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Introduction: In Alzheimer’s disease (AD) research, clinical, neuroimaging, 
genetic, and biomarker data are vital for advancing its understanding and 
treatment. However, privacy concerns and limited datasets complicate data 
sharing. Federated learning (FL) offers a solution by enabling collaborative 
research while preserving data privacy.
Methods: This study analyzed data from patients assessed at the Memory Unit 
of the Ace Alzheimer Center Barcelona who completed a standardized digital 
speech protocol. Acoustic features extracted from these recordings were used 
to distinguish between cognitively unimpaired (CU) and cognitively impaired 
(CI) individuals. The aim was to evaluate how data heterogeneity impacted 
the FL model performance across three scenarios: (1) equal contributions and 
class ratios, (2) unequal contributions, and (3) imbalanced class ratios. In each 
scenario, the performance of local models trained using an MLP feed-forward 
neural network on institutional data was analyzed and compared to a global 
model created by aggregating these local models using Federated Averaging 
(FedAvg) and Iterative Data Aggregation (IDA).
Results: The cohort included 2,239 participants: 221 CU individuals (mean age 
66.8, 64.7% female) and 2,018 CI subjects, comprising 1,219 with mild cognitive 
impairment (mean age 74.3, 61.9% female) and 799 with mild AD dementia 
(mean age 80.8, 64.8% female). In scenarios 1 and 3, FL provided modest gains 
in accuracy and AUC. In scenario 2, FL markedly improved performance for the 
smaller dataset (balanced accuracy rising from 0.51 to 0.80) while preserving 
0.86 accuracy in the larger dataset, highlighting scalability across heterogeneous 
conditions.
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Conclusion: These findings demonstrate the potential of FL to enable 
collaborative modeling of speech-based biomarkers for cognitive impairment 
detection, even under conditions of data imbalance and institutional disparity. 
This work highlights FL as a scalable and privacy-preserving approach for 
advancing digital health research in neurodegenerative diseases.

KEYWORDS

deep learning, Alzheimer’s disease, cognitive impairments, speech acoustics, 
federated learning

1 Introduction

Dementia, particularly Alzheimer’s disease (AD), poses a 
growing global health challenge among the aging population. In 
the United States alone, over 6.9 million individuals aged 65 and 
older are estimated to be living with AD, a number projected to 
nearly double to 13.8 million by 2060 (Alzheimer's Association, 
2024). Notably, 10.9% of this demographic is affected by the 
disease (Alzheimer's Association, 2024), underscoring its 
increasing impact.

Accurate diagnosis and effective treatment are complicated by the 
multifaceted nature of dementia, which is influenced by demographic, 
environmental, genetic, and biological factors. Artificial intelligence 
has emerged as a promising tool for cognitive-impairment screening, 
with machine learning (ML) and natural language processing applied 
to neuroimaging, electronic health records, speech, and other digital 
biomarkers. These methods show strong predictive performance and 
potential to improve diagnostic accuracy and efficiency, though 
concerns remain about misdiagnosis, confidentiality, and the 
psychological burden of screening (Wurtz et al., 2025; Arya et al., 
2023). Among them, automated speech analysis has emerged as a 
non-invasive tool for detecting early cognitive decline (Hajjar et al., 
2023). Language impairments associated with dementia manifest as 
difficulties in both speech production and comprehension (Bucks 
et al., 2000). However, large-scale studies leveraging speech data face 
significant obstacles, including concerns about patient privacy, 
speech de-identification, data sharing, and the need for collaboration 
across multiple research centers.

Federated learning (FL) has emerged as a promising ML approach 
for addressing these challenges by enabling multi-institutional data 
analysis while preserving patient confidentiality. Unlike traditional 
centralized methods, FL allows decentralized model training, ensuring 
sensitive information remains local (Kairouz et al., 2021; Hardy et al., 
2017). This framework is particularly well-suited for privacy-sensitive 
domains such as healthcare, facilitating collaborative research while 
mitigating data security risks.

Although FL has shown promise in various healthcare applications 
(Teo et al., 2024), its use for speech-based dementia detection remains 
scarce and underdeveloped. Traditional centralized approaches face 
limitations due to restricted data access, ethical concerns, and biased 
representation, while variability in language, demographics, and 
recording conditions undermines generalization (García Gutiérrez 
et al., 2024; Sharafeldeen et al., 2025). FL offers a potential solution to 
these challenges, yet it introduces its own complexities. A key issue is 
data heterogeneity, where variations in dataset size and class 
distribution across institutions can negatively impact model fairness 
and overall performance (Hardy et al., 2017).

To our knowledge, until now there exists only a single prior work 
examining speech-based AD diagnosis within FL frameworks, which 
demonstrates its feasibility for AD detection from speech, with 
decentralized models achieving competitive performance while 
preserving privacy. However, these efforts rely on small, homogeneous 
datasets, and the impact of real-world heterogeneity on accuracy and 
fairness remains largely unexamined (Meerza et al., 2022).

To address this limitation, our study builds upon and significantly 
extends previous research by conducting a comprehensive evaluation 
of FL for dementia detection. Leveraging a substantially larger and 
more diverse dataset, we systematically evaluate model performance 
under various realistic scenarios, particularly emphasizing the 
challenges posed by data heterogeneity. Specifically, we investigate how 
data heterogeneity influences predictive accuracy and robustness. Our 
approach employs acoustic speech features within a multi-layer 
perceptron (MLP) neural network framework to distinguish between 
cognitively unimpaired (CU) and cognitively impaired (CI) individuals.

By examining the interplay between data variability and FL 
efficacy on a broader scale, this research provides deeper insights into 
optimizing FL models for real-world applications, ensuring both 
robust performance and equitable outcomes across diverse datasets.

2 Methods

2.1 Study participants

This study included data from individuals evaluated at the 
Memory Clinic from Ace Alzheimer Center Barcelona (Ace) between 
March 2022 and April 2023 (Table 1). All participants were diagnosed 
by a multidisciplinary team comprising neurologists, 

TABLE 1  Clinical and sociodemographic characteristics of the sample 
stratified by clinical condition.

Variable CU CI (MCI) CI (ADD)

Sample size (%) 221 (9.9) 1,219 (54.4) 799 (35.7)

Age (mean, SD) 66.8 (10.2) 74.3 (9.4) 80.8 (6.8)

Sex (% Female) 64.7 61.9 64.8

Years of formal 

education (mean, 

SD)

12.3 (3.9) 8.8 (4.6) 7.7 (4.6)

MMSE (mean, SD) 29.2 (0.9) 26.9 (2.6) 21.6 (3.5)

CU, cognitively unimpaired; CI, cognitively impaired; MCI, mild cognitive impairment; 
ADD, Alzheimer’s disease dementia; MMSE, Mini–Mental State Examination; SD, standard 
deviation.
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neuropsychologists, and social workers after completing a series of 
neurological, neuropsychological, and social assessments. Further 
details of the evaluation protocols are available elsewhere (García 
Gutiérrez et al., 2024; Alegret et al., 2011; Boada et al., 2014).

2.2 Speech protocol and automated 
speech analysis

All participants completed a brief speech protocol using the 
acceXible app platform on a tablet in a quiet and controlled 
environment under the supervision of a neuropsychologist. The 
protocol comprised two tasks: first, the description of The Cookie 
Theft Picture in approximately 1 min, a common language assessment 
test (Cummings, 2019); and second, a semantic verbal fluency test 
where participants listed as many animals as possible within 1 min.

Speech recordings were standardized to 16 kHz, with silence 
segments removed and noise reduction applied using the model in 
(Defossez et al., 2020). From the processed audio, in image description 
and verbal fluency tasks independently, various physical acoustic 
features were extracted, covering parameters related to frequency 
(pitch, jitter, formant 1,2, and 3 frequency and formant 1 bandwidth), 
signal energy/amplitude (shimmer, loudness and harmonics-to-noise 
ratio), and spectral parameters (alpha ratio, hammarberg index, 
spectral slope 0-500 Hz and 500-1500 Hz, formant 1,2, and 3 relative 
energy and harmonic difference H1-H2 and H1-A3). The extracted 
variables corresponded to those described in the extended Geneva 
Minimalistic Acoustic Parameter Set (eGeMAPS) (Eyben et al., 2015), 
a standardized set of acoustic parameters linked to physiological voice 
changes, often used in neurological disease contexts (García Gutiérrez 
et  al., 2024; García Gutiérrez et  al., 2023). Feature extraction was 
performed using the OpenSmile (v2.5.0) (Eyben et al., 2010) library, 
with a three-frame symmetric moving average across eighteen 
low-level descriptors, resulting in a total of 176 variables per 
participant. The full set of extracted features was carried forward to 
the analyses, with no dimensionality reduction or cross-site 
adjustments applied at the extraction stage. Further details on feature 
calculation are available in (Abyane et al., 2022).

2.3 Virtual scenarios

Using the initial data specified in Sections 2.1 and 2.2 from the 
Ace Alzheimer Center Barcelona, we simulated a FL environment 
involving two virtual independent institutions (Institution 1 and 

Institution 2). The institutions provided speech acoustic features, 
along with CU and CI labels, for their respective patients. Each 
institution uploaded its data to its computing node, and three 
scenarios were designed to comprehensively analyze how dataset 
characteristics affect model performance. These scenarios, detailed 
in Table  2, varied by dataset size and class proportions at each 
institution, enabling an evaluation of their impact on FL 
model effectiveness.

Two different conditions were examined for each scenario: (1) 
individual training, where each institution trained its model using 
only local data, and (2) federated training, where both institutions 
collaborated to train a global model using FL.

In the individual training condition, each institution trained a 
model exclusively on its local data and evaluated on both its own and 
the other institution’s data. This setup, yielding two distinct models 
trained on separate datasets, allowed for the assessment of how data 
volume and quality variations at each institution influenced model 
performance, particularly in scenarios of limited data availability. 
Conversely, in the federated training condition, a collaborative model 
was trained on data from both institutions, leveraging data diversity 
to enhance model robustness and generalizability. This approach 
capitalized on the combined dataset, improving the model’s 
overall performance.

2.3.1 Scenario 1: uniform sample size
In scenario 1, each institution contributes an equal amount of 

data with a uniform ratio of CI to CU cases. This setup ensures 
consistency in sample size and class distribution across 
institutions, allowing for an evaluation of the FL model’s 
performance under balanced and evenly distributed 
data conditions.

2.3.2 Scenario 2: varying sample size
In scenario 2, institutions have varying data sizes, but the ratio of 

CI to CU cases remains consistent. This setup evaluates the FL model’s 
performance under imbalanced data distribution, focusing on its 
robustness and generalizability across institutions with unequal 
dataset sizes.

2.3.3 Scenario 3: imbalanced class ratio
In scenario 3, institutions differ in their class distributions, with 

one having more CI cases and another more CU cases. This setup 
examines the FL model’s ability to handle class distribution 
imbalances, reflecting real-world challenges where institutional data 
often lacks uniformity.

TABLE 2  Distribution of total, cognitive impaired (CI) and cognitive unimpaired (CU) cases per institution across different scenarios.

Scenario Node Percentage of total 
cases

Percentage of CI cases Percentage of CU 
cases

Scenario 1
Node 1 50% 90% 10%

Node 2 50% 90% 10%

Scenario 2
Node 1 10% 90% 10%

Node 2 90% 90% 10%

Scenario 3
Node 1 67% 97% 3%

Node 2 37% 78% 22%
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2.4 Neural network architecture and 
federated learning setup

In FL, designing an effective network requires balancing local 
device limitations, like computational capacity and data availability, 
with the need for coordinated global model updates to ensure 
convergence (Abyane et al., 2022). The goal is not necessarily the 
highest model accuracy, but overcoming challenges of cross-
institution collaboration while maintaining data privacy. This 
highlights the advantages and challenges of secure, collaborative data 
sharing in heterogeneous environments, along with issues of privacy 
and model convergence.

To address these challenges, we employed a feed-forward MLP as 
the local model architecture. The MLP consisted of an input layer with 
176 neurons, each corresponding to an input acoustic feature, followed 

by two hidden layers with 20 neurons each, utilizing ReLU activation 
functions. The output layer comprised a single neuron with a sigmoid 
activation function for binary classification. The network architecture 
is illustrated in Figure 1 in the local model framework.

Local models were trained using stochastic gradient descent 
(Wojtowytsch, 2021) with an initial learning rate of 0.01. To enhance 
convergence stability, an exponential learning rate scheduler with a 
decay factor of 0.95 per step was applied. Training was conducted with 
a batch size of 32 over 150 epochs. Hyperparameters were not 
systematically tuned but chosen based on initial configurations with 
manual adjustments. The binary cross-entropy loss function was 
employed, appropriate for binary classification tasks. The dataset was 
split into training (70%) and test (30%) sets with no overlap (training 
∩ test = ∅). Performance was evaluated using standard classification 
metrics, including the Area Under the ROC Curve (AUC-ROC).

FIGURE 1

Federated learning architecture using Federated Averaging (FedAvg) and Iterative Data Aggregation (IDA) across two institutions for decentralized 
multi-layer perceptron-based classification of cognitive impairment from speech-derived acoustic features.

https://doi.org/10.3389/frai.2025.1662859
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Blazquez-Folch et al.� 10.3389/frai.2025.1662859

Frontiers in Artificial Intelligence 05 frontiersin.org

Rather than employing explicit regularization techniques such as 
Dropout, Batch Normalization, or weight decay, overfitting control 
was achieved through the compact architecture of the network, 
monitoring of validation performance, and the use of class-balancing 
weights in the loss function. To account for class imbalance, weights 
were initialized inversely proportional to class frequency, normalized 
by a factor of 2, thereby assigning greater importance to the minority 
class. These weights were dynamically applied at each batch to 
maintain balanced contributions throughout training.

To aggregate locally trained models, we employed the Federated 
Averaging (FedAvg) algorithm (McMahan et  al., 2017), which 
computes a weighted average of local model parameters, assigning 
weights proportional to the number of training samples per client. 
Mathematically, this aggregation is defined as:

	

+ +

=
= ∑1 1

1

K
t tk

k
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nw w
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where +1tw  denotes the updated global model parameters, +1t
kw  

represents the parameters obtained from client k after local training, 
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=
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total number of training samples, and K  is the number of participating 
clients (with = 2K  in our study). This approach assumes that clients 
with larger datasets generate more reliable model updates, and thus 
should exert greater influence on the aggregated global model.

However, FedAvg is known to be vulnerable in federated settings 
characterized by non-independent and identically distributed (non-IID) 
data or unbalanced sample sizes, where local models can diverge 
significantly due to class imbalances or other localized biases. As a result, 
weighting updates solely based on data volume can inadvertently amplify 
the influence of low-quality or even adversarial model updates, ultimately 
degrading the robustness and generalization ability of the global model.

To mitigate this issue, we  incorporated the Iterative Data 
Aggregation (IDA) algorithm (Yeganeh et  al., 2020), a robust 
aggregation strategy that assigns weights based on the similarity of 
local models to the average model. Specifically, IDA downweights 
local models that deviate significantly from the average by computing 
weights inversely proportional to their ℓ1-distance from the average 
model. The weighting coefficient for each local model k is given by:
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round t , Z  is a normalization factor to ensure αk all sum 1 and ε  is a 
small constant to prevent division by zero. The aggregation process is 
then defined as:
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By relying on model similarity rather than sample count, IDA 
enhances robustness to statistical heterogeneity, noisy updates, and 
outlier models, which are common in real-world federated scenarios. 
The entire aggregation process is illustrated in Figure 1.

2.4.1 Development
The FL system was implemented using Python 3.11.9 with uTile 

(GMV, 2024), which internally leverages PyTorch 2.0.0 for deep 
learning model development. In this setup, uTile coordinates training 
across multiple decentralized nodes, allowing each to train locally on 
its data while sharing model updates to a central aggregator. This 
approach enhances data privacy by avoiding the transfer of raw data 
between nodes and the central server. Instead of transmitting raw 
data, only model weights or gradients are communicated, preserving 
data privacy while enabling collaborative learning.

3 Results

Data from 2,239 participants were analyzed: 221 individuals who 
were CU, showing no objective cognitive or functional impairment 
(CDR = 0) (Jessen et al., 2014) and 2,018 participants who exhibited 
CI, including patients with mild cognitive impairment (MCI) 
(n = 1,219, CDR = 0.5) (Petersen, 2004) and dementia due to AD 
(n = 799, CDR > 0.5) (McKhann et  al., 2011). Table  1 shows the 
clinical and sociodemographic characteristics of the sample used for 
this study.

Model performance was evaluated across three simulated FL 
scenarios designed to assess the effects of data imbalance and 
heterogeneity (Table 3). In scenario 1, where institutions contributed 
equally and class distributions were identical, local models achieved 
comparable balanced accuracies (0.71 and 0.73). Under FL, 
performance improved modestly: balanced accuracy increased to 0.73 
and 0.79, and sensitivity rose from 0.69 to 0.82 at Node 1 and from 
0.71 to 0.83 at Node 2, reflecting better detection of CI cases. Precision 
remained consistently high (>0.95) across all models. Specificity was 
stable at Node 2 but declined slightly at Node 1 (0.73 to 0.64). 
Importantly, FL enhanced overall discriminative ability, with AUC 
rising from 0.76 to 0.81 at Node 1 and from 0.82 to 0.87 at Node 2, and 
F1-score increasing from 0.80 to 0.88 at Node 1 and from 0.82 to 0.90 
at Node 2 (Table 4).

In scenario 2, with a strong imbalance in dataset size, with Node 
1 contributing only 10% of the total data (Table 3), the local model at 
that node struggled to identify CI cases, with a sensitivity of just 0.02 
and a balanced accuracy of 0.51. This reflects the model’s inability to 
generalize with such limited training data. However, when applying 
FL, performance at Node 1 improved dramatically: balanced accuracy 
rose to 0.80 and sensitivity to 0.93, F1-score to 0.94, and AUC to 0.89, 
showing that FL training enabled robust CI detection. At Node 2, 

TABLE 3  Sample sizes and corresponding train-test splits for each node 
across three scenarios.

Scenario Node Total 
sample 

size

Train set Test set

Scenario 1
Node 1 1,119 783 336

Node 2 1,120 784 336

Scenario 2
Node 1 223 156 67

Node 2 2,016 1,411 605

Scenario 3
Node 1 1,395 1,032 376

Node 2 831 548 283

https://doi.org/10.3389/frai.2025.1662859
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Blazquez-Folch et al.� 10.3389/frai.2025.1662859

Frontiers in Artificial Intelligence 06 frontiersin.org

which had a much larger dataset, high performance was maintained 
under FL (balanced accuracy 0.70, F1-score 0.92, AUC 0.84), 
underscoring the scalability of the approach and its ability to distribute 
benefits fairly across nodes of unequal size. Notably, specificity 
decreased at both nodes (from 1.00 to 0.67 at Node 1 and from 0.77 
to 0.51 at Node 2), reflecting a trade-off where improved CI detection 
came at the expense of more CU misclassifications.

In scenario 3, class distribution was imbalanced across 
institutions, with Node 1 having 97% CI cases and only 3% CU cases, 
while Node 2 had a more representative mix (Table 3). Local models 
performed similarly to scenario 1, with balanced accuracies of 0.70 
(Node 1) and 0.74 (Node 2). Under FL, Node 1 maintained similar 
balanced accuracy (0.71) but with shifted trade-offs: sensitivity 
decreased from 0.71 to 0.57 and F1-score from 0.82 to 0.73, while 
specificity improved from 0.69 to 0.85, suggesting that FL training 
allowed the model to better identify CU cases despite their scarcity. 
Node 2 showed stable balanced accuracy (0.72) and slightly higher 
AUC (0.84), indicating that federated training conferred benefits, 
particularly in recognizing minority-class CU samples without loss of 
overall classification power.

The complete confusion matrices for each scenario, including 
local and FL models, are provided in the Supplementary Table S1.

4 Discussions and conclusions

In this study, an MLP model was trained using speech data and 
developed using a federated network to predict CI, specifically 
distinguishing between cognitively healthy individuals, and patients 
with MCI and dementia. FL was tested to confirm its ability to enable 
collaboration among multiple institutions while safeguarding patient 
privacy. This decentralized approach is particularly advantageous in 
healthcare, where privacy is a significant concern, as it facilitates 
multi-site model training without requiring the exchange of raw data 
(Zhang et al., 2024).

The choice of MLP reflects the trade-offs inherent in FL. While 
more complex architectures (e.g., CNNs, RNNs, Transformers) may 
achieve higher performance in centralized settings, they are 
computationally demanding and more prone to divergence under 
heterogeneous data. MLPs, in contrast, are lightweight, stable, and 
communication-efficient, aligning well with structured acoustic 
features such as the 176 descriptors used here. Empirically, this 
balance proved effective: the MLP achieved strong AUC and F1-scores 

across scenarios, while FL improved sensitivity in low-data nodes and 
enhanced generalization under class imbalance. Thus, the MLP 
offered the most pragmatic compromise between expressive power, 
robustness, and scalability (Zhang et al., 2024).

Equally important was the choice of aggregation strategy. The 
combination of FedAvg and IDA proved particularly suitable, as it 
consistently improved performance under challenging conditions. In 
Scenario 2, where the smaller institution held only 10% of the data, 
local training nearly failed (sensitivity = 0.02), yet the federated model 
raised sensitivity to 0.93 and AUC to 0.89, showing clear benefits for 
underrepresented nodes. In Scenario 3 with severe class imbalance, 
this combination also improved specificity (0.69 to 0.85) and AUC 
(0.79 to 0.81), enhancing recognition of CU cases. FedAvg offered 
scalability and efficiency, while IDA mitigated heterogeneity, together 
providing a balanced and pragmatic solution (Meerza et al., 2022). 
Other strategies, such as FedProx or Scaffold, address non-IID 
conditions by adding proximal terms or variance-reducing 
corrections, but they require additional hyperparameter tuning and 
may increase communication or computation costs, making them less 
practical for early-stage clinical deployment. Similarly, clustered FL 
can personalize models for subgroups, but at the expense of 
interpretability and cross-site comparability, which are essential in 
healthcare. Against this backdrop, FedAvg combined with IDA offered 
the best balance between simplicity, robustness, and feasibility (Qi 
et al., 2023).

Overall, the federated MLP consistently achieved AUC values 
above 80%, demonstrating reliable discrimination between CU and 
CI. Its greatest impact emerged under scarcity and imbalance: in 
Scenario 2, balanced accuracy rose from 0.51 to 0.80 and sensitivity 
from 0.02 to 0.93, while in Scenario 3, FL improved specificity and 
AUC, aiding recognition of minority CU cases. By contrast, gains in 
balanced settings (Scenario 1) were modest, indicating that FL’s 
strength lies less in boosting absolute accuracy than in ensuring fair 
and robust performance across heterogeneous institutions. These 
results highlight FL as a privacy-preserving framework that promotes 
equity, allowing smaller or skewed sites to contribute meaningfully 
without being disadvantaged.

Taken together, the findings confirm that the decentralized nature 
of FL provides a scalable and privacy-preserving solution for CI 
detection, enabling robust model development without direct data 
sharing (Meerza et al., 2022). By addressing dataset size inequality and 
class imbalance, FL supports fairer predictions across diverse 
populations and is particularly valuable for detecting subtle cognitive 

TABLE 4  Classification performance metrics for cognitive impairment prediction across three scenarios settings.

Scenario Training Balanced 
accuracy

Precision Sensitivity Specificity F1-score AUC

Node 
1

Node 
2

Node 
1

Node 
2

Node 
1

Node 
2

Node 
1

Node 
2

Node 
1

Node 
2

Node 
1

Node 
2

Scenario 1
Local 0.71 0.73 0.96 0.96 0.69 0.71 0.73 0.76 0.80 0.82 0.76 0.82

FL 0.73 0.79 0.95 0.97 0.82 0.83 0.64 0.76 0.88 0.90 0.81 0.87

Scenario 2
Local 0.51 0.76 1.00 0.97 0.02 0.76 1.00 0.77 0.03 0.85 0.59 0.83

FL 0.80 0.70 0.95 0.95 0.93 0.90 0.67 0.51 0.94 0.92 0.89 0.84

Scenario 3
Local 0.70 0.74 0.98 0.93 0.71 0.70 0.69 0.77 0.82 0.80 0.79 0.81

FL 0.71 0.72 0.99 0.95 0.57 0.60 0.85 0.85 0.73 0.73 0.81 0.84

Results are reported for node 1, node 2, and the federated learning (FL) model.
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changes in early disease stages (Mateus et al., 2023). Beyond modest 
performance improvements, its benefits extend to equity across 
institutions, compliance with privacy regulations, enhanced security 
through decentralization, and scalability across heterogeneous 
clinical environments.

However, several limitations should be  acknowledged. First, 
although the cohort included 2,239 participants, all data came from a 
single institution. The simulated disparities between two virtual sites 
with harmonized preprocessing cannot replicate true cross-site 
heterogeneity, where differences in devices, demographics, diagnostic 
protocols, and annotation quality are more pronounced. Real-world 
clinical settings also introduce variability in speech tasks, legal 
constraints, and annotation standards, which may affect both 
convergence and fairness. These factors highlight the need for 
validation beyond controlled simulations.

Second, while FL demonstrates strong potential for collaborative 
and privacy-preserving modeling, it is not immune to security 
vulnerabilities. Risks such as model inversion attacks, membership 
inference, and data leakage could compromise patient confidentiality 
or model integrity. Mitigating these risks will require safeguards 
including differential privacy, secure aggregation, and adversarial 
robustness strategies, alongside standardized monitoring and quality 
control, to ensure that FL systems remain safe and trustworthy in 
clinical deployment (Vasa et al., 2024).

Future work should prioritize multi-institutional pilots to evaluate 
scalability across larger networks (e.g., 5–10 sites) using diverse 
devices, protocols, and languages, thereby testing cross-linguistic 
generalizability. These studies should compare aggregation strategies 
(e.g., FedAvg vs. adaptive methods) and investigate personalization, 
domain adaptation, and harmonization frameworks to balance local 
adaptation with global performance. Evaluation must extend beyond 
AUC and F1-scores to include fairness, calibration, and node-specific 
robustness, ensuring that benefits are not driven solely by data-rich 
sites. Expanding FL to geographically distributed cohorts and 
incorporating multimodal data sources, such as cognitive assessments, 
neuroimaging, and electronic health records, will further enhance 
diagnostic accuracy and clinical applicability. To achieve this, key steps 
include: (1) establishing multi-institutional pilots under real-world 
conditions, (2) developing standardized protocols for data 
harmonization and evaluation across sites, (3) creating interoperable, 
privacy-compliant FL infrastructure aligned with regulations, and (4) 
building decision-support tools to integrate FL outputs into clinical 
workflows. Establishing harmonized speech protocols and secure, 
standardized infrastructure will be  essential to move beyond 
experimental validation and enable safe deployment in healthcare 
systems (Dhade and Shirke, 2024).

Overall, this study highlights the promise of FL as a scalable, 
secure, and effective approach for early detection of cognitive 
impairment. By enabling privacy-preserving collaboration across 
institutions, FL addresses key challenges in digital health research and 
opens new avenues for developing accessible and equitable diagnostic 
tools for neurodegenerative diseases.
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