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Background and objective: Coronary artery disease (CAD) is a major threat to 
human health, and early non-invasive identification is crucial for its prevention 
and management. However, current diagnostic methods still face limitations in 
terms of non-invasiveness, cost, and accessibility. Tongue and facial features 
have been recognized as closely associated with CAD. To address these 
challenges, this study proposes a dual-modal diagnostic model incorporating 
a feature-wise gating mechanism to enable intelligent, non-invasive CAD 
detection based on tongue and facial images.
Methods: A total of 936 participants were enrolled in this study, and standardized 
tongue and facial images were collected from each subject. Image segmentation 
was performed using MedSAM, followed by deep semantic feature extraction 
using the MDFA-Swin network. Traditional color and texture features were also 
incorporated. A feature-guided gating mechanism was developed to enable 
personalized multimodal fusion of tongue and facial features. The diagnostic 
performance of the proposed model was evaluated on an independent external 
test set. In addition, SHAP (SHapley Additive Explanations) analysis were 
conducted to enhance model interpretability.
Results: The proposed CAD diagnostic model based on fused multidimensional 
tongue and facial features (TF_FGC) demonstrated excellent performance in 
internal validation (AUC = 0.945, Accuracy = 0.872) and maintained good 
generalizability on the external test set (AUC = 0.896, Accuracy = 0.825). The 
SHAP analysis identified T_contrast, T_RGB_R, T_homogeneity, F_homogeneity, 
F_RGB_B, F_RGB_G, F_RGB_R, and F_contrast as the most influential features 
driving model predictions.
Conclusion: The proposed dual-branch fusion model demonstrates high 
diagnostic accuracy, strong interpretability, and good generalizability. 
By integrating traditional color and texture features with deep semantic 
representations, this approach offers a promising solution for non-invasive and 
intelligent screening of CAD, providing a novel perspective and practical support 
for clinical decision-making.
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1 Introduction

For Coronary artery disease (CAD), as one of the major 
cardiovascular diseases posing a significant threat to human health 
(Ainiwaer et  al., 2024), has become a leading cause of mortality 
worldwide (Benjamin et  al., 2017; Benjamin et  al., 2018). 
Unfortunately, delayed diagnosis often places CAD patients at risk of 
myocardial infarction and even sudden cardiac death (Lee et  al., 
2019). Therefore, achieving rapid and accurate screening and 
diagnosis of CAD is crucial for its early detection, effective treatment, 
and disease management. Although coronary angiography is currently 
regarded as the gold standard for CAD diagnosis, its invasive nature 
and high cost limit its widespread use in large-scale screening and 
early diagnosis (Wood et al., 2024). Other diagnostic methods often 
rely heavily on advanced equipment and the interpretative expertise 
of specialized physicians, making them difficult to implement in 
resource-limited settings. Therefore, developing a more rapid, 
non-invasive, accessible, and cost-effective diagnostic method for 
CAD is not only critical for clinical management but also an urgent 
necessity for effective large-scale population screening.

In traditional Chinese medicine (TCM), it is believed that internal 
pathological changes can be  inferred through external bodily 
manifestations—a concept known as ‘observing the exterior to understand 
the interior’ (司外揣内) (Liang and Gu, 2021). Tongue diagnosis and 
facial diagnosis, as integral components of TCM diagnostics, assess 
changes in tongue appearance and facial features to reflect the circulation 
of qi and blood as well as the functional state of internal organs, thereby 
supporting disease diagnosis (Xie et al., 2021; Duan et al., 2024b). Modern 
studies have shown that tongue and facial features may serve as effective 
biomarkers for the diagnosis of CAD. Anatomically, the blood supply to 
the tongue is closely related to the coronary circulation (Bavitz et al., 1994; 
Wu et al., 2007). Coronary atherosclerosis can lead to myocardial ischemia 
and impair peripheral microcirculation, particularly the microcirculation 
of the tongue, resulting in abnormal changes such as a dark red or bluish-
purple tongue body or the presence of petechiae and stasis spots (Kagami 
et  al., 2012; Wang et  al., 2022). Clinical observations have shown a 
correlation between tongue color features and the degree of coronary 
artery stenosis in patients with CAD (Xia et al., 2023; Li et al., 2024). In 
addition, facial features such as complexion and skin texture are also 
associated with CAD risk; patients often exhibit signs such as a dull facial 
appearance and dark red lips (Christoffersen et al., 2014; Christoffersen 
and Tybjærg-Hansen, 2016). Lin et  al. (2020) through a multicenter 
prospective study, demonstrated the clinical feasibility of a CAD 
diagnostic model based on facial images, achieving an AUC of 0.730, 
further supporting the application value of facial features in CAD 
screening. In summary, tongue and facial characteristics are closely 
related to CAD, suggesting that these non-invasive physiological 
indicators have the potential to serve as novel biomarkers for CAD 
diagnosis and risk assessment.

In recent years, numerous researchers have leveraged artificial 
intelligence technologies to develop intelligent diagnostic models for 
CAD by integrating multi-source data such as medical imaging, blood 
biomarkers, and electronic medical records (Coenen et al., 2018; Vallée 
et al., 2019; Shen et al., 2024; Addisu et al., 2025). These models have 
introduced new approaches for early disease detection and risk 
assessment. However, their effectiveness largely depends on access to 
high-quality clinical data, the acquisition of which often involves complex 
procedures and high costs, thereby limiting their practical implementation 

in primary healthcare settings and large-scale population screening. In 
contrast, tongue and facial image data offer advantages such as ease of 
acquisition, non-invasiveness, and low cost. Existing studies have 
demonstrated the potential clinical value of these features in supporting 
CAD diagnosis, yet their broader application in real-world medical 
scenarios remains underexplored and lacks systematic integration. 
Currently, most studies on CAD diagnosis rely solely on either tongue 
features or facial features, and few have explored models that integrate 
multi-dimensional features from both modalities. To address the 
challenges faced in CAD diagnosis, this study proposes a non-invasive 
diagnostic model based on the integration of tongue and facial features. 
The model introduces a feature-wise gating mechanism to enable adaptive 
weighted fusion of tongue and facial features under multimodal input, 
thereby improving both individualized diagnostic accuracy and the 
model’s discriminative capability. In addition, the model incorporates the 
SHapley Additive exPlanations (SHAP) method to analyze the 
contribution of each feature, enhancing interpretability and providing 
more reliable decision support for clinical practice (Pearson, 1901; Yu 
et  al., 2025). Notably, the model is well-suited for a wide range of 
application scenarios, including community health centers, physical 
examination institutions, and daily home health monitoring. It does not 
rely on advanced medical equipment or specialized personnel, allowing 
for efficient diagnosis and timely medical guidance for patients. The 
workflow of proposed methodology is shown in Figure 1.

2 Materials and methods

2.1 Data source

The data for this study were collected from Dongcheng Hospital and 
Tongzhou Hospital of Dongzhimen Hospital, Beijing University of 
Chinese Medicine, between July 2023 and July 2024. A total of 737 
participants were enrolled at Tongzhou Hospital, including 337 patients 
with CAD and 400 non-CAD controls, which were used for model 
training and internal validation. An independent external validation 
cohort consisted of 200 participants (100 CAD patients and 100 non-CAD 
controls) recruited from Dongcheng Hospital during the same period. 
Detailed baseline characteristics of all cohorts are presented in Table 1.

To control for major demographic confounders, CAD and 
non-CAD participants were matched on age (±5 years) and sex. Other 
cardiovascular risk factors such as hypertension and diabetes were not 
used as matching criteria, because these conditions are established risk 
factors and potential mediators of CAD, and their associated facial 
and lingual phenotypes may contribute to the diagnostic signal 
captured by our image-based model. This design preserves real-world 
differences that the model is intended to recognize and avoids over-
adjustment of true disease characteristics. Consequently, the 
prevalence of CAD in the study cohort was approximately 50%, which 
is higher than that in typical clinical populations; therefore, the 
primary goal of this study was to evaluate discriminative ability rather 
than to estimate absolute risk in the general population.

All CAD patients included in the study were diagnosed based on 
coronary angiography (CAG). Obstructive CAD was defined as a 
stenosis of ≥50% in at least one major coronary artery (left anterior 
descending artery, left circumflex artery, right coronary artery, or left 
main stem), consistent with diagnostic thresholds recommended in 
major international guidelines and clinical practice (Knuuti et al., 
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2020). Patients meeting this criterion were classified as CAD-positive, 
whereas those with <50% stenosis were classified as CAD-negative. To 
ensure consistency between image acquisition and reference 
diagnostic testing, all participants completed facial and tongue 
imaging within 2 weeks of their CAG examination during the same 
hospitalization. All CAD patients were symptomatic cases who 
underwent angiography due to suspected ischemic manifestations 
(e.g., chest pain, exertional angina, or positive stress test), rather than 
asymptomatic incidental findings. Although a stenosis ≥70% is often 
considered hemodynamically significant (“severe stenosis”) in clinical 

settings, we  adopted the 50% threshold because it represents the 
internationally accepted definition of obstructive CAD and has been 
widely used in clinical trials and diagnostic model development.

Non-CAD controls were carefully selected to match the CAD group 
in age and sex distribution (no significant differences observed, see 
Table 1) and met the following criteria: (i) aged 18–85 years, conscious, 
without psychiatric disorders, and able to complete the full image 
acquisition process; (ii) no visible facial, oral, or tongue deformities; (iii) 
no history of CAD or other severe cardiovascular diseases (e.g., heart 
failure, cardiomyopathy, congenital heart disease); (iv) no major chronic 
illnesses such as renal insufficiency, cirrhosis, or malignancy; (v) not on 
long-term immunosuppressants, glucocorticoids, or other medications 
that may significantly affect cardiovascular metabolism.

This study was approved by the Medical Ethics Committee of 
Dongzhimen Hospital, Beijing University of Chinese Medicine 
(approval number: 2023DZMEC-228-03), and written informed 
consent was obtained from all participants.

2.2 Data acquisition and cross-center 
colorimetry consistency

Tongue and facial images were acquired using the same model of 
imaging device, the DS01-B Tongue Diagnosis Instrument (Model: 
DS01-B, Product No.: YM0100520, Registration No.: Shanghai Medical 
Device Registration 20,202,200,062; Shanghai Daosheng Medical 
Technology Co., Ltd., China). The system is equipped with an 
independent power supply and a sealed acquisition chamber, 
incorporating a Canon EOS 1200D DSLR camera (18 megapixels) and an 
LED cold light source that simulates natural daylight (color temperature: 
4,500–6,500 K; color rendering index, CRI ≥ 90). All devices were 

FIGURE 1

Architecture of the feature-gated classifier (FGC) model.

TABLE 1  Basic information of participants.

Item Train and internal validation dataset

CAD 
(n = 337)

NCAD 
(n = 400)

P value

Age (years) 65.17 ± 10.086 63.9 ± 10.046 0.06

Sex (male/female) 195/142 228/172 0.81

Hypertension 219 148 <0.0001

Diabetes 118 80 <0.0001

Independent external validation dataset

CAD 
(n = 100)

NCAD 
(n = 100)

P value

Age (Years) 65.41 ± 10.179 64.96 ± 10.315 0.78

Sex (male/female) 56/44 54/46 0.78

Hypertension 63 31 <0.0001

Diabetes 34 18 0.012
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spectrally calibrated before deployment using a 1.5 m integrating sphere 
to ensure long-term imaging stability (see Figure 2).

Imaging parameters were strictly standardized: shutter speed 1/200 s, 
aperture f/5.6, ISO 200, illumination intensity maintained at 3,000 ± 10% 
LUX, and relative distortion ≤ ± 5%. Color fidelity was verified using a 
standard 24-color calibration chart, requiring the color deviation between 
measured and reference CIE LAB values (ΔE*ab) to be ≤10. All images 
were acquired indoors under controlled lighting conditions by uniformly 
trained personnel. Participants were photographed approximately 2 h 
after a meal, seated upright with the chin stabilized on a support. During 
tongue imaging, subjects extended the tongue naturally and slightly 
downward, followed by facial image collection. Image quality was 
monitored in real time, and resampling was performed if occlusion, blur, 
or distortion was detected until high-quality images were obtained.

To verify cross-center imaging consistency, the external validation set 
was collected using the same DS01-B system under an identical 
acquisition protocol. A colorimetry consistency analysis was further 
conducted across the two centers by computing CIE ΔE*ab color 
differences and performing Bland–Altman analyses for the L*, a*, and b* 
channels. Results showed that the median cross-center ΔE*ab was 4.48 
(IQR: 3.75–6.91) for facial images and 5.42 (IQR: 4.11–8.39) for tongue 
images, both below the generally accepted threshold for medical imaging 
tasks (ΔEab < 10). No systematic bias was observed between centers; only 
moderate random variations were found, primarily along the lightness (L) 
and red–green (a)* dimensions (see Supplementary Figure S2). These 
findings confirm excellent cross-center color consistency, ensuring the 
reliability of subsequent model performance evaluation.

2.3 Segmentation of tongue and facial 
image regions

Currently, there are relatively few segmentation algorithms 
specifically designed for TCM data. In the past, training a high-quality 

medical image segmentation model required extensive manual 
annotation, which is labor-intensive. This is particularly challenging 
in the field of TCM due to the lack of public data and the specialized 
nature of data collection and annotation. MedSAM (Ma J. et al., 2024) 
is an optimized model based on SAM (Mazurowski et  al., 2023), 
designed to accommodate various medical image segmentation tasks 
(Figure  3). MedSAM significantly improves the recognition and 
segmentation of targets in medical images through fine tuning on 
large medical image datasets. It demonstrates strong zero-shot 
generalization across various medical tasks, significantly reducing the 
burden of manual annotation (Zhang et al., 2024). However, to date, 
no studies have applied MedSAM to the segmentation of tongue and 
facial images. In this study, we used MedSAM to segment the tongue 
and facial regions. Segmentation was performed using automatic 
point prompting with default parameters, without fine-tuning or 
threshold post-processing on our dataset. To ensure segmentation 
quality, images were strictly controlled during acquisition, with 
blurred, occluded, or low-quality images excluded. To evaluate 
segmentation performance, we randomly selected 200 images from 
the dataset (100 tongue, 100 face), and two annotators with experience 
in TCM imaging performed pixel-level annotations using LabelMe. 
The results showed that MedSAM achieved high segmentation 
performance for both tongue and facial images, effectively excluding 
irrelevant background regions (Tongue image: IoU = 0.9393, 
Dice = 0.9687; Facial image: IoU = 0.9676, Dice = 0.9515).

2.4 Deep feature extraction based on 
MDFA-Swin

To effectively capture high-level semantic features (Deep 
Feature) embedded in tongue and facial images, this study adopts 
the MDFA-Swin network (Figure 4) as the backbone model for 
deep feature extraction. The Swin Transformer (Liu et al., 2021) 

FIGURE 2

(A) Appearance and operation interface of the DS01-B tongue and facial image acquisition device. (B) Schematic illustration of tongue and facial image 
acquisition.
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adopts a hierarchical structure combined with a shifted window-
based multi-head self-attention mechanism, which offers strong 
local perception and global modeling capabilities. This makes it 
particularly well-suited for analyzing medical images of the tongue 
and face, which often exhibit unstructured morphology, fine-
grained variations, and blurred boundaries. To enhance the 
model’s ability to capture local details, a Multi-scale Dilated Fusion 
Attention (MDFA) module—integrating multi-scale dilated 

convolutions and attention mechanisms—is incorporated. This 
component strengthens the model’s capacity to perceive and 
represent key diagnostic features. During the feature extraction 
process, both tongue and facial images first undergo initial 
transformation through a patch partitioning and linear embedding 
module. These representations are then processed through 
multiple Transformer blocks to progressively integrate cross-scale 
contextual information. For high-level feature representation, 

FIGURE 3

Overview of the architecture of MedSAM.

FIGURE 4

(A) Network structure of MDFA module. (B) MDFA-Swin-Transformer.
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we retain the global feature output preceding the classification 
head—specifically, the feature vector obtained after the ‘avgpool’ 
operation but before the ‘flatten’ operation. This semantic-level 
abstraction provides discriminative power for subsequent feature 
fusion and disease prediction tasks. The final deep feature is 
flattened into a one-dimensional vector of size 768 using ‘torch.
flatten (x, 1)’. We further evaluated the discriminative power of 
deep features extracted by MDFA-Swin from tongue and facial 
images, and conducted systematic comparisons with several 
mainstream baseline models, including ViT-B/16, Swin-Small, 
Swin-Tiny, ResNet18, ResNet34, and ResNet50. Experimental 
results demonstrated that MDFA-Swin outperforms these 
baselines across multiple performance metrics, confirming its 
effectiveness and suitability for tongue and facial image 
analysis tasks.

2.5 MDFA-Swin model training

The diagnostic model in this study was developed using the 
Python programming language and implemented with the PyTorch 
deep learning framework. All experiments were conducted in a high-
performance computing environment equipped with dual NVIDIA 
A100 GPUs. Considering the inherent differences in feature 
distribution between tongue and facial images, distinct optimizers and 
hyperparameter configurations were applied to optimize model 
performance. For the tongue image dataset, we adopted the Stochastic 
Gradient Descent (SGD) optimizer with a momentum of 0.9, a weight 
decay of 5 × 10−4, and an initial learning rate of 5 × 10−4. In contrast, 
facial image training employed the Adam optimizer with an initial 
learning rate of 5 × 10−5 and a momentum parameter of 0.9 to 
accommodate its higher complexity in feature distribution. To 
enhance model stability and convergence, a cosine annealing learning 
rate scheduler was introduced, decaying the learning rate to one-tenth 
of its initial value every 50 training epochs. Training was conducted 
for a total of 200 epochs with a consistent batch size of 32. A fixed 
random seed of 42 was used to ensure reproducibility of the 
experimental results. The model with the best validation accuracy was 
preserved during training based on dynamic monitoring of validation 

performance, and the corresponding weights were retained for 
subsequent testing and analysis (Song et al., 2024).

The high-level semantic features of tongue and facial images 
extracted by the MDFA-Swin model heavily rely on the black-box 
mechanisms of deep neural networks, resulting in limited clinical 
interpretability. This limitation poses challenges in meeting the 
requirements for diagnostic transparency and reliability in real-world 
applications. To enhance the interpretability and generalizability of the 
model, this study further incorporates traditional color and texture 
features of tongue and facial images, which are inherently more 
explainable. For color characterization, the average R, G, and B values 
in the RGB color space are employed as quantitative indicators of 
overall image color (Xie et al., 2021), aligning with TCM theories of 
color-based diagnosis. Regarding texture, gray-level co-occurrence 
matrix (GLCM) are used to extract spatial gray-level distribution and 
directional texture responses. These features effectively capture surface 
roughness, textural regularity, and spatial frequency characteristics of 
the tongue tissue, thereby complementing the high-level semantic 
features with more interpretable and detailed information.

2.6 Construction of a diagnostic model for 
coronary artery disease

2.6.1 Model architecture design
To effectively integrate and dynamically balance the contributions 

of facial and tongue features in the diagnosis of CAD, thereby 
improving both the predictive performance and interpretability of the 
model, we designed a dual-branch gated neural network, referred to 
as the Feature-Gated Classifier (FGC), as illustrated in Figure 5. The 
model comprises four main components: (1) input branches that 
receive two separate sets of features corresponding to facial and 
tongue modalities; (2) a gating module in which the concatenated 
facial and tongue features are passed through a fully connected layer 
followed by a Softmax activation function to generate two gating 
weights representing the attention assigned to each modality; (3) a 
feature fusion module that applies the gating weights to the respective 
features and concatenates them into a unified feature vector; and (4) 
a classifier module that feeds the fused vector into a feedforward 

FIGURE 5

The workflow of the proposed methodology.
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neural network with 64 hidden units (using ReLU activation and a 
dropout rate of 0.35), followed by a Softmax output layer for binary 
CAD classification. This architecture enables the model to adaptively 
adjust the relative importance of facial and tongue features based on 
the feature distribution of each individual sample, thereby enhancing 
its discriminative power and generalization ability.

In this architecture, the gating module incorporates an attention-
based Feature Gate Layer as a regulatory mechanism prior to deep 
feature fusion. This module is implemented using a lightweight fully 
connected neural network, which ensures both good trainability and 
computational efficiency. Specifically, let the facial feature vector 
be denoted as ∈F d , and the tongue feature vector as ∈T d . Each 
vector is first passed through a nonlinear transformation to generate 
modality-specific attention weights (Equation 1):

	 ( )( ) ( )( )σ σ= =MLP , MLPf f t tg F g T 	 (1)

where ( )σ .  denotes the Sigmoid activation function, and −MLP f  
and _MLP t represent two-layer multilayer perceptrons applied to the 
facial and tongue features, respectively. The outputs _g f  and _g t  
correspond to the attention weights assigned to the facial and 
tongue modalities.

The fused feature vector H is then defined as (Equation 2):

	 = +·F ·Tf tH g g 	 (2)

This fused vector 𝐻 is subsequently fed into the downstream 
classifier to predict CAD risk.

Through this mechanism, the model achieves dynamic weighted 
fusion of multimodal features from the tongue and face, enabling 
adaptive modeling of inter-individual variability. Moreover, the gating 
structure provides explicit and quantifiable attention weights, which 
can be leveraged for downstream interpretability analyses—such as 
examining gating weight distributions or evaluating feature 
importance—thus enhancing the model’s practical utility and 
reliability in clinical settings.

2.6.2 Feature set construction and preprocessing
In this study, a dataset comprising tongue and facial image 

features was used for modeling and analysis. Each sample was labeled 
to indicate whether the subject was diagnosed with CAD. After 
loading the dataset, the label column (“Type”) was separated from the 
feature data. Based on clinical expertise and image processing 
techniques, all variables were categorized into four subsets according 
to their source and type: (1) facial color and texture features (e.g., F_
RGB, F_contrast), (2) deep facial features (F_PC), (3) tongue color 
and texture features (e.g., T_RGB, T_energy), and (4) deep tongue 
features (T_PC). This grouping strategy was designed to represent 
both low-level and high-level information extracted from the images.

2.6.3 Data partitioning and model evaluation 
strategy

To ensure rigorous and unbiased model evaluation, we employed 
a nested cross-validation framework with three distinct stages: an 
outer split for model selection and internal validation, and an 
independent external test set for final generalization assessment.

The primary dataset (n = 737), collected from Dongzhimen 
Hospital Tongzhou Branch (337 CAD, 400 non-CAD), was first 
divided into two parts via stratified sampling at an 80:20 ratio using 
random_state = 121: ① Trainval set (n = 590): used for model 
training and hyperparameter optimization; ② Internal test set 
(n = 147): reserved exclusively for internal performance evaluation 
and kept completely unseen during the training process. ③ Within 
the Trainval set, a second stratified split (85:15) was performed to 
form: Training subset (n = 501): used to train the 
FeatureGatedClassifier; ④Validation subset (n = 89): used for early 
stopping, hyperparameter tuning, and calibration of prediction 
probabilities (via Platt scaling). All preprocessing steps—including 
feature grouping, standardization (StandardScaler), and 
dimensionality reduction (PCA)—were fitted only on the training 
subset and then applied consistently to both the validation and 
internal test sets to prevent data leakage.

After model training and selection, the best-performing 
model and its associated calibrator were saved. The final model 
was evaluated on the internal test dataset. This partitioning 
strategy ensured strict separation between training, validation, 
and testing phases, enabling reliable estimation of model 
performance and robust assessment of generalizability 
across institutions.

2.6.4 Model training and performance evaluation
The CAD diagnostic model in this study was implemented using 

the PyTorch deep learning framework. The architecture comprises a 
dual-branch gated fusion network followed by a classification head. 
Specifically, the gating module takes facial and tongue feature vectors 
as parallel inputs and generates modality-specific attention weights 
through lightweight multilayer perceptrons with Sigmoid activation. 
These weights are normalized via Softmax to enable adaptive, sample-
wise fusion of the two modalities. The subsequent classifier consists of 
two fully connected hidden layers (each with 256 units), with each 
layer followed sequentially by batch normalization (BatchNorm), 
ReLU activation, and Dropout regularization (dropout rate = 0.35). 
The final output layer employs a Softmax function to produce 
probabilistic predictions for the binary classification task (CAD vs. 
non-CAD). To address the mild class imbalance in the development 
cohort (337 CAD cases vs. 400 non-CAD controls), class weights were 
automatically computed using scikit-learn’s compute_class_weight 
(‘balanced’) and incorporated into the cross-entropy loss function, 
thereby enhancing the model’s sensitivity to the minority class.

During training, mini-batch stochastic gradient descent was 
performed with a batch size of 32, and the model was trained for up 
to 200 epochs. For each experimental run, the training set was 
partitioned into training and validation subsets at an 85:15 ratio (val_
ratio = 0.15), with the validation subset used to monitor generalization 
performance. The Adam optimizer was employed with an initial 
learning rate of 1 × 10−3 and a weight decay of 1 × 10−5 to further 
mitigate overfitting. A dynamic learning rate scheduling strategy, 
ReduceLROnPlateau (factor = 0.5, patience = 6), was applied to 
automatically reduce the learning rate based on the validation 
AUC. Additionally, an early stopping mechanism was implemented: 
training was terminated if the validation loss failed to improve for 25 
consecutive epochs (patience = 25), thus preventing overfitting and 
improving model robustness. All model parameters were updated 
automatically via backpropagation.
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2.6.5 Performance evaluation metrics
During the testing phase, the model’s performance was 

comprehensively assessed using multiple metrics (Gorur et al., 2018; 
Gorur et  al., 2019), including accuracy, area under the receiver 
operating characteristic curve (AUC), F1 score, recall (sensitivity), and 
precision (positive predictive value, PPV) (Equations 3–6). In this 
context, true positives (TP) correspond to correctly identified CAD 
cases, true negatives (TN) to correctly classified non-CAD controls, 
false positives (FP) to non-CAD cases erroneously classified as CAD, 
and false negatives (FN) to CAD cases incorrectly labeled as 
non-CAD. This multi-dimensional evaluation framework enables 
balanced assessment of both overall discriminative ability and class-
specific performance, ensuring the model’s reliability and practical 
applicability in clinical diagnostic settings.

	
+

=
+ + +

TP TNAccuracy
TP TN FP FN 	
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2.7 Validation on new testing dataset

To further evaluate the generalization capability of the proposed 
TF_FGC model, we established an independent external validation 
cohort by collecting tongue and facial images from 100 patients with 
CAD and 100 age- and sex-matched non-CAD controls at 
Dongzhimen Hospital (Dongcheng Branch). All participants 
underwent standardized acquisition of high-resolution facial and 
tongue images under controlled illumination and fixed posture 
conditions. This external test set was entirely independent of the 
model development dataset and was used to assess the model’s 
robustness and transferability in real-world clinical settings.

The TF_FGC model trained on the development set is directly 
applied to the external test set without any retraining or fine-tuning. 
The model outputs are used to calculate predicted probabilities for 
CAD, and the model’s generalization ability is evaluated using 
standard classification performance metrics (accuracy, recall, 
precision, F1 score, AUC, etc.). Calibration performance was further 
evaluated using the Brier score, calibration intercept, and slope. To 
improve the reliability of predicted probabilities, Platt scaling was 
applied prior to external testing.

To better reflect real-world clinical application scenarios, positive 
and negative predictive values (PPV and NPV) were reweighted using 
Bayes’ theorem under three realistic disease prevalence settings (5, 10, 
and 15%), corresponding to community screening, general outpatient, 
and cardiology referral populations, respectively. Finally, decision 
curve analysis (DCA) was performed to quantify the net clinical 
benefit across a range of probability thresholds (0.1–0.6), and the 
results were compared with those of the CAD Consortium Basic 
model as well as the “treat-all” and “treat-none” strategies.

2.8 Clinical baseline model construction

To provide clinical benchmark models, two types of baseline 
models were established on the external test set (n = 200, 100 CAD 
patients and 100 non-CAD controls): a physician-based visual 
baseline (Visual baseline) and a demographic-based logistic regression 
model (Age + Gender).

2.8.1 Visual baseline based on facial and tongue 
features

The visual baseline was constructed as follows: three board-
certified clinicians independently reviewed standardized facial and 
tongue photographs of all participants. Based on literature evidence, 
clinical experience, and preliminary model results, five key visual 
features associated with CAD were selected for binary annotation: 
tongue color, tongue texture, tongue contrast, facial color, and facial 
texture. Each feature was labeled as abnormal (=1) or normal (=0). A 
consensus label for each feature was determined using the majority 
rule (≥2 clinicians rated as abnormal). The total number of abnormal 
features (0–5) was then calculated as a risk score for CAD. Participants 
with ≥3 abnormal features were classified as CAD-positive (label = 1), 
and those with fewer than 3 abnormal features were classified as 
CAD-negative (label = 0).

2.8.2 Demographic-based logistic regression 
model

A logistic regression model was constructed using age (continuous 
variable, in years) and gender (female = 0, male = 1) as independent 
variables, with CAD diagnosis as the dependent variable. The model 
outputs predicted probabilities for CAD, which can be thresholded to 
simulate different clinical scenarios. For community screening 
(prevalence ~5%, rule-out), a high-sensitivity threshold was selected 
to minimize missed diagnoses. For cardiology triage (prevalence 
~30%, rule-in), a high-specificity threshold was chosen to reduce 
false-positive referrals.

2.9 Model interpretability analysis

To improve the transparency and clinical interpretability of the 
proposed TF_FGC model, we performed a three-level interpretability 
analysis using the external test set: global feature importance, 
individual decision path, and local feature dependence.

2.9.1 Global feature importance (SHAP)
We applied the SHAP method to quantify each feature’s 

contribution to model prediction (Lundberg and Lee, 2017; Khorram 
et al., 2021). Using the TreeExplainer algorithm, SHAp values were 
computed for all samples in the external test set. Four feature groups 
were analyzed separately: facial color–texture, tongue color–texture, 
facial depth, and tongue depth features. Mean absolute SHAP values 
were used to rank feature importance, and SHAP summary plots were 
generated to visualize both contribution magnitude and direction.

2.9.2 Individual decision path analysis
To visualize the model’s reasoning at the individual level, 

we generated SHAP decision plots for representative true-positive and 
true-negative cases. Only clinically interpretable facial and tongue 
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color–texture features were included. The plots illustrated how each 
feature cumulatively influenced the prediction probability toward or 
away from CAD, revealing dominant contributors in each case (Nazim 
et al., 2025).

2.9.3 Local feature dependence
To examine the nonlinear effects of key features on CAD risk, 

we  plotted Partial Dependence Plots (PDPs) and Individual 
Conditional Expectation (ICE) curves. Six representative features 
(F_RGB_B, F_RGB_R, F_homogeneity, F_contrast, T_homogeneity, 
T_RGB_R) were analyzed. PDPs described the overall marginal effect, 
while ICE curves showed individual variations, allowing assessment 
of feature consistency and model generalizability.

3 Results

3.1 Performance evaluation of deep feature 
extraction based on MDFA-Swin and 
comparison with benchmark vision models

To verify the effectiveness of the proposed MDFA-Swin model 
in extracting deep features from tongue and facial images, 
we  conducted a systematic comparison with several mainstream 
visual models, including ViT-B/16, Swin-Tiny, Swin-Small, 
ResNet18, ResNet34, and ResNet50. All models were trained and 
validated using the same dataset and training protocols, and their 

classification performance was evaluated separately on unimodal 
tasks involving tongue and facial images. As shown in Figures 6, 7, 
MDFA-Swin achieved the best performance across multiple 
evaluation metrics—including Accuracy, Recall, Precision, F1 Score, 
and AUC—significantly outperforming all baseline models. This 
demonstrates the model’s strong feature representation and 
discriminative capability in medical image analysis tasks. Specifically, 
on the tongue image validation set, the MDFA-Swin model achieved 
an Accuracy of 0.7619, Recall of 0.7546, Precision of 0.7643, F1 Score 
of 0.7598, and an AUC of 0.8381. On the facial image validation set, 
the model exhibited even stronger performance, with an Accuracy 
of 0.7959, Recall of 0.7955, Precision of 0.7943, F1 Score of 0.7944, 
and an AUC as high as 0.8832. These results clearly indicate that the 
improved MDFA-Swin model possesses superior deep feature 
modeling capabilities for both tongue and facial images. The 
introduced MDFA mechanism effectively enhances the model’s 
ability to perceive fine-grained structural variations and blurred 
boundary regions, thereby improving its capacity to express key 
pathological features in tongue and facial regions for more accurate 
CAD identification. Compared with traditional convolutional 
networks such as the ResNet series, MDFA-Swin leverages the cross-
scale global modeling capability of the Transformer architecture to 
better integrate unstructured image information, exhibiting 
enhanced robustness and generalization ability. Collectively, these 
findings validate the applicability and advancement of MDFA-Swin 
as a backbone for deep feature extraction in the field of medical 
image analysis.

FIGURE 6

Validation performance of the MDFA-Swin model and baseline models on the tongue and facial image datasets.
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3.2 Visualization and dimensionality 
reduction of deep features

Based on the optimal weights obtained from the trained MDFA-
Swin model, high-dimensional semantic feature vectors (with a 
dimensionality of D = 768) were extracted from both tongue and 
facial images to represent the underlying semantic information of each 
individual in the deep feature space. To intuitively demonstrate the 
class separability of the extracted deep features, the t-distributed 
Stochastic Neighbor Embedding (t-SNE) algorithm (der Maaten and 
Hinton, 2008) was applied to perform nonlinear dimensionality 
reduction and map the features into a two-dimensional space. As 
shown in Figures  8A,B, the t-SNE visualizations reveal a clear 
separation between CAD and non-CAD samples for both tongue and 
facial features, indicating that the semantic features extracted by the 
MDFA-Swin model exhibit strong discriminative capability and class 
separability. Additionally, to reduce feature redundancy in subsequent 
fusion and classification modeling and to enhance computational 
efficiency, this study applies PCA (Aït-Sahalia and Xiu, 2019) for the 
linear dimensionality reduction of deep features in the following steps.

3.3 Validation results of five classifiers 
based on tongue and facial features

To The extraction of high-level semantic features from tongue and 
facial images using the MDFA-Swin model relies heavily on the 
black-box nature of deep neural networks, which limits clinical 
interpretability and fails to fully meet the requirements for diagnostic 
transparency and reliability in real-world applications. To address this 
issue, this study further incorporates interpretable traditional color 
and texture features derived from tongue and facial images as a 
complement to the deep semantic features. By enhancing the 
interpretability of the deep learning model and exploring the auxiliary 
diagnostic value of traditional image features in CAD identification, 
we  conducted classification performance evaluations using these 

handcrafted features. Specifically, the traditional color and texture 
features were input into five widely used machine learning classifiers—
Support Vector Machine (SVM), K-Nearest Neighbor (KNN), 
Multilayer Perceptron (MLP), Random Forest (RF), and eXtreme 
Gradient Boosting (XGB)—for CAD classification. The experimental 
results are summarized in Tables 2, 3. As shown in Table 2, for the 
classification task based on traditional tongue image features, the MLP 
model achieved the best overall performance across all metrics, with 
an Accuracy of 66.09%, Recall of 59.95%, Precision of 63.64%, F1 
Score of 67.10%, and an AUC of 0.7038. While SVM and Logistic 
Regression (LR) achieved slightly higher Precision, their lower Recall 
led to inferior F1 scores and AUC compared to MLP. These findings 
suggest that the MLP exhibits a stronger capacity for capturing 
nonlinear color and texture patterns in tongue images, and that 
traditional features can support preliminary CAD risk screening to a 
certain extent, though their discriminative power remains limited.

In contrast, classification based on traditional facial image features 
yielded significantly better performance. As shown in Table 3, the Logistic 
Regression model outperformed all others across the five evaluation 
metrics, achieving an Accuracy of 72.98%, Recall of 67.92%, Precision of 
71.73%, F1 Score of 69.54%, and an AUC of 0.8022—the highest among 
all models tested. MLP also demonstrated relatively stable and 
competitive performance. Overall, these results indicate that facial image 
features provide greater diagnostic value in CAD identification, likely due 
to more pronounced structural differences in skin color variation and 
texture distribution between CAD and non-CAD individuals.

3.4 Performance of the FGC model on the 
test set

To systematically evaluate the performance of the proposed FGC 
model in the intelligent diagnosis of CAD, and to verify the 
effectiveness of multimodal fusion between tongue and facial features, 
three models were constructed for comparison: (1) an FGC model 
based on fused tongue and facial features (TF_FGC); (2) an FGC 

FIGURE 7

AUC comparison of the MDFA-Swin model and baseline models on the tongue and facial image datasets.
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model using only tongue features as input (T_FGC); and (3) an FGC 
model using only facial features as input (F_FGC). As shown in 
Table 4, the fusion model TF_FGC achieved the best performance 
across all evaluation metrics, with an accuracy of 0.872, recall of 0.897, 
precision of 0.836, F1-score of 0.865, and an AUC of 0.945. These 
results demonstrate that the proposed gating mechanism can 
automatically learn and adjust the relative importance of tongue and 
facial features, enabling effective information fusion and substantially 
improving the model’s discriminative ability for CAD.

In contrast, the unimodal models T_FGC and F_FGC performed 
less favorably, with accuracies of 0.831 and 0.858, and AUCs of 0.902 
and 0.935, respectively. Although both unimodal models showed 
reasonable diagnostic capability, their accuracy and robustness were 
inferior to the fusion model due to limited information utilization. 
This finding indicates that tongue and facial features provide 
complementary diagnostic cues in CAD classification tasks. In 
summary, the experimental results confirm that: (1) the FGC model 
possesses strong multimodal feature fusion capabilities; and (2) both 

tongue and facial features contribute valuable and distinct information 
in CAD diagnosis, and their integration significantly enhances model 
accuracy and stability. Therefore, the FGC model incorporating a 
multidimensional feature fusion strategy and a gating mechanism 
represents the optimal CAD recognition solution in this study.

3.5 Performance of the TF_FGC model in 
external validation

3.5.1 Overall performance
The proposed TF_FGC model demonstrated excellent 

discriminative performance, good calibration, and strong clinical 
applicability in both internal and external validation. As shown in 
Table 5 and Figure 9A, in the internal validation cohort, the model 
achieved an accuracy of 0.872, F1-score of 0.865 (95% CI: 0.800–
0.920), recall of 0.897 (95% CI: 0.823–0.960), and precision of 0.836 
(95% CI: 0.747–0.917). The AUC reached 0.945 (95% CI, DeLong: 
0.905–0.985; Bootstrap: 0.904–0.977), indicating outstanding 
discriminative ability. The Brier score was 0.091, with a calibration 
intercept of −0.259 and a slope of 0.927, suggesting good overall 
model fit after Platt scaling calibration (Figure 9C).

To further evaluate the model’s generalizability, an external 
validation was performed on an independent test cohort from another 
clinical center, comprising 200 participants (100 CAD patients and 
100 non-CAD controls). As shown in Table  5 and Figure  9B, the 
model correctly identified 86 CAD and 79 non-CAD cases, achieving 
an accuracy of 0.825, recall of 0.860, precision of 0.827, F1-score of 
0.843, and an AUC of 0.896 (95% CI: 0.850–0.941). The Brier score 
was 0.130, with a calibration intercept of −0.035 and a slope of 1.350, 
indicating acceptable calibration consistency across centers and good 
robustness and transferability (Figure 9D).

To explicitly examine site-level stability, a per-center performance 
analysis was conducted. The TF_FGC model achieved consistent 
discrimination across both acquisition sites: in  Site A (internal 
validation), the AUC was 0.945 (95% CI: 0.905–0.985) and AUPRC 
0.934; in Site B (external validation), the AUC was 0.896 (95% CI: 
0.850–0.941) and AUPRC 0.902. Calibration slopes (0.927 vs. 1.350) 
and intercepts (−0.259 vs. –0.035) showed no substantial drift, and 

FIGURE 8

Visualization of tongue and facial deep features. (A) t-SNE plot of tongue image deep features. (B) t-SNE plot of facial image deep features.

TABLE 2  Performance comparison of traditional machine learning 
classifiers based on tongue color and texture feature set.

Models Accuracy Recall Precision F1 
Score

AUC

SVM 0.6405 0.4365 0.6618 0.5249 0.6911

RF 0.6011 0.4718 0.5788 0.5197 0.6209

MLP 0.6609 0.5995 0.6364 0.6710 0.7038

TABLE 3  Performance comparison of traditional machine learning 
classifiers based on facial color and texture feature set.

Models Accuracy Recall Precision F1 
Score

AUC

SVM 0.722 0.647 0.715 0.677 0.792

RF 0.716 0.647 0.705 0.673 0.777

MLP 0.727 0.658 0.723 0.686 0.798

LR 0.730 0.679 0.717 0.695 0.802

ET 0.716 0.667 0.695 0.680 0.769
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Brier scores (0.091 vs. 0.130) remained within an acceptable range. 
These findings indicate that the model’s predictive performance was 
not affected by site-specific factors, supporting its robustness to center 
heterogeneity (see Supplementary Table S1).

Considering the model’s potential value in real-world screening 
scenarios, prevalence-weighted PPV and NPV were further estimated 
under hypothetical disease prevalences of 5, 10, and 15%. As 
summarized in Table 6, the PPVs (95% CI) were 0.201 (0.146–0.301), 
0.347 (0.265–0.476), and 0.457 (0.364–0.591), respectively, while the 
NPVs (95% CI) remained consistently high at 0.991 (0.986–0.995), 
0.981 (0.972–0.990), and 0.971 (0.956–0.984). These findings indicate 
that the TF_FGC model maintains excellent exclusion capability in 
low-prevalence populations, supporting its potential use as an auxiliary 
tool for preliminary screening of obstructive CAD risk. Furthermore, 
DCA (Figure  10) demonstrated that, within the clinically relevant 
probability threshold range of 0.1–0.6, the TF_FGC model provided 
consistently higher net benefit than the “treat-all” or “treat-none” 
strategies, confirming its practical utility in clinical decision-making.

3.5.2 Robustness to common corruptions
To evaluate the robustness of the TF_FGC model under varying 

imaging conditions, we  introduced three types of controlled 
perturbations to the external test set: brightness jitter (±20%), contrast 
jitter (±20%), and Gaussian noise (σ = 0.02). These perturbations were 
designed to simulate potential variations in illumination, device 
characteristics, and environmental interference commonly 
encountered in clinical image acquisition.

As summarized in Table  7, under the original (unperturbed) 
external test set, the model achieved an accuracy of 0.825, F1-score of 
0.843, AUC of 0.896, AUPRC of 0.902, recall of 0.860, and precision 
of 0.827. After applying brightness, contrast, and Gaussian noise 
perturbations, only minor performance fluctuations were observed. 
The AUC values remained within 0.893–0.900, while accuracy, 
F1-score, and recall were largely unchanged. Notably, the 95% 

bootstrap confidence intervals of the AUCs substantially overlapped 
with those of the unperturbed results. These findings indicate that the 
TF_FGC model exhibits strong robustness to common image 
perturbations. Its discriminative performance was not significantly 
affected by variations in lighting, contrast, or noise levels, underscoring 
the model’s stability and generalizability across diverse imaging 
conditions in multi-center real-world applications.

3.5.3 Subgroup-specific threshold optimization
To further evaluate potential performance differences of the model 

across key clinical subgroups and explore simple mitigation strategies, 
we  conducted subgroup-specific threshold tuning on the external 
validation cohort. The subgroup variables included hypertension, 
diabetes, and gender, resulting in six primary subgroups (Table  8). 
Among hypertensive patients (n = 106, AUC = 0.873), the model 
achieved both sensitivity and specificity of 82.1% at the default threshold 
of 0.5. Raising the threshold to the Youden optimal value of 0.57 
increased specificity to 87.2% while only slightly reducing sensitivity to 
79.1%, effectively lowering the false-positive rate. In diabetic patients 
(n = 52, AUC = 0.891), sensitivity and specificity were 89.7 and 91.3% at 
the default threshold, with minimal change after Youden threshold 
adjustment, indicating robust model performance despite potential 
interference from diabetes-related tongue coating. Gender subgroup 
analysis showed AUCs of 0.883 for males and 0.916 for females, with 
sensitivity and specificity close to overall levels and no clinically 
significant differences. To provide a more comprehensive evaluation of 
subgroup performance, we  report PPV, NPV, and calibration slope/
intercept for each subgroup in the Supplementary Table S2.

Overall, the subgroup-specific threshold tuning demonstrates 
that, even without retraining the model, simple adjustment of 
decision thresholds for different clinical subgroups can effectively 
optimize performance, reduce false positives, or increase sensitivity, 
supporting safe and interpretable application of the model across 
diverse patient populations.

3.6 Performance of clinical baseline models

The results of the visual baseline are presented in Table 9. The 
model achieved an overall accuracy of 67.0%, sensitivity of 68.0%, 
specificity of 66.0%, PPV of 66.7%, NPV of 67.4%, F1 score of 0.673, 
and an approximate AUC of 0.670. As the visual baseline outputs are 
fixed binary classifications, its performance cannot be adjusted via 
threshold modification, and it therefore serves as a single reference 
point. The demographic logistic regression model was constructed 
with CAD diagnosis as the dependent variable and age and sex as 
independent variables. As shown in Table  10, using the default 
threshold of 0.5, the model achieved a sensitivity of 0.51 and a 
specificity of 0.53, indicating limited predictive performance. To 
simulate typical clinical application scenarios, two operational 
thresholds were further defined: Community screening (rule-out): 
a high-sensitivity threshold (≥90%) was selected to minimize 
missed diagnoses, corresponding to a threshold of 0.4584, sensitivity 
of 0.92, specificity of 0.12, PPV of 0.51, and NPV of 0.60; Cardiology 
triage (rule-in): a high-specificity threshold (≥85%) was selected to 
reduce false-positive referrals, corresponding to a threshold of 
0.5349, sensitivity of 0.19, specificity of 0.85, PPV of 0.56, and NPV 
of 0.51.

TABLE 4  Comparison of classification performance of FGC model on 
verification set under different input data sets.

Models Accuracy Recall Precision F1 
Score

AUC

TF _FGC 0.872 0.897 0.836 0.865 0.945

T_FGC 0.831 0.824 0.812 0.818 0.902

F_FGC 0.858 0.882 0.823 0.8148 0.935

TABLE 5  Model performance on internal and external test sets.

Metric Internal test External test

AUC (95% CI: DeLong; 

Bootstrap)

0.945 (0.905–0.985; 

0.904–0.977)

0.896 (0.850–0.941; 

0.848–0.939)

F1 (95% CI, bootstrap) 0.865 (0.800–0.920) 0.843 (0.788–0.894)

Recall (95% CI, bootstrap) 0.897 (0.823–0.960) 0.860 (0.789–0.929)

Precision (95% CI, bootstrap) 0.836 (0.747–0.917) 0.827 (0.750–0.894)

ACC 0.872 0.825

Brier score 0.091 0.130

Calibration intercept −0.259 −0.035

Calibration slope 0.927 1.350
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Overall, the physician visual baseline slightly outperformed the 
demographic model in terms of accuracy, PPV, and NPV, but it lacked the 
flexibility of threshold adjustment. Conversely, the demographic model 
could adapt to different clinical scenarios through threshold setting, yet 

its overall discriminative ability remained limited. These baseline results 
provide reference points for performance comparison and threshold 
selection in subsequent multimodal imaging models. In contrast, the 
proposed TF_FGC model demonstrated markedly superior performance 
across all key metrics compared with both clinical baselines, while 
retaining the flexibility to adjust thresholds for different clinical scenarios. 
For example, in the external test set, the TF_FGC model achieved an 
accuracy of 0.825, sensitivity of 0.86, specificity of 0.79, PPV of 0.827, 
NPV of 0.843, and an AUC of 0.896. These results indicate that the TF_
FGC model not only exhibits stronger overall discriminative ability but 
also provides reliable and adjustable predictions across various clinical 
contexts, highlighting its clinical utility as a non-invasive, interpretable, 
and practically applicable tool for auxiliary CAD screening and triage.

FIGURE 9

Discriminative performance and probability calibration of the TF_FGC model. (A) Receiver operating characteristic (ROC) curve for the internal 
validation set. (B) ROC curve for the independent external validation set. (C) Calibration plot for the internal validation set. (D) Calibration plot for the 
external validation set.

TABLE 6  Estimated PPV and NPV under assumed disease prevalences of 
5, 10, and 15%.

Prevalence PPV (95% CI) NPV (95% CI)

5% 0.201 (0.146–0.301) 0.991 (0.986–0.995)

10% 0.347 (0.265–0.476) 0.981 (0.972–0.990)

15% 0.457 (0.364–0.591) 0.971 (0.956–0.984)
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3.7 Model interpretability analysis based on 
the external test set

3.7.1 Global feature importance (SHAP analysis)
To enhance the overall interpretability of the model, 

we employed the SHAP method to analyze the final multimodal 
fusion model. Figure  11 presents bar plots of SHAP value 
distributions for four feature groups—facial/tongue color–texture 
features and facial/tongue depth features—in the external test set. 
As shown, among tongue color–texture features, T_contrast and 
T_RGB_R exhibited the highest mean SHAP values, serving as the 

core contributors, followed by T_homogeneity and T_
RGB_B. Within tongue depth features, T_PC1 showed the largest 
mean SHAP value, indicating the strongest influence on model 
output. For facial color–texture features, F_RGB_B, F_RGB_R, F_
RGB_G, and F_homogeneity contributed most significantly, while 
in facial depth features, F_PC1 exerted the greatest control over 
model predictions.

Further analysis of Figure  12A shows the SHAP scatter 
distributions of tongue color–texture features. T_contrast, T_RGB_R, 
and T_homogeneity displayed a clear bimodal trend: low feature 
values corresponded to negative SHAP values (blue), whereas high 
feature values corresponded to positive SHAP values (red). This 

FIGURE 10

Decision curve analysis (DCA) results of the TF_FGC model.

TABLE 7  Model robustness under common corruptions.

Perturbation Accuracy F1-score AUC AUPRC ΔAUC (vs. Clean) Recall Precision

Clean 0.825 0.843 0.896 0.902 — 0.860 0.827

Brightness (±20%) 0.830 0.835 0.893 0.899 −0.003 0.860 0.811

Contrast (±20%) 0.825 0.833 0.900 0.906 +0.004 0.870 0.798

Gaussian noise (σ = 0.02) 0.830 0.830 0.830 0.830 0.830 0.830 0.830

TABLE 8  Subgroup performance based on Youden-optimal decision thresholds.

Subgroup N AUC Youden threshold Sensitivity Specificity

Hypertension 106 0.873 0.57 0.791 0.872

Non-hypertensive 94 0.934 0.509 0.939 0.820

Diabetes 52 0.891 0.509 0.897 0.913

Non-diabetes 148 0.901 0.392 0.887 0.753

Male 110 0.883 0.477 0.821 0.815

Female 90 0.916 0.517 0.932 0.826
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pattern indicates that lower values of these features were associated 
with a higher likelihood of CAD prediction. Similarly, Figure 12B 
illustrates that facial color–texture features (F_RGB_B, F_RGB_R, 
F_RGB_G, and F_homogeneity) exhibited comparable negative 
trends. When these feature values were low—such as bluish 
complexion or coarse skin texture—the corresponding SHAP values 
were strongly negative, suggesting that the model identified these 
traits as high-risk indicators for CAD. In contrast, F_energy and F_
dissimilarity displayed more concentrated and lower-magnitude 
SHAP distributions, indicating relatively limited influence on model 
decisions. Overall, features related to pale, dark, or uneven visual 
characteristics in both the tongue and facial images tended to show 
negative SHAP values, implying that these visual cues play an 
important role in the model’s identification of CAD risk.

3.7.2 SHAP decision path analysis of typical cases
To move beyond global feature importance and enhance the clinical 

interpretability of the model, we further performed explainability analysis 
using the SHAP method to investigate the model’s decision-making 
mechanisms in depth. Figure 13 illustrates the SHAP decision paths of 
two representative individuals, where only clinically interpretable facial 
and tongue color and texture features were retained for analysis. As shown 
in Figure  13A, for a true-positive patient (ID: 5), the model’s initial 
prediction value was 0.50, which ultimately increased to approximately 
0.72, indicating a strong tendency toward a positive (CAD) classification. 
This decision was mainly driven by tongue features, among which tongue 
redness (T_RGB_R) contributed the most (+1.841), suggesting a 
pronounced “heat pattern” according to traditional diagnostic 
interpretation. Meanwhile, the decreased homogeneity (T_homogeneity: 
−1.943) and lower contrast (T_contrast: −1.639) indicated disturbed 
surface texture on the tongue. Although facial color features (e.g., F_
RGB_R: −0.986) had a negative contribution, implying a pale or dull 
facial tone, they were insufficient to counterbalance the dominant 
influence of tongue features. In contrast, for the negative patient (ID: 1), 
the model’s initial value was 0.525, which decreased to about 0.45, leading 
to a negative prediction. Here, the decision was primarily driven by facial 
features, with strong negative contributions from the green (F_RGB_G: 
−1.53) and red (F_RGB_R: −0.901) channels, reflecting a healthy, rosy 
complexion and sufficient qi and blood circulation. In terms of tongue 

features, the patient exhibited a thin, evenly distributed coating and clear 
texture, consistent with a balanced physiological state. These comparisons 
demonstrate that the model effectively integrates multimodal visual 
information to differentiate between pathological and healthy conditions. 
Moreover, its reasoning process aligns with the traditional Chinese 
medicine principle of “holistic inspection and integrated diagnosis,” 
suggesting both biomedical validity and interpretive consistency with 
traditional diagnostic thinking.

3.7.3 Local dependence and individual effects of 
key features

To further elucidate the relationship between the imaging 
features learned by the model and the risk of CAD, we plotted 
PDPs and ICE curves for six key features based on the external 
validation set (Figure 14). The analyzed features included facial 
blue channel intensity (F_RGB_B), facial redness (F_RGB_R), 
facial homogeneity (F_homogeneity), facial contrast (F_contrast), 
tongue homogeneity (T_homogeneity), and tongue redness 
(T_RGB_R).

Overall, the PDP curves (dark blue lines) for all six features 
showed smooth and largely monotonic trends, while the ICE curves 
(light blue lines) demonstrated consistent individual-level 
behaviors. This consistency suggests that the model exhibits strong 
external generalizability and a low risk of overfitting. In particular, 
increases in facial and tongue redness (F_RGB_R and T_RGB_R) 
were associated with a decreased probability of CAD, implying that 
reduced redness may reflect microcirculatory insufficiency or 
hemodynamic abnormalities. Similarly, decreases in facial and 
tongue homogeneity were linked to elevated CAD risk, suggesting 
that uneven texture or color distribution may capture underlying 
circulatory disturbances. Additionally, facial blue channel intensity 
(F_RGB_B) and facial contrast (F_contrast) showed mild negative 
correlations with CAD risk, further supporting the stability and 
predictive relevance of facial color–texture features. In summary, 
the PDP and ICE analyses demonstrated physiologically plausible 
and directionally consistent associations between the identified 
features and CAD risk, thereby validating the interpretability and 
external reliability of the proposed model.

3.8 Comparison with existing studies

To comprehensively evaluate the advantages of the proposed 
model, we  systematically compared its performance with recent 
studies on intelligent diagnosis of CAD based on tongue images, facial 
images, or clinical data (see Table 11).

Several studies have explored deep learning for CAD detection 
using facial or tongue images. Lin et al. (2020) developed a facial 
image-based model achieving a sensitivity of 0.80 and an AUC of 
0.730. Khan Mamun and Elfouly (2023) used NHANES data with 
a 1D-CNN, reporting an accuracy of 76.9%. Ma C. Y. et al. (2024) 

TABLE 10  Diagnostic performance of the age-sex logistic model across clinical scenarios.

Scenario Threshold Sensitivity Specificity PPV NPV

Community screening (rule-out, high sensitivity) ≥0.4584 0.92 0.12 0.511 0.600

Cardiology triage (rule-in, high specificity) ≥0.5349 0.19 0.85 0.559 0.512

TABLE 9  Diagnostic performance of the physician visual baseline on the 
external test set.

Metric Value

Accuracy 0.670

Sensitivity 0.680

Specificity 0.660

PPV 0.667

NPV 0.674

F1 Score 0.673
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predicted CAD risk using electronic medical records, achieving 
an AUC of 0.701. Duan et al. (2024b) combined tongue image 
features with clinical factors and XGBoost, reporting an accuracy 
of 0.760 and an AUC of 0.786. More recently, Zhang et al. (2025) 
proposed a multimodal model using facial images and clinical 
variables, achieving an AUC of 0.852. Duan et al. (2024a) and 
Duan et al. (2024b) applied deep learning (e.g., CNNs, lightweight 
networks) to tongue image analysis, reporting AUCs between 0.83 
and 0.86.

Notably, most of these models rely on single-modality inputs or 
shallow fusion strategies, and few incorporate interpretable feature 

analyses. In contrast, our model achieves an AUC of 0.9134 on the 
validation set and 0.9102 on the independent test set, outperforming 
all cited studies. The advantages of this study are reflected in three 
aspects: (i) the MDFA-Swin backbone achieved a 2.1–3.5% 
improvement in AUC compared with standard Swin and ResNet 
models; (ii) the feature-gated classifier enabled adaptive fusion of 
tongue and facial features, outperforming unimodal models (T_FGC: 
0.8943; F_FGC: 0.9057); and (iii) the integration of interpretable 
color/texture features, combined with SHAP analysis, identified key 
discriminative predictors (e.g., T_RGB_R, F_RGB_B), enhancing 
consistency with TCM clinical phenotypes.

FIGURE 11

SHAp value distribution for four feature groups. (A) Tongue color and texture features. (B) Facial color and texture features. (C) Tongue deep features. 
(D) Facial deep features.

FIGURE 12

(A) SHAP scatter plot of tongue color and texture features. (B) SHAP scatter plot of facial color and texture features.
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4 Discussion

The development of artificial intelligence has opened new avenues 
for disease diagnosis, with deep learning demonstrating remarkable 
performance in medical imaging and computer-aided diagnosis. 
However, most current diagnostic models still rely on clinical data such 
as blood tests, imaging scans, and electrocardiograms, which are costly, 
complex to obtain, and thus unsuitable for primary healthcare settings 
and large-scale population screening—ultimately limiting their clinical 
applicability and widespread adoption. In contrast, tongue and facial 
features, as core components of “inspection” in TCM, offer a 
non-invasive, low-cost, and easily collectible source of diagnostic 
information. These characteristics make them well-suited for 
community-based screening, telemedicine, and home health monitoring. 
In this study, we integrated traditional TCM image features—such as 
color and texture from tongue and facial images—with high-level 
semantic representations extracted by the MDFA-Swin network to 
construct a multimodal, multi-scale fusion diagnostic framework. To 
enhance model interpretability, we conducted both internal attention 
distribution analysis and external explainability assessment.

Notably, MedSAM demonstrated outstanding performance in both 
tongue and facial image segmentation tasks. In particular, its zero-shot 
generalization capability significantly outperformed traditional methods, 
greatly reducing the need for manual annotation, alleviating labeling 
workload, and lowering associated costs. Furthermore, MedSAM 
substantially minimized human intervention, thereby exhibiting excellent 
segmentation performance and practical advantages in tongue and facial 
image analysis. To effectively capture the multi-scale and fine-grained 
pathological characteristics associated with CAD in tongue and facial 
images, this study introduced a MDFA module into the Swin Transformer 
architecture, specifically designed for the unique imaging properties of 
these modalities. Experimental results demonstrated that the MDFA-
Swin model significantly outperformed ViT, ResNet, and the standard 
Swin Transformer in tongue and facial image classification tasks, 
exhibiting superior discriminative ability and heightened sensitivity to 

subtle TCM phenotypes—such as purplish tongue color and facial 
dullness. However, despite its strong performance in automatic feature 
learning and classification, the inherently “black-box” nature of deep 
neural networks limits their clinical interpretability. In contrast, TCM 
visual diagnosis emphasizes observable and quantifiable external 
manifestations—such as tongue color, texture, facial complexion, and skin 
texture distribution—which serve as key indicators in clinical decision-
making. To bridge the gap between performance and interpretability, this 
study further integrated clinically interpretable features—including color 
and texture descriptors derived from classical TCM diagnostic theory—
with the deep semantic representations learned by the model. These 
features provide explicit clinical semantics and complement the deep 
representations to enhance both transparency and reliability. Furthermore, 
through a gating mechanism, the proposed Tongue–Face Fusion Gated 
Classifier (TF_FGC) dynamically combined deep and interpretable 
features from tongue and facial modalities. The fusion model not only 
achieved superior diagnostic accuracy (AUC = 0.896  in external 
validation) but also, via SHAP analysis, revealed key decision-driving 
features such as T_contrast and F_homogeneity, aligning the predictive 
reasoning more closely with TCM diagnostic logic. Overall, the results 
demonstrate that the multimodal fusion of tongue and facial features 
markedly outperforms single-modality approaches, validating the 
effectiveness of the “Deep Learning + TCM Feature” paradigm. This 
framework achieves a balance between high diagnostic performance and 
clinical interpretability, offering a feasible pathway toward a noninvasive, 
low-cost, and trustworthy CAD diagnostic system suitable for community 
screening and home-based health monitoring.

In addition, through interpretability analysis of the model, we found 
that CAD patients showed overall lower values in facial features such as 
F_RGB_R, F_RGB_G, and F_RGB_B, suggesting a lack of redness and 
brightness in the skin. This aligns with the TCM concept of “facial 
dullness” (mian se hui an), which is thought to reflect impaired facial 
microcirculation due to weakened cardiac function or blood stasis in the 
coronary vessels. This phenomenon is supported by previous studies, 
which have demonstrated a correlation between facial color characteristics 

FIGURE 13

Individual decision Pathway Analysis of the TF_FGC Model. (A) Decision plot for a true positive case (ID: 5). (B) Decision plot for a true negative case (ID: 1).
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and heart disease (Ren et al., 2020). Similarly, significant decreases in 
tongue features such as T_RGB_R, T_contrast, and T_homogeneity 
indicated paler tongue color, rougher texture, and reduced homogeneity. 
These findings are consistent with the TCM theory that “the tongue is the 
sprout of the heart,” where insufficient heart blood or stasis leads to 
pathological changes in the tongue, such as dull coloration, ecchymoses, 
or coarse texture. Recent studies have also confirmed that tongue color 
parameters (e.g., RGB values and contrast) are significantly correlated 
with the degree of coronary artery stenosis in CAD patients (Li et al., 

2024; Rismawan et al., 2024). Due to blood stasis and impaired circulation, 
such patients often present with a purplish tongue, petechiae, dull facial 
complexion, or cyanotic lips (Lin and Wang, 2020). Altogether, alterations 
in the color and texture features of both tongue and facial images provide 
valuable cues for intelligent CAD diagnosis. The explainability embedded 
in our model not only enhances its clinical applicability in real-world 
scenarios but also builds user trust among healthcare professionals. As 
current medical research increasingly explores non-traditional biomarkers 
for CAD, tongue and facial features have emerged as promising diagnostic 

FIGURE 14

Partial dependence and individual conditional expectation (ICE) curves for key facial and tongue features in the external validation set. (A) Facial blue 
channel (F_RGB_B). (B) Facial red channel (F_RGB_R). (C) Facial homogeneity. (D) Tongue contrast. (E) Tongue homogeneity. (F) Tongue red channel 
(T_RGB_R).
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modalities. Our study contributes to the growing body of work in this 
domain and offers a valuable reference for future investigations into 
tongue-facial biomarkers in CAD.

In comparison with classical clinical risk prediction models, the 
results of this study also demonstrated encouraging significance. 
According to the literature, the Framingham risk score typically achieves 
an AUC of 0.70–0.75 (Wilson et al., 1998; D’Agostino et al., 2008; Lin 
et al., 2020), while the ASCVD 10-year risk assessment reports an AUC 
of approximately 0.74–0.78 (Andrus and Lacaille, 2014). These models 
are primarily designed for long-term risk prediction in asymptomatic 
populations, whereas the present model focuses on cross-sectional, real-
time screening and diagnosis. In the external validation cohort, our 
model achieved an AUC of 0.91, indicating superior discriminative 
ability. Although this comparison is indirect, it suggests that image-
based artificial intelligence tools may provide complementary value to 
existing clinical risk prediction methods, warranting further validation 
in future studies that integrate clinical variables with image features.

In addition, through interpretability analysis of the model, 
we found that, CAD patients showed overall lower values in facial 
features such as F_RGB_R, F_RGB_G, and F_RGB_B, suggesting a 
lack of redness and brightness in the skin. This aligns with the TCM 
concept of “facial dullness” (mian se hui an), which is thought to reflect 
impaired facial microcirculation due to weakened cardiac function or 
blood stasis in the coronary vessels. This phenomenon is supported by 
previous studies, which have demonstrated a correlation between facial 
color characteristics and heart disease (Ren et al., 2020). Similarly, 
significant decreases in tongue features such as T_RGB_R, T_contrast, 
and T_homogeneity indicated paler tongue color, rougher texture, and 
reduced homogeneity. These findings are consistent with the TCM 
theory that “the tongue is the sprout of the heart,” where insufficient 
heart blood or stasis leads to pathological changes in the tongue, such 
as dull coloration, ecchymoses, or coarse texture. Recent studies have 
also confirmed that tongue color parameters (e.g., RGB values and 
contrast) are significantly correlated with the degree of coronary artery 
stenosis in CAD patients (Li et al., 2024; Rismawan et al., 2024). Due 
to blood stasis and impaired circulation, such patients often present 
with a purplish tongue, petechiae, dull facial complexion, or cyanotic 
lips (Lin and Wang, 2020). Altogether, alterations in the color and 
texture features of both tongue and facial images provide valuable cues 
for intelligent CAD diagnosis. The explainability embedded in our 
model not only enhances its clinical applicability in real-world 
scenarios but also builds user trust among healthcare professionals. As 
current medical research increasingly explores non-traditional 

biomarkers for CAD, tongue and facial features have emerged as 
promising diagnostic modalities. Our study contributes to the growing 
body of work in this domain and offers a valuable reference for future 
investigations into tongue-facial biomarkers in CAD.

The model developed in this study demonstrates significant potential 
for widespread application. By simply capturing tongue and facial 
images, it enables rapid screening of CAD patients in a non-invasive, 
convenient, and cost-effective manner. These advantages make it 
particularly suitable for large-scale community-based screening, carrying 
important public health implications. In the future, we plan to further 
optimize and validate this model in community populations to promote 
its broad application in extensive CAD screening programs. Additionally, 
the model holds promise as a user-friendly tool for home-based health 
monitoring. When integrated with mobile devices, this non-invasive 
approach allows individuals to conveniently monitor their cardiovascular 
health at home, facilitating early detection of potential issues and 
reducing the risk of delayed diagnosis. Although promising, this study 
has several limitations. The dataset is relatively small and limited to 
Chinese participants, whose skin types are predominantly Fitzpatrick 
III–IV, resulting in low pigment variation and minimal risk of skin tone–
related bias. Nevertheless, the model requires validation in larger and 
more diverse populations with broader skin tone representation. Due to 
the lack of detailed clinical data, subgroup analyses were restricted to 
three major cardiovascular risk factors: hypertension, diabetes, and sex. 
Furthermore, the case–control design may overestimate real-world 
performance, necessitating prospective evaluation in low-prevalence 
settings. Because image acquisition requires active participant 
cooperation, severe cases such as acute myocardial infarction or coronary 
stenosis greater than or equal to 70 percent were underrepresented in the 
sample. Although the imaging device incorporates hardware-level color 
calibration, differences in lighting conditions and equipment 
configurations across sites may still affect image consistency. Future 
multicenter deployments will incorporate gray cards or standard color 
charts to further enhance imaging consistency.

5 Conclusion

This study proposes a dual-branch multimodal fusion model 
incorporating a feature-wise gating mechanism for non-invasive and 
intelligent diagnosis of CAD based on multidimensional tongue and 
facial image features. The approach integrates deep semantic features 
extracted by the MDFA-Swin network with interpretable traditional 

TABLE 11  Comparison of CAD diagnostic models.

Study Modality Model (Backbone) AUC Ext. Test Fusion Interp.

Shen et al. Facial images CNN (Custom) 0.73 No No No

Khan et al. Clinical data 1D-CNN (—) 0.769* Yes No No

Cai-Yi Ma et al. EMR data ML (XGBoost) 0.701 Yes No Partial

Duan et al. Tongue + Clinical XGBoost (—) 0.786 No Shallow (feature) Partial

Zhang et al. Facial + Clinical DL/ML (ResNet-18) 0.852 Yes Early fusion No

Duan et al. Tongue images CNN/DL (ResNet-18/Swin-T) 0.83–0.86 No No No

Ours Tongue + Facial FGC (MDFA-Swin + Gate) 0.9134 Yes (0.9102) Deep, adaptive (gate) SHAP analysis

CNN, Convolutional Neural Network; EMR, Electronic Medical Records; ML, Machine Learning; XGBoost, Extreme Gradient Boosting; DL, Deep Learning; Swin-T, Swin Transformer (Tiny 
version); FGC, Feature Gated Combination; MDFA, Multi-scale Dilated Fusion Attention; AUC, Area Under the Receiver Operating Characteristic Curve; Ext. Test, External Test; Fusion, 
multimodal fusion strategy; Interp., Interpretability. *Accuracy for CAD class; AUC not reported.
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color and texture features, effectively capturing multi-scale 
information associated with CAD from tongue and facial images. The 
model demonstrated strong generalizability and practical applicability 
on an independent external test set. SHAP-based interpretability 
analysis further revealed the decision pathways through which 
tongue and facial features contributed to the model’s predictions. This 
study provides quantitative evidence supporting the diagnostic value 
of tongue and facial signs in CAD. Its non-invasive, low-cost, and 
efficient nature offers a novel approach for community-based 
screening and home-based health monitoring of CAD.
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