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Background and objective: Coronary artery disease (CAD) is a major threat to
human health, and early non-invasive identification is crucial for its prevention
and management. However, current diagnostic methods still face limitations in
terms of non-invasiveness, cost, and accessibility. Tongue and facial features
have been recognized as closely associated with CAD. To address these
challenges, this study proposes a dual-modal diagnostic model incorporating
a feature-wise gating mechanism to enable intelligent, non-invasive CAD
detection based on tongue and facial images.

Methods: A total of 936 participants were enrolled in this study, and standardized
tongue and facialimages were collected from each subject. Image segmentation
was performed using MedSAM, followed by deep semantic feature extraction
using the MDFA-Swin network. Traditional color and texture features were also
incorporated. A feature-guided gating mechanism was developed to enable
personalized multimodal fusion of tongue and facial features. The diagnostic
performance of the proposed model was evaluated on an independent external
test set. In addition, SHAP (SHapley Additive Explanations) analysis were
conducted to enhance model interpretability.

Results: The proposed CAD diagnostic model based on fused multidimensional
tongue and facial features (TF_FGC) demonstrated excellent performance in
internal validation (AUC = 0.945, Accuracy = 0.872) and maintained good
generalizability on the external test set (AUC = 0.896, Accuracy = 0.825). The
SHAP analysis identified T_contrast, T_RGB_R, T_homogeneity, F_homogeneity,
F_RGB_B, F_RGB_G, F_RGB_R, and F_contrast as the most influential features
driving model predictions.

Conclusion: The proposed dual-branch fusion model demonstrates high
diagnostic accuracy, strong interpretability, and good generalizability.
By integrating traditional color and texture features with deep semantic
representations, this approach offers a promising solution for non-invasive and
intelligent screening of CAD, providing a novel perspective and practical support
for clinical decision-making.

KEYWORDS

coronary artery disease, diagnostic model, tongue feature, facial feature, feature-wise
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1 Introduction

For Coronary artery disease (CAD), as one of the major
cardiovascular diseases posing a significant threat to human health
(Ainiwaer et al., 2024), has become a leading cause of mortality
worldwide (Benjamin et al, 2017; Benjamin et al, 2018).
Unfortunately, delayed diagnosis often places CAD patients at risk of
myocardial infarction and even sudden cardiac death (Lee et al,
2019). Therefore, achieving rapid and accurate screening and
diagnosis of CAD is crucial for its early detection, effective treatment,
and disease management. Although coronary angiography is currently
regarded as the gold standard for CAD diagnosis, its invasive nature
and high cost limit its widespread use in large-scale screening and
early diagnosis (Wood et al., 2024). Other diagnostic methods often
rely heavily on advanced equipment and the interpretative expertise
of specialized physicians, making them difficult to implement in
resource-limited settings. Therefore, developing a more rapid,
non-invasive, accessible, and cost-effective diagnostic method for
CAD is not only critical for clinical management but also an urgent
necessity for effective large-scale population screening.

In traditional Chinese medicine (TCM), it is believed that internal
pathological changes can be inferred through external bodily
manifestations—a concept known as ‘observing the exterior to understand
the interior’ (7]4#MiiiN) (Liang and Gu, 2021). Tongue diagnosis and
facial diagnosis, as integral components of TCM diagnostics, assess
changes in tongue appearance and facial features to reflect the circulation
of gi and blood as well as the functional state of internal organs, thereby
supporting disease diagnosis (Xie et al., 2021; Duan et al.,, 2024b). Modern
studies have shown that tongue and facial features may serve as effective
biomarkers for the diagnosis of CAD. Anatomically, the blood supply to
the tongue is closely related to the coronary circulation (Bavitz et al., 1994;
Wuetal., 2007). Coronary atherosclerosis can lead to myocardial ischemia
and impair peripheral microcirculation, particularly the microcirculation
of the tongue, resulting in abnormal changes such as a dark red or bluish-
purple tongue body or the presence of petechiae and stasis spots (Kagami
et al, 2012; Wang et al., 2022). Clinical observations have shown a
correlation between tongue color features and the degree of coronary
artery stenosis in patients with CAD (Xia et al., 2023; Li et al., 2024). In
addition, facial features such as complexion and skin texture are also
associated with CAD risk; patients often exhibit signs such as a dull facial
appearance and dark red lips (Christoffersen et al., 2014; Christoffersen
and Tybjeerg-Hansen, 2016). Lin et al. (2020) through a multicenter
prospective study, demonstrated the clinical feasibility of a CAD
diagnostic model based on facial images, achieving an AUC of 0.730,
further supporting the application value of facial features in CAD
screening. In summary, tongue and facial characteristics are closely
related to CAD, suggesting that these non-invasive physiological
indicators have the potential to serve as novel biomarkers for CAD
diagnosis and risk assessment.

In recent years, numerous researchers have leveraged artificial
intelligence technologies to develop intelligent diagnostic models for
CAD by integrating multi-source data such as medical imaging, blood
biomarkers, and electronic medical records (Coenen et al., 2018; Vallée
et al,, 2019; Shen et al., 2024; Addisu et al., 2025). These models have
introduced new approaches for early disease detection and risk
assessment. However, their effectiveness largely depends on access to
high-quality clinical data, the acquisition of which often involves complex
procedures and high costs, thereby limiting their practical implementation
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in primary healthcare settings and large-scale population screening. In
contrast, tongue and facial image data offer advantages such as ease of
acquisition, non-invasiveness, and low cost. Existing studies have
demonstrated the potential clinical value of these features in supporting
CAD diagnosis, yet their broader application in real-world medical
scenarios remains underexplored and lacks systematic integration.
Currently, most studies on CAD diagnosis rely solely on either tongue
features or facial features, and few have explored models that integrate
multi-dimensional features from both modalities. To address the
challenges faced in CAD diagnosis, this study proposes a non-invasive
diagnostic model based on the integration of tongue and facial features.
The model introduces a feature-wise gating mechanism to enable adaptive
weighted fusion of tongue and facial features under multimodal input,
thereby improving both individualized diagnostic accuracy and the
models discriminative capability. In addition, the model incorporates the
SHapley Additive exPlanations (SHAP) method to analyze the
contribution of each feature, enhancing interpretability and providing
more reliable decision support for clinical practice (Pearson, 1901; Yu
et al,, 2025). Notably, the model is well-suited for a wide range of
application scenarios, including community health centers, physical
examination institutions, and daily home health monitoring. It does not
rely on advanced medical equipment or specialized personnel, allowing
for efficient diagnosis and timely medical guidance for patients. The
workflow of proposed methodology is shown in Figure 1.

2 Materials and methods
2.1 Data source

The data for this study were collected from Dongcheng Hospital and
Tongzhou Hospital of Dongzhimen Hospital, Beijing University of
Chinese Medicine, between July 2023 and July 2024. A total of 737
participants were enrolled at Tongzhou Hospital, including 337 patients
with CAD and 400 non-CAD controls, which were used for model
training and internal validation. An independent external validation
cohort consisted of 200 participants (100 CAD patients and 100 non-CAD
controls) recruited from Dongcheng Hospital during the same period.
Detailed baseline characteristics of all cohorts are presented in Table 1.

To control for major demographic confounders, CAD and
non-CAD participants were matched on age (5 years) and sex. Other
cardiovascular risk factors such as hypertension and diabetes were not
used as matching criteria, because these conditions are established risk
factors and potential mediators of CAD, and their associated facial
and lingual phenotypes may contribute to the diagnostic signal
captured by our image-based model. This design preserves real-world
differences that the model is intended to recognize and avoids over-
adjustment of true disease characteristics. Consequently, the
prevalence of CAD in the study cohort was approximately 50%, which
is higher than that in typical clinical populations; therefore, the
primary goal of this study was to evaluate discriminative ability rather
than to estimate absolute risk in the general population.

All CAD patients included in the study were diagnosed based on
coronary angiography (CAG). Obstructive CAD was defined as a
stenosis of >50% in at least one major coronary artery (left anterior
descending artery, left circumflex artery, right coronary artery, or left
main stem), consistent with diagnostic thresholds recommended in
major international guidelines and clinical practice (Knuuti et al.,
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Architecture of the feature-gated classifier (FGC) model.
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2020). Patients meeting this criterion were classified as CAD-positive,
whereas those with <50% stenosis were classified as CAD-negative. To
ensure consistency between image acquisition and reference
diagnostic testing, all participants completed facial and tongue
imaging within 2 weeks of their CAG examination during the same
hospitalization. All CAD patients were symptomatic cases who
underwent angiography due to suspected ischemic manifestations
(e.g., chest pain, exertional angina, or positive stress test), rather than
asymptomatic incidental findings. Although a stenosis >70% is often
considered hemodynamically significant (“severe stenosis”) in clinical

TABLE 1 Basic information of participants.

Train and internal validation dataset

CAD NCAD P value
(n = 337) (n = 400)
Age (years) 65.17 + 10.086 63.9 +10.046 0.06
Sex (male/female) 195/142 228/172 0.81
Hypertension 219 148 <0.0001
Diabetes 118 80 <0.0001

Independent external validation dataset

CAD NCAD P value
(n =100) (n =100)
Age (Years) 65.41 £10.179 64.96 +10.315 0.78
Sex (male/female) 56/44 54/46 0.78
Hypertension 63 31 <0.0001
Diabetes 34 18 0.012
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settings, we adopted the 50% threshold because it represents the
internationally accepted definition of obstructive CAD and has been
widely used in clinical trials and diagnostic model development.

Non-CAD controls were carefully selected to match the CAD group
in age and sex distribution (no significant differences observed, see
Table 1) and met the following criteria: (i) aged 18-85 years, conscious,
without psychiatric disorders, and able to complete the full image
acquisition process; (ii) no visible facial, oral, or tongue deformities; (iii)
no history of CAD or other severe cardiovascular diseases (e.g., heart
failure, cardiomyopathy, congenital heart disease); (iv) no major chronic
illnesses such as renal insufficiency, cirrhosis, or malignancy; (v) not on
long-term immunosuppressants, glucocorticoids, or other medications
that may significantly affect cardiovascular metabolism.

This study was approved by the Medical Ethics Committee of
Dongzhimen Hospital, Beijing University of Chinese Medicine
(approval number: 2023DZMEC-228-03), and written informed
consent was obtained from all participants.

2.2 Data acquisition and cross-center
colorimetry consistency

Tongue and facial images were acquired using the same model of
imaging device, the DS01-B Tongue Diagnosis Instrument (Model:
DS01-B, Product No.: YM0100520, Registration No.: Shanghai Medical
Device Registration 20,202,200,062; Shanghai Daosheng Medical
Technology Co., Ltd., China). The system is equipped with an
independent power supply and a sealed acquisition chamber,
incorporating a Canon EOS 1200D DSLR camera (18 megapixels) and an
LED cold light source that simulates natural daylight (color temperature:
4,500-6,500 K; color rendering index, CRI>90). All devices were
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spectrally calibrated before deployment using a 1.5 m integrating sphere
to ensure long-term imaging stability (see Figure 2).

Imaging parameters were strictly standardized: shutter speed 1/200s,
aperture /5.6, ISO 200, illumination intensity maintained at 3,000 + 10%
LUX, and relative distortion < + 5%. Color fidelity was verified using a
standard 24-color calibration chart, requiring the color deviation between
measured and reference CIE LAB values (AE*ab) to be <10. All images
were acquired indoors under controlled lighting conditions by uniformly
trained personnel. Participants were photographed approximately 2 h
after a meal, seated upright with the chin stabilized on a support. During
tongue imaging, subjects extended the tongue naturally and slightly
downward, followed by facial image collection. Image quality was
monitored in real time, and resampling was performed if occlusion, blur,
or distortion was detected until high-quality images were obtained.

To verify cross-center imaging consistency, the external validation set
was collected using the same DS01-B system under an identical
acquisition protocol. A colorimetry consistency analysis was further
conducted across the two centers by computing CIE AE*ab color
differences and performing Bland-Altman analyses for the L*, a*, and b*
channels. Results showed that the median cross-center AE*ab was 4.48
(IQR: 3.75-6.91) for facial images and 5.42 (IQR: 4.11-8.39) for tongue
images, both below the generally accepted threshold for medical imaging
tasks (AEab < 10). No systematic bias was observed between centers; only
moderate random variations were found, primarily along the lightness (L)
and red-green (a)* dimensions (see Supplementary Figure 52). These
findings confirm excellent cross-center color consistency, ensuring the
reliability of subsequent model performance evaluation.

2.3 Segmentation of tongue and facial
image regions

Currently, there are relatively few segmentation algorithms
specifically designed for TCM data. In the past, training a high-quality
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medical image segmentation model required extensive manual
annotation, which is labor-intensive. This is particularly challenging
in the field of TCM due to the lack of public data and the specialized
nature of data collection and annotation. MedSAM (Ma J. et al., 2024)
is an optimized model based on SAM (Mazurowski et al., 2023),
designed to accommodate various medical image segmentation tasks
(Figure 3). MedSAM significantly improves the recognition and
segmentation of targets in medical images through fine tuning on
large medical image datasets. It demonstrates strong zero-shot
generalization across various medical tasks, significantly reducing the
burden of manual annotation (Zhang et al., 2024). However, to date,
no studies have applied MedSAM to the segmentation of tongue and
facial images. In this study, we used MedSAM to segment the tongue
and facial regions. Segmentation was performed using automatic
point prompting with default parameters, without fine-tuning or
threshold post-processing on our dataset. To ensure segmentation
quality, images were strictly controlled during acquisition, with
blurred, occluded, or low-quality images excluded. To evaluate
segmentation performance, we randomly selected 200 images from
the dataset (100 tongue, 100 face), and two annotators with experience
in TCM imaging performed pixel-level annotations using LabelMe.
The results showed that MedSAM achieved high segmentation
performance for both tongue and facial images, effectively excluding
irrelevant background regions (Tongue image: IoU =0.9393,
Dice = 0.9687; Facial image: IoU = 0.9676, Dice = 0.9515).

2.4 Deep feature extraction based on
MDFA-Swin

To effectively capture high-level semantic features (Deep
Feature) embedded in tongue and facial images, this study adopts
the MDFA-Swin network (Figure 4) as the backbone model for
deep feature extraction. The Swin Transformer (Liu et al., 2021)
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adopts a hierarchical structure combined with a shifted window-
based multi-head self-attention mechanism, which offers strong
local perception and global modeling capabilities. This makes it
particularly well-suited for analyzing medical images of the tongue
and face, which often exhibit unstructured morphology, fine-
grained variations, and blurred boundaries. To enhance the
model’s ability to capture local details, a Multi-scale Dilated Fusion
Attention (MDFA) module—integrating multi-scale dilated
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convolutions and attention mechanisms—is incorporated. This
component strengthens the model’s capacity to perceive and
represent key diagnostic features. During the feature extraction
process, both tongue and facial images first undergo initial
transformation through a patch partitioning and linear embedding
module. These representations are then processed through
multiple Transformer blocks to progressively integrate cross-scale
contextual information. For high-level feature representation,
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we retain the global feature output preceding the classification
head—specifically, the feature vector obtained after the ‘avgpool’
operation but before the ‘flatten” operation. This semantic-level
abstraction provides discriminative power for subsequent feature
fusion and disease prediction tasks. The final deep feature is
flattened into a one-dimensional vector of size 768 using ‘torch.
flatten (x, 1) We further evaluated the discriminative power of
deep features extracted by MDFA-Swin from tongue and facial
images, and conducted systematic comparisons with several
mainstream baseline models, including ViT-B/16, Swin-Small,
Swin-Tiny, ResNet18, ResNet34, and ResNet50. Experimental
results demonstrated that MDFA-Swin outperforms these
baselines across multiple performance metrics, confirming its
effectiveness and suitability for tongue and facial image
analysis tasks.

2.5 MDFA-Swin model training

The diagnostic model in this study was developed using the
Python programming language and implemented with the PyTorch
deep learning framework. All experiments were conducted in a high-
performance computing environment equipped with dual NVIDIA
A100 GPUs. Considering the inherent differences in feature
distribution between tongue and facial images, distinct optimizers and
hyperparameter configurations were applied to optimize model
performance. For the tongue image dataset, we adopted the Stochastic
Gradient Descent (SGD) optimizer with a momentum of 0.9, a weight
decay of 5 x 107, and an initial learning rate of 5 x 10~*. In contrast,
facial image training employed the Adam optimizer with an initial
learning rate of 5x 10~ and a momentum parameter of 0.9 to
accommodate its higher complexity in feature distribution. To
enhance model stability and convergence, a cosine annealing learning
rate scheduler was introduced, decaying the learning rate to one-tenth
of its initial value every 50 training epochs. Training was conducted
for a total of 200 epochs with a consistent batch size of 32. A fixed
random seed of 42 was used to ensure reproducibility of the
experimental results. The model with the best validation accuracy was
preserved during training based on dynamic monitoring of validation

10.3389/frai.2025.1662577

performance, and the corresponding weights were retained for
subsequent testing and analysis (Song et al., 2024).

The high-level semantic features of tongue and facial images
extracted by the MDFA-Swin model heavily rely on the black-box
mechanisms of deep neural networks, resulting in limited clinical
interpretability. This limitation poses challenges in meeting the
requirements for diagnostic transparency and reliability in real-world
applications. To enhance the interpretability and generalizability of the
model, this study further incorporates traditional color and texture
features of tongue and facial images, which are inherently more
explainable. For color characterization, the average R, G, and B values
in the RGB color space are employed as quantitative indicators of
overall image color (Xie et al.,, 2021), aligning with TCM theories of
color-based diagnosis. Regarding texture, gray-level co-occurrence
matrix (GLCM) are used to extract spatial gray-level distribution and
directional texture responses. These features effectively capture surface
roughness, textural regularity, and spatial frequency characteristics of
the tongue tissue, thereby complementing the high-level semantic
features with more interpretable and detailed information.

2.6 Construction of a diagnostic model for
coronary artery disease

2.6.1 Model architecture design

To effectively integrate and dynamically balance the contributions
of facial and tongue features in the diagnosis of CAD, thereby
improving both the predictive performance and interpretability of the
model, we designed a dual-branch gated neural network, referred to
as the Feature-Gated Classifier (FGC), as illustrated in Figure 5. The
model comprises four main components: (1) input branches that
receive two separate sets of features corresponding to facial and
tongue modalities; (2) a gating module in which the concatenated
facial and tongue features are passed through a fully connected layer
followed by a Softmax activation function to generate two gating
weights representing the attention assigned to each modality; (3) a
feature fusion module that applies the gating weights to the respective
features and concatenates them into a unified feature vector; and (4)
a classifier module that feeds the fused vector into a feedforward

Facial &
Features MLP, P
A 4
Fusion |—>| Classifer
N4
Tongue
Features g
t
FIGURE 5
The workflow of the proposed methodology.
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neural network with 64 hidden units (using ReLU activation and a
dropout rate of 0.35), followed by a Softmax output layer for binary
CAD classification. This architecture enables the model to adaptively
adjust the relative importance of facial and tongue features based on
the feature distribution of each individual sample, thereby enhancing
its discriminative power and generalization ability.

In this architecture, the gating module incorporates an attention-
based Feature Gate Layer as a regulatory mechanism prior to deep
feature fusion. This module is implemented using a lightweight fully
connected neural network, which ensures both good trainability and
computational efficiency. Specifically, let the facial feature vector
be denoted as F e Rd, and the tongue feature vector as T € R?. Each
vector is first passed through a nonlinear transformation to generate
modality-specific attention weights (Equation 1):

g5 =0(MLPy (F)).g; = (MLP,(T)) )

where 0'() denotes the Sigmoid activation function, and MLP_f
and MLP_t represent two-layer multilayer perceptrons applied to the
facial and tongue features, respectively. The outputs g f and g t
correspond to the attention weights assigned to the facial and
tongue modalities.

The fused feature vector H is then defined as (Equation 2):

H=g;F+gT ()

This fused vector H is subsequently fed into the downstream
classifier to predict CAD risk.

Through this mechanism, the model achieves dynamic weighted
fusion of multimodal features from the tongue and face, enabling
adaptive modeling of inter-individual variability. Moreover, the gating
structure provides explicit and quantifiable attention weights, which
can be leveraged for downstream interpretability analyses—such as
examining gating weight distributions or evaluating feature
importance—thus enhancing the model’s practical utility and
reliability in clinical settings.

2.6.2 Feature set construction and preprocessing
In this study, a dataset comprising tongue and facial image
features was used for modeling and analysis. Each sample was labeled
to indicate whether the subject was diagnosed with CAD. After
loading the dataset, the label column (“Type”) was separated from the
feature data. Based on clinical expertise and image processing
techniques, all variables were categorized into four subsets according
to their source and type: (1) facial color and texture features (e.g., F_
RGB, F_contrast), (2) deep facial features (F_PC), (3) tongue color
and texture features (e.g., T_RGB, T_energy), and (4) deep tongue
features (T_PC). This grouping strategy was designed to represent
both low-level and high-level information extracted from the images.

2.6.3 Data partitioning and model evaluation
strategy

To ensure rigorous and unbiased model evaluation, we employed
a nested cross-validation framework with three distinct stages: an
outer split for model selection and internal validation, and an
independent external test set for final generalization assessment.
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The primary dataset (n=737), collected from Dongzhimen
Hospital Tongzhou Branch (337 CAD, 400 non-CAD), was first
divided into two parts via stratified sampling at an 80:20 ratio using
random_state = 121: @ Trainval set (n=590): used for model
training and hyperparameter optimization; @ Internal test set
(n = 147): reserved exclusively for internal performance evaluation
and kept completely unseen during the training process. ® Within
the Trainval set, a second stratified split (85:15) was performed to
form: Training subset (n=501): wused to train the
FeatureGatedClassifier; @Validation subset (n = 89): used for early
stopping, hyperparameter tuning, and calibration of prediction
probabilities (via Platt scaling). All preprocessing steps—including
grouping, (StandardScaler), and
dimensionality reduction (PCA)—were fitted only on the training

feature standardization
subset and then applied consistently to both the validation and
internal test sets to prevent data leakage.

After model training and selection, the best-performing
model and its associated calibrator were saved. The final model
was evaluated on the internal test dataset. This partitioning
strategy ensured strict separation between training, validation,
and testing phases, enabling reliable estimation of model
robust assessment

performance and of generalizability

across institutions.

2.6.4 Model training and performance evaluation

The CAD diagnostic model in this study was implemented using
the PyTorch deep learning framework. The architecture comprises a
dual-branch gated fusion network followed by a classification head.
Specifically, the gating module takes facial and tongue feature vectors
as parallel inputs and generates modality-specific attention weights
through lightweight multilayer perceptrons with Sigmoid activation.
These weights are normalized via Softmax to enable adaptive, sample-
wise fusion of the two modalities. The subsequent classifier consists of
two fully connected hidden layers (each with 256 units), with each
layer followed sequentially by batch normalization (BatchNorm),
ReLU activation, and Dropout regularization (dropout rate = 0.35).
The final output layer employs a Softmax function to produce
probabilistic predictions for the binary classification task (CAD vs.
non-CAD). To address the mild class imbalance in the development
cohort (337 CAD cases vs. 400 non-CAD controls), class weights were
automatically computed using scikit-learn’s compute_class_weight
(‘balanced’) and incorporated into the cross-entropy loss function,
thereby enhancing the model’s sensitivity to the minority class.

During training, mini-batch stochastic gradient descent was
performed with a batch size of 32, and the model was trained for up
to 200 epochs. For each experimental run, the training set was
partitioned into training and validation subsets at an 85:15 ratio (val_
ratio = 0.15), with the validation subset used to monitor generalization
performance. The Adam optimizer was employed with an initial
learning rate of 1 x 10~ and a weight decay of 1 x 10~ to further
mitigate overfitting. A dynamic learning rate scheduling strategy,
ReduceLROnPlateau (factor = 0.5, patience = 6), was applied to
automatically reduce the learning rate based on the validation
AUC. Additionally, an early stopping mechanism was implemented:
training was terminated if the validation loss failed to improve for 25
consecutive epochs (patience = 25), thus preventing overfitting and
improving model robustness. All model parameters were updated
automatically via backpropagation.
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2.6.5 Performance evaluation metrics

During the testing phase, the model's performance was
comprehensively assessed using multiple metrics (Gorur et al., 2018;
Gorur et al,, 2019), including accuracy, area under the receiver
operating characteristic curve (AUC), F1 score, recall (sensitivity), and
precision (positive predictive value, PPV) (Equations 3-6). In this
context, true positives (TP) correspond to correctly identified CAD
cases, true negatives (TN) to correctly classified non-CAD controls,
false positives (FP) to non-CAD cases erroneously classified as CAD,
and false negatives (FN) to CAD cases incorrectly labeled as
non-CAD. This multi-dimensional evaluation framework enables
balanced assessment of both overall discriminative ability and class-
specific performance, ensuring the model’s reliability and practical
applicability in clinical diagnostic settings.

TP+TN

Accuracy =————————— (3)
TP+TN + FP+FN
TP
Recall =———— (4)
TP + FN
TP

Precision = (5)

TP + FP
F1 Score = e (6)

2TP+FP+FN

2.7 Validation on new testing dataset

To further evaluate the generalization capability of the proposed
TF_FGC model, we established an independent external validation
cohort by collecting tongue and facial images from 100 patients with
CAD and 100 age- and sex-matched non-CAD controls at
Dongzhimen Hospital (Dongcheng Branch). All participants
underwent standardized acquisition of high-resolution facial and
tongue images under controlled illumination and fixed posture
conditions. This external test set was entirely independent of the
model development dataset and was used to assess the model’s
robustness and transferability in real-world clinical settings.

The TF_FGC model trained on the development set is directly
applied to the external test set without any retraining or fine-tuning.
The model outputs are used to calculate predicted probabilities for
CAD, and the model’s generalization ability is evaluated using
standard classification performance metrics (accuracy, recall,
precision, F1 score, AUG, etc.). Calibration performance was further
evaluated using the Brier score, calibration intercept, and slope. To
improve the reliability of predicted probabilities, Platt scaling was
applied prior to external testing.

To better reflect real-world clinical application scenarios, positive
and negative predictive values (PPV and NPV) were reweighted using
Bayes’ theorem under three realistic disease prevalence settings (5, 10,
and 15%), corresponding to community screening, general outpatient,
and cardiology referral populations, respectively. Finally, decision
curve analysis (DCA) was performed to quantify the net clinical
benefit across a range of probability thresholds (0.1-0.6), and the
results were compared with those of the CAD Consortium Basic
model as well as the “treat-all” and “treat-none” strategies.
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2.8 Clinical baseline model construction

To provide clinical benchmark models, two types of baseline
models were established on the external test set (n =200, 100 CAD
patients and 100 non-CAD controls): a physician-based visual
baseline (Visual baseline) and a demographic-based logistic regression
model (Age + Gender).

2.8.1 Visual baseline based on facial and tongue
features

The visual baseline was constructed as follows: three board-
certified clinicians independently reviewed standardized facial and
tongue photographs of all participants. Based on literature evidence,
clinical experience, and preliminary model results, five key visual
features associated with CAD were selected for binary annotation:
tongue color, tongue texture, tongue contrast, facial color, and facial
texture. Each feature was labeled as abnormal (=1) or normal (=0). A
consensus label for each feature was determined using the majority
rule (>2 clinicians rated as abnormal). The total number of abnormal
features (0-5) was then calculated as a risk score for CAD. Participants
with >3 abnormal features were classified as CAD-positive (label = 1),
and those with fewer than 3 abnormal features were classified as
CAD-negative (label = 0).

2.8.2 Demographic-based logistic regression
model

A logistic regression model was constructed using age (continuous
variable, in years) and gender (female = 0, male = 1) as independent
variables, with CAD diagnosis as the dependent variable. The model
outputs predicted probabilities for CAD, which can be thresholded to
simulate different clinical scenarios. For community screening
(prevalence ~5%, rule-out), a high-sensitivity threshold was selected
to minimize missed diagnoses. For cardiology triage (prevalence
~30%, rule-in), a high-specificity threshold was chosen to reduce
false-positive referrals.

2.9 Model interpretability analysis

To improve the transparency and clinical interpretability of the
proposed TF_FGC model, we performed a three-level interpretability
analysis using the external test set: global feature importance,
individual decision path, and local feature dependence.

2.9.1 Global feature importance (SHAP)

We applied the SHAP method to quantify each feature’s
contribution to model prediction (Lundberg and Lee, 2017; Khorram
et al,, 2021). Using the TreeExplainer algorithm, SHAp values were
computed for all samples in the external test set. Four feature groups
were analyzed separately: facial color-texture, tongue color-texture,
facial depth, and tongue depth features. Mean absolute SHAP values
were used to rank feature importance, and SHAP summary plots were
generated to visualize both contribution magnitude and direction.

2.9.2 Individual decision path analysis

To visualize the model’s reasoning at the individual level,
we generated SHAP decision plots for representative true-positive and
true-negative cases. Only clinically interpretable facial and tongue
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color-texture features were included. The plots illustrated how each
feature cumulatively influenced the prediction probability toward or
away from CAD, revealing dominant contributors in each case (Nazim
etal., 2025).

2.9.3 Local feature dependence

To examine the nonlinear effects of key features on CAD risk,
we plotted Partial Dependence Plots (PDPs) and Individual
Conditional Expectation (ICE) curves. Six representative features
(F_RGB_B, F_RGB_R, F_homogeneity, F_contrast, T_homogeneity,
T_RGB_R) were analyzed. PDPs described the overall marginal effect,
while ICE curves showed individual variations, allowing assessment
of feature consistency and model generalizability.

3 Results

3.1 Performance evaluation of deep feature
extraction based on MDFA-Swin and
comparison with benchmark vision models

To verify the effectiveness of the proposed MDFA-Swin model
in extracting deep features from tongue and facial images,
we conducted a systematic comparison with several mainstream
visual models, including ViT-B/16, Swin-Tiny, Swin-Small,
ResNet18, ResNet34, and ResNet50. All models were trained and
validated using the same dataset and training protocols, and their

10.3389/frai.2025.1662577

classification performance was evaluated separately on unimodal
tasks involving tongue and facial images. As shown in Figures 6, 7,
MDFA-Swin achieved the best performance across multiple
evaluation metrics—including Accuracy, Recall, Precision, F1 Score,
and AUC—significantly outperforming all baseline models. This
demonstrates the model’s strong feature representation and
discriminative capability in medical image analysis tasks. Specifically,
on the tongue image validation set, the MDFA-Swin model achieved
an Accuracy of 0.7619, Recall of 0.7546, Precision of 0.7643, F1 Score
0f 0.7598, and an AUC of 0.8381. On the facial image validation set,
the model exhibited even stronger performance, with an Accuracy
of 0.7959, Recall of 0.7955, Precision of 0.7943, F1 Score of 0.7944,
and an AUC as high as 0.8832. These results clearly indicate that the
improved MDFA-Swin model possesses superior deep feature
modeling capabilities for both tongue and facial images. The
introduced MDFA mechanism effectively enhances the model’s
ability to perceive fine-grained structural variations and blurred
boundary regions, thereby improving its capacity to express key
pathological features in tongue and facial regions for more accurate
CAD identification. Compared with traditional convolutional
networks such as the ResNet series, MDFA-Swin leverages the cross-
scale global modeling capability of the Transformer architecture to
better integrate unstructured image information, exhibiting
enhanced robustness and generalization ability. Collectively, these
findings validate the applicability and advancement of MDFA-Swin
as a backbone for deep feature extraction in the field of medical
image analysis.

Performance Comparison on Tongue and Facial Datasets
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FIGURE 6
Validation performance of the MDFA-Swin model and baseline models on the tongue and facial image datasets.
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3.2 Visualization and dimensionality
reduction of deep features

Based on the optimal weights obtained from the trained MDFA-
Swin model, high-dimensional semantic feature vectors (with a
dimensionality of D = 768) were extracted from both tongue and
facial images to represent the underlying semantic information of each
individual in the deep feature space. To intuitively demonstrate the
class separability of the extracted deep features, the t-distributed
Stochastic Neighbor Embedding (t-SNE) algorithm (der Maaten and
Hinton, 2008) was applied to perform nonlinear dimensionality
reduction and map the features into a two-dimensional space. As
shown in Figures 8A,B, the t-SNE visualizations reveal a clear
separation between CAD and non-CAD samples for both tongue and
facial features, indicating that the semantic features extracted by the
MDFA-Swin model exhibit strong discriminative capability and class
separability. Additionally, to reduce feature redundancy in subsequent
fusion and classification modeling and to enhance computational
efficiency, this study applies PCA (Ait-Sahalia and Xiu, 2019) for the
linear dimensionality reduction of deep features in the following steps.

3.3 Validation results of five classifiers
based on tongue and facial features

To The extraction of high-level semantic features from tongue and
facial images using the MDFA-Swin model relies heavily on the
black-box nature of deep neural networks, which limits clinical
interpretability and fails to fully meet the requirements for diagnostic
transparency and reliability in real-world applications. To address this
issue, this study further incorporates interpretable traditional color
and texture features derived from tongue and facial images as a
complement to the deep semantic features. By enhancing the
interpretability of the deep learning model and exploring the auxiliary
diagnostic value of traditional image features in CAD identification,
we conducted classification performance evaluations using these
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handcrafted features. Specifically, the traditional color and texture
features were input into five widely used machine learning classifiers—
Support Vector Machine (SVM), K-Nearest Neighbor (KNN),
Multilayer Perceptron (MLP), Random Forest (RF), and eXtreme
Gradient Boosting (XGB)—for CAD classification. The experimental
results are summarized in Tables 2, 3. As shown in Table 2, for the
classification task based on traditional tongue image features, the MLP
model achieved the best overall performance across all metrics, with
an Accuracy of 66.09%, Recall of 59.95%, Precision of 63.64%, F1
Score of 67.10%, and an AUC of 0.7038. While SVM and Logistic
Regression (LR) achieved slightly higher Precision, their lower Recall
led to inferior F1 scores and AUC compared to MLP. These findings
suggest that the MLP exhibits a stronger capacity for capturing
nonlinear color and texture patterns in tongue images, and that
traditional features can support preliminary CAD risk screening to a
certain extent, though their discriminative power remains limited.

In contrast, classification based on traditional facial image features
yielded significantly better performance. As shown in Table 3, the Logistic
Regression model outperformed all others across the five evaluation
metrics, achieving an Accuracy of 72.98%, Recall of 67.92%, Precision of
71.73%, F1 Score of 69.54%, and an AUC of 0.8022—the highest among
all models tested. MLP also demonstrated relatively stable and
competitive performance. Overall, these results indicate that facial image
features provide greater diagnostic value in CAD identification, likely due
to more pronounced structural differences in skin color variation and
texture distribution between CAD and non-CAD individuals.

3.4 Performance of the FGC model on the
test set

To systematically evaluate the performance of the proposed FGC
model in the intelligent diagnosis of CAD, and to verify the
effectiveness of multimodal fusion between tongue and facial features,
three models were constructed for comparison: (1) an FGC model
based on fused tongue and facial features (TF_FGC); (2) an FGC
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Visualization of tongue and facial deep features. (A) t-SNE plot of tongue image deep features. (B) t-SNE plot of facial image deep features.
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TABLE 2 Performance comparison of traditional machine learning
classifiers based on tongue color and texture feature set.

Models Accuracy Recall Precision F1 AUC
Nelol(=

SVM 0.6405 0.4365 0.6618 05249 0.6911

RF 0.6011 04718 0.5788 05197 | 0.6209

MLP 0.6609 0.5995 0.6364 06710 | 07038

TABLE 3 Performance comparison of traditional machine learning
classifiers based on facial color and texture feature set.

Models Accuracy Recall Precision F1 AUC
Score

SVM 0.722 0.647 0.715 0.677 0.792

RF 0.716 0.647 0.705 0.673 0.777

MLP 0.727 0.658 0.723 0.686 0.798

LR 0.730 0.679 0717 0.695 0.802

ET 0.716 0.667 0.695 0.680 0.769

model using only tongue features as input (T_FGC); and (3) an FGC
model using only facial features as input (F_FGC). As shown in
Table 4, the fusion model TF_FGC achieved the best performance
across all evaluation metrics, with an accuracy of 0.872, recall of 0.897,
precision of 0.836, F1-score of 0.865, and an AUC of 0.945. These
results demonstrate that the proposed gating mechanism can
automatically learn and adjust the relative importance of tongue and
facial features, enabling effective information fusion and substantially
improving the model’s discriminative ability for CAD.

In contrast, the unimodal models T_FGC and F_FGC performed
less favorably, with accuracies of 0.831 and 0.858, and AUCs of 0.902
and 0.935, respectively. Although both unimodal models showed
reasonable diagnostic capability, their accuracy and robustness were
inferior to the fusion model due to limited information utilization.
This finding indicates that tongue and facial features provide
complementary diagnostic cues in CAD classification tasks. In
summary, the experimental results confirm that: (1) the FGC model
possesses strong multimodal feature fusion capabilities; and (2) both
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tongue and facial features contribute valuable and distinct information
in CAD diagnosis, and their integration significantly enhances model
accuracy and stability. Therefore, the FGC model incorporating a
multidimensional feature fusion strategy and a gating mechanism
represents the optimal CAD recognition solution in this study.

3.5 Performance of the TF_FGC model in
external validation

3.5.1 Overall performance

The proposed TF_FGC model demonstrated excellent
discriminative performance, good calibration, and strong clinical
applicability in both internal and external validation. As shown in
Table 5 and Figure 9A, in the internal validation cohort, the model
achieved an accuracy of 0.872, F1-score of 0.865 (95% CI: 0.800-
0.920), recall of 0.897 (95% CI: 0.823-0.960), and precision of 0.836
(95% CI: 0.747-0.917). The AUC reached 0.945 (95% CI, DeLong:
0.905-0.985; Bootstrap: 0.904-0.977), indicating outstanding
discriminative ability. The Brier score was 0.091, with a calibration
intercept of —0.259 and a slope of 0.927, suggesting good overall
model fit after Platt scaling calibration (Figure 9C).

To further evaluate the model’s generalizability, an external
validation was performed on an independent test cohort from another
clinical center, comprising 200 participants (100 CAD patients and
100 non-CAD controls). As shown in Table 5 and Figure 9B, the
model correctly identified 86 CAD and 79 non-CAD cases, achieving
an accuracy of 0.825, recall of 0.860, precision of 0.827, F1-score of
0.843, and an AUC of 0.896 (95% CI: 0.850-0.941). The Brier score
was 0.130, with a calibration intercept of —0.035 and a slope of 1.350,
indicating acceptable calibration consistency across centers and good
robustness and transferability (Figure 9D).

To explicitly examine site-level stability, a per-center performance
analysis was conducted. The TF_FGC model achieved consistent
discrimination across both acquisition sites: in Site A (internal
validation), the AUC was 0.945 (95% CI: 0.905-0.985) and AUPRC
0.934; in Site B (external validation), the AUC was 0.896 (95% CI:
0.850-0.941) and AUPRC 0.902. Calibration slopes (0.927 vs. 1.350)
and intercepts (—0.259 vs. —0.035) showed no substantial drift, and
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TABLE 4 Comparison of classification performance of FGC model on
verification set under different input data sets.

Models Accuracy Recall Precision F1 AUC
Score

TF _FGC 0.872 0.897 0.836 0.865 0.945

T_FGC 0.831 0.824 0.812 0.818 0.902

F_FGC 0.858 0.882 0.823 0.8148 0935

TABLE 5 Model performance on internal and external test sets.

Metric

AUC (95% CI: DeLong;
Bootstrap)

Internal test

0.945 (0.905-0.985;
0.904-0.977)

External test

0.896 (0.850-0.941;
0.848-0.939)

F1 (95% CI, bootstrap)

0.865 (0.800-0.920)

0.843 (0.788-0.894)

Recall (95% CI, bootstrap)

0.897 (0.823-0.960)

0.860 (0.789-0.929)

Precision (95% CI, bootstrap)

0.836 (0.747-0.917)

0.827 (0.750-0.894)

ACC 0.872 0.825
Brier score 0.091 0.130
Calibration intercept —0.259 —0.035
Calibration slope 0.927 1.350

Brier scores (0.091 vs. 0.130) remained within an acceptable range.
These findings indicate that the model’s predictive performance was
not affected by site-specific factors, supporting its robustness to center
heterogeneity (see Supplementary Table S1).

Considering the model’s potential value in real-world screening
scenarios, prevalence-weighted PPV and NPV were further estimated
under hypothetical disease prevalences of 5, 10, and 15%. As
summarized in Table 6, the PPVs (95% CI) were 0.201 (0.146-0.301),
0.347 (0.265-0.476), and 0.457 (0.364-0.591), respectively, while the
NPVs (95% CI) remained consistently high at 0.991 (0.986-0.995),
0.981 (0.972-0.990), and 0.971 (0.956-0.984). These findings indicate
that the TF_FGC model maintains excellent exclusion capability in
low-prevalence populations, supporting its potential use as an auxiliary
tool for preliminary screening of obstructive CAD risk. Furthermore,
DCA (Figure 10) demonstrated that, within the clinically relevant
probability threshold range of 0.1-0.6, the TF_FGC model provided
consistently higher net benefit than the “treat-all” or “treat-none”
strategies, confirming its practical utility in clinical decision-making.

3.5.2 Robustness to common corruptions

To evaluate the robustness of the TF_FGC model under varying
imaging conditions, we introduced three types of controlled
perturbations to the external test set: brightness jitter (+20%), contrast
jitter (£20%), and Gaussian noise (¢ = 0.02). These perturbations were
designed to simulate potential variations in illumination, device
characteristics, and environmental interference commonly
encountered in clinical image acquisition.

As summarized in Table 7, under the original (unperturbed)
external test set, the model achieved an accuracy of 0.825, F1-score of
0.843, AUC of 0.896, AUPRC of 0.902, recall of 0.860, and precision
of 0.827. After applying brightness, contrast, and Gaussian noise
perturbations, only minor performance fluctuations were observed.
The AUC values remained within 0.893-0.900, while accuracy,

Fl-score, and recall were largely unchanged. Notably, the 95%
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bootstrap confidence intervals of the AUCs substantially overlapped
with those of the unperturbed results. These findings indicate that the
TF_FGC model exhibits strong robustness to common image
perturbations. Its discriminative performance was not significantly
affected by variations in lighting, contrast, or noise levels, underscoring
the model’s stability and generalizability across diverse imaging
conditions in multi-center real-world applications.

3.5.3 Subgroup-specific threshold optimization

To further evaluate potential performance differences of the model
across key clinical subgroups and explore simple mitigation strategies,
we conducted subgroup-specific threshold tuning on the external
validation cohort. The subgroup variables included hypertension,
diabetes, and gender, resulting in six primary subgroups (Table 8).
Among hypertensive patients (n=106, AUC =0.873), the model
achieved both sensitivity and specificity of 82.1% at the default threshold
of 0.5. Raising the threshold to the Youden optimal value of 0.57
increased specificity to 87.2% while only slightly reducing sensitivity to
79.1%, effectively lowering the false-positive rate. In diabetic patients
(n =52, AUC = 0.891), sensitivity and specificity were 89.7 and 91.3% at
the default threshold, with minimal change after Youden threshold
adjustment, indicating robust model performance despite potential
interference from diabetes-related tongue coating. Gender subgroup
analysis showed AUCs of 0.883 for males and 0.916 for females, with
sensitivity and specificity close to overall levels and no clinically
significant differences. To provide a more comprehensive evaluation of
subgroup performance, we report PPV, NPV, and calibration slope/
intercept for each subgroup in the Supplementary Table S2.

Overall, the subgroup-specific threshold tuning demonstrates
that, even without retraining the model, simple adjustment of
decision thresholds for different clinical subgroups can effectively
optimize performance, reduce false positives, or increase sensitivity,
supporting safe and interpretable application of the model across
diverse patient populations.

3.6 Performance of clinical baseline models

The results of the visual baseline are presented in Table 9. The
model achieved an overall accuracy of 67.0%, sensitivity of 68.0%,
specificity of 66.0%, PPV of 66.7%, NPV of 67.4%, F1 score of 0.673,
and an approximate AUC of 0.670. As the visual baseline outputs are
fixed binary classifications, its performance cannot be adjusted via
threshold modification, and it therefore serves as a single reference
point. The demographic logistic regression model was constructed
with CAD diagnosis as the dependent variable and age and sex as
independent variables. As shown in Table 10, using the default
threshold of 0.5, the model achieved a sensitivity of 0.51 and a
specificity of 0.53, indicating limited predictive performance. To
simulate typical clinical application scenarios, two operational
thresholds were further defined: Community screening (rule-out):
a high-sensitivity threshold (>90%) was selected to minimize
missed diagnoses, corresponding to a threshold of 0.4584, sensitivity
0f 0.92, specificity of 0.12, PPV of 0.51, and NPV of 0.60; Cardiology
triage (rule-in): a high-specificity threshold (>85%) was selected to
reduce false-positive referrals, corresponding to a threshold of
0.5349, sensitivity of 0.19, specificity of 0.85, PPV of 0.56, and NPV
of 0.51.
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external validation set.

Discriminative performance and probability calibration of the TF_FGC model. (A) Receiver operating characteristic (ROC) curve for the internal
validation set. (B) ROC curve for the independent external validation set. (C) Calibration plot for the internal validation set. (D) Calibration plot for the

TABLE 6 Estimated PPV and NPV under assumed disease prevalences of
5,10, and 15%.

Prevalence PPV (95% ClI) NPV (95% Cl)
5% 0.201 (0.146-0.301)  0.991 (0.986-0.995)
10% 0.347 (0.265-0.476)  0.981 (0.972-0.990)
15% 0457 (0.364-0.591) | 0.971 (0.956-0.984)

Overall, the physician visual baseline slightly outperformed the
demographic model in terms of accuracy, PPV, and NPV, but it lacked the
flexibility of threshold adjustment. Conversely, the demographic model
could adapt to different clinical scenarios through threshold setting, yet
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its overall discriminative ability remained limited. These baseline results
provide reference points for performance comparison and threshold
selection in subsequent multimodal imaging models. In contrast, the
proposed TF_FGC model demonstrated markedly superior performance
across all key metrics compared with both clinical baselines, while
retaining the flexibility to adjust thresholds for different clinical scenarios.
For example, in the external test set, the TF_FGC model achieved an
accuracy of 0.825, sensitivity of 0.86, specificity of 0.79, PPV of 0.827,
NPV of 0.843, and an AUC of 0.896. These results indicate that the TF_
FGC model not only exhibits stronger overall discriminative ability but
also provides reliable and adjustable predictions across various clinical
contexts, highlighting its clinical utility as a non-invasive, interpretable,
and practically applicable tool for auxiliary CAD screening and triage.
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TABLE 7 Model robustness under common corruptions.

Perturbation Accuracy F1-score AUPRC  AAUC (vs. Clean) Recall Precision
Clean 0.825 0.843 0.896 0.902 — 0.860 0.827
Brightness (+20%) 0.830 0.835 0.893 0.899 —0.003 0.860 0.811
Contrast (+20%) 0.825 0.833 0.900 0.906 +0.004 0.870 0.798
Gaussian noise (o = 0.02) 0.830 0.830 0.830 0.830 0.830 0.830 0.830

TABLE 8 Subgroup performance based on Youden-optimal decision thresholds.

Subgroup Youden threshold Sensitivity Specificity
Hypertension 106 0.873 0.57 0.791 0.872
Non-hypertensive 94 0.934 0.509 0.939 0.820
Diabetes 52 0.891 0.509 0.897 0.913
Non-diabetes 148 0.901 0.392 0.887 0.753
Male 110 0.883 0.477 0.821 0.815
Female 90 0.916 0.517 0.932 0.826
core contributors, followed by T_homogeneity and T_

3.7 Model interpretability analysis based on
the external test set

3.7.1 Global feature importance (SHAP analysis)

To enhance the overall interpretability of the model,
we employed the SHAP method to analyze the final multimodal
fusion model. Figure 11 presents bar plots of SHAP value
distributions for four feature groups—facial/tongue color-texture
features and facial/tongue depth features—in the external test set.
As shown, among tongue color-texture features, T_contrast and
T_RGB_R exhibited the highest mean SHAP values, serving as the
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RGB_B. Within tongue depth features, T_PC1 showed the largest
mean SHAP value, indicating the strongest influence on model
output. For facial color-texture features, F_RGB_B, F_RGB_R, F_
RGB_G, and F_homogeneity contributed most significantly, while
in facial depth features, F_PC1 exerted the greatest control over
model predictions.

Further analysis of Figure 12A shows the SHAP scatter
distributions of tongue color-texture features. T_contrast, T_RGB_R,
and T_homogeneity displayed a clear bimodal trend: low feature
values corresponded to negative SHAP values (blue), whereas high
feature values corresponded to positive SHAP values (red). This
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pattern indicates that lower values of these features were associated
with a higher likelihood of CAD prediction. Similarly, Figure 12B
illustrates that facial color-texture features (F_RGB_B, F_RGB_R,
F_RGB_G, and F_homogeneity) exhibited comparable negative
trends. When these feature values were low—such as bluish
complexion or coarse skin texture—the corresponding SHAP values
were strongly negative, suggesting that the model identified these
traits as high-risk indicators for CAD. In contrast, F_energy and F_
dissimilarity displayed more concentrated and lower-magnitude
SHAP distributions, indicating relatively limited influence on model
decisions. Overall, features related to pale, dark, or uneven visual
characteristics in both the tongue and facial images tended to show
negative SHAP values, implying that these visual cues play an
important role in the model’s identification of CAD risk.

3.7.2 SHAP decision path analysis of typical cases
To move beyond global feature importance and enhance the clinical
interpretability of the model, we further performed explainability analysis
using the SHAP method to investigate the model’s decision-making
mechanisms in depth. Figure 13 illustrates the SHAP decision paths of
two representative individuals, where only clinically interpretable facial
and tongue color and texture features were retained for analysis. As shown
in Figure 13A, for a true-positive patient (ID: 5), the models initial
prediction value was 0.50, which ultimately increased to approximately
0.72, indicating a strong tendency toward a positive (CAD) classification.
This decision was mainly driven by tongue features, among which tongue
redness (T_RGB_R) contributed the most (+1.841), suggesting a
pronounced “heat pattern” according to traditional diagnostic
interpretation. Meanwhile, the decreased homogeneity (T_homogeneity:
—1.943) and lower contrast (T_contrast: —1.639) indicated disturbed
surface texture on the tongue. Although facial color features (e.g., F_
RGB_R: —0.986) had a negative contribution, implying a pale or dull
facial tone, they were insufficient to counterbalance the dominant
influence of tongue features. In contrast, for the negative patient (ID: 1),
the models initial value was 0.525, which decreased to about 0.45, leading
to a negative prediction. Here, the decision was primarily driven by facial
features, with strong negative contributions from the green (F_RGB_G:
—1.53) and red (F_RGB_R: —0.901) channels, reflecting a healthy, rosy
complexion and sufficient qi and blood circulation. In terms of tongue

TABLE 9 Diagnostic performance of the physician visual baseline on the
external test set.

Accuracy 0.670
Sensitivity 0.680
Specificity 0.660
PPV 0.667
NPV 0.674
F1 Score 0.673

10.3389/frai.2025.1662577

features, the patient exhibited a thin, evenly distributed coating and clear
texture, consistent with a balanced physiological state. These comparisons
demonstrate that the model effectively integrates multimodal visual
information to differentiate between pathological and healthy conditions.
Moreover, its reasoning process aligns with the traditional Chinese
medicine principle of “holistic inspection and integrated diagnosis,
suggesting both biomedical validity and interpretive consistency with
traditional diagnostic thinking.

3.7.3 Local dependence and individual effects of
key features

To further elucidate the relationship between the imaging
features learned by the model and the risk of CAD, we plotted
PDPs and ICE curves for six key features based on the external
validation set (Figure 14). The analyzed features included facial
blue channel intensity (F_RGB_B), facial redness (F_RGB_R),
facial homogeneity (F_homogeneity), facial contrast (F_contrast),
tongue homogeneity (T_homogeneity), and tongue redness
(T_RGB_R).

Overall, the PDP curves (dark blue lines) for all six features
showed smooth and largely monotonic trends, while the ICE curves
(light blue lines) demonstrated consistent individual-level
behaviors. This consistency suggests that the model exhibits strong
external generalizability and a low risk of overfitting. In particular,
increases in facial and tongue redness (F_RGB_R and T_RGB_R)
were associated with a decreased probability of CAD, implying that
reduced redness may reflect microcirculatory insufficiency or
hemodynamic abnormalities. Similarly, decreases in facial and
tongue homogeneity were linked to elevated CAD risk, suggesting
that uneven texture or color distribution may capture underlying
circulatory disturbances. Additionally, facial blue channel intensity
(F_RGB_B) and facial contrast (F_contrast) showed mild negative
correlations with CAD risk, further supporting the stability and
predictive relevance of facial color-texture features. In summary,
the PDP and ICE analyses demonstrated physiologically plausible
and directionally consistent associations between the identified
features and CAD risk, thereby validating the interpretability and
external reliability of the proposed model.

3.8 Comparison with existing studies

To comprehensively evaluate the advantages of the proposed
model, we systematically compared its performance with recent
studies on intelligent diagnosis of CAD based on tongue images, facial
images, or clinical data (see Table 11).

Several studies have explored deep learning for CAD detection
using facial or tongue images. Lin et al. (2020) developed a facial
image-based model achieving a sensitivity of 0.80 and an AUC of
0.730. Khan Mamun and Elfouly (2023) used NHANES data with
a 1D-CNN, reporting an accuracy of 76.9%. Ma C. Y. et al. (2024)

TABLE 10 Diagnostic performance of the age-sex logistic model across clinical scenarios.

Scenario Threshold Sensitivity Specificity
Community screening (rule-out, high sensitivity) >0.4584 0.92 0.12 0.511 0.600
Cardiology triage (rule-in, high specificity) >0.5349 0.19 0.85 0.559 0.512
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(D) Facial deep features.

SHAp value distribution for four feature groups. (A) Tongue color and texture features. (B) Facial color and texture features. (C) Tongue deep features.
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(A) SHAP scatter plot of tongue color and texture features. (B) SHAP scatter plot of facial color and texture features.
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predicted CAD risk using electronic medical records, achieving
an AUC of 0.701. Duan et al. (2024b) combined tongue image
features with clinical factors and XGBoost, reporting an accuracy
of 0.760 and an AUC of 0.786. More recently, Zhang et al. (2025)
proposed a multimodal model using facial images and clinical
variables, achieving an AUC of 0.852. Duan et al. (2024a) and
Duan et al. (2024b) applied deep learning (e.g., CNNs, lightweight
networks) to tongue image analysis, reporting AUCs between 0.83
and 0.86.

Notably, most of these models rely on single-modality inputs or
shallow fusion strategies, and few incorporate interpretable feature

Frontiers in Artificial Intelligence

analyses. In contrast, our model achieves an AUC of 0.9134 on the
validation set and 0.9102 on the independent test set, outperforming
all cited studies. The advantages of this study are reflected in three
aspects: (i) the MDFA-Swin backbone achieved a 2.1-3.5%
improvement in AUC compared with standard Swin and ResNet
models; (ii) the feature-gated classifier enabled adaptive fusion of
tongue and facial features, outperforming unimodal models (T_FGC:
0.8943; F_FGC: 0.9057); and (iii) the integration of interpretable
color/texture features, combined with SHAP analysis, identified key
discriminative predictors (e.g., T_RGB_R, F_RGB_B), enhancing
consistency with TCM clinical phenotypes.
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FIGURE 13
Individual decision Pathway Analysis of the TF_FGC Model. (A) Decision plot for a true positive case (ID: 5). (B) Decision plot for a true negative case (ID: 1).

4 Discussion

The development of artificial intelligence has opened new avenues
for disease diagnosis, with deep learning demonstrating remarkable
performance in medical imaging and computer-aided diagnosis.
However, most current diagnostic models still rely on clinical data such
as blood tests, imaging scans, and electrocardiograms, which are costly,
complex to obtain, and thus unsuitable for primary healthcare settings
and large-scale population screening—ultimately limiting their clinical
applicability and widespread adoption. In contrast, tongue and facial
features, as core components of “inspection” in TCM, offer a
non-invasive, low-cost, and easily collectible source of diagnostic
information. These characteristics make them well-suited for
community-based screening, telemedicine, and home health monitoring.
In this study, we integrated traditional TCM image features—such as
color and texture from tongue and facial images—with high-level
semantic representations extracted by the MDFA-Swin network to
construct a multimodal, multi-scale fusion diagnostic framework. To
enhance model interpretability, we conducted both internal attention
distribution analysis and external explainability assessment.

Notably, MedSAM demonstrated outstanding performance in both
tongue and facial image segmentation tasks. In particular, its zero-shot
generalization capability significantly outperformed traditional methods,
greatly reducing the need for manual annotation, alleviating labeling
workload, and lowering associated costs. Furthermore, MedSAM
substantially minimized human intervention, thereby exhibiting excellent
segmentation performance and practical advantages in tongue and facial
image analysis. To effectively capture the multi-scale and fine-grained
pathological characteristics associated with CAD in tongue and facial
images, this study introduced a MDFA module into the Swin Transformer
architecture, specifically designed for the unique imaging properties of
these modalities. Experimental results demonstrated that the MDFA-
Swin model significantly outperformed ViT, ResNet, and the standard
Swin Transformer in tongue and facial image classification tasks,
exhibiting superior discriminative ability and heightened sensitivity to
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subtle TCM phenotypes—such as purplish tongue color and facial
dullness. However, despite its strong performance in automatic feature
learning and classification, the inherently “black-box” nature of deep
neural networks limits their clinical interpretability. In contrast, TCM
visual diagnosis emphasizes observable and quantifiable external
manifestations—such as tongue color, texture, facial complexion, and skin
texture distribution—which serve as key indicators in clinical decision-
making. To bridge the gap between performance and interpretability, this
study further integrated clinically interpretable features—including color
and texture descriptors derived from classical TCM diagnostic theory—
with the deep semantic representations learned by the model. These
features provide explicit clinical semantics and complement the deep
representations to enhance both transparency and reliability. Furthermore,
through a gating mechanism, the proposed Tongue-Face Fusion Gated
Classifier (TF_FGC) dynamically combined deep and interpretable
features from tongue and facial modalities. The fusion model not only
achieved superior diagnostic accuracy (AUC=0.896 in external
validation) but also, via SHAP analysis, revealed key decision-driving
features such as T_contrast and F_homogeneity, aligning the predictive
reasoning more closely with TCM diagnostic logic. Overall, the results
demonstrate that the multimodal fusion of tongue and facial features
markedly outperforms single-modality approaches, validating the
effectiveness of the “Deep Learning + TCM Feature” paradigm. This
framework achieves a balance between high diagnostic performance and
clinical interpretability, offering a feasible pathway toward a noninvasive,
low-cost, and trustworthy CAD diagnostic system suitable for community
screening and home-based health monitoring.

In addition, through interpretability analysis of the model, we found
that CAD patients showed overall lower values in facial features such as
F_RGB_R, F_RGB_G, and F_RGB_B, suggesting a lack of redness and
brightness in the skin. This aligns with the TCM concept of “facial
dullness” (mian se hui an), which is thought to reflect impaired facial
microcirculation due to weakened cardiac function or blood stasis in the
coronary vessels. This phenomenon is supported by previous studies,
which have demonstrated a correlation between facial color characteristics
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and heart disease (Ren et al., 2020). Similarly, significant decreases in
tongue features such as T_RGB_R, T_contrast, and T_homogeneity
indicated paler tongue color, rougher texture, and reduced homogeneity.
These findings are consistent with the TCM theory that “the tongue is the
sprout of the heart,” where insufficient heart blood or stasis leads to
pathological changes in the tongue, such as dull coloration, ecchymoses,
or coarse texture. Recent studies have also confirmed that tongue color
parameters (e.g., RGB values and contrast) are significantly correlated
with the degree of coronary artery stenosis in CAD patients (Li et al.,
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2024; Rismawan et al., 2024). Due to blood stasis and impaired circulation,
such patients often present with a purplish tongue, petechiae, dull facial
complexion, or cyanotic lips (Lin and Wang, 2020). Altogether, alterations
in the color and texture features of both tongue and facial images provide
valuable cues for intelligent CAD diagnosis. The explainability embedded
in our model not only enhances its clinical applicability in real-world
scenarios but also builds user trust among healthcare professionals. As
current medical research increasingly explores non-traditional biomarkers
for CAD, tongue and facial features have emerged as promising diagnostic
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TABLE 11 Comparison of CAD diagnostic models.

10.3389/frai.2025.1662577

Study Modality Model (Backbone) AUC Ext. Test Fusion Interp.
Shen et al. Facial images CNN (Custom) 0.73 No No No

Khan et al. Clinical data 1D-CNN (—) 0.769% Yes No No

Cai-Yi Ma et al. EMR data ML (XGBoost) 0.701 Yes No Partial

Duan et al. Tongue + Clinical XGBoost (—) 0.786 No Shallow (feature) Partial

Zhang et al. Facial + Clinical DL/ML (ResNet-18) 0.852 Yes Early fusion No

Duan et al. Tongue images CNN/DL (ResNet-18/Swin-T) 0.83-0.86 No No No

Ours Tongue + Facial FGC (MDFA-Swin + Gate) 0.9134 Yes (0.9102) Deep, adaptive (gate) | SHAP analysis

CNN, Convolutional Neural Network; EMR, Electronic Medical Records; ML, Machine Learning; XGBoost, Extreme Gradient Boosting; DL, Deep Learning; Swin-T, Swin Transformer (Tiny
version); FGC, Feature Gated Combination; MDFA, Multi-scale Dilated Fusion Attention; AUC, Area Under the Receiver Operating Characteristic Curve; Ext. Test, External Test; Fusion,

multimodal fusion strategy; Interp., Interpretability. * Accuracy for CAD class; AUC not reported.

modalities. Our study contributes to the growing body of work in this
domain and offers a valuable reference for future investigations into
tongue-facial biomarkers in CAD.

In comparison with classical clinical risk prediction models, the
results of this study also demonstrated encouraging significance.
According to the literature, the Framingham risk score typically achieves
an AUC of 0.70-0.75 (Wilson et al., 1998; D’Agostino et al., 2008; Lin
etal., 2020), while the ASCVD 10-year risk assessment reports an AUC
of approximately 0.74-0.78 (Andrus and Lacaille, 2014). These models
are primarily designed for long-term risk prediction in asymptomatic
populations, whereas the present model focuses on cross-sectional, real-
time screening and diagnosis. In the external validation cohort, our
model achieved an AUC of 0.91, indicating superior discriminative
ability. Although this comparison is indirect, it suggests that image-
based artificial intelligence tools may provide complementary value to
existing clinical risk prediction methods, warranting further validation
in future studies that integrate clinical variables with image features.

In addition, through interpretability analysis of the model,
we found that, CAD patients showed overall lower values in facial
features such as F_ RGB_R, F_RGB_G, and F_RGB_B, suggesting a
lack of redness and brightness in the skin. This aligns with the TCM
concept of “facial dullness” (mian se hui an), which is thought to reflect
impaired facial microcirculation due to weakened cardiac function or
blood stasis in the coronary vessels. This phenomenon is supported by
previous studies, which have demonstrated a correlation between facial
color characteristics and heart disease (Ren et al., 2020). Similarly,
significant decreases in tongue features such as T_RGB_R, T_contrast,
and T_homogeneity indicated paler tongue color, rougher texture, and
reduced homogeneity. These findings are consistent with the TCM
theory that “the tongue is the sprout of the heart;” where insufficient
heart blood or stasis leads to pathological changes in the tongue, such
as dull coloration, ecchymoses, or coarse texture. Recent studies have
also confirmed that tongue color parameters (e.g., RGB values and
contrast) are significantly correlated with the degree of coronary artery
stenosis in CAD patients (Li et al., 2024; Rismawan et al., 2024). Due
to blood stasis and impaired circulation, such patients often present
with a purplish tongue, petechiae, dull facial complexion, or cyanotic
lips (Lin and Wang, 2020). Altogether, alterations in the color and
texture features of both tongue and facial images provide valuable cues
for intelligent CAD diagnosis. The explainability embedded in our
model not only enhances its clinical applicability in real-world
scenarios but also builds user trust among healthcare professionals. As
current medical research increasingly explores non-traditional

Frontiers in Artificial Intelligence

biomarkers for CAD, tongue and facial features have emerged as
promising diagnostic modalities. Our study contributes to the growing
body of work in this domain and offers a valuable reference for future
investigations into tongue-facial biomarkers in CAD.

The model developed in this study demonstrates significant potential
for widespread application. By simply capturing tongue and facial
images, it enables rapid screening of CAD patients in a non-invasive,
convenient, and cost-effective manner. These advantages make it
particularly suitable for large-scale community-based screening, carrying
important public health implications. In the future, we plan to further
optimize and validate this model in community populations to promote
its broad application in extensive CAD screening programs. Additionally,
the model holds promise as a user-friendly tool for home-based health
monitoring. When integrated with mobile devices, this non-invasive
approach allows individuals to conveniently monitor their cardiovascular
health at home, facilitating early detection of potential issues and
reducing the risk of delayed diagnosis. Although promising, this study
has several limitations. The dataset is relatively small and limited to
Chinese participants, whose skin types are predominantly Fitzpatrick
III-1V; resulting in low pigment variation and minimal risk of skin tone-
related bias. Nevertheless, the model requires validation in larger and
more diverse populations with broader skin tone representation. Due to
the lack of detailed clinical data, subgroup analyses were restricted to
three major cardiovascular risk factors: hypertension, diabetes, and sex.
Furthermore, the case-control design may overestimate real-world
performance, necessitating prospective evaluation in low-prevalence
settings. Because image acquisition requires active participant
cooperation, severe cases such as acute myocardial infarction or coronary
stenosis greater than or equal to 70 percent were underrepresented in the
sample. Although the imaging device incorporates hardware-level color
calibration, differences in lighting conditions and equipment
configurations across sites may still affect image consistency. Future
multicenter deployments will incorporate gray cards or standard color
charts to further enhance imaging consistency.

5 Conclusion

This study proposes a dual-branch multimodal fusion model
incorporating a feature-wise gating mechanism for non-invasive and
intelligent diagnosis of CAD based on multidimensional tongue and
facial image features. The approach integrates deep semantic features
extracted by the MDFA-Swin network with interpretable traditional
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color and texture features, effectively capturing multi-scale
information associated with CAD from tongue and facial images. The
model demonstrated strong generalizability and practical applicability
on an independent external test set. SHAP-based interpretability
analysis further revealed the decision pathways through which
tongue and facial features contributed to the model’s predictions. This
study provides quantitative evidence supporting the diagnostic value
of tongue and facial signs in CAD. Its non-invasive, low-cost, and
efficient nature offers a novel approach for community-based
screening and home-based health monitoring of CAD.
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