned but chosen based on initial configurations with
manual adjustments. The binary cross-entropy loss function was
employed, appropriate for binary classification tasks. The dataset was
split into training (70%) and test (30%) sets with no overlap (training
N test = @). Performance was evaluated using standard classification
metrics, including the Area Under the ROC Curve (AUC-ROC).
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FIGURE 1

Federated learning architecture using Federated Averaging (FedAvg) and lterative Data Aggregation (IDA) across two institutions for decentralized
multi-layer perceptron-based classification of cognitive impairment from speech-derived acoustic features.
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Rather than employing explicit regularization techniques such as
Dropout, Batch Normalization, or weight decay, overfitting control
was achieved through the compact architecture of the network,
monitoring of validation performance, and the use of class-balancing
weights in the loss function. To account for class imbalance, weights
were initialized inversely proportional to class frequency, normalized
by a factor of 2, thereby assigning greater importance to the minority
class. These weights were dynamically applied at each batch to
maintain balanced contributions throughout training.

To aggregate locally trained models, we employed the Federated
Averaging (FedAvg) algorithm (McMahan et al., 2017), which
computes a weighted average of local model parameters, assigning
weights proportional to the number of training samples per client.
Mathematically, this aggregation is defined as:

K
t+1 N 141
w=) —w
>
k=1

where w'™! denotes the updated global model parameters, w]t:l

represents the parameters obtained from client k after local training,

K

nk is the number of training samples held by client k, "= kZ_“Ink is the
total number of training samples, and K is the number of participating
clients (with K =2 in our study). This approach assumes that clients
with larger datasets generate more reliable model updates, and thus
should exert greater influence on the aggregated global model.

However, FedAvg is known to be vulnerable in federated settings
characterized by non-independent and identically distributed (non-IID)
data or unbalanced sample sizes, where local models can diverge
significantly due to class imbalances or other localized biases. As a result,
weighting updates solely based on data volume can inadvertently amplify
the influence of low-quality or even adversarial model updates, ultimately
degrading the robustness and generalization ability of the global model.

To mitigate this issue, we incorporated the Iterative Data
Aggregation (IDA) algorithm (Yeganeh et al, 2020), a robust
aggregation strategy that assigns weights based on the similarity of
local models to the average model. Specifically, IDA downweights
local models that deviate significantly from the average by computing
weights inversely proportional to their £1-distance from the average
model. The weighting coefficient for each local model k is given by:

Li ¢ ¢ -1
(2773 :E(WAvg_Wkl+g)

where wfawg =%szz 1Wlt< is the average of the local models at
round ¢, Z is a normalization factor to ensure ¢ all sum 1 and ¢ is a
small constant to prevent division by zero. The aggregation process is
then defined as:

K
Wt+1 _ Zakwlt:l
k=1

By relying on model similarity rather than sample count, IDA
enhances robustness to statistical heterogeneity, noisy updates, and
outlier models, which are common in real-world federated scenarios.
The entire aggregation process is illustrated in Figure 1.
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2.4.1 Development

The FL system was implemented using Python 3.11.9 with uTile
(GMV, 2024), which internally leverages PyTorch 2.0.0 for deep
learning model development. In this setup, uTile coordinates training
across multiple decentralized nodes, allowing each to train locally on
its data while sharing model updates to a central aggregator. This
approach enhances data privacy by avoiding the transfer of raw data
between nodes and the central server. Instead of transmitting raw
data, only model weights or gradients are communicated, preserving
data privacy while enabling collaborative learning.

3 Results

Data from 2,239 participants were analyzed: 221 individuals who
were CU, showing no objective cognitive or functional impairment
(CDR =0) (Jessen et al., 2014) and 2,018 participants who exhibited
CI, including patients with mild cognitive impairment (MCI)
(n=1,219, CDR = 0.5) (Petersen, 2004) and dementia due to AD
(n=799, CDR > 0.5) (McKhann et al., 2011). Table 1 shows the
clinical and sociodemographic characteristics of the sample used for
this study.

Model performance was evaluated across three simulated FL
scenarios designed to assess the effects of data imbalance and
heterogeneity (Table 3). In scenario 1, where institutions contributed
equally and class distributions were identical, local models achieved
comparable balanced accuracies (0.71 and 0.73). Under FL,
performance improved modestly: balanced accuracy increased to 0.73
and 0.79, and sensitivity rose from 0.69 to 0.82 at Node 1 and from
0.71 to 0.83 at Node 2, reflecting better detection of CI cases. Precision
remained consistently high (>0.95) across all models. Specificity was
stable at Node 2 but declined slightly at Node 1 (0.73 to 0.64).
Importantly, FL enhanced overall discriminative ability, with AUC
rising from 0.76 to 0.81 at Node 1 and from 0.82 to 0.87 at Node 2, and
F1-score increasing from 0.80 to 0.88 at Node 1 and from 0.82 to 0.90
at Node 2 (Table 4).

In scenario 2, with a strong imbalance in dataset size, with Node
1 contributing only 10% of the total data (Table 3), the local model at
that node struggled to identify CI cases, with a sensitivity of just 0.02
and a balanced accuracy of 0.51. This reflects the model’s inability to
generalize with such limited training data. However, when applying
FL, performance at Node 1 improved dramatically: balanced accuracy
rose to 0.80 and sensitivity to 0.93, F1-score to 0.94, and AUC to 0.89,
showing that FL training enabled robust CI detection. At Node 2,

TABLE 3 Sample sizes and corresponding train-test splits for each node
across three scenarios.

Scenario Node Total Train set  Test set
sample
size

Node 1 1,119 783 336
Scenario 1

Node 2 1,120 784 336

Node 1 223 156 67
Scenario 2

Node 2 2,016 1,411 605

Node 1 1,395 1,032 376
Scenario 3

Node 2 831 548 283
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TABLE 4 Classification performance metrics for cognitive impairment prediction across three scenarios settings.

Scenario Training Balanced Precision Sensitivity Specificity F1-score AUC
accuracy
Node Node Node Node Node Node Node Node Node Node Node Node
2 1 2 1 2 1 2 1 2 1

Local 0.71 0.73 0.96 0.96 0.69 0.71 0.73 0.76 0.80 0.82 0.76 0.82
Scenario 1

FL 0.73 0.79 0.95 0.97 0.82 0.83 0.64 0.76 0.88 0.90 0.81 0.87

Local 0.51 0.76 1.00 0.97 0.02 0.76 1.00 0.77 0.03 0.85 0.59 0.83
Scenario 2

FL 0.80 0.70 0.95 0.95 0.93 0.90 0.67 0.51 0.94 0.92 0.89 0.84

Local 0.70 0.74 0.98 0.93 0.71 0.70 0.69 0.77 0.82 0.80 0.79 0.81
Scenario 3

FL 0.71 0.72 0.99 0.95 0.57 0.60 0.85 0.85 073 0.73 0.81 0.84

Results are reported for node 1, node 2, and the federated learning (FL) model.

which had a much larger dataset, high performance was maintained
under FL (balanced accuracy 0.70, Fl-score 0.92, AUC 0.84),
underscoring the scalability of the approach and its ability to distribute
benefits fairly across nodes of unequal size. Notably, specificity
decreased at both nodes (from 1.00 to 0.67 at Node 1 and from 0.77
to 0.51 at Node 2), reflecting a trade-off where improved CI detection
came at the expense of more CU misclassifications.

In scenario 3, class distribution was imbalanced across
institutions, with Node 1 having 97% CI cases and only 3% CU cases,
while Node 2 had a more representative mix (Table 3). Local models
performed similarly to scenario 1, with balanced accuracies of 0.70
(Node 1) and 0.74 (Node 2). Under FL, Node 1 maintained similar
balanced accuracy (0.71) but with shifted trade-offs: sensitivity
decreased from 0.71 to 0.57 and F1-score from 0.82 to 0.73, while
specificity improved from 0.69 to 0.85, suggesting that FL training
allowed the model to better identify CU cases despite their scarcity.
Node 2 showed stable balanced accuracy (0.72) and slightly higher
AUC (0.84), indicating that federated training conferred benefits,
particularly in recognizing minority-class CU samples without loss of
overall classification power.

The complete confusion matrices for each scenario, including
local and FL models, are provided in the Supplementary Table S1.

4 Discussions and conclusions

In this study, an MLP model was trained using speech data and
developed using a federated network to predict CI, specifically
distinguishing between cognitively healthy individuals, and patients
with MCI and dementia. FL was tested to confirm its ability to enable
collaboration among multiple institutions while safeguarding patient
privacy. This decentralized approach is particularly advantageous in
healthcare, where privacy is a significant concern, as it facilitates
multi-site model training without requiring the exchange of raw data
(Zhang et al., 2024).

The choice of MLP reflects the trade-offs inherent in FL. While
more complex architectures (e.g., CNNs, RNNs, Transformers) may
achieve higher performance in centralized settings, they are
computationally demanding and more prone to divergence under
heterogeneous data. MLPs, in contrast, are lightweight, stable, and
communication-efficient, aligning well with structured acoustic
features such as the 176 descriptors used here. Empirically, this
balance proved effective: the MLP achieved strong AUC and F1-scores
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across scenarios, while FL improved sensitivity in low-data nodes and
enhanced generalization under class imbalance. Thus, the MLP
offered the most pragmatic compromise between expressive power,
robustness, and scalability (Zhang et al., 2024).

Equally important was the choice of aggregation strategy. The
combination of FedAvg and IDA proved particularly suitable, as it
consistently improved performance under challenging conditions. In
Scenario 2, where the smaller institution held only 10% of the data,
local training nearly failed (sensitivity = 0.02), yet the federated model
raised sensitivity to 0.93 and AUC to 0.89, showing clear benefits for
underrepresented nodes. In Scenario 3 with severe class imbalance,
this combination also improved specificity (0.69 to 0.85) and AUC
(0.79 to 0.81), enhancing recognition of CU cases. FedAvg offered
scalability and efficiency, while IDA mitigated heterogeneity, together
providing a balanced and pragmatic solution (Meerza et al., 2022).
Other strategies, such as FedProx or Scaffold, address non-IID
conditions by adding proximal terms or variance-reducing
corrections, but they require additional hyperparameter tuning and
may increase communication or computation costs, making them less
practical for early-stage clinical deployment. Similarly, clustered FL
can personalize models for subgroups, but at the expense of
interpretability and cross-site comparability, which are essential in
healthcare. Against this backdrop, FedAvg combined with IDA offered
the best balance between simplicity, robustness, and feasibility (Qi
etal., 2023).

Overall, the federated MLP consistently achieved AUC values
above 80%, demonstrating reliable discrimination between CU and
CL Its greatest impact emerged under scarcity and imbalance: in
Scenario 2, balanced accuracy rose from 0.51 to 0.80 and sensitivity
from 0.02 to 0.93, while in Scenario 3, FL improved specificity and
AUC, aiding recognition of minority CU cases. By contrast, gains in
balanced settings (Scenario 1) were modest, indicating that FLs
strength lies less in boosting absolute accuracy than in ensuring fair
and robust performance across heterogeneous institutions. These
results highlight FL as a privacy-preserving framework that promotes
equity, allowing smaller or skewed sites to contribute meaningfully
without being disadvantaged.

Taken together, the findings confirm that the decentralized nature
of FL provides a scalable and privacy-preserving solution for CI
detection, enabling robust model development without direct data
sharing (Meerza et al,, 2022). By addressing dataset size inequality and
class imbalance, FL supports fairer predictions across diverse
populations and is particularly valuable for detecting subtle cognitive
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changes in early disease stages (Mateus et al., 2023). Beyond modest
performance improvements, its benefits extend to equity across
institutions, compliance with privacy regulations, enhanced security
through decentralization, and scalability across heterogeneous
clinical environments.

However, several limitations should be acknowledged. First,
although the cohort included 2,239 participants, all data came from a
single institution. The simulated disparities between two virtual sites
with harmonized preprocessing cannot replicate true cross-site
heterogeneity, where differences in devices, demographics, diagnostic
protocols, and annotation quality are more pronounced. Real-world
clinical settings also introduce variability in speech tasks, legal
constraints, and annotation standards, which may affect both
convergence and fairness. These factors highlight the need for
validation beyond controlled simulations.

Second, while FL demonstrates strong potential for collaborative
and privacy-preserving modeling, it is not immune to security
vulnerabilities. Risks such as model inversion attacks, membership
inference, and data leakage could compromise patient confidentiality
or model integrity. Mitigating these risks will require safeguards
including differential privacy, secure aggregation, and adversarial
robustness strategies, alongside standardized monitoring and quality
control, to ensure that FL systems remain safe and trustworthy in
clinical deployment (Vasa et al., 2024).

Future work should prioritize multi-institutional pilots to evaluate
scalability across larger networks (e.g., 5-10 sites) using diverse
devices, protocols, and languages, thereby testing cross-linguistic
generalizability. These studies should compare aggregation strategies
(e.g., FedAvg vs. adaptive methods) and investigate personalization,
domain adaptation, and harmonization frameworks to balance local
adaptation with global performance. Evaluation must extend beyond
AUC and F1-scores to include fairness, calibration, and node-specific
robustness, ensuring that benefits are not driven solely by data-rich
sites. Expanding FL to geographically distributed cohorts and
incorporating multimodal data sources, such as cognitive assessments,
neuroimaging, and electronic health records, will further enhance
diagnostic accuracy and clinical applicability. To achieve this, key steps
include: (1) establishing multi-institutional pilots under real-world
conditions, (2) developing standardized protocols for data
harmonization and evaluation across sites, (3) creating interoperable,
privacy-compliant FL infrastructure aligned with regulations, and (4)
building decision-support tools to integrate FL outputs into clinical
workflows. Establishing harmonized speech protocols and secure,
standardized infrastructure will be essential to move beyond
experimental validation and enable safe deployment in healthcare
systems (Dhade and Shirke, 2024).

Overall, this study highlights the promise of FL as a scalable,
secure, and effective approach for early detection of cognitive
impairment. By enabling privacy-preserving collaboration across
institutions, FL addresses key challenges in digital health research and
opens new avenues for developing accessible and equitable diagnostic
tools for neurodegenerative diseases.
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