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Introduction: Food price volatility continues to be a significant concern in
Kenya’s economic development, posing challenges to the country’s economic
stability.
Methodology: This study examines the application of machine learning
methods, employing a hybrid approach that combines XGBoost and gradient
boosting, to predict food prices in Kenya. The food prices data from the World
Food Programme, covering the period from January 2006 to September 2024,
as well as currency exchange rates data from the Central Bank of Kenya in US
dollars (USD) and inflation rates data, were collated and preprocessed to be ready
for analytics and machine learning. The augmented data were preprocessed and
transformed, then used to train XGBoost, gradient boosting, LightGBM, decision
tree, random forest, and linear regression. A hybrid model was then developed
by stacking XGBoost and gradient boosting as the base models, with linear
regression serving as the meta-model used to combine their predictions.
Results: This model was then tuned using the hyperparameter random search
method, achieving a mean absolute error of 0.1050, a mean squared error
of 0.0261, a root mean square error of 0.1615, and an R-squared value of
0.9940, thereby surpassing the performance of all standalone models. We then
applied cross-validation using 5-fold cross-validation and Diebold-Mariano tests
to check for model overfitting and to perform model superiority analysis. Feature
importance analysis using SHapley Additive exPlanations (SHAP) revealed that
intuitive features influencing food prices are unit quantity, price type, commodity,
and currency, while geographical factors such as county have a lesser impact.
Finally, the model and its important features were saved as pickle files to facilitate
the deployment of the model on a web application for food price predictions.
Discussion: This data-driven decision support system can help policymakers and
agricultural stakeholders (such as the Kenyan government) plan for future trends
in food prices, potentially helping to prevent food insecurity in Kenya.

KEYWORDS

agricultural stakeholders, food insecurity, machine learning, malnutrition, policymakers,
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1 Introduction

Food is a fundamental necessity for human survival, significantly impacting the health,
productivity, and overall well-being of humans. As part of achieving socioeconomic
stability, the provision of abundant, affordable, and nutritious food remains a pressing
issue. The volatility of food prices is now a major issue worldwide, as it impacts various
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areas, including financial stability, causing instability in
macroeconomic conditions and affecting income, making it
difficult to purchase food products (Gizaw and Myrland, 2025).
The fluctuation of food prices has led to increased malnutrition
among many individuals. A large number of these people
come from countries affected by conflicts, causing relocation and
destruction of property (Vos et al., 2020). The Food and Agriculture
Organization projected that the food price crisis of 2007–2008
would lead to an increase in the number of malnourished people,
which, according to the report, rose to 240 million people in Africa
alone by 2008 (Abdallah et al., 2021). Similarly, Kalkuhl et al.
(2016) noted that fluctuating food prices significantly impact the
stability aspect of food and nutrition security, emphasizing that
a price shock increase could result in inadequate nutrient intake,
thereby affecting health and economic development. As stated by
Alam et al. (2014) and Kalkuhl et al. (2015), fluctuations in food
prices affect households’ ability to purchase basic necessities, and
this impact is equally distributed among low-income households
and the rich. Consequently, a large portion of the disposable
income of low-income households is used to meet their food needs
due to the rise in food prices, which is a significant burden for them
(Were et al., 2023). Attílio (2024) argued that volatility drivers,
such as differences in international food prices and geopolitical
tensions, continue to create uncertainty in food prices, even in the
face of various interventions aimed at reducing price variation.

The situation is more severe in developing countries that rely
heavily on food imports; therefore, market disturbances cause
a rise in the prices of staple foods such as wheat, maize, rice,
and vegetable oils (Korir et al., 2020). As stated by Vijayan
et al. (2025), food availability alone does not ensure accessibility
and reliability, as high prices, inefficient supply chains, and
unaffordability persist. The price increase discourages investment
in agriculture, thus limiting the increase in food production
and disrupting the entire food supply chain (Headey and Fan,
2010). In addition, economic disturbances such as fluctuations
in oil prices, disturbances in world markets, and changes in
demand lead to further instability of food prices (Tadesse et al.,
2014). In East Africa, volatility in staple food prices often
undermines food security. For example, Tanzanian maize prices
exhibit high seasonality, with annual fluctuations averaging 26.6%,
which is significantly higher than the global average (Minot,
2014). In Uganda, spatial pricing has been attributed to market
inefficiencies and infrastructure constraints (Shinyekwa and Ijjo,
2016). Similarly, however, econometric evidence from Rwanda has
shown that regional markets for major staples, including bananas
and potatoes, are co-integrated. Therefore, local shocks through
the impacts of the trade network could quickly propagate from
another region (Tesfaye and Gebremariam, 2020). Prices have
remained highly volatile, even beyond that level, especially in the
Sub-Saharan region.

Growing empirical evidence has strengthened the ability to
model and predict food prices, particularly within low- and middle-
income countries such as Kenya. Mutwiri (2019) applied the
Seasonal Autoregressive Integrated Moving Average (SARIMA)
model to forecast wholesale prices of tomatoes in Nairobi. The
model exhibited a root mean square error (RMSE) of 32.063, a
mean absolute percentage error (MAPE) of 125.251, and a mean

absolute error (MAE) of 22.3, making it suitable for forecasting
prices in this case. Similarly, econometric models such as SARIMA
and ARIMA have also been used for food price forecasting
in sub-Saharan countries, particularly in Kenya. Wanjuki et al.
(2021) applied SARIMA models to Kenya’s food and beverage
CPI, achieving a mean absolute error (MAE) of 2.00%, a mean
absolute percentage error (MAPE) of 1.62%, and a mean absolute
scaled error (MASE) of 0.87%, capturing the seasonal variation
effectively. Jayne et al. (2006) used VAR models on Kenyan maize
markets, showing improved measures of adequacy (R2 > 0.70)
when incorporating policy shocks.

These methods give good starting points but cannot effectively
model nonlinearities and complex interactions between features.
Sapakova et al. (2023) used decision trees, random forests, and
gradient boosting in a study in Kazakhstan to predict food prices,
where the random forest model emerged as the best, with the
highest R2 score of 0.99, outperforming the other models. In a
recent study, Nasir et al. (2025) introduced a hybrid forecasting
framework that combines local mean decomposition, a progressive
integrated moving average, and machine learning methods such
as XGBoost, random forest, artificial neural networks (ANN), and
support vector machines (SVMs); the framework was tested in
relation to long-horizon financial time series. When applied to the
National Association of Securities Dealers Automated Quotations
(NASDAQ) Composite Index, however, the hybrid model proved
to be the best among methods in terms of accuracy measures
such as RMSE, MAE, MAPE, and the Diebold-Mariano-Statistic,
which indicates the importance of decompression-based filtering
coupled with ensemble learning when working toward a strong
financial forecast. In addition, Zhang et al. (2025) used light
gradient boosting models as the base model to forecast the prices
of fresh farm produce such as bananas. The performance of the
model was then compared with numerous other machine learning
models, time series models, and artificial neural networks, from
which LightGBM emerged to be the best in terms of accuracy and
prediction with a mean square error of 0.0924, a mean absolute
percentage error of 1.5234, and a mean square error of 0.0087 to
predict prices of bananas, beef, and crucian carp.

Machine learning algorithms have been applied in various
domains to support decision-making (Senagi et al., 2017; Muinde
et al., 2023; Katchali et al., 2024; Kyalo et al., 2024, 2025). In
this context, Mamoudan et al. (2022) presented an optimized
model that integrates a convolutional neural network (CNN),
long short-term memory (LSTM), and a genetic algorithm (GA)
to forecast prices for time-sensitive goods. This model initially
determines the prices of rival goods using a game theory model.
The suggested model was evaluated, achieving a mean squared
error of 0.0023, a mean absolute error of 0.0396, and an RMSE
of 0.05. The R2 value of the suggested algorithm is 0.9378. The
accuracy of food price prediction models depends on the careful
selection of input variables that reflect both supply and demand
dynamics. Input costs such as fertilizer and fuel significantly
affect production and supply to the market; therefore, their
fluctuations influence commodity prices (Ulussever et al., 2023).
Other macroeconomic variables, such as exchange rates, the global
price of oil, and food import costs (Abodi et al., 2021), as well
as microeconomic factors such as household income (Oztornaci
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et al., 2024), have been cited as important predictors of domestic
price movements.

In an attempt to curb oil price fluctuations, Iftikhar et al.
(2025) introduced a hybrid model to predict daily crude oil prices,
combining data analysis using regression, time series analysis, and
machine learning methods to test the hybrid approach’s ability to
capture both long-term trends and short-term fluctuations. The
hybrid model was applied to datasets from the Brent and West
Texas Intermediate (WTI) markets, producing outstanding results.
The results showed that the model produced an MAE of 1.28, an
RMSE of 1.59, a Pearson’s correlation coefficient of 0.94, and a Dice
similarity index of 0.82, which indicates its effectiveness. Spatial
and market accessibility variables, including distance from major
markets and the quality of transport infrastructure, were shown
to explain price variations across regions within a country (Ennaji
et al., 2024). Considering the diversity of these determinants,
recent literature has favored more complex models, such as
XGBoost and gradient boosting, due to their proven predictive
power and interpretability (Ulussever et al., 2023; Ennaji et al.,
2024). Although ensemble models such as LightGBM, gradient
boosting, and random forest have been applied to predict food
prices, there is minimal research focused on combining XGBoost
and gradient boosting in an integrated framework to achieve
higher predictive accuracy. The majority of studies that emphasize
commodities do not outline a generalized methodology to cover
multiple types of food. Previous research indicates that hybrid
forecasting models are consistently more accurate than standalone
models in many fields of study, including stock markets, crude
oil forecasting, financial time series, bitcoin price, and agricultural
inputs such as fertilizer prices. In addition to demonstrating
their effectiveness, these studies also illustrated the versatility
of hybridization approaches in higher-order models, which can
capture both the long-run structural components of time series
data and the instantaneous stochastic characteristics. Earlier studies
demonstrate a clear advantage of hybrid methods. Therefore, this
study developed a hybrid XGBoost and gradient boosting model to
optimize the precision of food price prediction as a valuable tool to
ensure market stability and food security.

2 Methodology

2.1 Data acquisition

The data used in this study were obtained from the
World Food Programme, an organization that utilizes field-based
market monitoring, mobile data tools such as KoBoToolbox,
and collaboration with local institutions, including the Food and
Agriculture Organization (FAO), in Kenya to collect food price
datasets. The organization collects this data from more than 90
countries in 1,500 markets worldwide, and it is updated weekly or
monthly; Kenya is one of them. From this, Kenya’s food prices data,
consisting of 13 columns and 13,010 rows from January 2006 to
September 2024, were extracted from their database to support this
study (World Food Programme, 2025). However, the data set was
supplemented with data on exchange rates in US dollars from the
Central Bank of Kenya (Central Bank of Kenya, 2024).

TABLE 1 Descriptions of the map features generated from the Kenya
counties shapefile, covering the definitions of the primary parameters
considered to define the geographical and spatial attributes of each
county.

Feature Description

Area Approximate area of the county, expressed in square
meters.

Perimeter The perimeter length of the county boundary in meters.

County The official name of the county (e.g., Nairobi).

Shape length A representation of the county’s boundary length in
meters.

Shape area An estimate of the county area in kilometers2.

Geometry The actual shape of each county, with latitude and
longitude coordinates used for drawing the map,
measured in degrees.

TABLE 2 Data cleaning operations and the associated rationale, outlining
the specific pre-processing procedures executed on the dataset to
increase consistency, improvement, and readiness to analyze.

Procedure Description Rationale

Feature
renaming

admin1, admin2, category,
and prices were renamed to
region, county, commodity
category, and price [in
Kenyan Shillings (KES)]
respectively.

This was done to ensure their
clarity and consistency with
the data context and to align
them with their geographical
representations in Kenya.
Meaningful names aid in
feature understanding
(Mastropaolo et al., 2023).

Date
formatting

Date column were
converted to datetime
format.

Supports feature engineering
from the column and
time-based analysis.

Data
integration

Combined datasets from the
different sources into one
sheet.

Enables comprehensive
analysis in multidisciplinary
studies (Kathiravelu et al.,
2018).

Furthermore, data on the inflation rate International Monetary
Fund (2024) were also added to help understand the effect of
changes in the inflation rate on Kenyan food prices. In addition,
county boundary data from OCHA’s Humanitarian Data Exchange
collected using GIS tools in collaboration with partners such as
the United Nations Office for the Coordination of Humanitarian
Affairs (UNOCHA), the World Food Program (WFP), and Kenya’s
Ministry of Lands were added to help in the analysis of commodity
prices across different counties (Office for the Coordination of
Humanitarian Affairs, 2022). This is shown in Table 1.

2.2 Data pre-processing

This is an important prerequisite step in modeling that helps
identify anomalies such as noise, inaccuracies, inconsistencies, and
incompleteness in the dataset. This step, according to Smith and
Johnson (2023), helps improve the quality of the data. Table 2 shows
the main steps taken to clean up the dataset.

The dataset had no missing values. Extreme price values
(outliers) were dealt with using the interquartile range capping
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and flooring method. Outliers are defined as values that fall
below the lower quartile given by Equation 1 or above the upper
quartile given by Equation 2. The difference between the upper
and lower quartiles gives the interquartile range, which is given by
Equation 3. Instead of removing these observations, we winsorized
them in the upper quartile and floored them in the lower quartile.
This was done to help preserve sample size and minimize the
distorting effect of extreme values. This method is mainly used
in classification algorithms to make them more robust (Dash
et al., 2023). Similarly, simulation research comparing univariate
winsorization statistics reveals improved estimator stability for
interquartile range winsorization under various distributional
contaminations (Abuzaid and Alkronz, 2024).

Lower quartile = Q1 − 1.5 × IQR (1)

Upper quartile = Q3 + 1.5 × IQR (2)

IQR = Q3 − Q1 (3)

2.3 Feature engineering

Feature engineering involves the creation of new, informative
features from raw data to improve model performance and help
uncover deeper insights from the data. He et al. (2024) argues that
by transforming raw inputs into formats that effectively capture the
underlying patterns of the problem domain, feature engineering
improves both interpretability and accuracy. After converting the
original date field to a Datetime format and setting it to index,
the year, month, day, and day name were extracted from the
column. This was necessary since these features were to help in
the analysis and better understanding of the data. Additionally,
unit quantity was extracted from the item unit field by splitting the
item unit, which consisted of values like 10kg, into two features:
unit quantity as 10 to facilitate quantitative analysis of different
quantity prices, and unit measurement as kg. After splitting, the
unit of the item and the unit of measurement were dropped because
they were not significant and would have introduced redundant
variables. These engineered features were introduced to enrich the
dataset and improve the effectiveness of subsequent analysis and
modeling phases.

2.4 Exploratory data analysis

Exploratory data analysis plays a crucial role in identifying
key characteristics, examining distributions, and exploring
relationships between variables. This process enables us to explore
the key qualities and patterns present in the dataset in greater
detail. As noted in Attobrah (2024), exploratory data analysis
becomes especially significant when dealing with large datasets, as
it uncovers the hidden patterns and traits that often lie just beneath
the surface of the data. To make the data easier to interpret,
visualizations such as stacked bar charts, vertical bar graphs, and
horizontal bar graphs were employed to gather patterns, trends,
and anomalies in the dataset. Statistical analysis was performed on
the dataset to help understand the statistical distribution of both

categorical and numerical features. Additionally, a heatmap was
plotted to show the correlation between the numerical features.

2.5 Data transformation

To prepare the dataset for modeling, a transformation process
was necessary. The first step was label encoding, which allowed us to
convert categorical features such as commodity, region, price flag,
and commodity category into their numerical equivalents. This is
a key step because most machine learning algorithms, including
the regression models we used in this study, cannot handle data
in string format. As pointed out by Sharma et al. (2023), the
encoding of labels assigns each category a unique integer, allowing
us to incorporate these features into our model training while
maintaining computational efficiency. However, it is important to
note that, despite its benefits, Sharma et al. (2023) cautions that this
encoding method could unintentionally create misleading ordinal
relationships within nominal data. Logarithmic transformation
was then performed in the price column to make commodity
prices regularly distributed to reduce disparities in the numerical
range of features, particularly in continuous variables, which is
in line with West (2022), who found that this transformation
method helps reduce skewness and stabilize variance and standard
deviation (Iftikhar et al., 2024). Similarly, to assess the efficacy of
early abdominopelvic computed tomography in patients with acute
abdominal pain whose cause is unknown, Keene (1995) used log
transformation. The skewed data was normalized, which allowed
the researchers to obtain better results.

2.6 Feature selection and modeling

After cleaning and transforming the data, the selection of
features was carried out using the Pearson correlation coefficient to
select the statistically significant variables to include in the model,
considering the variables with high t-statistic Equation 4) and
variables whose p-values are below 0.05 Equation 5 also including
commodity even though it had a p-value > 0.05, but it is significant
for this study.

t = r · √n − 2√
1 − r2

(4)

p = 2 · P (Tn−2 > |t|) , (5)

where r is the Pearson correlation coefficient, n is the number
of observations, t is the t-statistic with n − 2 degrees of freedom, is
the p two-tailed p-value and Tn−2 is the t-distribution with n − 2
degrees of freedom.

The dataset was divided into training and test datasets of 80%
and 20%, respectively. The training data was intended to help
develop and train the models, while the test dataset was used to
evaluate and monitor the models’ performance based on the applied
metrics, as explained by Dobbin and Simon (2011). The training
data was then used to train the decision tree, random forest,
XGBoost, gradient boosting regressors, and the hybrid model.
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2.6.1 Decision tree regressor
A decision tree regressor is a non-parametric supervised

learning model that is used to predict a continuous output variable.
It describes data by learning simple decision rules gathered from
the input features. As explained by James et al. (2013), the tree
splits the data into subsets based on feature values, where each
internal node represents a decision on a feature, and each leaf node
represents a predicted outcome.

2.6.2 Random forest regressor
The random forest is a powerful ensemble learning technique

that combines tree predictors. All trees in the forest depend on
the values of an independently drawn random vector for each tree.
Breiman (2001) explains that this model helps eliminate variance
and improve predictive performance by combining the results
from many decision trees. Equation 6 shows the expression for a
random forest.

ŷ = 1
T

T∑
t=1

ht(x) (6)

where ŷ is the final prediction, T is the number of trees in the
forest, and ht(x) is the prediction from the tth decision tree.

2.6.3 Linear regression
This is a regression model that works well with datasets in

which the response variable exhibits a strong correlation, either
positive or negative, with the predictor variable, indicating that
changes in the predictor variable have a significant impact on the
response variable (Quirk and Rhiney, 2021). It can be expressed as
a simple linear regression when only one predictor variable is used,
as shown in Equation 7.

y = β0 + β1x + ε, (7)

Where β0 is the intercept, β1 is the slope of the regression line, x
is the independent variable, y is the response variable, and ε is the
error term.

Another type of linear regression is a multiple linear regression
model. In this case, the response variable is explained by several
predictor variables, as shown in Equation 8 below.

y = β0 + β1x1 + β2x2 + · · · + βpxp + ε, (8)

where, y is the response variable, x1, x2, . . . , xp are independent
variables such as the inflation rate, the quantity of units, β0 is the
intercept, β1, β2, . . . , βp are the coefficients, and ε is the error term.

2.6.4 XGBoost regressor
For regression tasks, the Extreme Gradient Boosting Regressor

is a popular and effective ensemble learning method. It corrects
the residuals of earlier decision trees by training them sequentially
to build a model. To control model complexity, the model is
optimized by minimizing a loss function with an additional
regularization term that regulates complexity and prevents

overfitting (Chen and Guestrin, 2016). The loss function for
XGBoost in predicting food prices is provided by Equation 9.

L(θ) =
n∑

i=1

(Pi − P̂i)2 +
K∑

k=1

�(fk), (9)

where Pi is the actual market price of a food commodity for
observation i, P̂i is the predicted price based on the output of
the model, Xi is the feature vector for observation i (including
the quantity per unit, the exchange rate of the currency, the type
of commodity, and so on) and the regularization term �(fk) is as
shown in Equation 10.

�(fk) = γ Tk +
1
2
λ

Tk∑
j=1

w2
k,j, (10)

where the weight of the j-th leaf in this tree is represented by wk,j,
while Tk is the number of leaves in the k-th tree. For excellent
accuracy and generalization performance. Chen and Guestrin
(2016) explains that the XGBoost regressor optimizes a regularized
loss function using an additive ensemble of decision trees.

2.6.5 LightGBM
Light Gradient Boosting Machine (LightGBM) is an efficient

gradient boosting framework based on decision trees. LightGBM
builds an ensemble of weak learners (decision trees) in a sequential
manner, where each new tree is trained to minimize the residuals
of the previous trees. It distinguishes itself from other boosting
frameworks by adopting a leaf-wise tree growth strategy, which
allows it to achieve a lower loss compared to level-wise growth
strategies, especially in large datasets (Ke et al., 2017).

The loss function optimized by LightGBM for regression is
defined as follows:

L(θ) =
n∑

i=1

�(Pi, P̂i) +
K∑

k=1

�(fk), (11)

where Pi is the actual market price of a food commodity for
observation i, P̂i is the predicted price of the model, �(·) is a
differentiable convex loss function and �(fk) is the regularization
term that penalizes the complexity of the k-th regression tree.

The regularization term is given by the following equation:

�(fk) = γ Tk +
1
2
λ

Tk∑
j=1

w2
k,j, (12)

where Tk is the number of leaves in the k-th tree, and wk,j represents
the weight of the j-th leaf. Using histogram-based continuous
variable segmentation and a leaf-wise split approach, LightGBM
achieves high efficiency and scalability, making it particularly
suitable for large-scale food price prediction tasks that involve
high-dimensional economic and commodity data (Ke et al., 2017).
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2.6.6 Gradient boosting regressor
This is a robust machine learning algorithm. It uses gradient

descent to minimize the log loss function, constructing an additive
model step by step. In addition, Friedman (2001) states that the
model is ideally suited to operate with imperfect data, since it
produces competitive and very stable algorithms for regression and
classification problems.

2.6.7 Hybrid model
After evaluating the performance of individual regression

models, we employed the ensemble stacking technique to construct
a hybrid model, aiming to achieve greater accuracy and robustness.
We used XGBoost and gradient boosting as base models, as these
models can learn complex nonlinear relationships and reduce
residual errors via iterative boosting methods. The models were
trained separately on the training set, and their outputs served as
input features for the next stage of modeling. A linear regression
model was then used as a meta-learner to synthesize the results
of the base models into one prediction. The motivating factor for
employing linear regression as a meta-learner was its simplicity
and interpretability because it can provide an error-minimizing
combination of the predictions of the base learners. The two-level
training framework enabled the hybrid model to fully utilize the
complementary benefits of XGBoost regularization and efficiency
alongside the adaptability of gradient boosting in learning residuals
while reducing the chances of overfitting. This approach has been
applied in the prediction of fresh agricultural products by Zhang
et al. (2025), who proposed a lightweight gradient boosting model
to enhance prediction accuracy.

2.7 Evaluation

The models were then evaluated to select the most suitable one
for implementing in the prediction of food prices. In regression
modeling, evaluation metrics help quantify the performance of
predictive models. The metrics help determine the accuracy,
magnitude of error, and overall reliability of the predictions. The
next section explains the primary evaluation metrics, along with
their corresponding mathematical formulations and explanations,
which were used to illustrate the suitability of the models.

2.7.1 Mean squared error
The mean squared error (MSE) is a metric used to evaluate

regression models, measuring the average of the squared differences
between actual and predicted values. Equation 13 shows the
mathematical representation of the metric.

MeanSquaredError = 1
n

n∑
i=1

(yi − ŷi)2, (13)

where n is the number of observations, yi is the actual price, and
ŷi is the predicted price.

The metric penalizes bigger errors more than smaller ones,
making it sensitive to outliers. The lower the MSE, the better the
model, so a smaller mean square error is preferred.

2.7.2 Root mean squared error
This is an evaluation metric that measures the average

magnitude of prediction errors. Here, the errors are squared
before averaging and then taking the square root, as illustrated in
Equation 14. It can also be obtained manually by taking the square
root of the mean squared error.

RootMeanSquaredError =
√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (14)

It represents the error magnitude in the same units as the target
variable, making it interpretable for real-world applications.

2.7.3 Mean absolute error
This metric measures the average absolute difference between

actual values and predicted values. The metric result indicates the
distance between the predictions and the actual values. Equation 15
shows its mathematical representation.

MeanAbsoluteError = 1
n

n∑
i=1

|yi − ŷi| (15)

It is less sensitive to outliers compared to the mean squared error.

2.7.4 R-squared score
This is a regression evaluation metric that indicates the

proportion of variance in the response variable that can be
predicted from the predictor variables. Equation 16 below shows
a mathematical expression. This metric is commonly used to show
how well the model fits the data.

R2 = 1 −
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2 , (16)

where ȳ is the mean of actual prices. It measures the
proportion of variance in the response variable that the model
explains, ranging from 0 to 1.

2.8 Diebold-Mariano test

After evaluating the models, we implemented the Diebold-
Mariano test to statistically analyze how the accuracy in predictions
of the models differed significantly from each other. This is a
standard approach used to assess the predictability of competing
models (Diebold and Mariano, 1995). In particular, the Diebold-
Mariano test’s null hypothesis assumes that the competing models
have equal predictive accuracy, while the alternative hypothesis
posits that one model has superior predictive accuracy compared
to the other.

First, the loss differential of the compared models is computed.
If, at time t, e1,t and e2,t are the predictive errors of models 1 and 2,
respectively, and g(·) is a loss function, then the loss differential can
be written as in Equation 17:

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2025.1661989
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Ogol et al. 10.3389/frai.2025.1661989

dt = g(e1,t) − g(e2,t), (17)

where dt represents the difference in loss between the two
models at observation t.

The mean loss differential across T predictions is then
computed using Equation 18:

d̄ = 1
T

T∑
t=1

dt (18)

To determine whether the mean difference is significantly
different from zero, we calculate the DM statistic using Equation 19:

DM = d̄√
γ̂0+2

∑h−1
k=1 γ̂k

T

, (19)

where γ̂k is the estimated autocovariance of the loss differential
at lag k, h is the prediction horizon, and T is the number
of predictions.

Due to its asymptotic properties, the DM statistic can be treated
as a standard normal statistic, facilitating statistical inference.
Suppose that the test statistic is statistically significantly different
from zero. In that case, it means that we reject the null hypothesis
of equal predictive accuracy, which, in turn, means that one model
provides significantly better forecasts than the other.

2.9 Model validation

The regression models developed were subjected to a validation
procedure, and the performance and generalizability of the
models were assessed. Both the standalone regression models and
the hybrid model underwent analysis stages. Each model was
trained on the log-transformed target variable separately and then
evaluated using a 5-fold cross-validation to assess its stability and
robustness. For model validation purposes, the R-squared score
was used as the criterion measure, averaged across folds, describing
how much variance in the data is explained by each model. The
procedure follows current best practices to prevent overfitting and
yields a more accurate estimate of performance on unseen data.
This is interpreted in Equation 20.

R̄2 = 1
k

k∑
i=1

R2
i , (20)

where k is the number of folds, R2
i is the R-squared score for the ith

fold, and R̄2 is the average R-squared score across all folds.

2.10 Optimization

To optimize the model’s performance, a randomized search was
applied during the tuning process. For example, Probst et al. (2019)
emphasized that parameterization can significantly influence the
performance of ensemble models such as random forests and
XGBoost. Similarly, Ali et al. (2023) demonstrated that random

search and Bayesian optimization outperform manual and grid
search methods in multidimensional spaces, which, in turn, lead to
improved model performance.

2.11 Feature importance

Analyzing the importance of features was necessary to identify
which features have the most significant impact on predicting
the response variable. This process helps to understand and
capture the underlying relationships in the data, thereby optimizing
model performance. As supported by Pudjihartono et al. (2022),
feature selection not only improves model prediction accuracy
but also reduces computational costs by including only the most
relevant features, thereby enhancing efficiency and effectiveness in
deployment. To help strengthen the importance of the feature, an
interpretability analysis on the hybrid model was conducted using
SHAP. The SHAP values for the hybrid model were calculated as
the mean of the SHAP outputs from its base learners. A beeswarm
summary plot was created to visualize the important features. In
addition, to help check for bias and the stability of the model’s
prediction across different commodity categories, such as cereals,
we conducted a residual analysis. The residuals were computed by
subtracting the actual value from the predicted value in the test
data. For each commodity category, the mean residual, standard
deviation, minimum, and maximum residuals were summarized
to catch tendencies of underestimation or overestimation and
variance in error. This approach helps to identify systematic biases
that other error metrics often overlook (Verma, 2025), highlighting
the model’s shortcomings in predicting specific commodities.

2.12 Deployment

To make the results of the model available to farmers,
stakeholders, policymakers, and other users, a web application
was developed using the Django framework (Django Software
Foundation, 2025). The deployment included building a simple
interface on the front end. This interface features user registration,
authentication, and a prediction form that is dynamically generated
based on the ten most important features chosen during model
training. In the back end, the pre-trained hybrid machine learning
model was integrated, along with the relevant feature encoder.
This setup processes incoming user inputs, applies the needed
transformations, and provides predictions to the users. The web
application codes are stored in my GitHub repository for use and
further improvement (benard3360-star, 2025).

3 Results

3.1 Data pre-processing and feature
engineering

Table 3 presents the preprocessed data features, revealing that
all features are complete with no null values and that all features
are consistent. The final data have been combined with records
from various sources, as explained in Section 2.1. This integration
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TABLE 3 A description of all the variables contained in the dataset used
for exploratory data analysis and modeling.

Feature Count Data type Description

Region 13,010 object Geographical region where the
data was collected

County 13,010 object Specific county within the
region

Market 13,010 object Market name where the
commodity price was recorded

Commodity
category

13,010 object Classification of the commodity
(e.g., cereals and tubers)

Commodity 13,010 object Specific name of the commodity
(e.g., maize, beans)

Price flag 13,010 object Flag indicating whether the
price is aggregated or actual

Price type 13,010 object Type of price, such as wholesale
or retail

Currency 13,010 float64 Exchange rate of Kenyan
Shillings to USD

Price 13,010 float64 Price of the commodity quantity
in Kenyan shillings

Inflation
rate

13,010 float64 General inflation rate at the
time of pricing

Unit
quantity

13,010 int64 Quantity of the item being
priced (e.g., per kg, per liter)

Month 13,010 int32 Month of the year when the
data was collected

Day name 13,010 object Day of the week (e.g., Monday,
Tuesday)

Day
classification

13,010 object Classification of the day (e.g.,
weekday or weekend)

Log price 13,010 float64 Log-transformed price in
Kenyan shillings

allowed the construction of a multidimensional dataset to support
complex modeling and advanced analysis at various levels. The
interquartile range was then applied to the price column to identify
the outliers, to which capping and flooring were applied to deal
with them, as illustrated in Figures 1, 2. The free price variable
of the outlier was then logarithmically transformed to reduce the
skewness and variability, as in Table 4, showing that the price
column is skewed with a kurtosis of 3.59, which is above the range
of (–2,+2), thus in need of transformation. The log transformation
effectively reduced skewness and stabilized the variance, producing
a distribution that is more suitable for modeling, as illustrated in
Figure 3.

3.2 Exploratory data analysis

The analysis presented in Table 5 reveals that the markets
surveyed comprised 59 locations in 22 counties, covering
eight different commodity categories, which resulted in the
documentation of 47 distinct commodities. Looking at the
numerical data in Table 4, currency values fluctuate between

FIGURE 1

Commodity price boxplot before dealing with the outliers. The plot
shows that the prices go up to KES. 19,800, which is far above the
upper whisker, thus necessitates addressing these large values that
may hinder model performance.

FIGURE 2

Commodity price boxplot after applying capping and flooring to
deal with the outliers.

40.38 and 160.24 dollars over various years. The lowest price
for any commodity is 5 shillings, while some can go as high
as 19,800.00 shillings. The results in Figure 4 show that pulses
and nuts stand out as the categories of commodities with the
highest average price across the regions, followed by cereals
and tubers. In addition, Figure 5 is a visualization of the top
ten commodities whose price values are primarily influenced by
fluctuations in currency values, highlighting the economic impact
of exchange rate fluctuations on our local markets. Furthermore,
analysis revealed that there are dominant spatial, temporal, and
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TABLE 4 Descriptive statistics for numerical variables. According to the table, the highest currency amount is 160 dollars, and the highest commodity
price is 19,800 shillings.

Variable Mean Standard deviation Median Minimum value Maximum value Kurtosis

Currency 108.62 19.84 109.26 40.38 160.24 –0.5118

Price 2,093.12 3,182.10 220.00 5.00 19,800.00 3.5859

Inflation rate 6.83 2.74 6.32 1.85 19.72 –0.3815

Unit quantity 61.91 106.56 13.00 1.00 500.00 9.4100

Month 6.07 3.40 6.00 1.00 12.00 –1.1641

FIGURE 3

Figure showing the original distribution of prices before transformation and after the log transformation. From this, the distribution appears to be
bimodal after the transformation.

TABLE 5 Summary statistics for categorical variables. Eight commodity
categories were surveyed across 59 markets in 22 counties in Kenya.

Variable Unique Top Freq

Region 7 Rift Valley 5221

County 22 Nairobi 2701

Market 59 Nairobi 1295

Commodity category 8 Cereals and tubers 5926

Commodity 47 Beans 1136

Price flag 2 Actual 8224

Price type 2 Wholesale 6819

categorical variations in the prices of goods throughout Kenya, as
shown in Figures 6–8, illustrating that there are dominant spatial,
temporal, and categorical variations in the prices of goods in
Kenyan counties, illustrating the complicated relationship between
agricultural production and economic activities.

3.3 Feature selection, modeling evaluation
and optimization

The transformed price variable, log-price-KES, was used as
the dependent variable, and the optimal features in Table 6 were

used as predictors due to their statistical significance. Figure 9
presents the correlation matrix, which highlights the strength
of linear associations among the features using a heatmap. The
correlation heatmap illustrates the correlation between the label-
encoded categorical variables and the numeric predictor variables,
as well as their correlation with the response variable. From these,
regression models were fitted on the training set and then evaluated
by testing their predictive powers on the testing set. The overall
accuracy of the standalone and hybrid models, after optimization,
was as follows: the hybrid model achieved a higher R2 of 0.9940
and a lower mean squared error of 0.0261. The hybrid model
outperformed individual models and achieved the lowest error
metrics, with an R2 of up to 0.9940 after fine-tuning. The random
forest and LightGBM also performed well; however, their residual
errors and R2 values were inferior, indicating that the hybrid
model has an edge due to its combined efforts in distinct boosting
dynamics and the overall performance outcome. In contrast, linear
regression did not effectively model nonlinearities and residuals, as
indicated by high errors and low explanatory power, R2 = 0.5542, as
presented in Table 7.

3.4 Model validation

Table 8 presents the performance scores obtained using a 5-
fold cross-validation strategy applied to all tested models, both
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FIGURE 4

Average prices of commodities by category across different regions. Pulses and nuts appear to be the food commodities with the highest average
prices across all regions.

FIGURE 5

Currency (USD) effect on commodities. Maize flour appears to be highly affected by the fluctuations in the currency.

standalone and hybrid. The table contains the R2 scores for the
training and test data sets, as well as the mean cross-validated
R2 and the corresponding standard deviation. This constant
validation method guaranteed dependability and comparability of
the models’ performances. In Table 9, we look at how residuals
are distributed in different commodity categories. The majority
of categories with mean residuals close to zero indicate that the
predictions are error-neutral. However, some categories exhibit
more pronounced skewness. For example, category 2, which
contains wheat and cooking oil, exhibits the most variability
with a standard deviation of 0.2061, a maximum of 1.0449, and
a minimum of –0.6878. This means that the model tends to
underestimate the higher prices. Category 7 also exhibits high
variance, but in addition to positive and negative skew, it fails to
capture significant price volatility in either direction (max = 0.9347,
min = –1.0579). Category 1, in contrast, is more monotonically

priced, resulting in more stable predictions, as evidenced by the
low standard deviation (0.0764) and the small maximum and
minimum residuals. These results suggest that the hybrid model
is highly powerful and accurate in its predictions, but struggles
to capture seasonality in some commodities due to the limited
data available.

The Diebold-Mariano test, synthesized from various metrics,
illustrates that the hybrid model distinctly surpasses decision
tree (DM = −7.14, p = 0.0000), gradient boosting (DM
= −16.62, p = 0.00000), and LightGBM (DM = −7.18,
p = 0.0000). The hybrid model persistently demonstrates
a lower prediction error with the squared loss function.
Furthermore, the results of the DM test complement the
statements made previously, analyzing the mean absolute
error and RMSE metrics, and state, with high confidence,
that the hybrid model is more accurate and precise in
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FIGURE 6

Variation in the average price of different types of commodities across counties, highlighting how geographic location influences commodity pricing
trends.

prediction compared to the standalone models, as illustrated
in Table 10.

3.5 Feature importance

The top ten most important features from the hybrid model
are illustrated in Figures 10, 11. These visualizations summarize
the feature rankings derived from the model, as well as those
ranked using SHAP, revealing that unit quantity and price type are
the most intuitive features in food price prediction. Furthermore,
Figure 12 shows a linear plot between actual and predicted food
prices using the top 10 selected features. The plot also includes a
line of best fit for the predictions, providing an indication of the
accuracy of the predictions. The visualization indicates that the

model tends to learn more effectively on the test data, resulting in
minimal errors.

3.6 Deployment

The architecture of the deployed prediction system, comprising
four loosely coupled components, is presented in Figure 13: a
registration and login user interface, a feature-based input form, a
backend prediction engine, and an email delivery mechanism. The
input form is dynamically generated based on the top ten features
considered during model development. The trained hybrid model
is loaded, along with the encoder and a list of feature importance, to
enable uniform pre-processing during runtime. The frontend uses
Django; meanwhile, the backend was implemented in Python using

Frontiers in Artificial Intelligence 11 frontiersin.org

https://doi.org/10.3389/frai.2025.1661989
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Ogol et al. 10.3389/frai.2025.1661989

FIGURE 7

Sample analysis of variation in the average price of cereals and tubers across counties, with the dark areas indicating counties with higher average
prices.

the Django framework. After going through input validation, the
prediction form is forwarded to the encoder, and the model is saved.

4 Discussion

This study focused on predicting food prices in Kenya using a
hybrid machine-learning model. The study’s findings demonstrate
that data pre-processing enhances data quality, consistency, and
accuracy, thereby making the data suitable for analysis and
modeling. This finding follows Maharana et al. (2022), who argued

that ensuring data quality is crucial for achieving better results in
supervised machine learning. Multidimensional data analysis was
made possible by combining data from different organizations,
which went beyond basic price prediction to consider the effects
of macroeconomic variables. This integration from several sources
opened up a broader perspective, similar to the multidisciplinary
approach promoted by Kathiravelu et al. (2018). Through the
reconciliation of variables such as the inflation rate, exchange rate,
and market price from different markets, the dataset became a new
canvas for testing model assumptions. This was essential not only
for capturing the seasonal behavior of prices but also for the impact
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FIGURE 8

Average price of commodities per month.

TABLE 6 Correlation coefficients, p-values, t-statistics, skewness, and kurtosis for selected variables to be used as predictor variables.

Variable Correlation coefficient p-value T-statistic Skewness Kurtosis

Pricetype 0.6965 0.0000 110.7140 –0.0967 –1.9907

Commodity category 0.1685 0.0000 19.4915 0.3466 –1.6734

Inflation rate 0.1489 0.0000 17.1751 0.3770 –0.3815

Market 0.0930 0.0000 10.6553 0.0357 –1.3019

Currency 0.0551 0.0000 6.2910 –0.0312 –0.5118

Unit quantity 0.0463 0.0000 5.2863 3.0260 9.4060

Commodity 0.0085 0.3310 0.9722 –0.0326 –1.1921

Region –0.0210 0.0167 –2.3925 –0.4181 –1.1146

County –0.0556 0.0000 –6.3522 –0.6855 –0.8050

Priceflag –0.5237 0.0000 –70.1175 0.5480 –1.6997

of structural and policy factors on food prices. As a prominent
example, feature engineering was a major source of dataset
expansion, particularly in terms of extracted numerical and date
attributes. The newly formed features paved the way for capturing
temporal dependencies and contextual aspects that the initial
data alone could not provide. Their presence increased the data
richness and significantly improved the model’s performance in the
prediction tasks. Heaton (2016) laments that feature engineering
helps increase the number of features or replace existing ones
to uncover underlying insights from the data, which differs for
different models used. In other words, pre-processing and feature
engineering not only enabled the training of stable models but
also became a means of realizing the mechanisms underlying the
dynamic behavior of food prices. In addition, log transformation
was done to the price column, which helped to reduce the skewness
of the price distribution, stabilized the variance over time, and
lessened the effect of extreme price outliers (Iftikhar et al., 2024),
which often occur in food commodity markets due to shocks
or seasonal shortages, which for this dataset timing might have
been as a result of 2020 COVID-19, which resulted in unexpected
disruption in agricultural food supply chains with food prices

escalating. Overall, this impacted food security as well as urban
livelihoods for many households that rely on urban markets to
fulfill their food expenditures (Kunyanga et al., 2023). Additionally,
tree-based models such as XGBoost and gradient boosting may
become unstable due to the extreme right skewness and notable
outliers in the original price variable. The transformation produced
a more balanced distribution of prices, which reduced skewness
and thereby compressed the impact of extreme values. A bimodal
distribution is presented in the price column in the transformation.
Tree-based models, which recursively divide feature spaces and
isolate clusters using hierarchical partitions. Demir and Sahin
(2024) argues that in machine learning models, choosing the
most compatible data transformation method with the modeling
technique leads to better results. In the end, the log-transformed
price variable proved to be statistically more robust, significantly
enhancing the reliability and accuracy of our modeling efforts.

The study found that, on average, pulses and nuts are
the commodity categories with the highest average prices in
the regions, which could be attributed to the nature of their
production process or the scarcity of local resources required
for their production. These food commodities are perishable
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FIGURE 9

A heatmap showing how different features are related. This is the overall correlation heatmap, which shows how different features may impact the
model if they are included in the model generation process.

TABLE 7 A table showing the comparison of model performance metrics.
The results show that tree-based models such as XGBoost, random forest,
and LightGBM perform well, whereas linear regression performs poorly.

Model MAE MSE RMSE R2 Score

XGBoost 0.1149 0.0342 0.1849 0.9924

Random forest 0.1162 0.0400 0.2000 0.9923

LightGBM 0.1315 0.0358 0.1891 0.9918

Decision tree 0.1328 0.0565 0.2377 0.9320

Gradient Boost 0.1865 0.0729 0.2700 0.9930

Linear regression 1.0593 1.9516 1.3970 0.5542

Hybrid model 0.1152 0.0290 0.1702 0.9934

Fine-Tuned Hybrid model 0.1050 0.0261 0.1615 0.9940

and are produced seasonally. The case is in full agreement
with Sturm and Datar (2011), which has shown that pulses
typically experience higher market fluctuations due to storage
and supply challenges in sub-Saharan Africa. The observation
suggests that investments in these storage and preservation
technologies are essential for price stabilization, as well as
facilitating access, particularly for smallholder producers. This
supports Kenya’s established price stabilization strategies, such
as the Cereals and Sugar Finance Corporation and stabilization
funds, with the aim of insulating consumers against steep price
hikes, which have often been defeated by poor storage capacity.

In addition, this suggests that the recognition of buying habits
during the week and on weekends parallels the consumer behavior
observed by Waterlander et al. (2019), who found that, in
general, price changes and demand surges are multiplied in
time displacement throughout the week in developing markets.
This research also revealed how fluctuations in exchange rates,
particularly the continuous strengthening of the USD, influence
commodity prices, primarily those that rely on foreign inputs.
These commodities demonstrate a higher sensitivity to exchange
rates, indicating Kenya’s vulnerability to foreign exchange volatility.
This situation represents not only the microeconomic aspects but
also the macroeconomic aspects (Wang and Cheung, 2023). This
vulnerability has led the government to implement agricultural
input subsidies, such as the provision of fertilizer subsidy programs
to farmers, to protect food systems from imported inflation, along
with some foreign exchange interventions. This could lead to
reduced affordability for households and create a string of pressures
on the balance of payments and inflation. This, therefore, gives rise
to the need to diversify local production, deepen regional trade, and
develop import substitution policies (Wainaina, 2023; Titus et al.,
2022).

Furthermore, the study also revealed that the price type has a
high positive correlation with log-price-KES, with a magnitude of
0.70, implying that different pricing structures or schemes have a
significant influence on price levelsÑa pattern consistent with the
findings of Kozian et al. (2025). In contrast, the price flag shows
a moderate negative correlation with the target variable (0.52),
suggesting that the price flag, perhaps reflecting price brackets,
varies inversely with log-price-KES (Kozian et al., 2025). Other
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TABLE 8 A table showing the comparison of model R2 validation metrics from the applied cross-validation.

Model Train (R2) Test (R2) Cross-validated (R2) Standard deviation

Random forest 0.9990 0.9923 0.9290 0.0038

XGBoost 0.9971 0.9924 0.9926 0.0012

LightGBM 0.9967 0.9918 0.9925 0.0008

Gradient boosting 0.9843 0.9930 0.9928 0.0014

Decision tree 0.9964 0.9320 0.9893 0.0008

Linear regresion 0.5571 0.5542 0.5557 0.0408

Hybrid model 0.9934 0.9940 0.9931 0.0011

The table shows that, for example, the random forest tends to overfit.

TABLE 9 Residual analysis summary across different commodity categories. This helps identify tendencies to underestimate or overestimate and shows
the spread of errors across different commodity categories.

Commodity category Mean residual Standard deviation Maximum residual Minimum residual

0 0.0016 0.1616 0.9267 –0.8256

1 –0.0043 0.0764 0.2474 –0.3246

2 0.0303 0.2061 1.0449 –0.6878

3 –0.0123 0.0946 0.3662 –0.4548

4 –0.0434 0.1982 0.2629 –0.6121

5 –0.0060 0.1066 0.3832 –0.4290

6 0.0039 0.0985 0.5114 –0.5267

7 –0.0049 0.2613 0.9347 –1.0579

TABLE 10 Results of the Diebold-Mariano test comparing the hybrid
model to other standalone models.

Compared
model

DM_statistic p_value Significance

LightGBM –7.181494 0.0000 Hybrid better

Gradient boosting –16.619090 0.0000 Hybrid better

Decision tree –7.141957 0.0000 Hybrid better

Negative DM statistics with very small p-values indicate that the hybrid model performs
significantly better.

categorical variables, such as commodity category and region,
exhibit weak correlations with the target variable, suggesting
that these classification factors have a less linear impact on
price variations. This finding aligns with previous studies, which
indicate weak linear impacts from such groupings (de Nicola
et al., 2016; Deb et al., 1996). Numerical variables, such as the
inflation rate, are weakly positively correlated, suggesting a very
mild macroeconomic impact on the price structure. Most variables
exhibit low pairwise correlations, indicating that there is no
multicollinearity except for high correlations in price type and price
flag. However, these predictor variables are statistically significant
with p-values < 0.05, hence justifying the use of these predictors
in tree-based models such as XGBoost, which are known to handle
varying correlation structures effectively (Rabinowicz and Rosset,
2022).

Compared to standalone models, XGBoost delivered an
extraordinarily high R2 of 0.9924, which is consistent with the
results of Arora and Bansal (2019) in agricultural commodity
prediction in India, where XGBoost surpassed random forest and
decision tree regressors, as it employs regularization to avoid
overfitting and is better at dealing with outliers. However, the
hybrid model outperformed the standalone models, proving it to
be the most effective model to use in this case. The model achieved
metric scores of MAE 0.1152, MSE of 0.0290, RMSE of 0.1702,
and an R2 of 0.9934, surpassing those of the individual models,
thus confirming the advantages of hybrid ensemble learning. This
aligns with the findings of Choudhary et al. (2025), which show
that hybrid ensemble techniques achieve better results in food price
prediction, as they can capture nonlinear features more effectively
compared to single algorithms. However, the hybrid model was
further improved through hyperparameter tuning, resulting in an
MAE of 0.1050, an MSE of 0.0261, an RMSE of 0.1615, and an R2

of 0.9940. The R2 of 99.40% indicates that a variation in food price
data is explained, with the model showing a significant reduction
in prediction error. The results of this study are in line with those
of Probst et al. (2019), who argued that hyperparameter tuning is a
key factor in increasing the accuracy and robustness of a model,
especially in economic data in real-world environments where
noise is inevitable.

The results show that while standalone machine learning
models such as random forest, decision tree, and LightGBM have
higher training R2 scores of 0.9989, 0.9967, and 0.9964, respectively,
the lower cross-validation scores of random forest (0.9290) indicate
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potential overfitting due to its feature of memorization of the
patterns in the training data instead of generalization (Ghojogh
and Crowley, 2023). In addition, while LightGBM achieves high
levels of predictive accuracy and rapid training, its tendency toward
a leaf-wise growth strategy makes it more prone to overfitting,
particularly in cases of heterogeneous data (Ke et al., 2017).
On the other hand, combining XGBoost and gradient boosting
uses higher regularization, a balanced leaf growth pattern, and
different learning biases to improve generalization and reduce error
variance (Bentéjac et al., 2020). The current literature indicates
that hybrid boosting approaches outperform standalone LightGBM
or XGBoost for all datasets, as evidenced by lower error metrics,
and yield stable predictions (Chen and Guestrin, 2016). Therefore,
a hybrid model creates a more reliable method for robust food
price prediction compared to LightGBM. Through stacking with
linear regression as the meta-learner, the hybrid model combines
the outputs from XGBoost and gradient boosting, yielding the
best performance across all metrics, specifically cross-validated R2

with an average of 0.9931 and a standard deviation of 0.0011.
Presumably, the hybrid method outperforms other models because
it compensates for the shortcomings of conventional methods while
leveraging their advantages, particularly by reducing variance while
improving generalizability (Ragam et al., 2024; Wang et al., 2019).
The results of the DM test in Table 10 show that, among all the best
models, the hybrid model is statistically superior to the others at
a significance level of 5%, which is also in accord with the results
obtained by Qureshi et al. (2024). The stability of scores across all
validation folds and the DM results further attest to the model’s
resilience and reliability, making it perhaps the best model for
deployment in real-world predictions.

However, even though the hybrid model offers an excellent
R2 (0.9940) and very low error metrics, the residual analysis
reveals the danger of overfitting. The residual distribution indicates
that, in general, while most predictions are close to the actual
price, there is a systematic bias at the commodity level. Some
commodity categories (2 and 7) exhibit relatively high variability
(std > 0.20) and wide residual ranges, indicating that the model
does not effectively capture the volatility of these commodities.
With some groups, such as category 4, the model has a consistent
negative mean residual, while other groups, like category 2,
consistently have positive mean residuals. Overall, this finding
suggests that the model does very well, despite the shortage of
datasets for some commodity categories. In these categories of
consistent underestimation and overestimation, respectively, it
may be possible to collect and add more datasets to improve
the model’s performance in these categories, as few records are
available for the model to learn from. As noted in Choudhary et al.
(2025), while hybrid ensemble models offer reasonable accuracy,
they may still exhibit the same systematic biases and risk poorly
adapting to sudden interference or market changes, underscoring
the importance of conducting residual diagnostics and volatility-
conscious model updates.

In addition, unit quantity and price type were found to
be the most influential predictors of food prices, surpassing
macroeconomic factors such as currency and inflation rates. The
limited impact of exchange rate volatility on local commodity prices
is consistent with the findings of Mwangi and Njoroge (2014)

FIGURE 10

Important features influencing food price. Unit quantity appears to
be the most important feature in predicting food prices.

and Wanzala et al. (2024), both of whom demonstrated that such
volatility has a negligible effect on food prices within countries, such
as Kenya, that depend heavily on imported goods. This implies that
local and transactional characteristics, such as pricing discrepancies
between wholesale and retail markets or the behaviors of small-
scale traders, have a high impact on commodity prices. These
microeconomic factors may be better suited to representing short-
term demand and supply relationships, as well as changes in the
informal market, than more general economic trends. The micro
effect of exchange rate fluctuations may also arise from the market’s
limited integration with international pricing forces. Corroborating
these latter pieces of evidence, our exploration of linear feature
importance plots using the top ten predictors showcased a better
alignment between predicted and actual prices along the perfect
prediction line, highlighting not only high modeling accuracy but
also low prediction error.

The developed prediction model was then deployed. Generally,
the system had four main components: user authentication and
predictions, the back end that processes user requests by filling
out the prediction form, the front end that displays the results,
and the email message containing the prediction sent to the
user. After analyzing feature importance, the top 10 features were
selected based on their contribution to the model. The trained
hybrid model (XGBoost and gradient boosting) was saved using
the pickle module. The encoding object used during categorical
and numerical feature transformation was also serialized. These
files, including the model, feature list, and encoder, were crucial to
ensure that new input data during deployment was transformed in
the same way as the training data. This formed the foundation for
deploying the model in a real-time environment.

The front-end features are designed using the Django
templating system to provide users with a clean and intuitive
interface. Users must register with their email and password to use
the application, which involves a subsequent secure registration
page. After registering, the user logs in and is directed to the web
application’s landing page, where details about the application, its
purpose, and instructions on how to use it are provided. From this
page, users can proceed to the prediction page, where a dynamic
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FIGURE 11

SHapley Additive exPlanations (SHAP) summary plot illustrating the relative importance and impact of key features on food price prediction using the
hybrid model.

FIGURE 12

Actual commodity price compared to predicted price. The graph shows a strong linear relationship between them, indicating the effectiveness of our
model in making predictions.

form will be generated with the top 10 identified features. Users
are required to enter values pertinent to their food commodity and
then submit the form to obtain predictions. The predicted price
is displayed immediately on the page and also sent to the user’s

email. Sets were designed for usability and security enhancements.
Validation was performed on both the client and server sides.
The input must be valid; this, in turn, reduces the number of
induced errors and increases the strength of the presented system.
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FIGURE 13

Deployed web application interface with all four compartments shown. The signup or login page, prediction page, email delivery for the predicted
price, and the contact page where users can reach the website owner.

We also had exceptions handled well within the backend, such as
when a user experienced a failed prediction or email delivery, and
presumably, any other errors.

The backend was implemented in Python using the Django
framework. When the server starts, the pre-trained model and
encoder are loaded from serialized pickle files into memory. When
the user inputs data from the front end, the application first
validates the input data, applies the same encoding used during
training, and passes it through the model to generate predictions.
Since the model was trained on a log-transformed price variable,
the predicted output is exponentiated to get back the actual price
in KES. This allows the user to get meaningful and understandable
price estimates. Once the prediction is complete, the price is sent
to the registered user’s email using Django’s email system for
convenience and record-keeping purposes.

In terms of system performance, the deployed model operates
in real time, generating predictions and displaying them to the user
within seconds of inputting the initial form. This is made possible
by pre-loading the serialized model and encoder into memory when
the server starts. By doing so, we have minimized the amount of
latency when predictions are requested. Regarding error handling,
we implemented error handling at various levels: we provided
both client-side and server-side input validation, built-in exception
handling to accommodate failed predictions, and issued alerts when
emails failed to send, allowing users to be aware of any issues that
may arise. Next, the system was designed to allow for periodic
updates; the backend data and the model could be easily updated
with new market data, the model retrained, and the web interface
placed back into the hands of the user, allowing them to receive
correct forecasts based on accurate and up-to-date market data.

In general, the application of machine learning models in
predicting food prices has ethical implications. Being able to
produce precise forecasts can significantly impact how markets
behave, thereby creating speculative opportunities and even the

potential for harm to more vulnerable groups when forecasts
are misused. Several safeguards should therefore be introduced
to mitigate the risks resulting from the investigation, such as
transparent communication of the limitations of predictive models,
the use of forecasts for policymaking and planning instead of
profit manipulation, and equal access to knowledge. If embedded
with ethical safeguards, such models can enable efficient decision-
making without subsidizing market inequalities.

5 Conclusion

This study highlights the importance of food price prediction
in Kenya, utilizing a hybrid machine learning approach that
combines XGBoost and gradient boosting. The model shows robust
performance compared to standalone models. The predictions
generated by the model exhibit minimal errors and are closely
aligned with the actual prices, indicating that it is unbiased. The
results, therefore, support and expand the current conception of AI
and its impact on agriculture and food systems. This demonstrates
its ability to understand the price patterns of various commodities,
thereby enhancing its reliability in real-world food price prediction
applications. The findings of this work benefit a variety of
sectors, including policymakers, agricultural stakeholders, and
traders, providing a solid basis for understanding price trends
in commodities and helping to inform strategic interventions to
improve food security. In addition, this study provides a scalable
framework that can be replicated by other Sub-Saharan countries.
Although the research makes significant contributions, it also
reveals notable research gaps that need to be addressed in future
studies, such as combining socioeconomic data, customer behavior
in terms of commodity purchase, and real-time data to enhance the
accuracy of predictions. Coherently addressing these shortcomings
in future studies could help improve the effectiveness and accuracy

Frontiers in Artificial Intelligence 18 frontiersin.org

https://doi.org/10.3389/frai.2025.1661989
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Ogol et al. 10.3389/frai.2025.1661989

of predictions, leading to better decision-making and enhanced
food security.
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