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Sa’Ed Abed*

Computer Engineering Department, College of Engineering and Petroleum, Kuwait University, Kuwait

City, Kuwait

Introduction: Exploring Arabic dialects in Natural Language Processing (NLP) is

essential to understand linguistic variation and meet regional communication

demands. Recent advances in Large Language Models (LLMs) have opened up

new vistas for multilingual communication and text generation.

Methods: This paper investigates the performance of GPT-3.5, GPT-4, and

Bard (Gemini) on the QADI and MADAR datasets, while GPT-5 was evaluated

exclusively onMADAR encompassing over 15 di�erent countries. Several metrics

have been used in the evaluation, such as cosine similarity, universal similarity

encoder, sentence BERT, TER, ROUGE, and BLEU. In this study, di�erent

prompting techniques were used: zero-shot and few-shot. Zero-shot was

employed for all dialects, and few-shot was employed only for the least

translation performance dialect, Tunisian.

Results: Analysis revealed that in the QADI dataset, GPT-4 significantly

outperformed others in translating MSA to DA, with ANOVA tests showing strong

significance (p < 0.05) in most metrics, except for BLEU and TER where it does

not show significance, indicating comparable translation performance among

models. Furthermore, GPT-4 was highest in semantic similarity compared to

GPT-3.5 and Bard (Gemini), 0.66, 0.61, and 0.63, respectively. GPT-4 was the

best in identifying overlapping sentences (i.e., those where the source and target

are identical) with a combined average of 0.41 in BLEU and ROUGE-L. All LLMs

scored TER values between 6% and 25%, indicating generally good translation

quality. However, GPT models, especially GPT-5, responded better to prompting

and translation to Levant countries compared to Bard (Gemini). For the MADAR

dataset, no significant translation di�erences were observed in sentence-BERT,

ROUGE-L, and TER, while di�erences are identified in cosine similarity, BLEU,

and universal similarity encoder metrics. Therefore, GPT-5 is the top performer

in identifying sentence overlaps measured by BLEU and ROUGE-L (combined

average 0.37).

Discussion: The few-shot approach did not show a significant improvement

in translation performance, especially for GPT-4 and Bard (Gemini), while GPT-

3.5 performed consistently. Zero-shot prompts were e�ective across dialects,

while few-shot prompting, applied to the weakest-performing dialect (Tunisian),

did not yield improvement. GPT-4 and Bard performed worse under this set-up,

while GPT-3.5 remained consistent.

KEYWORDS

language models, GPT 3.5, GPT 4, GPT 5, Bard (Gemini), Arabic language, dialects

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1661789
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1661789&domain=pdf&date_stamp=2025-09-18
mailto:s.abed@ku.edu.kw
https://doi.org/10.3389/frai.2025.1661789
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2025.1661789/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Beidas et al. 10.3389/frai.2025.1661789

1 Introduction

In recent years, new horizons for multilingual communication,

translation tasks, and text generation have been widely witnessed

due to the advances made in large language models (LLMs) (Shaikh

et al., 2023). Models such as GPT, developed by OpenAI and

Google Bard (Gemini), have shown promising developments in

this field (Kasneci et al., 2023). Such models have demonstrated

outstanding skills in handling diverse languages and dialects

with the influential role of deep learning techniques and the

processing of massive volumes of textual data. According to

studies conducted in 2019 by Ethnologue (Eberhard et al.,

2019), the total number of dialects spoken around the globe

is expected to be 7,111, where a majority of these dialects are

found on the Internet through platforms such as Facebook,

X, and blog posts through user interactions (Salloum and

Habash, 2012). Therefore, with the availability of systems that

deal with different languages and dialects, a major shift in

focus has been witnessed in literature to bring dialects together

by enhancing proper machine learning translation systems

(Sghaier and Zrigui, 2020).

Arabic is one of the languages known for its diversity in

linguistics, which includes various dialects from different countries

all over the Arab world. Notably, Dialectal Arabic (DA) consists

of different Arabic dialects. It is an informal language that is used

in daily life and social media platforms in contrast with Modern

Standard Arabic (MSA), also known as “Fushaa,” which is used in

formal communications (Harrat et al., 2019). Hence, making the

comprehension of different dialects presents a greater challenge

compared to MSA, due to its regional variability, especially in the

applications of cross-dialect communications, and in sectors such

as education and content localization (Sghaier and Zrigui, 2020).

Large language models (LLMs) are a vital approach to

understand and enhance the language intelligence of devices (Hadi

et al., 2023). LLMs can react to free-text queries without being

specifically trained in the activity at hand, which has sparked

both excitement and skepticism among researchers regarding their

application (Hadi et al., 2023). Models such as OpenAI GPT and

Google Bard (Gemini) are examples of LLMs, where they are

trained on enormous volumes of text data and can generate human-

like prose, answer questions, and perform other language-related

tasks with great accuracy (Kasneci et al., 2023). To begin with,

OpenAI GPT is a decoder-based, generative pre-trained LLM. It

employs an auto-regressive language model that allows sequential

text generation. Among many of the advantages present in GPT,

one main advantage is that it is a multilingual model, including

the Arabic language (Alyafeai et al., 2023). However, it is not an

open-access model and is not free of cost. Therefore, developers

and researchers have to pay a certain amount based on the number

of tokens used per request and the type of model to be used for

fine-tuning (Steele, 2023). As for Bard (Gemini), it is developed by

Google and is also multilingual; in total, it contains 41 languages

(Kadaoui et al., 2023). Similar to GPT, Bard (Gemini) has a certain

cost based on the number of tokens used per request and the type of

model to be used (Kadaoui et al., 2023). Hence, by analyzing their

differences and similarities, a comparison between both models is

performed to assist systems in easily translating dialects and achieve

human-like reading and writing, building on the comprehensive

overview of LLM capabilities by Hadi et al. (2023).

Researchers have been using these models in analyzing various

NLP tasks, such as psychological studies of sentiments using

GPT (Kheiri and Karimi, 2023). In addition, comparisons with

other models such as Bidirectional Encoder Representations from

Transformers (BERT) (Zhang et al., 2020) and Bidirectional

Long-Form Overlap for Optimizing Multilingual and zero-shot

(BLOOMZ) (Yong et al., 2022) have been made in contexts such as

translation efficiencies using different languages (Bhat et al., 2023).

On the other hand, comparisons between GPT 3.5, GPT 4, and

Bard (Gemini) have beenmade regarding their machine translation

(MT) proficiency across 10 varieties of Arabic (Kadaoui et al., 2023).

Their analysis shows that LLMs may encounter challenges with

dialects for which minimal public datasets exist, but on average,

they are better translators of dialects than existing commercial

systems. In a similar vein, GPT 4 outperformed Bard (Gemini)

in dialect-based commercial systems and different supervised

baselines employing zero-shot prompts.

Originally, researchers’ main focus was to address the

translation of English to Arabic and vice versa (Khoshafah,

2023). However, more recently, researchers have been studying

the influence of MSA on the similarity between dialects spoken,

as was done by Abu-Haidar (2011) in Baghdad, and vice versa,

where researchers study the translation from DA to MSA. For

instance, Sghaier and Zrigui (2020) performed a similar study in

2020 where an MT system that translates Tunisian dialect text

to MSA using a rule-based approach showed promising results

for their proposed solution. Since OpenAI GPT released different

models with different versions, researchers have focused on having

a comparison between these different versions, where Alyafeai

et al. (2023) have compared some of these models, such as GPT

3.5 and GPT 4, on seven distinct Arabic NLP tasks and found

that GPT 4 outperforms GPT 3.5 on five NLP tasks. GPT 3.5

and GPT 4 performances were also studied using the Tunisian,

Jordanian, and English languages, and the study results highlight

a critical dialectical performance gap in GPT, underlining the

need to enhance linguistic and cultural diversity in AI models’

development, particularly for health-related content (Sallam and

Mousa, 2024).

The purpose of this study is to compare the performance of four

language models, GPT (versions 3.5, 4, and 5) and Bard (Gemini),

in translating a wide corpus of MSA to DA. This novel study

bridges a significant gap in understanding model performance

across diverse linguistic situations by including a wide corpus of

dialects, consisting of over 15 Arabic dialects, in the analysis while

evaluating several metrics. Furthermore, two different datasets will

be used to further strengthen the analysis using different prompting

techniques (zero-shot and few-shot). To explore whether these

techniques enhance the quality of dialect translation, zero-shot will

be applied to all countries, whereas few-shot will be applied to the

weakest country.

This study sheds light on the adaptability and efficiency

of these models through careful metric assessments, which

is critical for expanding NLP applications in various Arabic-

speaking regions. Two datasets are used in this study the

first is the Qatar Computing Research Institute (QCRI) Arabic
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Dialects Identification (QADI) dataset, which contains 18 different

countries with their own dialects. QADI contains over 500,000

tweets from social media platforms, spanning 18 different Arabic

dialects (Abdelali et al., 2020). Second, the Multi-Arabic Dialect

Applications and Resources (MADAR) corpus dataset is used,

which includes a large parallel corpus of 25 Arabic city dialects in

the travel domain. These are the most popular datasets adapted for

studies with Arabic dialects.

This research study aims to answer the following questions:

• How efficient are GPT 3.5, GPT 4, GPT 5, and Bard (Gemini)

in translating MSA to different DA in terms of different

performance metrics, such as cosine similarity, semantic

universal encoder, sentence BERT, similarity encoder,

translation error rate (TER), recall-oriented understudy for

gisting evaluation (ROUGE), bilingual evaluation understudy

(BLEU), and analysis of variance (ANOVA)?

• How consistent is the LLM performance in the MSA

translation to different DAs? (e.g., Levantine vs. Gulf

vs. Maghrebi)

• How do prompting techniques (zero-shot vs. few-shot) and

external factors like sentence length impact the translation

accuracy of LLMs?

The main contribution of this study could be summarized

as follows:

• It sheds light on the strengths and drawbacks of the GPT

3.5, GPT 4, GPT 5, and Bard (Gemini) models in dealing

with DA differences by analyzing their translation quality and

accuracy (measured by metrics) and consistency/reliability,

across various dialects from MSA. Hence, exploring how

LLMs handle dialectal diversity in Arabic.

• It employs various prompt analysis techniques to evaluate the

performance of GPT 3.5, GPT 4, GPT 5, and Bard (Gemini),

aiming to understand the specific conditions under which each

model excels.

• The study’s findings fill in a significant gap in research on

MSA to dialect translation using LLMs by using a wide corpus

of Arabic dialect translations and analyzing GPT 3.5/4/5, and

Bard (Gemini) in translating various dialects using different

prompting techniques (zero-shot and few-shot).

Therefore, the study relies on it being the first to offer a

comprehensive evaluation of LLMs in translating MSA to a wide

range of dialects using QADI and MADAR datasets. Moreover,

the evaluation of GPT 3.5, GPT 4, GPT 5, and Bard (Gemini)

contributes to fine-tuning and developing inclusive NLP tools to

serve a larger Arabic-speaking population with diverse dialects.

It identifies the strengths and weaknesses of LLMs in different

DAs by translation from MSA. Such insights are essential for the

development of inclusive NLP tools that can effectively utilize MSA

and different DAs in spoken Arabic to enhance digital accessibility

and communication. To the best of our knowledge, we are the first

study comparing prominent LLMs specially GPT 5 on MT task

fromMSA to DA over 15 countries.

The remainder of this study is organized as follows: The related

work is described in Section 2, and the proposed methodology

is detailed in Section 3. Experimental results are reported and

analyzed in Section 4. Finally, the concluding remarks and future

research directions are described in Section 5.

2 Related work

This section highlights the challenges of processing the Arabic

language and its dialects in Section 2.1, followed by Section

2.2, which explains and explores different LLMs and Section 2.3

describes various MT approaches.

2.1 Challenges for processing Arabic and
its dialects

Contemporary Arabic consists of different varieties such as

MSA, the official language of the Arab world that is used in formal

settings, and dialects of different countries that are commonly used

in different informal contexts. In general, Arabic is a complex

language with a rich inflectional morphology expressed both

templatically and affixationally, as well as various attachable clitic

classes (Wright and Caspari, 2011). The dialects of different

countries differ from MSA in terms of phonology, morphology,

and, to some extent, syntactically, where the differences are based

on the presence of clitics and affixes, unlike MSA, are widely used

(Salloum and Habash, 2012). Dialects are considered to share all

of MSA’s problems when it comes to NLP (e.g., optional diacritics

and spelling inconsistencies). However, adding to these problems,

the absence of standard orthographies for the dialects and their

diverse variants, which in turn pose additional issues (Guellil et al.,

2021). In addition, there are very few Arabic dialects of English

corpora and even fewer dialects of MSA parallel corpora, which

makes the number of morphological analyses and tools for these

dialects constrained (Salloum and Habash, 2012).

These linguistic challenges pose different difficulties for LLMs

in MT. Unlike the English language, which dominates the

training of most LLMs, different Arabic dialects are widely

underrepresented (Alyafeai et al., 2023; Khondaker et al., 2023).

Research papers comparing LLM performance between different

languages such as English and Arabic address this gap and confirm

it by showing that LLMs achieve better scores in English translation

than in Arabic (Peng et al., 2023). Furthermore, within Arabic itself,

MSA is better handled in LLMs than in different dialects (Kadaoui

et al., 2023). These demonstrate that the wide variation of dialects

in the Arabic language and their complexities pose a challenge

in MT. Hence, understanding of LLMs ability to translate MSA

to different dialects along with the strengths and weaknesses of

LLMs in different DAs needs to be addressed as it is critical in the

development of NLP tools.

2.2 Large language models

LLMs have exhibited a remarkable transformation throughout

the years, where they have evolved from generating only natural

texts to understanding them through AI (Jiang et al., 2020). LLMs

are trained to predict the next token in a sequence based on the
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context, making the generated outputs coherent. They are able to

capture long-range dependencies and perform complex tasks such

as translation, summarization, and question answering. Moreover,

LLMs can generalize across different domains and diverse dialects

through prompting techniques (Alabdullah et al., 2025). Research

studies vary in terms of whether to include prompts in the

analysis or not. For example, Lilli (2023) has studied ChatGPT

4 using Italian dialects; however, the analysis was done using

zero-shot analysis only, and the results showed that the model

exhibits a significant gap in analytical skills and struggles with

text production and interactive tasks, suggesting superior passive

linguistic capabilities compared to active ones. Similarly, GPT 4,

GPT 3.5, and Bard (Gemini) were compared in terms of Inductive,

Mathematical, andMulti-hop Reasoning Tasks using zero-shot, and

GPT 4 was found to be better in all of them compared to GPT 3.5

and Bard (Gemini) (López Espejel et al., 2023). Currently, LLMs are

widely used in evaluating the performance of NLP tasks in different

languages (Kadaoui et al., 2023). However, LLMs are known to have

some issues with rare or unseen words, the problem of overfitting,

and the difficulty in capturing complex linguistic phenomena.

Researchers have been evaluating different LLM techniques

to shed light on future research in the domain (Chang et al.,

2023). Other multilingual models such as XGLM (De Varda

and Marelli, 2023) have also been studied and were shown to

improve significantly in terms of translation performance. It was

found that the model performs best if the answer is estimated

based on the probability of the first token in the generated

answer. However, these models are yet to be studied further

(Zhu et al., 2023). Models such as BERT (Devlin et al., 2018)

have also been analyzed in terms of language analysis, such as

the Arabic language. However, due to its weakness in Arabic

dialects, researchers (Baert et al., 2020) created an enhanced

language model (BAERT) that showed better performance than

BERT in sentiment analysis. LLM research remains a prominent

topic across multiple disciplines, including the development and

customization of LLMs tailored to specific languages, dialects,

or tasks (Mashaabi et al., 2024). There are various LLMs

that support the Arabic language, with GPT being the most

prominent. Some researchers suggest that ArabianGPT, specifically

designed for Arabic, aligns better with Arabic language and

rules (Koubaa et al., 2024).

2.3 Machine translation approaches

Machine translation (MT) is an example of an NLP task

that addresses grammatical, semantic, and morphological elements

between the source and output languages. Importantly, it becomes

a challenging task when those elements are significantly different

(Joshi et al., 2024). The need for MT systems has been increasing

due to the large dialects available on the Internet and their usage

in various fields (Sghaier and Zrigui, 2020). Researchers have been

studying LLM MT capabilities around the world for different

languages. For instance, English to Japanese MT was tested on

mBART50, m2m100, Google Translation, Multilingual T5, GPT-

3, ChatGPT, and GPT 4 using BLEU, Character Error Rate (CER),

WER, Metric for Evaluation of Translation with Explicit ORdering

(METEOR), and BERT score, as well as qualitative evaluations by

four experts. The analysis showed that GPT 4 outperformed all

other models in MT from English to Japanese (Chan and Tang,

2024). Due to their grammatical structure, DA forms a challenge

for MT systems (Baniata et al., 2022). MT is an example of an

NLP task that addresses grammatical, semantic, and morphological

elements between the source and output languages. Importantly, it

becomes a challenging task when those elements are significantly

different (Joshi et al., 2024). Several approaches and tools are

available to perform MT, such as rule-based approaches, hybrid

approaches, and sequence-to-sequence (seq2seq) models as well as

LLMs (Okpor, 2014). For instance, Salloum and Habash (2012)

created a rule-based approach system to translate DA to MSA,

which depends on a morphological analyzer, transfer rules, and

dictionaries to generate sentences and choose the best matches.

Several researchers have widely used the rule-based approach

to translate Arabic dialects to MSA (Al-Gaphari and Al-Yadoumi,

2010; Hamada and Marzouk, 2018; Bouamor et al., 2014). Another

study created a hybrid approach to translate the Egyptian dialect to

MSA and achieved 90% performance through tokenization (Bakr

et al., 2008). Beyond these, Hamed et al. (2025) developed Lahjawi,

a customized model specialized in cross-dialectal translation (DA

to MSA) that supports 15 dialects. Lahjawi was trained on 7 well-

known datasets, including MADAR and Parallel Arabic Dialectal

Corpus (PADIC), and fine-tuned above a small language model

- Kuwain 1.5B. The model achieved adequate BLEU scores and

an accuracy of 58% based on human evaluation. Moreover, Alimi

et al. (2024) developed MT model to translate DA to MSA. The

model was trained onMADAR and PADIC datasets and fine-tuning

transformers such as T5X and AraT5 and some existing tools. The

best translation results revealed were for Levantine and Maghrebi

region dialects. Some authors also adapted a hybrid approach

to translate the Moroccan dialect to MSA using processing

tools for MSA (Ridouane and Bouzoubaa, 2014; Hamada and

Marzouk, 2018), whereas other studies focused on Neural Machine

Translation (NMT) for Arabic dialects (Baniata et al., 2018;

Guellil et al., 2017). For example, Baniata et al. (2022) developed

an NMT model to translate DA to MSA through multi-head

attention with reverse positional encoding and sub-word units. The

model achieved high BLEU scores, proving their encoding method

across several datasets. In addition, other researchers expand the

Dial2MSA dataset through seq2seq datasets in different domains,

including social media covering different regions. Leaving a reliable

NMT training, the authors conducted a performance evaluation,

and it was found that AraT5 achieved the highest performance

(Khered et al., 2025). Moreover, researchers Alabdullah et al. (2025)

evaluated six LLMs onDA toMSA translation, including Levantine,

Egyptian, and Gulf Dialects using different prompting techniques.

They demonstrated that GPT 4o achieved the highest score in

translation performance, while a fine-tuned version of Gemma2-9B

achieved a higher CHrF++ score compared to GPT 4o in zero-show

prompting.

Furthermore, researchers utilized LLMs to perform MT

tasks. For instance, Zhu et al. (2023) evaluated the multilingual

translation of four LLMs, namely, GPT, XGLM, OPT, and

BLOOMZ. Interestingly, the researchers found that such models
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adapt new patterns to translate. GPT proved excellent capability

in MT and outperformed Google Translate according to Peng

et al. (2023). In addition, the AraFinNLP shared tasks highlight

critical challenges and discussions for cross-dialect translation

in preservation of intents using the known ArbBanking77

dataset. The findings highlight that accurate MSA to DA

(Moroccan, Tunisian, and Palestinian) translation is possible

yet challenging. They demonstrated that fine-tuned BERT

models and data augmentation achieve high performance in

handling Arabic dialects for financial applications (Malaysha

et al., 2024). Moreover, SHAMI-MT developed bidirectional

MT models built on the AraT5v2 model and fine-tuned on

the Nbra corpus. They evaluated the translation between

MSA and the Syrian dialect and used MADAR for benchmark

(Sibaee et al., 2025). Similarly, Mohamed et al. (2012) presented

a method to convert MSA to Egyptian dialect, applied on

part-of-speech (POS). They showed that such MT task

improves tagging and is considered as valuable training data

for underrepresented dialects.

Prior research studies addressed the translation from MSA to

different dialects. A study conducted empirical analysis focusing on

Arabic-based LLMs to assess their ability to translate DA to MSA,

utilizing four datasets with English-based LLMs as a baseline (Jibrin

et al., 2025). They highlighted that AceGPT and Jais performed the

best BLEU scores across all data sets, establishing their reliability

in Arabic formality. In another study, GPT was evaluated on

various NLP tasks. It was revealed that GPT, in comparison with

BLOOMZ, struggles on some Arabic tasks yet comparable to

human judgment (Khondaker et al., 2023). Several studies explored

this field with more precision in relation to the Nuance Arabic

Dialect Identification (NADI) 2023 competition. Demidova et al.

(2024) performed sentence-based translation from DA to MSA

across four dialects through Jais, No Language Left Behind (NLLB),

GPT 3.5, and GPT 4 LLMs. They found that Jais outperforms the

other models consistently, achieving high BLEU scores whereas

NLLB was the least performer. Similarly, other researchers mainly

focused on fine-tuning LLama-3 with 8B parameters through

Parameter Efficient Fine-Tuning (PEFT) and Low Rank Adaptation

(LoRA) methods. The task was also DA-MSA translation across

four datasets. LLama fine-tunedmodel exhibits strong performance

related to BLEU metric. Moreover, the 6th Workshop on Open-

Source Arabic Corpora and Processing Tools (OSACT) showed

interesting findings through different studies specifically for Dialect

toMSAMT task including 5 dialects. Atwany et al. (2024) evaluated

AraT5, NLLB, and GPT 3.5. The results show that fine-tuning

Arat5 and NLLB on the MADAR dataset demonstrates low BLEU

scores, whereas prompting GPT 3.5 achieved high BLEU scores.

Moreover, other researchers used GPT 3.5 for dataset generation

(Abdelaziz et al., 2024). They used the Saudi Audio Dataset for

Arabic (SADA) to translate the audio dialects to MSA texts, leading

to notable performance in machine translation achieving high

BLEU scores between 25.5 and 31.5. Alahmari et al. (2024) fine-

tuned four versions of AraT5 model highlighting that AraT5v2-

base-1024 model achieved the highest BLEU score of 21.0. Various

researchers have utilized MT with a special focus on the context of

Arabic dialects. Table 1 summarizes the MT approaches proposed

by the researchers.

3 Proposed methodology

This section discusses the chosen dataset in Section 3.1,

followed by Section 3.2, which describes the prompting techniques.

Model selection is mentioned in Section 3.3, and the chosen

performance metrics are detailed in Section 3.4.

3.1 Dataset

Translating Arabic dialects has been a wide area of research

(Harrat et al., 2019). In our research, we aim to use the QADI

dataset and the MADAR corpus dataset. QADI dataset is a pre-

processed dataset collected through X media platform, and it

includes 18 dialects from different Arab countries, the dataset is

already cleaned and has no hashtags, emojis, or such symbols which

might affect the translation quality (Abdelali et al., 2020). The

dataset has 540k training tweets and 3,303 test tweets in total. The

rationale for choosing the QADI dataset is the large number of

dialects it has which will help us address our research questions

and compare the performance evaluation of LLMs. However, in

the current study, 50K samples will be used from all countries for

the analysis due to computational resource restrictions. We applied

random sampling, the QADI dataset was balanced across dialects,

our random selection ensured that the selected 50K tweets have no

bias and ensure equal selection among the sentences. Table 2 shows

different country codes using ISO-3166-1 with corresponding users

and tweet count of QADI dataset.

Similarly, the MADAR corpus dataset (Bouamor et al., 2019)

contains 25 cities representing 15 countries, each with a unique

dialect where some countries feature multiple cities (e.g., Egypt has

Aswan, Cairo, and Alexandria) with 2K samples from each dialect.

The advantage of using the MADAR dataset is that it includes MSA

baseline translation for the sentences present inside the dialects

of each country. Hence, making the evaluation of GPT and Bard

(Gemini) stronger by comparing the results of these models with

the baseline given within the dataset. This study will analyze 15

countries from the MADAR dataset primarily focusing on the

capitals of countries that are also included in QADI. Table 3 shows

all the city dialects from the MADAR dataset, showing the different

cities with their dialects from various Arabic countries.

3.2 Prompting techniques

Prompting strategies have been developed to optimize LLMs’

performance and outcomes. The most frequent of these tactics are

zero-shot and few-shot. The zero-shot prompt plainly describes the

task and provides information without examples (Allingham et al.,

2023). Figures 1, 2 show an example of the prompts used to perform

the translation task. Unlike zero-shot prompts, few-shot prompts

include data examples and sample responses (Jiang et al., 2022).

On the other hand, a few-shot prompting technique is established

by providing an example within the prompt itself, where one-shot

includes a single example, two-shot includes 2 examples, etc. We

will include both zero-shot and few-shot prompts. As well as a few
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TABLE 1 Summary of machine translation (MT) approaches for Arabic dialects.

Research Dialect(s) Approach

Bakr et al., 2008 Egyptian→MSA Hybrid

Al-Gaphari and Al-Yadoumi, 2010 Sana’ani→MSA Rule-based

Salloum and Habash, 2012 Arabic Dialects→MSA Rule-based

Mohamed et al., 2012 MSA→ Egyptian Rule-based

Bouamor et al., 2014 Mainly Egyptian Rule-based, Corpus of 2,000 sentences

Ridouane and Bouzoubaa, 2014 Moroccan→MSA Hybrid

Guellil et al., 2017 Algerian NMT

Hamada and Marzouk, 2018 Egyptian→MSA Hybrid/Rule-based

Baniata et al., 2018 Arabic dialects→MSA Neural MT (NMT)

Hamed et al., 2025 15 Dialects→MSA Custom cross-dialectal model

Alimi et al., 2024 Levantine, Maghrebi→MSA Transformer-based MT (AraT5, T5X)

Alabdullah et al., 2025 Levantine, Egyptian, Gulf→MSA LLM-based MT (GPT 4o, Gemma2-9B)

Zhu et al., 2023 Multilingual/Arabic LLM-based MT (GPT, XGLM, OPT, BLOOMZ)

Malaysha et al., 2024 Moroccan, Tunisian, Palestinian→MSA LLM + fine-tuned BERT

Sibaee et al., 2025 Syrian→MSA AraT5v2-based bidirectional MT

Khered et al., 2025 Arabic Dialects→MSA Seq2seq / Transformer (AraT5)

Jibrin et al., 2025 Arabic Dialects→MSA LLM-based MT (AceGPT, Jais)

Khondaker et al., 2023 Arabic Dialects→MSA LLM-based MT (GPT, BLOOMZ)

Demidova et al., 2024 Egyptian, Emirati, Jordanian, and Palestinian→MSA LLM-based MT (Jais, NLLB, GPT 3.5, GPT 4)

Atwany et al., 2024 Gulf, Egyptian, Levantine, Iraqi and Maghrebi→MSA LLM-based MT (AraT5, NLLB, GPT 3.5)

Abdelaziz et al., 2024 Saudi Dialect→MSA LLM-based MT (GPT 3.5)

Alahmari et al., 2024 Arabic dialects→MSA Transformer MT (AraT5v2)

shot prompts (one-shot) for the country with the weakest dialect

translation given by the models to check whether including an

example within the prompt would enhance the overall accuracy of

the translation. An example of a prompt is shown in Figure 3 to test

whether the models would provide a better translation as compared

to zero-shot approaches.

3.3 Model selection

This research paper will be using OpenAI’s most recent

model GPT 5 along with GPT 3.5, GPT 4, and Google’s Bard

(Gemini) “text-bison” model due to their exceptional performance

in research (Zhu et al., 2023; Peng et al., 2023; Khondaker et al.,

2023; Kadaoui et al., 2023). LLMs are widely used to evaluate

the performance of Arabic NLP tasks such as GPT 3.5, GPT

4, Bard (Gemini), XGLM, and OPT (Zhu et al., 2023). To save

computational cost and time, GPT 5 will only be ran on MADAR

dataset, whereas QADI will include all remaining models. This

study’s selection criteria for the models aim to balance between

budget and computing resources. In addition, LLM languages that

do not include the Arabic language, such as Falcon-7b (Penedo

et al., 2023), were initially excluded from the search scope of

suitable LLMs. A brief summarization of both models is shown in

Table 4.

Figure 4 shows the experiment pipeline implemented for GPT

and Bard (Gemini). The experiment starts using the data in the

dataset as a prompt for each LLM. Initially, all prompts will be

applied with zero-shot techniques, meaning that no example will

be included within the prompt. However, after performing the

analysis, the country with the least translation performance will be

analyzed again but with the few-shot prompting technique. In the

QADI dataset, to have a baseline to compare the LLM results with,

the back translation process is used (Behr, 2017), where dialects

are translated to MSA; then, the resulting MSA is translated back

to the corresponding dialect to compare the final resulting dialect

with the original dialect from the dataset. However, MADAR offers

a baseline for dialects and MSA; therefore, no back-translation will

be needed.

For LLM inference, we used the code provided on the

Application Programming Interface (API) websites with some

correction techniques; rerunning the prompt if the model returns

an error to ensure a correct response. After doing so, the error rate

in the resulting samples has dropped sufficiently. Cost optimization

technique has also been adapted by running 10 translations per API

request, which reduced the cost. A threshold of 10 requests was set

as the maximum accumulation; as the threshold increases, the error
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TABLE 2 QADI dataset: users and tweet counts by country using

ISO-3166-1 codes.

Country Users Training
tweets (k)

Test
tweets

Iraq (IQ) 142 18.4 178

Bahrain (BH) 169 28.3 184

Kuwait (KW) 160 49.9 190

Saudi Arabia (SA) 149 35.4 199

United Arab Emirates (AE) 172 27.8 192

Oman (OM) 176 24.8 169

Qatar (QA) 139 36.7 198

Yemen (YE) 138 11.6 193

Syria (SY) 139 18.3 194

Jordan (JO) 146 34.1 180

Palestine (PL) 145 48.6 173

Lebanon (LB) 141 38.4 194

Egypt (EG) 150 67.8 200

Sudan (SD) 139 16.3 188

Libya (LY) 149 40.9 169

Tunisia (TN) 68 12.9 154

Algeria (DZ) 130 17.6 170

Morocco (MA) 73 12.8 178

TABLE 3 All the city dialects and regions that were included in the

building of the MADAR dataset.

Region Sub-
region

Cities Codes

Maghreb Morocco Rabat, Fes RAB, FES

Algeria Algiers ALG

Tunisia Tunis, Sfax TUN, SFX

Libya Tripoli, Benghazi TRI, BEN

Nile

Basin

Egypt Cairo, Alexandria,

Aswan

CAI, ALX, ASW

Sudan Khartoum KHA

Levant South Levant Jerusalem, Amman,

Salt

JER, AMM, SAL

North Levant Beirut, Damascus,

Aleppo

BEI, DAM, ALE

Gulf Iraq Mosul, Baghdad, Basra MOS, BAG, BAS

Gulf Doha, Muscat, Riyadh,

Jeddah

DOH, MUS, RIY,

JED

Yemen Yemen Sana’a SAN

rate also increases. Finally, the experiment results will be evaluated

by calculating the selected performance metrics described in the

upcoming section.

FIGURE 1

Zero-shot prompt - QADI.

FIGURE 2

Zero-shot prompt - MADAR.

3.4 Performance metrics

We aim to quantify the differences in performance between

GPT 3.5, GPT 4, GPT 5, and Bard (Gemini) and to determine how

these models can perform the translation task given the complexity

of the Arabic language. There are various common evaluation

metrics for comparison. The present study will use 7 evaluation

metrics (i.e., cosine similarity, sentence BERT, semantic universal

encoder, TER, BLEU, ROUGE, and ANOVA test). These metrics

were chosen based on their strengths and popularity in analyzing

Arabic sentences. To attest for normality, the Shapiro–Wilk test was

used for ANOVA (Alabdullah et al., 2025).

One of the common MT metrics is the universal similarity

encoder, which is a neural network architecture for learning

similarity-preserving embeddings that uses pre-trained

embeddings (e.g., Word2Vec, GloVe, or BERT embeddings)

to compare two sentences, rather than having a specific calculation

formula. Its range varies from –1 to 1, where results closer to 1 are

indicative of high semantic similarity.

However, cosine similarity calculates the cosine of the angle

formed by two vectors that represent phrases in several dimensions

that represent a word or contextual information. Equation 1 below

shows the cosine similarity, where A and B are vectors.

Cosine similarity =
A · B

‖A‖ · ‖B‖
(1)

High positive values in cosine similarity (close to 1) indicate

that there is great similarity between the two vectors.

Sentence BERT is a transformer that adapts cosine similarity by

using Tensorflow. The general process involves encoding sentences

into fixed-size vectors using pre-trained BERT embedding and then

calculating a similarity score between these vectors (Mrinalini et al.,

2022). Since sentence BERT adapts cosine similarity, it follows the
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FIGURE 3

Few-shot prompt - MADAR.

FIGURE 4

Experiment pipeline.

same metric measures of –1 to 1, where close values to –1 mean

that the two vectors are completely dissimilar, and values close to

1 mean that there is a high similarity between the vectors. The

universal sentence encoder finds the similarity between sentences

based on semantics, where it is used to convert phrases into dense

vector representations.

Finally, the TER metric is specifically used for MT tasks by

comparing the MT outputs against human-generated translation to

assess the quality of MT outputs, as shown in Equation 2.

TER =
Total edits

Total words in reference translation
(2)

A lower TER score indicates a better translation quality as

it means that fewer edits are needed to align the machine-

generated translation.
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TABLE 4 Tabular comparison between GPT and Bard.

Aspect GPT 3.5 GPT 4 GPT 5 Bard

Source OpenAI OpenAI OpenAI Google

Language model GPT 3.5-turbo-16k ’GPT 4-0125-preview’ ’GPT 5’ ’text-bison’

Model architecture Transformer decoder based Transformer decoder based Transformer decoder based Transformer based

Availability Limited free access Paid Paid Limited free access

Languages Multilingual Multilingual Multilingual Multilingual

Parameter Size 175 Billion 1.76 Trillion Not Announced 137 Billion

Moreover, the BLEU metric is a widely popular metric

used in research (Sallam and Mousa, 2024) where individual

translated segments, usually sentences, are scored by comparing

them with a collection of high-quality reference translations.

These scores are then averaged throughout the entire corpus

to provide an approximation of the translation’s overall quality

(Papineni et al., 2002). It aims to find the similarity between

the translated text and the reference sentence by employing n-

grams; contiguous group of n-words that are similar. The metric

values range from 0 to 1, and typically a higher value means

that more words are overlapping between the machine-translated

sentence and the referenced sentence, as shown in Equation 3

(Papineni et al., 2002).

BLEUw(Ŝ; S) : = BP(Ŝ; S) · exp

(

∞
∑

n=1

wn log pn(Ŝ; S)

)

(3)

where BP is the brevity penalty, w is the weights for each n-gram,

and p is the precision of n-grams.

Furthermore, ROUGE is a collection of metrics and software

packages for assessing automatic summarization and MT

software in natural language processing. The metrics assess an

automatically generated summary or translation to a reference

or a collection of references (human-created summary or

translation). ROUGE measures range from 0 to 1, with

higher scores indicating a stronger resemblance between the

automatically generated summary and the reference (Lin and

Hovy, 2003).

ANOVA is a statistical approach for comparing the means

of three or more samples to determine whether one of them is

substantially different from the others (Keselman et al., 1998).

It accomplishes this by analyzing the variance in the data

and categorizing it as the variance between groups and the

variance within groups. The p-value is calculated using the

ANOVA test statistic, also known as the F-statistic, as shown

in Equation 4.

F-statistic (ANOVA Coefficient) = (4)

Mean Sum of Squares due to Treatment (MST)

Mean Sum of Squares due to Error (MSE)

The p-value indicates whether the differences in group

means are statistically significant (Keselman et al., 1998). In this

study, since we are performing various analyses and tests, it

became important to employ ANOVA to determine the statistical

significance of the results.

4 Experimental results

This section discusses the model responsiveness in Section

4.1, followed by the metric performance and dialect variations in

Section 4.2. Finally, Section 4.3 discusses the impact of sentence

length on the model accuracy.

4.1 Model responsiveness

In general, in terms of responsiveness, the models were

responsive when given a prompt with input. However, there were

differences in the output details of both models. GPT gave a direct

response where Gemini explained each word in a row.

When running APIs, Bard (Gemini) has shown varying error

rates when translating ranging from 5% up to 71%. This error rate

was varying based on the load on the network at the execution

time and length of the dataset being analyzed. Hence, to reduce

the error rate, we ran Bard (Gemini) when the network was not

preoccupied with many other tasks and ran the dataset in smaller

batches to reduce the chances of error. There were several cases

where Bard (Gemini) has either returned the same input as output,

empty output, or a message that says that it is unable to handle a

given task.

The rate of failing to give an output is most noticeable when

performing the back translation from MSA to a certain dialect in

QADI dataset. For example, for the back translation for IQ dialect,

Bard (Gemini) failed to give an output with the rate of 37.5%,

whereas GPT 3.5 has only failed to do so with a 5.6% rate, and

GPT 4 had 0.2% error rate. Therefore, a correction technique was

added in the code, where the response was checked, if it included

an error, resend the same prompt. After doing so, the error rate in

the resulting samples has dropped considerably.

4.2 Performance metrics and dialect
variations

4.2.1 Similarity metrics
This section discusses the similarity metrics and the

performance of the LLMs on the MADAR and QADI datasets in

terms of universal similarity encoder, cosine similarity, sentence

BERT, BLEU, and ROUGE F1 scores. The metrics aimed to assess

the efficiency and accuracy of the translation process of different

dialects. The analysis explained below is further demonstrated in

Tables 5 – 11. To address the research questions, both GPT 3.5/4
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TABLE 5 Bard metric similarities mean among 18 dialects from QADI

dataset.

Dialect Univ.
Sim.
Enc.

Cosine
Sim.

Sent.
BERT

BLEU ROUGE-
L

JO 0.68 0.43 0.92 0.07 0.43

AE 0.65 0.38 0.92 0.35 0.38

LB 0.67 0.40 0.87 0.38 0.40

IQ 0.64 0.40 0.91 0.39 0.41

BH 0.67 0.46 0.88 0.07 0.46

DZ 0.64 0.41 0.89 0.39 0.41

EG 0.72 0.47 0.89 0.45 0.47

KW 0.67 0.46 0.94 0.43 0.45

LY 0.70 0.48 0.90 0.45 0.47

MA 0.63 0.38 0.94 0.04 0.38

OM 0.64 0.45 0.94 0.43 0.45

PL 0.64 0.42 0.94 0.40 0.42

QA 0.67 0.42 0.94 0.05 0.42

SA 0.65 0.39 0.93 0.37 0.39

SD 0.68 0.44 0.90 0.06 0.43

SY 0.66 0.46 0.90 0.43 0.45

TN 0.65 0.42 0.89 0.39 0.41

YE 0.68 0.47 0.93 0.44 0.47

TABLE 6 Bard metric similarities mean among 15 dialects from MADAR

dataset.

Dialect Univ.
Sim.
Enc.

Cosine
Sim.

Sent.
BERT

BLEU ROUGE-
L

JO 0.56 0.34 0.93 0.37 0.32

LB 0.53 0.35 0.93 0.34 0.28

IQ 0.50 0.33 0.93 0.32 0.26

DZ 0.52 0.31 0.93 0.29 0.23

EG 0.57 0.38 0.93 0.37 0.32

LY 0.53 0.32 0.93 0.31 0.25

MA 0.50 0.31 0.93 0.29 0.23

OM 0.58 0.40 0.93 0.38 0.33

PL 0.56 0.39 0.92 0.37 0.32

QA 0.53 0.36 0.93 0.34 0.28

SA 0.53 0.35 0.93 0.33 0.27

SD 0.56 0.38 0.94 0.37 0.32

SY 0.55 0.39 0.93 0.37 0.32

TN 0.48 0.26 0.93 0.25 0.17

YE 0.50 0.28 0.93 0.27 0.20

TABLE 7 GPT 3.5 metric similarities mean among 18 dialects from QADI

dataset.

Dialect Univ.
Sim.
Enc.

Cosine
Sim.

Sent.
BERT

BLEU ROUGE-
L

JO 0.66 0.38 0.89 0.43 0.46

AE 0.66 0.37 0.88 0.39 0.43

LB 0.65 0.40 0.94 0.48 0.50

IQ 0.62 0.33 0.84 0.38 0.40

BH 0.67 0.40 0.87 0.44 0.47

DZ 0.59 0.29 0.91 0.28 0.31

EG 0.65 0.35 0.86 0.32 0.35

KW 0.65 0.39 0.90 0.45 0.48

LY 0.63 0.34 0.85 0.32 0.36

MA 0.64 0.34 0.89 0.37 0.40

OM 0.64 0.39 0.84 0.46 0.49

PL 0.67 0.43 0.84 0.53 0.55

QA 0.63 0.35 0.87 0.25 0.40

SA 0.63 0.33 0.89 0.32 0.36

SD 0.65 0.37 0.85 0.35 0.46

SY 0.65 0.39 0.90 0.43 0.46

TN 0.66 0.41 0.83 0.46 0.49

YE 0.63 0.39 0.85 0.43 0.45

TABLE 8 GPT 3.5 metric similarities mean among 15 dialects fromMADAR

dataset.

Dialect Univ.
Sim.
Enc.

Cosine
Sim.

Sent.
BERT

BLEU ROUGE-
L

JO 0.55 0.35 0.92 0.34 0.30

LB 0.52 0.32 0.91 0.32 0.25

IQ 0.51 0.29 0.93 0.28 0.22

DZ 0.50 0.28 0.93 0.26 0.20

EG 0.54 0.34 0.93 0.33 0.28

LY 0.51 0.27 0.93 0.27 0.20

MA 0.50 0.27 0.93 0.26 0.20

OM 0.53 0.31 0.92 0.29 0.24

PL 0.54 0.34 0.92 0.33 0.28

QA 0.53 0.31 0.93 0.30 0.24

SA 0.55 0.34 0.93 0.34 0.28

SD 0.53 0.31 0.92 0.29 0.24

SY 0.55 0.36 0.92 0.35 0.30

TN 0.48 0.24 0.93 0.23 0.16

YE 0.50 0.26 0.93 0.25 0.19
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TABLE 9 GPT 4 metric similarities mean among 18 dialects from QADI

dataset.

Dialect Univ.
Sim.
Enc.

Cosine
Sim.

Sent.
BERT

BLEU ROUGE-
L

JO 0.73 0.50 0.82 0.49 0.51

AE 0.71 0.45 0.91 0.44 0.46

LB 0.74 0.50 0.94 0.49 0.51

IQ 0.70 0.43 0.88 0.43 0.45

BH 0.72 0.48 0.91 0.48 0.49

DZ 0.75 0.53 0.91 0.55 0.57

EG 0.77 0.55 0.90 0.55 0.57

KW 0.68 0.45 0.88 0.45 0.47

LY 0.70 0.43 0.87 0.42 0.44

MA 0.70 0.41 0.89 0.40 0.41

OM 0.65 0.39 0.77 0.38 0.39

PL 0.71 0.49 0.88 0.48 0.50

QA 0.66 0.37 0.87 0.36 0.37

SA 0.69 0.38 0.89 0.36 0.38

SD 0.74 0.50 0.93 0.51 0.53

SY 0.72 0.48 0.92 0.46 0.49

TN 0.71 0.44 0.88 0.44 0.45

YE 0.69 0.43 0.91 0.41 0.43

TABLE 10 GPT 4 metric similarities mean among 15 dialects from MADAR

dataset.

Dialect Univ.
Sim.
Enc.

Cosine
Sim.

Sent.
BERT

BLEU ROUGE-
L

JO 0.60 0.42 0.93 0.41 0.37

LB 0.54 0.34 0.43 0.36 0.28

IQ 0.54 0.34 0.93 0.33 0.27

DZ 0.51 0.30 0.93 0.29 0.23

EG 0.56 0.38 0.93 0.38 0.33

LY 0.52 0.31 0.93 0.30 0.24

MA 0.47 0.26 0.93 0.25 0.18

OM 0.53 0.33 0.93 0.32 0.26

PL 0.59 0.41 0.92 0.41 0.36

QA 0.57 0.39 0.93 0.38 0.33

SA 0.58 0.41 0.93 0.40 0.35

SD 0.54 0.33 0.93 0.32 0.26

SY 0.59 0.41 0.92 0.41 0.36

TN 0.48 0.26 0.93 0.25 0.18

YE 0.52 0.30 0.92 0.29 0.22

and Bard (Gemini) exhibited similar performance levels across the

metrics among dialects in both datasets.

The BLEU score values for GPT 3.5/4 are similar among

the LLMs and countries for QADI, whereas GPT 5 slightly

TABLE 11 GPT 5 metric similarities mean among 15 dialects from MADAR

dataset.

Dialect Univ.
Sim.
Enc.

Cosine
Sim.

Sent.
BERT

BLEU ROUGE-
L

JO 0.62 0.46 0.93 0.47 0.43

LB 0.58 0.39 0.92 0.39 0.34

IQ 0.55 0.37 0.92 0.37 0.31

DZ 0.50 0.28 0.93 0.26 0.20

EG 0.59 0.44 0.92 0.44 0.40

LY 0.54 0.37 0.92 0.36 0.30

MA 0.56 0.40 0.92 0.39 0.34

OM 0.52 0.34 0.93 0.37 0.28

PL 0.61 0.46 0.92 0.47 0.42

QA 0.59 0.43 0.92 0.44 0.38

SA 0.58 0.42 0.92 0.43 0.38

SD 0.54 0.38 0.92 0.37 0.32

SY 0.62 0.47 0.92 0.49 0.44

TN 0.53 0.34 0.92 0.33 0.27

YE 0.55 0.35 0.93 0.34 0.28

outperformed its prior models in MADAR dataset. Figures 5, 6

visualize the BLEU scores labeled by each country where the LLMs

showed consistent results in MADAR. Bard (Gemini) in the QADI

dataset achieved a low score for some countries. These numbers

explain that a few words were overlapping between the input and

the translated dialect.

Furthermore, when employing a universal similarity encoder

and cosine similarity in QADI as shown in Table 12, GPT 4

outperforms the models, which makes it the dominant, followed

by Bard (Gemini) and then GPT 3.5. The mean universal similarity

encoder score is 71% for GPT 4, 64% for GPT 3.5, and 66% for Bard

(Gemini) among all countries. For the MADAR dataset in Table 13,

GPT 5 outperforms all models by having a 57% average, whereas

GPT 4 has a mean of 54%, GPT 3.5 mean is 52%, whereas Bard

(Gemini) has a mean of 53%. This suggests that Bard (Gemini)

has shown comparable skill to older GPT models in understanding

and conveying the semantic connections among the translated

sentences in the MADAR dataset, whereas GPT 5 stands out

overall. Whereas for the QADI dataset, GPT 4 had a higher mean,

which indicates that it has the best skill in conveying the semantic

connections with the existence of the back translation algorithm.

In Table 12 for QADI, the cosine similarity showed a mean of

46% for GPT 4, 43% for Bard (Gemini), and 37% for GPT 3.5.

Table 13 exhibits a similar performance of 35% for GPT 4, 39%

for Bard (Gemini), and 31% for GPT 3.5 on MADAR. This shows

that GPT 4 is the best performer which aligns with the results of

Alyafeai et al. (2023) and Peng et al. (2023). GPT 5 outperforms

other models with a mean of 39% in MADAR. Noticeably, GPT

3.5 encountered the most struggles in translating to dialects from

MSA which exhibits to a similar behavior in the conclusion drawn

by Kadaoui et al. (2023).
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FIGURE 5

Average BLEU scores QADI.

On the other hand, sentence BERT shows the highest mean

among all metrics as it uses a transformer model which makes it

most accurate in finding similarities between the input dialect and

the back-translated dialect. In addition, it showed consistent results

for all LLMs across the two datasets. In Table 12 for QADI, Bard

(Gemini) shows an average efficiency of 91%, hence outperforming

GPT 4 and GPT 3.5 which shows an average efficiency of 89%

and 87% consecutively. Similarly for MADAR in Table 13, Bard

(Gemini) shows a total mean value of 93%, tying with GPT 3.5

whereas GPT 5 shows 92%, GPT 4 shows 90%. GPT 4 has witnessed

a drop in accuracy due to poorer performance in LB dialect because

of an outlier compared to other countries as its individual score

shows 43% score, whereas others scored approximately 93%. This

is due to an error occurred when running the data where sentences

were translated to English instead of Arabic which drops the

accuracy rate of the overall translation. Given that the error was

only observed in the Lebanese dialect, it could be attributed that

the model had unresolved difficulties in the background which was

also passed down to the updated GPT 5 model as well.

In QADI dataset in Table 12, GPT 3.5 and Bard (Gemini)

have an average score of 43% for ROUGE-L where GPT 4 scored

an average of 47%. The analysis note that at least one Maghrebi

dialect was of the highest ROUGE-L values observed for all models.

However, GPT 3.5 achieved the top score for Palestine. This

indicates a greater number of sentences overlap. These results

indicate that GPT 4 was specifically well trained and consistent in

at least oneMagherbi dialect (e.g., Moroccon, Algerian, or Tunisian

Arabic), whereas GPT 3.5 was a better fit in Palestinian dialect (i.e.,

Levantine Arabic).

In the same vein for the MADAR in Table 13, ROUGE-L

scores were similar showing an average of 27%, 24%, 28% for Bard

(Gemini), GPT 3.5/4, respectively, whereas GPT 5 outperforms

other models showing 34%. Figures 7, 8 show the averages for each

model to further illustrate the scores.

Overall, all three models among different datasets

demonstrated a decently high average score for ROUGE-1

and ROUGE-L but lower scores for ROUGE-2. These results

indicate that GPT 3.5, GPT 4, and Bard (Gemini) all had higher

overlap between single words and long sequences between the

compared text with GPT 4 being the highest in Figure 7, whereas

GPT 5 clearly outperforms all other models in MADAR as

demonstrated in Figure 8.

Overall, the results show that GPT 5 followed by GPT 4, Bard

(Gemini), and GPT 3.5 are efficient in translating MSA to different
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FIGURE 6

Average BLEU scores MADAR.

TABLE 12 Average similarity metrics for QADI dataset.

Metric GPT 3.5 GPT 4 Bard
(Gemini)

Universal similarity encoder 0.64 0.71 0.66

Cosine similarity 0.37 0.46 0.43

Sentence BERT 0.87 0.89 0.91

BLEU 0.39 0.45 0.31

ROUGE-L 0.43 0.47 0.43

TER 15.62% 15.75% 16.55%

Lower error rates are denoted by green.

DA, with slight difference and weaknesses noted in some of the

dialects and models.

4.2.2 TER
Table 14 shows the TER for all the countries for QADI dataset

for GPT 3.5, GPT 4, and MADAR, whereas the Figures 9, 10

visualize some dialects’ results fromQADI representing the average

TER as a red line. The ranges of error demonstrated by TER range

TABLE 13 Average similarity metrics for MADAR dataset.

Metric GPT
3.5

GPT 4 GPT 5 Bard
(Gemini)

Universal similarity

encoder

0.52 0.54 0.57 0.53

Cosine similarity 0.31 0.35 0.39 0.34

Sentence BERT 0.93 0.90 0.92 0.93

BLEU 0.30 0.34 0.39 0.33

ROUGE-L 0.24 0.28 0.34 0.27

TER 6.76% 6.74% 6.61% 6.90%

Lower error rates are denoted by green.

from approximately 10% up to 25% for all LLMs. Furthermore, the

models have the lowest TER rate of approximately 11% for the OM

dialect, whereas Bard (Gemini) has the highest worst TER rate in

EG of 25.6%. Comparing the Gulf region countries (AE, BH, KW,

OM, QA, and SA) specifically on GPT 3.5, OM showed the lowest

TER of approximately 10%, whereas the other countries from the

region showed an average ranging from 14% to 18%.
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FIGURE 7

Average ROUGE scores for QADI dataset.

FIGURE 8

Average ROUGE scores for MADAR dataset.

On the other hand, Table 15 and Figure 11 specifically showing

GPT 4 illustrate the TER values of each country employing

MADAR dataset as an example. In comparison with QADI dataset,

the TER rates are closer together and have an overall lower value

ranging from 6% to 7%, with JO being the highest and QA, SY, and

OM being the lowest in the MADAR and QADI datasets. This may

be explained by the fact that the MADAR dataset gathers sentences

from a single source as a CORPUS, unlike the QADI dataset, which

gathers sentences from X platform (Twitter) which is more prone

to errors due to difficulty in filtering the sentences as tweets.

Overall, in terms of efficiency and consistency combined,

all models show competitive results and proved capable of

translating multiple dialects regardless of the region as they all had

approximately close values across the Middle East such as PL, LB,

SY, and JO, the Gulf region such as KW, AE, SA, BH, OM, and

QA, the Arab Maghreb region such as MA, LY, DZ, and TN and the

African and Asian countries such as EG, SD, YE, and IQ. In QADI,

GPT 4 outperforms the other LLMs in all similarity metrics and

TER, Bard (Gemini) comes in the second place and then GPT 3.5

as shown in Table 12 whereas GPT 5 outperforms GPT 4 and other

models in MADAR in Table 13 proving it being a more reliable

model in translating fromMSA toDA. This is further demonstrated

in Figures 12, 13 which further demonstrate LLM performance

upon the metrics used in this study. Models exhibited consistent

scores among all metrics with GPT 5 being the highest and most

appropriate LLM to deal with Arabic dialects.
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TABLE 14 TER for comparison for Bard, GPT 3.5, and GPT 4 for each

dialect in the QADI dataset, where lower TER means higher performance.

Dialect Bard GPT 3.5 GPT 4

JO 18.08% 17.51% 18.02%

AE 17.02% 16.94% 17.75%

LB 18.16% 16.56% 17.34%

IQ 15.17% 15.06% 15.86%

BH 15.87% 14.97% 13.70%

DZ 16.64% 14.90% 13.37%

EG 25.60% 21.54% 22.91%

KW 14.81% 13.52% 12.47%

LY 18.65% 17.53% 17.66%

MA 14.80% 15.14% 17.23%

OM 11.43% 11.02% 10.82%

PL 11.82% 11.62% 11.38%

QA 17.98% 16.14% 14.83%

SA 15.89% 15.93% 16.75%

SD 19.10% 17.85% 16.89%

SY 14.59% 14.38% 14.42%

TN 16.28% 15.62% 16.69%

YE 16.04% 14.92% 15.35%

High error rates are colored by red, lower rates are denoted by green.

4.2.3 ANOVA
ANOVA test is a common test used to check whether the data

and mean difference are significant based on different conditions

and factors. In previous sections, we found that the average

translation performance among similarity metrics and TER are

quite similar. To better understand the significance difference, one-

way ANOVA is applied to all countries and models with alpha 0.05

threshold. We have applied Shapiro–Wilk test diagnostic to verify

the residuals normality and applicable for ANOVA. This is a similar

approach adapted by Alabdullah et al. (2025). The ANOVA results

are shown in Table 16 for QADI and Table 17 for the MADAR

dataset. Themodels GPT and Gemini are the independent variables

and the performance metrics including similarity metrics, BLEU,

and ROUGE were considered dependent variables. In reference

to Table 16, ANOVA test is applied among all similarity metrics,

and there is a significant difference between the model translation

performance with a p-value close to 0 in universal similarity

encoder, cosine similarity, and sentence BERT, which indicates

that the probability of the average similarities are different is

approximately 99.96%. Metrics such as BLEU, ROUGE-L, and TER

show insignificant difference among the models meaning that all

models have similar scores/error rates in translation. Moreover, the

f-value <1 suggested that there is no variance across the means.

As for MADAR, Table 17 shows that there is no difference

between the means and all models exhibited similar translation

performance on sentence BERT, ROUGE-L, and TER. However,

the other metrics show significant differences between the

LLMs’ scores.

FIGURE 9

Scatter plots showing the TER for QADI datasets on Bard for highest

and lowest countries. (A) Bard - EG Highest TER. (B) Bard - OM

Lowest TER.

4.2.4 Evaluation divergence (lexical vs. semantic
metrics)

Upon evaluating different models with different performance

metrics, some conflicts between the metrics were noted. To

strengthen our analysis, we have chosen different metrics, each

evaluating a certain category of the LLMs ability. BLEU and

ROUGE rely on lexical overlap with the reference translation (the

original dialect in our case) and count the n-gram overlap. On the

other hand, universal similarity encoder and sentence-BERT are

semantic measures that focus on meaning equivalence regardless

of literal word matching. TER is concerned with the number of

edits to match the generated dialect with the base dialect reference.

As we are evaluating the 15 dialects, this variation often involves

synonym choice, morphological difference, and substitutions. A

model can semantically translate to the correct dialect yet not the

exact word matching which leads to lower BLEU and ROUGE

scores. Conversely, high lexical overlap does not always guarantee
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FIGURE 10

Scatter plots showing the TER for QADI datasets on GPT 3.5 for

highest and lowest countries. (A) GPT 3.5 - EG Highest TER. (B) GPT

3.5 - OM Lowest TER.

semantic accuracy if the matched words are used in a different

sense. The is noted in Table 9, and some dialects such as DZ

and EG scored low BLEU/ROUGE scores while achieving high

values in the semantic evaluation perspective. These findings

support our approach and analysis, highlighting the need to adapt

different metric scores, as each captures different aspects of LLM

translation quality.

4.3 E�ects of model accuracy

4.3.1 Few-shots analysis
In this section, we will explore the opportunity to check

whether increasing the prompt size from zero-shot to few-shot

would enhance the translation quality of each LLM. We used the

MADAR dataset as it has more consistency in results with TN

having the lowest similarity scores in Table 18 and a high TER rate

as shown in Table 19, indicating a need to enhance the translation

TABLE 15 TER Comparison for Bard, GPT 3.5, GPT 4, and GPT 5 for each

dialect in the MADAR dataset, where lower TER means higher

performance.

Dialect Bard GPT 3.5 GPT 4 GPT 5

JO 7.32% 7.11% 7.10% 6.95%

LB 6.54% 6.37% 6.36% 6.27%

IQ 6.66% 6.53% 6.49% 6.35%

DZ 7.14% 6.95% 6.93% 6.95%

EG 7.16% 7.02% 7.00% 6.88%

LY 7.06% 6.90% 6.89% 6.71%

MA 7.17% 7.10% 7.02% 6.88%

OM 7.20% 7.10% 7.04% 6.88%

PL 6.73% 6.57% 6.57% 6.41%

QA 6.49% 6.40% 6.35% 6.23%

SA 6.75% 6.61% 6.60% 6.50%

SD 7.14% 7.02% 7.03% 6.83%

SY 6.56% 6.38% 6.42% 6.30%

TN 6.71% 6.52% 6.53% 6.37%

YE 6.93% 6.75% 6.78% 6.61%

High error rates are colored by red, lower rates are denoted by green.

quality of this dialect. In both datasets, the models showed the

least translation performance for the Tunisian dialect, and this

is correspondence to Sallam and Mousa (2024) research as well.

QADI showed inconsistency in similarity scores. Which could be

attributed to the fact that QADI gathers its sentences from X

platform, which means that although the sentences are gathered

from the same geolocation, this does not mean that they all belong

to the same dialect.

Although adding a few-shot approach provides models with

additional examples and reference points, most models exhibited

a decline performance in compared to zero-shot. This is illustrated

in Tables 20, 21. In particular, GPT 3.5 showed consistency, with

no significant differences between the zero-shot and few-shot

approach. Suddenly, GPT 4 translated almost 35% of the input

sentences into English despite clear instructions. This might be

explained by the model’s biases or training to adapt English

translations in unclear contexts for the model. Given that the

few-shot prompt is considered as a long prompt and has several

examples and details, GPT 4 might find the prompt ambiguous and

refer to the default language setting, which is “English”.

4.3.2 Impact of sentence length on model
accuracy

This subsection analyzes the impact of sentence length on

translation accuracy, hence addressing the third research question.

Since the universal similarity encoder is used to compare two

sentences, it enabled us to explore the correlation.

For QADI dataset, the highest correlation was 0.42 in MA for

GPT 4. The highest correlation for Bard was 0.39 in QA. GPT

3.5 showed a low correlation between the sentence length and the

translation accuracy (i.e., similarity between input and output).
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FIGURE 11

Scatter plots showing the TER for MADAR dataset on GPT 4 for each

corresponding country. (A) GPT 4 - JO Highest TER. (B) GPT 4 - QA

Lowest TER.

Figure 14 visualizes the results where showing no strong correlation

between the sentence length and the universal similarity encoder.

Such low positive correlations indicate that there is no relation

between the sentence length and the accuracy of the translation.

For MADAR, GPT 3.5/4 show a weak correlation, yet the

highest compared to Bard with a value of 0.24 for some Maghreb

Countries (i.e., DZ, MA, and TN) where Bard show no significant

correlation. Figure 14 supports this finding as GPT 3.5/4 indicate a

broader range of similarity scores as sentence length varies.

5 Conclusion

5.1 Concluding remarks

The study utilizes the QADI and MADAR datasets to evaluate

the performance of GPT 3.5, GPT 4, and Bard (Gemini) in

translating MSA to Arabic dialects, with GPT 5 evaluated

exclusively on the MADAR dataset. Several performance metrics

FIGURE 12

LLMs performance scores per metric - QADI dataset.

FIGURE 13

LLMs performance scores per metric - MADAR dataset.

such as cosine similarity, universal similarity encoder, sentence

BERT, BLEU, ROUGE, and TER were used to test the models’

efficiency and accuracy. The analysis revealed close translations

among LLMs in similarity and error rate. In QADI dataset, there

was a significant difference between the models where GPT 4 was

the best LLM in translating MSA to Arabic dialects showing a p-

value of 0.000006 through ANOVA test on cosine similarity metric.

It shows significant difference on all metrics except for BLEU and

TER. For the MADAR dataset, there were no significant differences

in translation performance measuring on sentence BERT, ROUGE-

L, and TER. However, the results show significant differences

through universal similarity encoder, cosine similarity, and BLEU,

with GPT 5 being the top performer. GPT 4 demonstrates the

best performance across both datasets (MADAR and QADI); it

consistently showed high translation quality with low error rates.

This proves the models sufficiency and the ability to be used in

several dialect contexts and applications. GPT-4 showed consistent

high translation scores for the majority of metrics, specifically on

Levantine and Egyptian dialects; however, it shows low results on

Maghrebi regions such as Tunisian dialect. Overall, GPT-4 provides

the most reliable performance while GPT 5 outperforms all models
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TABLE 16 ANOVA results for models per metric - QADI dataset.

Metric p-value F-statistic

Universal similarity encoder 0.009111 7.65

Cosine similarity 0.000006 28.85

Sentence BERT 0.000068 20.57

BLEU 0.058 3.85

ROUGE-L 0.00018 0.16

TER 0.56 0.59

TABLE 17 ANOVA results for models per metric - MADAR dataset.

Metric p-value F-statistic

Universal similarity encoder 0.005 4.64

Cosine similarity 0.00009 8.57

Sentence BERT 0.44 0.91

BLEU 0.000029 9.73

ROUGE-L 0.68 7.87

TER 0.31 1.2

TABLE 18 Countries with lowest values in MADAR dataset similarity

metrics.

Model Univ.
Sim. Enc.

Cosine
Sim.

Sent.
BERT

BLEU ROUGE

Bard TN TN PL TN TN

GPT 3.5 TN TN LB TN TN

GPT 4 MA but TN

similar score

TN–MA LB TN–

MA

TN

GPT 5 DZ DZ Not

applicable

DZ DZ

TABLE 19 Countries with highest TER values in MADAR dataset.

Model TER

Bard JO but TN similar score

GPT 3.5 JO but TN similar score

GPT 4 JO but TN similar score

GPT 5 JO but DZ similar score

TABLE 20 Tunisia zero-shot metric performance.

Model USE Cosine
Sim

S-
BERT

BLEU Rouge-
L

TER

Bard 0.48 0.26 0.93 0.25 0.41 6.71%

GPT 3.5 0.48 0.24 0.93 0.23 0.49 6.52%

GPT 4 0.48 0.26 0.93 0.25 0.45 6.53%

specifically on the MADAR dataset in finding sentences overlap

measured by BLEU and ROUGE-L.

However, its performance is not uniform across all dialects’

while it excels in dialects with larger training representation

TABLE 21 Tunisia few-shot metric performance.

Model USE Cosine
Sim

S-
BERT

BLEU Rouge-
L

TER

Bard 0.47 0.23 0.93 0.21 0.15 6.77%

GPT 3.5 0.48 0.24 0.92 0.24 0.16 6.53%

GPT 4 0.32 0.20 0.93 0.20 0.12 6.64%

FIGURE 14

Correlation (sentence length vs universal similarity) for GPT 3.5. (A)

GPT 3.5 - QADI. (B) GPT 3.5 - MADAR.

(e.g., Egyptian and Levantine), the accuracy slightly decreases

in underrepresented dialects (e.g., Maghrebi). On the MADAR

dataset, GPT-5 shows particularly strong performance on overlap-

sensitive metrics such as BLEU and ROUGE-L, suggesting it

captures sentence-level correspondences more effectively. Taken

together, GPT-4 provides the most reliable overall performance

across both datasets, while GPT-5 demonstrates an emerging

advantage in fine-grained similarity for MADAR dialectal

translations.

Furthermore, models have shown TER rates ranging from 6%

up to 25%, indicating that despite slight errors, their translations

are generally considered to be of good quality. However, GPT

has shown better response to a given prompt in terms of output
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results compared to Bard (Gemini). GPT in all versions specifically

GPT 5 showed the best results for translation through the Levant

countries. Zero-shot prompts were adapted for all countries, while

few-shot for the country with the least translation performance,

Tunisia. Unexpectedly, the few-shot technique did not enhance the

performance of translation especially for Bard (Gemini) and GPT

4 as they performed worse while GPT 3.5 performed consistently

in both prompting techniques. Overall, all LLMs proved capable

and efficient in translating diverse Arabic dialects from over

15 countries to provide valuable insights for future applications

in NLP.

This research establishes a benchmark for Arabic dialect

translation and derives significant findings for advancing NLP

capabilities in Arabic, paving the way for more inclusive and

efficient models that address the linguistic diversity of the Arab

world. Other researchers in the field may rely on GPT 4 and GPT 5

over GPT 3.5 and adapt Bard (Gemini), considering them feasible

and effective LLMs for handling underrepresented languages,

particularly Arabic and its linguistic complexities. The study also

opens opportunities for future work, such as incorporating open

source models, improving data sets, and optimizing prompting

techniques. Moreover, we show the impact of few-shot prompting

and how its impact was not significant, which could be replaced by

other alternatives or prompt engineering techniques in future or

relevant works.

5.2 Future works

We are aiming to extend this research by incorporating

additional Arabic LLMs and other well-known applicable LLMs

to generalize our findings. In addition, more data samples and

datasets can be included to strengthen the analysis. Looking ahead,

enhancing prompt and prompting techniques to optimize the

translation process would add value to this research.

5.3 Limitations

This study faces several limitations that could influence the

study results. Despite their remarkable success in various NLP tasks

and the popularity of closed-source LLMs, models such as GPT

3.5, GPT 4, and GPT 5 have several limitations (Yu et al., 2023).

These models are accessed through APIs which eliminates the need

for computer infrastructure. Although cloud-based AI services are

easy to use, they lack control over processing or training data.

Furthermore, it is challenging to produce studies on closed-source

models due to the high expense of conducting experiments through

APIs. Another limitation is that the LLMs are closed models, as

the name suggests, closed LLMs lack transparency in their internal

architecture and training process, making it difficult for researchers

to fully understand the output generation. The limitations also

include cost constraints while running LLMs such as GPT 3.5/4

and Bard (Gemini) which results in running only 50K out of

500K samples in QADI dataset. Expanding the sample size in

future studies could improve the robustness and reliability of the

results. Moreover, both GPT and Bard (Gemini) had restrictions

on the rate limit (i.e., the number of API requests). Thus, limiting

the running process of the data to a specific rate daily, this

consumed the time to complete the running. It is possible that

recently published versions have increased the rate limit, which

could be explored. In addition, there is lack in LLMs that can

deal with Arabic dialects; having more LLMs would definitely

strengthen the comparison. While this study adapted datasets

encompassing 15 to 18 dialects, it does not cover all 22 Arabic-

speaking countries, thus limiting the generalizability of the findings.

Furthermore, QADI dataset, which is collected fromX,may require

cleaning to remove slang and informal expressions in social media,

which can improve the quality of translation outputs. In addition,

only one dataset (i.e., MADAR) had a MSA baseline, which was

substituted by a back-translation algorithm for the QADI dataset.

This approach may potentially limit the accuracy and effectiveness

of the translations derived from QADI dataset. Moreover, the

MADAR dataset exhibits a travel domain bias, which may affect

the findings and limit the model’s translation capability to other

domains. In some cases, the models were not able to translate the

dialect, resulting in an empty output, English translated sentence

instead of Arabic or incomplete response. Finally, since most of the

metrics are calculated as mean scores with only a single inferential

statistical test (ANOVA) applied, generalizing the results might

be tricky.
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