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Background: Systematic literature reviews (SLRs) are critical to health research 
and decision-making but are often time- and labor-intensive. Artificial 
intelligence (AI) tools like large language models (LLMs) provide a promising 
way to automate these processes.
Methods: We conducted a systematic literature review on the cost-effectiveness 
of adult pneumococcal vaccination and prospectively assessed the performance 
of our AI-assisted review platform, Intelligent Systematic Literature Review 
(ISLaR) 2.0, compared to expert researchers.
Results: ISLaR demonstrated high accuracy (0.87 full-text screening; 0.86 
data extraction), precision (0.88; 0.86), and sensitivity (0.91; 0.98) in article 
screening and data extraction tasks, but lower specificity (0.79; 0.42), especially 
when extracting data from tables. The platform reduced abstract and full-text 
screening time by over 90% compared to human reviewers.
Conclusion: The platform has strong potential to reduce reviewer workload but 
requires further development.
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1 Introduction

Systematic literature reviews (SLRs) are recognized as the most rigorous form of evidence 
review and synthesis (Aromataris and Pearson, 2014; Clarke and Chalmers, 2018; Grant and 
Booth, 2009; Munn et al., 2018). In the health economics field, SLRs on the relative cost-
effectiveness of different interventions are increasingly used in health care system decision-
making (Anderson, 2010; Jacobsen et al., 2020; Luhnen et al., 2018; Mandrik et al., 2021). 
However, SLRs require substantial investment of time and resources (Allen and Olkin, 1999; 
Borah et al., 2017; Bullers et al., 2018; Michelson and Reuter, 2019; Shemilt et al., 2016). Best-
practice guidelines strongly recommend that SLR tasks be independently executed by at least 
2 expert reviewers, which reduces the error rate and improves quality but also increases the 
overall workload (Higgins et al., 2024; Gartlehner et al., 2020; Page et al., 2021; Shemilt et al., 
2016). These time- and labor-intensive processes can also introduce reviewer errors (Clark 
et al., 2021; Wang et al., 2020), as well as long gaps between SLR initiation and final publication 
(Beller et al., 2013; Borah et al., 2017). Long production times can in turn affect the longevity 
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of the findings: an estimated 7% of SLRs are already out of date 
(defined as availability of new findings that would affect the 
conclusions of the synthesis) at the time of publication (Shojania et al., 
2007). “Living SLRs,” a dynamic review format that allows ongoing 
online updates, have been proposed as a solution to this problem 
(Elliott et  al., 2014; Wijkstra et  al., 2021), but still require labor-
intensive ongoing screening of newly published articles.

Many of the tasks involved in SLRs are amenable to automation 
using artificial intelligence (AI) (Beller et al., 2018; Bolaños et al., 
2024; Michelson and Reuter, 2019; Shemilt et al., 2016; Tsertsvadze 
et  al., 2015). Until recently, most work in this field used natural 
language processing (NLP) and similar text mining approaches 
(Blaizot et al., 2022; Bolaños et al., 2024; Cowie et al., 2022; de la 
Torre-López et  al., 2023; van Dinter et  al., 2021). Within the last 
2 years, however, there has been extensive interest in the use of 
generative large language models (LLMs), which are more versatile 
and accessible than previous generations of AI tools (Lu et al., 2024; 
O’Connor et al., 2024; Sallam, 2023). Applications of LLMs in SLRs 
include construction of literature search terms (Alshami et al., 2023; 
Wang Z. et al., 2025; Wang et al., 2023), article screening (Akinseloyin 
et al., 2024; Alshami et al., 2023; Guo et al., 2024; Khraisha et al., 2024; 
Kohandel Gargari et al., 2024; Landschaft et al., 2024; Li et al., 2024; 
Matsui et al., 2024; Syriani et al., 2023; Tran et al., 2024; Wang Z. et al., 
2025; Wang S. et al., 2024), data extraction (Alshami et al., 2023; Dunn 
et al., 2022; Gartlehner et al., 2024; Ghosh et al., 2024; Khraisha et al., 
2024; Landschaft et al., 2024; Wang Z. et al., 2025), and article content 
synthesis/analysis (Alshami et al., 2023; Wang Z. et al., 2025).

Effective use of LLMs requires careful construction and 
iteration of the text “prompts” used to instruct the model. 
We recently developed a user-friendly LLM-based SLR platform, 
Intelligent Systematic Literature Review (ISLaR) 2.0, for semi-
autonomous “human-in-the-loop” abstract and full-text article 
screening and data extraction (Wang et al., 2025a). Briefly, ISLaR 
2.0 is based on ChatGPT4-Turbo (OpenAI, 2024) and incorporates 
an interface designed to help researchers who are experts in the 
topic of the SLR develop an effective LLM prompt by entering 
information such as the purpose of the SLR, article inclusion/
exclusion criteria, and examples of relevant text and data elements 
(Wang et al., 2025a; Wang et al., 2025b). The platform automates the 
entire SLR process, from retrieving eligible articles in PubMed and 
Embrace to screening abstracts and full texts and extracting data 
from included studies. A key feature of ISLaR 2.0 is its human-in-
the-loop design, which allows researchers to review screening 
results and iteratively refine their criteria as needed. Unlike many 
existing LLM-based tools that focus on a single task (e.g., search or 
extraction), ISLaR 2.0 integrates the full SLR workflow into one 
platform. We have performed initial tests of ISLaR’s performance 
by comparing its article selection and data extraction outputs to 
those of expert human reviewers in simulated SLR tasks (Wang 
et  al., 2025a; Wang et  al., 2025b). In these initial studies, our 
platform performed comparably to other published automated tools 
in terms of accuracy (abstract screening, 73.8–86.0%; full-text 
article screening, 78.3–85.7%; extraction of data from abstracts, 
74.8–96.3%), and better than most other tools in terms of 
consistently high sensitivity (90.1–95.7%, 75.0–91.7%, and 90.3–
97.6%, respectively) (Wang et al., 2025b).

This study aimed to prospectively assess the performance of 
ISLaR 2.0 compared to expert human reviewers in a full SLR, to 

identify areas where ISLaR can supplement human reviewers as well 
as those where human reviewers still outperform AI. In contrast to 
our previous work, which involved screening a subset of curated 
articles and extracting a limited number of data elements from study 
abstracts, this evaluation involved screening the full set of articles 
retrieved by the literature search and comprehensive extraction of 
relevant data from the full texts of included studies. The SLR’s research 
question focused on the cost-effectiveness of pneumococcal 
vaccination to prevent pneumococcal disease (PD) among adult’s 
≥18 years of age, and specifically on studies that provide direct 
comparisons of vaccination costs and benefits. A cost-effectiveness 
analysis was chosen for this case study as SLRs of this kind involve 
unique challenges, including heterogeneity in study design, 
interventions, populations, and settings (Anderson, 2010; Husereau 
et  al., 2022; Jacobsen et  al., 2020; Mandrik et  al., 2021). Our 
prospective case-study SLR thus required extraction of complex 
comparative outcomes in the correct context and permitted 
comprehensive comparison of AI and human reviewer decisions, 
providing a rigorous test of our platform’s performance and an 
important contribution to the literature on the automation of SLRs in 
the field of health economics.

2 Materials and methods

2.1 Search strategy, study selection criteria, 
and data extraction fields

The SLR was conducted in accordance with the Preferred 
Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 
2020 and was pre-registered with the International Prospective 
Register of Systematic Reviews (PROSPERO; registration number 
CRD42024562351) (Cassell et al., 2024).

Search strings were manually developed for the PubMed and 
EMBASE literature databases to identify studies potentially related to 
the cost-effectiveness of pneumococcal vaccination among adult’s 
≥18 years of age (Supplementary Table 1). Study selection was then 
based on the Population, Intervention, Comparison, Outcome, Time, 
and Study design (PICOTS) criteria listed in Table 1. We included 
peer-reviewed studies published in English between January 1, 2011 
and January 1, 2023 that conducted cost-effectiveness analyses for any 
pneumococcal vaccine, compared to no vaccination or any standard-
of-care vaccination, among adult’s ≥18 years of age. We  excluded 
studies that reported only clinical outcomes with no cost component, 
or that reported cost–benefit, benefit ratio, or net benefit measures as 
the only health economic outcomes. Randomized controlled trials 
were also excluded, as were reviews, posters, published conference 
abstracts, preprints, and other non-primary and/or non-peer-
reviewed publication types. Different criteria were applied at the 
abstract and full-text screening stages to emphasize sensitivity at the 
abstract screening stage and then apply more stringent exclusion 
criteria to the full texts. This approach is consistent with guidelines 
created by the Professional Society for Health Economics and 
Outcomes Research (ISPOR) for the conduct of SLRs that focus on 
cost-effectiveness outcomes (Mandrik et al., 2021; Wang et al., 2025a; 
Wang et al., 2025b). For example, the age-based population exclusion 
criterion applied at the abstract stage was designed to discard studies 
that included only populations <18 years of age; at the full-text 
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TABLE 1  Study inclusion and exclusion criteria.

Variable Inclusion criteria Screening stage Exclusion criteria Screening stage

Population Human population eligible for pneumococcal vaccine (vaccine to 

prevent infection due to Streptococcus pneumoniae)

Abstract and full text Studies on non-human subjects (such as mice) Abstract and full text

Study only includes adults or elderly 18 years and older Full text Study only includes infants, children or adolescent populations, 

ages, 0–17 years

Abstract

Study includes infants, children, and adolescents, 0–17 years Full text

Intervention Any vaccine to prevent streptococcus pneumoniae (such as PCV, PPSV, 

pneumococcal conjugate vaccine, or pneumococcal polysaccharide 

vaccine)

Abstract and full text NA NA

Comparison Any vaccine comparison (for example, vaccine to unvaccinated, PCV 

vaccinated to PPSV23 vaccinated)

Full text NA NA

Outcome Studies with full healthcare cost-effectiveness analysis (CEA) which can 

include outcomes such as:

	•	 Incremental cost-effectiveness ratios (ICER)

	•	 Medical costs (direct or indirect)

	•	 Indirect costs (societal, resource use, productivity)

	•	 Quality-adjusted life year (QALY), Life-year (LY)

	•	 Cases and deaths averted by intervention

Full text If the only outcomes presented are cost–benefit, benefit ratio or 

net benefit measures

Full text

Studies that only report clinical efficacy, safety, vaccine efficacy, 

vaccine effectiveness

Full text

Time Publication date between January 1, 2011 and January 1, 2023 Abstract and full text NA NA

Study design Cost-effectiveness analyses (for example, Markov model analyses) Full text Randomized control trials and clinical trials Abstract and full text

Quality-of-life studies using generic and disease-specific measures with 

cost components

Full text Reviews (such as systematic literature reviews, targeted literature 

reviews, narrative literature reviews, and meta-analysis)

Abstract and full text

Vaccine effectiveness, vaccine impact, vaccine efficacy, and case–

control studies

Full text

Budget-impact OR cost–benefit analyses (for example, studies that 

assign a dollar value to health outcomes)

Full text

Articles reporting cost estimates that are not based on data (e.g., 

commentaries referencing cost burden)

Full text

Posters, preprints, consensus reports, editorials, commentaries, 

case studies, news articles

Full text

Other English language Abstract and full text NA NA

NA, not applicable (no exclusion criteria specified for this variable).
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screening stage, we discarded studies that included any population 
<18 years of age.

The selection of relevant data elements for extraction was guided 
by the Consolidated Health Economic Evaluation Reporting Standards 
(CHEERS) 2022 statement (Husereau et al., 2022). The data extracted 
from full-text articles included study design parameters and outcomes, 
categorized into 23 text-based fields (i.e., data expected to be found in 
the text of the publication, such as model type and study limitations) 
and 18 table-based fields [i.e., data expected to be found in the study’s 
tables, such as quality-adjusted life years (QALYs) and incremental 
cost-effectiveness ratios (ICERs); Supplementary Table 2]. Extracted 
data were classified as follows:

	•	 Element: data field of interest, such as “model type”, “number of 
deaths”, or “conclusion”.

	•	 Value: exact value of each element (e.g., “1 year” for the “model 
cycle” element).

	•	 Study cohort: study subpopulation specific to a given element and 
its value (e.g., individuals receiving study vaccine versus 
individuals receiving comparator vaccine, or adults <65 years of 
age versus adults ≥65 years of age; left blank for elements and 
values that applied to the entire study, such as model type).

For text-based values, we also extracted the corresponding text 
spans from full-text articles; i.e., direct quotations of the section of text 
within the full-text publication from which each element and/or its 
value was identified. This quoted text span was used to identify 
potential explanations for errors made by ISLaR. Text spans were not 
available for data extracted by ISLaR from study tables; any 
discrepancies in table-based data elements were therefore resolved 
manually by the human reviewer team.

No assessment of quality or bias, meta-analysis, or other detailed 
content analysis of the included studies was performed.

2.2 ISLaR prompt development

ISLaR 2.0 is an LLM-based tool designed by IMO Health, 
Rosemont, IL, US, in collaboration with the study’s authors, to 
conduct SLRs (Wang et al., 2025a). The tool is based on ChatGPT4-
Turbo (GPT-4-turbo-2024-04-09) (OpenAI, 2024).

The text prompt included the full set of instructions for 
conducting the SLR, and a zero-shot strategy was employed 
(Supplementary Table 3). The prompt was constructed based on 
information on the SLR’s study PICOTS (Population, Intervention, 
Comparator, Outcome, Time, Study design) inclusion and exclusion 
criteria and data extraction framework, provided by authors who are 
experts in PD and pneumococcal vaccination via ISLaR’s semi-
structured user interface (Table  1). The prompt also included 
background information such as definitions of pneumococcal 
vaccination, relevant study types, PD outcomes, vaccines, and other 
study variables. In addition, the subject matter expert authors 
provided examples of study text spans for each data field of interest, 
which were included to improve ISLaR’s ability to recognize and 
extract relevant data (Supplementary Table 2). The prompt based on 
this information was developed iteratively (2 versions) using a 
human-in-the-loop approach. After initial assessment of the 

screening decisions made by ISLaR using the first version of the 
prompt, 2 modifications were made. The first version of the 
population inclusion/exclusion criterion prompt stated “Exclude 
studies if they include infants, children, or adolescent populations, 
ages 0–17 years”; however, ISLaR failed to accurately apply this 
criterion, and so the prompt was updated in the second version to 
“Make sure to exclude the article if it involves any infants or children 
or adolescents or any participants below 18 years of age”. To avoid 
the conflations of non-Anglophone study locations with 
non-English-language publications that we observed with the first 
version of the prompt, the English language criterion was also 
updated, from “English language only” to “Studies in English 
language only”; in addition, the country acronyms that were 
originally included in the background knowledge prompt were 
removed, as they may have contributed to some of these errors. All 
study results reported below reflect the use of the second and final 
iteration of the prompt.

2.3 Study selection

The human reviewer team searched PubMed and EMBASE 
manually and entered the titles and abstracts of all studies into 
Microsoft Excel. A single reviewer identified and removed 
duplicates based on PubMed ID (PMID), or title and first author 
for studies not indexed in PubMed. Three reviewers then 
independently screened the abstracts of the remaining unique 
studies, applying the subset of PICOTS criteria that were assessed 
during the abstract screening stage and recording all reasons for 
exclusion. Any discrepancies between reviewers were resolved 
following independent review by an additional researcher. The full 
texts of the studies that passed the abstract screening (excluding 
any supplementary materials, which could not be  assessed by 
ISLaR) were then independently screened by two reviewers using 
the subset of PICOTS criteria that were assessed at this stage; 
again, reasons for study exclusion were recorded. Any 
discrepancies between these reviewers were resolved following 
secondary review by two independent researchers. All study team 
members manually recorded the time taken to complete each 
screening task.

ISLaR searched PubMed using public application programming 
interfaces (APIs)—specifically, “E-utilities” for the abstract search and 
PubMed Central APIs for full text retrieval (National Library of 
Medicine National Center for Biotechnology Information, n.d.)—and 
EMBASE using the same standard search interface that was used by 
the human reviewers. The results were reduplicated based on PMID 
when available, or digital object identifier (DOI) for articles without a 
PMID. At the abstract screening stage, ISLaR assessed the study’s title 
and abstract. At the full-text screening and data extraction stages, 
ISLaR assessed the entire text of the published study, excluding any 
supplementary material. For studies where the full text was not 
available on the journal’s website, Amazon Textract was used to 
convert manually downloaded study PDF files to text (Amazon Web 
Services, Inc, n.d.). At both screening stages, ISLaR categorized each 
study as relevant (included) or irrelevant (excluded) and recorded the 
reason(s) for exclusion of each study. For this study, ISLaR was run 
fully autonomously, without any human-in-the-loop intervention.
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2.4 Data extraction

Four human reviewers independently extracted relevant data 
from each remaining study into a standard Excel template containing 
the data fields listed in Supplementary Table 2. Any discrepancies were 
resolved following secondary review by an additional researcher. For 
each data element of each included study (e.g., number of deaths due 
to a given PD), the reviewers extracted the applicable study cohort 
(e.g., subgroup of the overall study cohort stratified by age or other 
characteristic, such as “adults 18–64 years of age”) and value (e.g., 
“1,516 deaths”), and, if the data were extracted from text rather than 
a table, the relevant text span from the study (e.g., “1,516 deaths due 
to PD were recorded among adults 18–64 years of age”).

ISLaR also extracted all available data elements and their 
corresponding value and study cohort, as well as the applicable text 
span from the study. Missing values were left blank by both the human 
reviewer team and ISLaR. All extracted data and metadata (e.g., 
reasons for study exclusion) were exported from ISLaR’s user interface 
into Excel for analysis. As with screening, data extraction was 
performed entirely by ISLaR. A third human reviewer then compared 
the values extracted by ISLaR and by the human reviewers with the 
values reported in the full texts and made the final decision on 
whether each value was correct.

2.5 Comparative analysis

Study selection performance was assessed separately for the abstract 
screening and full-text screening stages of the process, with the human 
reviewers’ selections considered the gold standard. Human reviewers 
included subject matter experts in the field of pneumococcal vaccine 
epidemiology and economic evaluation. For analysis of screening results, 
each study was categorized as a true positive (TP; study included by 
human reviewers and ISLaR), true negative (TN; study excluded by 
human reviewers and ISLaR), false positive (FP; study excluded by 
human reviewers but included by ISLaR), or false negative (FN; study 
included by human reviewers but excluded by ISLaR). For the assessment 
of ISLaR’s data extraction performance, we randomly selected 21 studies 
(33% of the original TN set of studies, before manual refinement) that 
were classified as TPs at the full-text screening stage. The data extracted 
by ISLaR from these 21 studies were compared to the values present in 
the full texts of the published studies, which were considered the gold 
standard. Each ISLaR-extracted value was assessed as a TP (ISLaR 
extracted the correct value from the text), TN (ISLaR output “not 
applicable” (“NA”) or blank when a value was not present in the text), FP 
(ISLaR provided an incorrect value, or provided any value when a value 
was not present in the text), or FN (ISLaR output “NA” or left the field 
blank for a value that was present in the text).

For each study selection and data extraction performance 
comparison, the TP/TN/FP/FN categories were used to assess ISLaR’s 
performance via the following metrics:

	•	 Accuracy: ( ) ( )+ + + +TP TN / TP FP TN FN
	•	 Precision/positive predictive value (PPV): ( )+TP / TP FP
	•	 Recall/sensitivity: ( )+TP / TP FN
	•	 Specificity: ( )+TN / TN FP
	•	 F1 value: ( ) ( )× × +2 precision recall / precision recall
	•	 F2 value: ( ) ( )× × × +5 precision recall / 4 precision recall

	•	 Matthew’s correlation coefficient 

(MCC): 
( ) ( ) ( ) ( )

× − ×

+ × + × + × +

TP TN FP FN

TP FP TP FN TN FP TN FN

	•	 Work saved over sampling at 95% recall 

(WSS@95%): +
−0.05TN FN

N

The nature of each discrepancy was also noted (for example, 
which of the PICOTS criteria was/were misclassified for each FN or 
FP study).

ISLaR-extracted data were also compared to the corresponding 
human-extracted data to identify examples of both ISLaR-specific 
and human-specific errors compared to the gold-standard full 
texts, but no performance metrics were calculated for this 
comparison. Inter-rater agreement of abstract and full text 
screening was assessed through Cohen’s Kappa 
(Supplementary Table 4).

3 Results

3.1 Study selection

The database search returned 182 studies: 145 from PubMed and 
37 from EMBASE (Supplementary Table 1). Both the human reviewers 
and ISLaR correctly identified and removed 14 duplicates and 8 
studies published outside the desired date range, retaining a total of 
160 studies for abstract screening (Figure 1). All studies, and their 
classifications at the abstract and full-text screening stages, are listed 
in Supplementary Table 5.

3.1.1 Abstract screening
The human reviewers included 119 study abstracts and excluded 

41, while ISLaR included 124 study abstracts [107 true positives (TPs) 
and 17 false positives (FPs), compared to the human reviewers] and 
excluded 36 [24 true negatives (TNs) and 12 false negatives (FNs); 
Figure  1; Table  2]. ISLaR thus had high recall/sensitivity (0.90), 
accuracy (0.82), precision/positive predictive value (PPV; 0.86), and 
F1 value (0.88) for abstract screening, but lower specificity (0.59; 
Table  2). There were 22 discrepancies between the decisions of 
different human reviewers that had to be resolved via independent 
review by an additional researcher; in these cases, the independent 
reviewer’s decision was considered correct moving forward. The 
studies for which inter-reviewer discrepancies occurred included 4/17 
FP and 2/12 FN abstracts [i.e., 6/29 (20.7%) of all abstract screening 
errors made by ISLaR].

In the review conducted by ISLaR, the primary reasons for the 
false exclusion of studies are outlined in Table  3. At the abstract 
screening stage, five studies were erroneously identified as randomized 
controlled trials (RCTs), either due to ISLaR inferring an incorrect 
definition of an RCT, or confusion between the design of the study in 
question and a mention of a separate RCT publication within the 
background section of the abstract. Additionally, we observed two 
cases where English-language study abstracts were incorrectly 
identified as non-English language (due to non-Anglophone study 
location), despite re-wording the language criterion used in the final 
version of the prompt to attempt to avoid this issue. Among 12 FN 
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TABLE 2  ISLaR performance metrics.

Stage Records Performance metrics

TP TN FP FN Accuracy Precision/
PPV

Specificity Recall/
sensitivity

F1 F2 MCC WSS 
@95% 
recall

Abstract screening 107 24 17 12 0.82 0.86 0.59 0.90 0.88 0.89 0.51 0.18

Full-text screening 59 31 8 6 0.87 0.88 0.79 0.91 0.89 0.90 0.71 0.31

Full-text 

data 

extractiona

Study 

text

236 27 37 6 0.86 0.86 0.42 0.98 0.92 0.95 0.52 0.06

Tables 201 44 132 117 0.50 0.60 0.25 0.63 0.62 0.62 −0.12 0.28

ISLaR, intelligent systematic literature review; FN, false negative; FP, false positive; PPV, positive predictive value; TN, true negative; TP, true positive; MCC, Matthew’s correlation coefficient; 
WSS@95%, work saved over sampling at 95% recall. ISLaR’s performance was compared to that of the human reviewer team unless otherwise stated.
aCompared to the full texts of TN studies after full-text screening.
ICER, incremental cost-effectiveness ratio; LY, life year; QALY, quality-adjusted life year; RCT, randomized controlled trial. More than one incorrect reason for exclusion was given for some 
studies.

abstracts, eight had a secondary exclusionary reason that was either 
clearly wrong or a misinterpretation of the Population, Intervention, 
Comparison, Outcome, Time, and Study design (PICOTS) criteria. 
Examples of secondary reasons for exclusion provided for FN abstracts 
included classification of case–control studies and cost-effectiveness 
analyses as RCTs, classification of primary data analyses as reviews, 
failure to recognize that adult’s ≥60 years of age were a population 
eligible for pneumococcal vaccination, and failure to recognize that a 
study was published in the English language. Incorrect secondary 
exclusion criteria were also identified for 10/24 TN abstracts.

ISLaR’s FP abstract selections also included errors in recognizing 
English-language studies (potentially due to some non-English-language 

studies having an English-language version of the abstract), as well as 
posters, preprints, and non-primary studies such as editorials, 
commentaries, and news articles that were correctly excluded by the 
human reviewers. Human reviewers also excluded nine abstracts that did 
not assess cost-effectiveness outcomes in an adult population, but that 
ISLaR erroneously included; in six cases the human reviewers’ exclusion 
decision was based on information that was also available to ISLaR (for 
example, use of the words “in children” in the study title), whereas in the 
other cases the decision was based on expert knowledge that had not 
been included in the ISLaR prompt (for example, knowledge that the 
study’s intervention vaccine is only licensed for use in 
pediatric populations).

FIGURE 1

Study selection results. ISLaR, intelligent systematic literature review.
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3.1.2 Full-text screening
At the full-text review stage, the human reviewers excluded 49 

additional studies, retaining 70 for data extraction and detailed review 
(Figure 1). In contrast, ISLaR was unable to assess the full text of five 
articles and excluded an additional 52 studies following full-text 
review. When comparing the subset of studies that were assessed by 
both the human reviewer team and ISLaR at the full-text stage, ISLaR 
excluded 37 studies (31 TNs and six FNs compared to the human 

reviewer gold standard) and retained 67 (59 TPs and 8 FPs) for data 
extraction (Table 2). ISLaR’s recall (0.91), accuracy (0.87), precision 
(0.88), and F1 value (0.89) at the full-text screening stage were thus 
slightly higher than the corresponding values from the abstract 
screening phase. As expected due to the use of more stringent 
inclusion and exclusion criteria for the full-text screen, there was a 
much greater improvement in the specificity score: from 0.59 at the 
abstract screening phase to 0.79 at the full-text screening phase. There 

TABLE 3  Qualitative study exclusion errors made by ISLaR.

Reason given 
for exclusion

Number 
of studies

Example rationale(s) provided by ISLaR Most likely explanation for error

Abstract screening stage

Is a clinical trial 5 “The study is a randomized controlled trial, which is listed in the 

exclusion criteria. Therefore, it is not eligible” Smith et al. (2017)

An RCT was mentioned in the first sentence of the 

abstract of a non-RCT study

“The study also appears to be a cost-effectiveness analysis, which could 

be considered a type of clinical trial, another exclusion criterion” Pugh 

et al. (2020)

Incorrect definition of a clinical trial was used

Not in English 

language, or language 

not specified

2 “Additionally, the study was conducted in Brazil, not in an English-

speaking country, which is another exclusion criterion” de Soarez et al. 

(2015)

Confusion between Anglophone study location and 

English language study

Human population 

eligible for 

vaccination

2 “Additionally, the study does not specify that it is conducted on a human 

population eligible for pneumococcal vaccine” Wateska et al. (2018)

Study population was eligible for pneumococcal 

vaccination based on comorbidities, but this eligibility 

was not explicitly stated in the study abstract

Study of children 

only

1 “The study focuses on pediatric population which is excluded as per the 

criteria” Eythorsson et al. (2021)

Study evaluated the effects of pediatric pneumococcal 

vaccination on all age groups, including adults, but 

only pediatric age groups were mentioned in the 

abstract

Full-text screening stage

Does not include full 

health cost-

effectiveness analysis 

outcomes

3 “The article is excluded because it does not meet the inclusion criteria 

for outcomes. The article focuses on value of information analysis and 

does not provide a full healthcare cost-effectiveness analysis including 

outcomes such as ICER, medical costs, indirect costs, QALY, LY, cases 

and deaths averted by intervention as specified in the inclusion criteria” 

Wateska et al. (2021)

The study did report QALY values, but not the full set 

of all possible outcomes for a cost-effectiveness 

analysis

“The article is excluded because it focuses on budget-impact analysis, 

which is specifically mentioned in the exclusion criteria under “Other” 

as studies that are budget-impact or cost–benefit analyses are to 

be excluded” Liguori et al. (2014)

Two studies included by the human reviewers were 

excluded by ISLaR due to being a budget-impact 

analysis. Following data extraction by the human 

reviewers, it was decided that these studies should 

indeed have been excluded during full-text screening

Age group 2 “The Australian infant pneumococcal vaccination program is 

mentioned, which involves participants under 18 years of age, thus not 

meeting the population criteria specified in the exclusion criteria” Chen 

et al. (2018)

ISLaR appears to have confused the intervention 

(pediatric vaccination) with the study population 

(adults protected via herd immunity from pediatric 

vaccination)

Does not include 

relevant disease 

outcomes

1 “The article is excluded because it focuses on the prevention of acute 

coronary syndrome (ACS) using the pneumococcal polysaccharide 

vaccine (PPV), which is not directly related to the prevention or 

treatment of pneumococcal disease conditions listed in the inclusion 

criteria. The outcomes discussed in the article (cost-effectiveness in 

preventing ACS) do not align with the outcomes required by the 

inclusion criteria, which focus on pneumococcal disease-specific 

outcomes such as healthcare cost-effectiveness analysis related to 

pneumococcal disease” Ren et al. (2021)

The outcomes criteria input into ISLaR did not 

exclude any specific diagnoses, but the prompt defined 

a list of possible outcomes that did not include ACS. 

ISLaR likely conflated this list of possible outcomes 

with strict inclusion criteria

ICER, incremental cost-effectiveness ratio; LY, life year; QALY, quality-adjusted life year; RCT, randomized controlled trial. More than one incorrect reason for exclusion was given for some 
studies.
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were 16 discrepancies between the decisions of different human 
reviewers; the studies for which these discrepancies occurred included 
3/8 FP and 2/6 FN full-text studies [i.e., 5/14 (35.7%) of the full-text 
screening errors made by ISLaR].

Two full-text studies were erroneously excluded by ISLaR due to 
inaccurate classification of the study population’s age group (for 
example, when an infant vaccination program was mentioned in a 
study that included an assessment of the impact of pediatric 
vaccination on adults via herd immunity) and one because of 
inaccurate classification of the study’s outcomes (Table 3). In addition, 
three FN studies were excluded due to lack of relevant cost-
effectiveness analysis outcomes. After data extraction the human 
reviewer team concluded that two of these three studies were budget-
impact analyses that should indeed have been excluded during full-
text screening (i.e., these studies were actually TNs). The ISLaR 
accuracy and recall metrics for full-text screening listed in Table 2 are 
thus slight underestimates.

As an informal sensitivity analysis, we prompted ISLaR to assess 
the full texts of all studies it had excluded at the abstract screening 
phase. Only 3/36 (8.3%) of these excluded studies were considered 
relevant to the SLR when reassessed using the full text.

3.1.3 Human–ISLaR comparison
Cohen’s kappa values comparing human–human and human–

ISLaR screening results are shown in Supplementary Table 4. At the 
abstract screening stage, agreement between human reviewers was 
moderate (κ = 0.65) and higher than the agreement between ISLaR 
and the composite human decision (κ = 0.50). At the full-text 
screening stage, the human–human agreement (κ = 0.75) was similar 
to the human–ISLaR agreement (κ = 0.73). It should be noted that the 
human–ISLaR comparison was made against the composite human 
decision, in which discrepancies between human reviewers were 
resolved by a third reviewer.

3.2 Data extraction

A total of 59 TP full-text studies were included by both the human 
review team and ISLaR, and thus proceeded to the data extraction 
phase. The data extracted from 21 randomly selected studies from 
among this group were used to assess ISLaR’s performance. Compared 
to the full texts of the respective studies, ISLaR had high accuracy 
(0.86), precision/PPV (0.86), recall/sensitivity (0.98), and F1 value 
(0.92) when extracting data elements from study texts, but relatively 
low specificity (0.42; Table 2). Most FPs came from misattributing cost 
denomination years, where ISLaR pulled a year mentioned elsewhere 
in the text and incorrectly classified it as the monetary denomination 
year. For these text-based data extractions, ISLaR extracted the correct 
value 87.8% of the time when compared to the gold-standard values 
present in the studies’ full texts. However, it extracted the correct value 
98.4% of the time compared to the values initially extracted by the 
human reviewers, due to errors and omissions in the human reviewers’ 
data extractions.

The model’s performance was worse across all metrics when 
extracting data from study tables rather than study texts (Table 2); 
overall, ISLaR extracted the correct data from Tables 48.3% of the time 
compared to the gold-standard values present in the studies’ full texts 
and 63.9% of the time compared to the human reviewers. Consistent 

with these results, ISLaR’s F2 and MCC values were high for text-
based extractions (F2 = 0.95; MCC = 0.52), but much lower for table-
based extractions (F2 = 0.62; MCC = −0.12). For table extractions, 
FPs generally reflected ISLaR extracting a value from the wrong cell 
of the relevant table. For example, ISLaR had difficulties accurately 
extracting study cohort information from large tables, especially when 
table subheadings were used to differentiate between results from 
different subpopulations, such as age groups. ISLaR also often 
recorded “NA” for a value that was present in a table. In addition, there 
were several instances of ISLaR extracting data from a cost-
effectiveness Markov model input table, which in many studies 
includes similar variables and is formatted similarly to the outcomes 
data tables; this distinction was not included in ISLaR’s prompt. These 
extractions were only logged as errors in cases where ISLaR did not 
also provide an accurate data extraction from the study’s 
outcomes tables.

We identified several cases where ISLaR successfully extracted 
data elements that were not found or incorrectly extracted by one (but 
not both) human reviewer(s): ISLaR’s extracted value was correct for 
72.9% of all single-reviewer errors in extracting text-based data, and 
27.9% of all single-reviewer errors in extracting table-based data. For 
10 data values, ISLaR correctly extracted a data element that was not 
identified (i.e., was marked as “NA”) by any human reviewer.

3.3 Time to completion

Abstract screening was completed in a mean of 2.99 s per abstract 
by ISLaR (at low user volume times, i.e., outside standard office hours) 
and 66.12 s per abstract by the human reviewers. At the full-text 
screening stage, the average time taken for ISLaR to screen each full 
text was 7.49 s, compared to 80.86 s for the human reviewers. The 
average reduction in review time was approximately 63 s for abstracts 
and 73 s for full-text review.

4 Discussion

In this study, we prospectively compared the performance of an 
LLM-based platform to that of expert human reviewers in an SLR on 
the cost-effectiveness of adult pneumococcal vaccination. ISLaR 
screened articles with high sensitivity, accuracy, and precision, but 
lower specificity, in 4.5 and 9.3% of the time taken by human reviewers 
to screen abstracts and full texts, respectively. In data extraction tasks, 
ISLaR performed markedly better across all metrics when extracting 
data elements from study texts compared to study tables. For 20.7% of 
ISLaR’s abstract screening errors, 35.7% of its full-text screening 
errors, and 61.0% of its data extraction errors, there was a 
corresponding discrepancy between human reviewers.

ISLaR’s time savings and performance metrics were broadly in line 
with those reported in other studies of LLM-based SLR automation 
(Alshami et al., 2023; Dunn et al., 2022; Gartlehner et al., 2024; Guo 
et  al., 2024; Khraisha et  al., 2024; Kohandel Gargari et  al., 2024; 
Landschaft et al., 2024; Li et al., 2024; Matsui et al., 2024; Tran et al., 
2024; Wang Z. et al., 2025). The average time taken for the human 
reviewers to screen each study may not be representative of other 
SLRs, as cost-effectiveness analyses have a standardized outcome 
reporting format; ISLaR’s relative time savings may thus be greater for 
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other study types. The low specificity score in the abstract screening 
task was due to the intentional use of less stringent inclusion and 
exclusion criteria at this stage compared to the full-text screening 
stage; as expected, this score improved substantially in the full-text 
screening task. However, even in this second, more stringent screen, 
ISLaR’s specificity score was lower than its sensitivity score. This 
finding is consistent with several other studies (Alshami et al., 2023; 
Guo et al., 2024; Khraisha et al., 2024; Kohandel Gargari et al., 2024; 
Matsui et al., 2024; Tran et al., 2024), although a smaller number of 
studies have reported both high sensitivity and high specificity 
(Landschaft et al., 2024; Li et al., 2024). Since most SLRs ultimately 
exclude a substantial number of potentially eligible articles (Sampson 
et al., 2011; Wang et al., 2020; Yaffe et al., 2012), the use of highly 
sensitive LLM tools to rapidly screen out obviously irrelevant articles 
would in itself substantially reduce researchers’ workloads while 
ensuring that almost all relevant articles are retained for detailed 
manual review. ISLaR and other LLM-based tools could also find 
similar applications in first-pass screening of newly published articles 
that may be eligible for inclusion in living SLRs (Elliott et al., 2014; 
Wijkstra et al., 2021). Future avenues of development could include 
exploration of article selection formats other than the current binary 
include/exclude decision, such as numerical relevance scores and 
dynamic article ranking systems similar to those included in some 
NLP-based automation tools (Akinseloyin et al., 2024; Bolaños et al., 
2024; Oude Wolcherink et al., 2023; van Dijk et al., 2023).

While ISLaR performed well in extracting data from the texts of 
included studies, its performance in extracting data from tables was 
substantially weaker and, in our opinion, not yet adequate for use in 
SLRs. This pattern was reflected across multiple performance metrics. 
For example, F2 and MCC values were high for text-based extractions 
but dropped significantly for table-based extractions. Further, ISLaR’s 
table data extraction errors required additional manual effort to 
understand and resolve compared to its text data extraction errors, 
due to frequent occurrences of missing contextual information (such 
as study cohort), formatting errors in the extracted data, and 
references to the wrong table number in the data extraction notes. 
Wang Z. et  al. (2025) reported a potentially related phenomenon 
whereby their LLM-based tool performed best at accurately extracting 
study design variables (which would be expected to occur in study 
texts), and worst at extracting outcomes and other numerical data 
(which would be more likely to appear in study tables). It would thus 
be advisable to maintain a human-in-the-loop model at least until the 
performance of LLMs on data extraction tasks improves. Future 
studies should assess the additional reviewer time needed to correct 
mistakes introduced by ISLaR or other LLMs in human-in-the-loop 
models. Other data extraction errors could potentially be mitigated by 
fine-tuning ISLaR’s underlying LLM to improve its performance on 
biomedical texts, or using a different LLM that has already been 
optimized for this purpose (Landschaft et al., 2024; Luo et al., 2024; 
Robinson et al., 2023; Wu et al., 2024). Prompt development is also a 
critical aspect of optimizing LLM performance, as the clarity and 
consistency of user-provided inclusion and exclusion criteria strongly 
influence system performance and the risk of bias.

Despite the issues with data extraction from tables, we observed 
several cases where ISLaR was able to correctly extract data that were 
marked as not present by one or more human reviewers. These human 
errors were likely due to reviewer fatigue, highlighting a potential 
benefit of automation in terms of better reproducibility and lower risk 

of bias (Alshami et al., 2023; Guo et al., 2024; Matsui et al., 2024). In 
particular, ISLaR’s ability to identify correct values that human 
reviewers missed highlights its notable potential to complement 
human effort and reduce the impact of fatigue or oversight. Even 
modest reductions in fatigue-related mistakes could meaningfully 
improve the consistency and reliability of SLR outputs, especially for 
tasks that require sustained attention to repetitive details. However, 
the reproducibility of LLMs can sometimes be affected by changes in 
the underlying model that are not transparently documented and 
available to users, and which can change the outputs generated in 
response to the same prompt over time (Chen et al., 2023; Gartlehner 
et al., 2024; O’Connor et al., 2024; Syriani et al., 2023). Reproducibility 
was not formally assessed in the current study, but we note that when 
asked to reassess its full-text article exclusion decisions, ISLaR 
changed its response for 3 of 36 articles. Conducting all tasks for a 
given stage of an SLR in a single session, and/or replicating tasks to 
obtain a consensus, may help to mitigate these issues.

Although we have demonstrated the potential utility of ISLaR in 
rapidly performing SLR tasks to ease researcher workload, there are 
many challenges and barriers that must be addressed before AI tools 
can be routinely used in practice (Bolaños et al., 2024; de la Torre-
López et al., 2023; Doyal et al., 2023; O’Connor et al., 2019; van Altena 
et al., 2019). Researchers’ current lack of trust in the accuracy and 
quality of SLR automation tools has been identified as a major barrier 
to uptake, and transparency from the developers and users of these 
tools has been suggested as a means to overcome this challenge 
(Bolaños et al., 2024; de la Torre-López et al., 2023; Gates et al., 2019; 
O’Connor et al., 2019; van Altena et al., 2019). The ability of LLMs to 
document the rationale behind each screening and data extraction 
decision is a major advantage over earlier AI approaches, improving 
transparency and aiding in the interpretation of the models’ outputs, 
as well as informing the future development of models and prompts 
for better performance (Bolaños et al., 2024; de la Torre-López et al., 
2023). For example, the decision rationales provided by ISLaR 
highlight the platform’s difficulty in distinguishing certain study 
variables from background information; others have reported similar 
problems (Landschaft et al., 2024). However, some of ISLaR’s decision 
rationales—particularly secondary exclusion reasons for studies—
were more difficult to interpret. Future studies will explore the impact 
of limiting ISLaR’s rationale output to a single reason to improve 
interpretability and, ultimately, transparency. Additionally, further 
work should explore how the metrics calculated here compare to more 
classical ML baselines for SLRs.

Our work to make ISLaR’s decisions transparent to users also 
aligns with global efforts to update SLR best-practice guidelines to 
include advice on the use of automation tools. For example, the 2020 
update of the Preferred Reporting Items for Systematic reviews and 
Meta-Analyses (PRISMA) checklist now prompts SLR authors to 
document any automation tools used in article selection, data 
extraction, and risk of bias assessments, as well as the study inclusion 
and exclusion decisions made by these tools (Page et  al., 2021). 
Similarly, the Professional Society for Health Economics and 
Outcomes Research (ISPOR) Criteria for Cost (-Effectiveness) Review 
Outcomes (CiCERO) checklist and guidance document stress that any 
automation tools used in an SLR should be reported transparently 
(Mandrik et al., 2021). In its complementary efforts to advance the 
development of and uptake of AI tools for evidence synthesis, the 
International Collaboration for the Automation of Systematic Reviews 
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(ICASR) also emphasizes the importance of transparent reporting of 
performance metrics (Beller et al., 2018; O’Connor et al., 2024). More 
recently, ICASR has published guidance on the responsible use of AI 
in evidence synthesis (Responsible AI in Systematic Evidence 
synthesis, or RAISE), underscoring the need for transparency in 
reporting and the careful application of AI to ensure responsible use 
(Thomas et al., 2025).

4.1 Strengths and limitations

Our choice of case-study SLR was a major strength of the current 
analysis as it enabled us to perform a rigorous and comprehensive 
assessment of ISLaR’s performance in a prospective comparison to 
expert human researchers. This analysis included assessment of the 
reasons for ISLaR’s errors as well as areas of particular strength for 
both ISLaR and human reviewers, to improve transparency and 
inform the future development and use of the platform.

However, the current study has some known limitations. We used 
stringent search queries that returned relatively few articles for 
screening; ISLaR might perform differently if working from a broader 
search query that retrieves more ineligible studies. For example, 
ChatGPT-4 has been reported to have higher accuracy when screening 
more imbalanced datasets (i.e., groups of articles that included a 
higher proportion of irrelevant studies) (Khraisha et al., 2024). In 
addition, our data extraction process used only the main texts of 
included articles; future development should focus on allowing ISLaR 
to assess and extract data from supplementary materials, as well as 
gray literature, which may contain additional relevant information 
(Lawrence et al., 2014; Mandrik et al., 2021; Paez, 2017). Finally, the 
performance of ISLaR in the case-study SLR suggests that the platform 
is not yet ready for fully autonomous use and requires a “human-in-
the-loop” model. However, we have not yet been able to identify a 
means of highlighting which of ISLaR’s decisions are most likely to 
be incorrect and to require additional scrutiny by a human reviewer. 
This is an important area for improvement.

In conclusion, our analysis of ISLaR’s performance in a 
prospective SLR demonstrates that the platform has potential to 
reduce the workload involved in an SLR, particularly during the 
article screening stage and parts of the data extraction process. It 
could also be used for the ongoing screening of newly published 
articles for potential inclusion in living SLRs. However, the platform 
is not yet ready for autonomous use, and the current version requires 
oversight from expert researchers.
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