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City, Kuwait

Introduction: Exploring Arabic dialects in Natural Language Processing (NLP) is
essential to understand linguistic variation and meet regional communication
demands. Recent advances in Large Language Models (LLMs) have opened up
new vistas for multilingual communication and text generation.

Methods: This paper investigates the performance of GPT-3.5, GPT-4, and
Bard (Gemini) on the QADI and MADAR datasets, while GPT-5 was evaluated
exclusively on MADAR encompassing over 15 different countries. Several metrics
have been used in the evaluation, such as cosine similarity, universal similarity
encoder, sentence BERT, TER, ROUGE, and BLEU. In this study, different
prompting techniques were used: zero-shot and few-shot. Zero-shot was
employed for all dialects, and few-shot was employed only for the least
translation performance dialect, Tunisian.

Results: Analysis revealed that in the QADI dataset, GPT-4 significantly
outperformed others in translating MSA to DA, with ANOVA tests showing strong
significance (p < 0.05) in most metrics, except for BLEU and TER where it does
not show significance, indicating comparable translation performance among
models. Furthermore, GPT-4 was highest in semantic similarity compared to
GPT-3.5 and Bard (Gemini), 0.66, 0.61, and 0.63, respectively. GPT-4 was the
best in identifying overlapping sentences (i.e., those where the source and target
are identical) with a combined average of 0.41 in BLEU and ROUGE-L. All LLMs
scored TER values between 6% and 25%, indicating generally good translation
quality. However, GPT models, especially GPT-5, responded better to prompting
and translation to Levant countries compared to Bard (Gemini). For the MADAR
dataset, no significant translation differences were observed in sentence-BERT,
ROUGE-L, and TER, while differences are identified in cosine similarity, BLEU,
and universal similarity encoder metrics. Therefore, GPT-5 is the top performer
in identifying sentence overlaps measured by BLEU and ROUGE-L (combined
average 0.37).

Discussion: The few-shot approach did not show a significant improvement
in translation performance, especially for GPT-4 and Bard (Gemini), while GPT-
3.5 performed consistently. Zero-shot prompts were effective across dialects,
while few-shot prompting, applied to the weakest-performing dialect (Tunisian),
did not yield improvement. GPT-4 and Bard performed worse under this set-up,
while GPT-3.5 remained consistent.
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1 Introduction

In recent years, new horizons for multilingual communication,
translation tasks, and text generation have been widely witnessed
due to the advances made in large language models (LLMs) (Shaikh
et al, 2023). Models such as GPT, developed by OpenAl and
Google Bard (Gemini), have shown promising developments in
this field (Kasneci et al., 2023). Such models have demonstrated
outstanding skills in handling diverse languages and dialects
with the influential role of deep learning techniques and the
processing of massive volumes of textual data. According to
studies conducted in 2019 by Ethnologue (Eberhard et al,
2019), the total number of dialects spoken around the globe
is expected to be 7,111, where a majority of these dialects are
found on the Internet through platforms such as Facebook,
X, and blog posts through user interactions (Salloum and
Habash, 2012). Therefore, with the availability of systems that
deal with different languages and dialects, a major shift in
focus has been witnessed in literature to bring dialects together
by enhancing proper machine learning translation systems
(Sghaier and Zrigui, 2020).

Arabic is one of the languages known for its diversity in
linguistics, which includes various dialects from different countries
all over the Arab world. Notably, Dialectal Arabic (DA) consists
of different Arabic dialects. It is an informal language that is used
in daily life and social media platforms in contrast with Modern
Standard Arabic (MSA), also known as “Fushaa,” which is used in
formal communications (Harrat et al., 2019). Hence, making the
comprehension of different dialects presents a greater challenge
compared to MSA, due to its regional variability, especially in the
applications of cross-dialect communications, and in sectors such
as education and content localization (Sghaier and Zrigui, 2020).

Large language models (LLMs) are a vital approach to
understand and enhance the language intelligence of devices (Hadi
et al., 2023). LLMs can react to free-text queries without being
specifically trained in the activity at hand, which has sparked
both excitement and skepticism among researchers regarding their
application (Hadi et al., 2023). Models such as OpenAI GPT and
Google Bard (Gemini) are examples of LLMs, where they are
trained on enormous volumes of text data and can generate human-
like prose, answer questions, and perform other language-related
tasks with great accuracy (Kasneci et al.,, 2023). To begin with,
OpenAI GPT is a decoder-based, generative pre-trained LLM. It
employs an auto-regressive language model that allows sequential
text generation. Among many of the advantages present in GPT,
one main advantage is that it is a multilingual model, including
the Arabic language (Alyafeai et al., 2023). However, it is not an
open-access model and is not free of cost. Therefore, developers
and researchers have to pay a certain amount based on the number
of tokens used per request and the type of model to be used for
fine-tuning (Steele, 2023). As for Bard (Gemini), it is developed by
Google and is also multilingual; in total, it contains 41 languages
(Kadaoui et al., 2023). Similar to GPT, Bard (Gemini) has a certain
cost based on the number of tokens used per request and the type of
model to be used (Kadaoui et al., 2023). Hence, by analyzing their
differences and similarities, a comparison between both models is
performed to assist systems in easily translating dialects and achieve
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human-like reading and writing, building on the comprehensive
overview of LLM capabilities by Hadi et al. (2023).

Researchers have been using these models in analyzing various
NLP tasks, such as psychological studies of sentiments using
GPT (Kheiri and Karimi, 2023). In addition, comparisons with
other models such as Bidirectional Encoder Representations from
Transformers (BERT) (Zhang et al, 2020) and Bidirectional
Long-Form Overlap for Optimizing Multilingual and zero-shot
(BLOOMZ) (Yong et al., 2022) have been made in contexts such as
translation efficiencies using different languages (Bhat et al., 2023).
On the other hand, comparisons between GPT 3.5, GPT 4, and
Bard (Gemini) have been made regarding their machine translation
(MT) proficiency across 10 varieties of Arabic (Kadaoui et al., 2023).
Their analysis shows that LLMs may encounter challenges with
dialects for which minimal public datasets exist, but on average,
they are better translators of dialects than existing commercial
systems. In a similar vein, GPT 4 outperformed Bard (Gemini)
in dialect-based commercial systems and different supervised
baselines employing zero-shot prompts.

Originally, researchers main focus was to address the
translation of English to Arabic and vice versa (Khoshafah,
2023). However, more recently, researchers have been studying
the influence of MSA on the similarity between dialects spoken,
as was done by Abu-Haidar (2011) in Baghdad, and vice versa,
where researchers study the translation from DA to MSA. For
instance, Sghaier and Zrigui (2020) performed a similar study in
2020 where an MT system that translates Tunisian dialect text
to MSA using a rule-based approach showed promising results
for their proposed solution. Since OpenAI GPT released different
models with different versions, researchers have focused on having
a comparison between these different versions, where Alyafeai
et al. (2023) have compared some of these models, such as GPT
3.5 and GPT 4, on seven distinct Arabic NLP tasks and found
that GPT 4 outperforms GPT 3.5 on five NLP tasks. GPT 3.5
and GPT 4 performances were also studied using the Tunisian,
Jordanian, and English languages, and the study results highlight
a critical dialectical performance gap in GPT, underlining the
need to enhance linguistic and cultural diversity in AI models’
development, particularly for health-related content (Sallam and
Mousa, 2024).

The purpose of this study is to compare the performance of four
language models, GPT (versions 3.5, 4, and 5) and Bard (Gemini),
in translating a wide corpus of MSA to DA. This novel study
bridges a significant gap in understanding model performance
across diverse linguistic situations by including a wide corpus of
dialects, consisting of over 15 Arabic dialects, in the analysis while
evaluating several metrics. Furthermore, two different datasets will
be used to further strengthen the analysis using different prompting
techniques (zero-shot and few-shot). To explore whether these
techniques enhance the quality of dialect translation, zero-shot will
be applied to all countries, whereas few-shot will be applied to the
weakest country.

This study sheds light on the adaptability and efficiency
of these models through careful metric assessments, which
is critical for expanding NLP applications in various Arabic-
speaking regions. Two datasets are used in this study the
first is the Qatar Computing Research Institute (QCRI) Arabic
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Dialects Identification (QADI) dataset, which contains 18 different
countries with their own dialects. QADI contains over 500,000
tweets from social media platforms, spanning 18 different Arabic
dialects (Abdelali et al., 2020). Second, the Multi-Arabic Dialect
Applications and Resources (MADAR) corpus dataset is used,
which includes a large parallel corpus of 25 Arabic city dialects in
the travel domain. These are the most popular datasets adapted for
studies with Arabic dialects.

This research study aims to answer the following questions:

o How efficient are GPT 3.5, GPT 4, GPT 5, and Bard (Gemini)
in translating MSA to different DA in terms of different
performance metrics, such as cosine similarity, semantic

sentence BERT,

translation error rate (TER), recall-oriented understudy for

universal encoder, similarity ~encoder,
gisting evaluation (ROUGE), bilingual evaluation understudy
(BLEU), and analysis of variance (ANOVA)?

e How consistent is the LLM performance in the MSA
translation to different DAs? (e.g., Levantine vs. Gulf
vs. Maghrebi)

e How do prompting techniques (zero-shot vs. few-shot) and
external factors like sentence length impact the translation
accuracy of LLMs?

The main contribution of this study could be summarized
as follows:

e It sheds light on the strengths and drawbacks of the GPT
3.5, GPT 4, GPT 5, and Bard (Gemini) models in dealing
with DA differences by analyzing their translation quality and
accuracy (measured by metrics) and consistency/reliability,
across various dialects from MSA. Hence, exploring how
LLMs handle dialectal diversity in Arabic.

e It employs various prompt analysis techniques to evaluate the
performance of GPT 3.5, GPT 4, GPT 5, and Bard (Gemini),
aiming to understand the specific conditions under which each
model excels.

e The study’s findings fill in a significant gap in research on
MSA to dialect translation using LLMs by using a wide corpus
of Arabic dialect translations and analyzing GPT 3.5/4/5, and
Bard (Gemini) in translating various dialects using different
prompting techniques (zero-shot and few-shot).

Therefore, the study relies on it being the first to offer a
comprehensive evaluation of LLMs in translating MSA to a wide
range of dialects using QADI and MADAR datasets. Moreover,
the evaluation of GPT 3.5, GPT 4, GPT 5, and Bard (Gemini)
contributes to fine-tuning and developing inclusive NLP tools to
serve a larger Arabic-speaking population with diverse dialects.
It identifies the strengths and weaknesses of LLMs in different
DAs by translation from MSA. Such insights are essential for the
development of inclusive NLP tools that can effectively utilize MSA
and different DAs in spoken Arabic to enhance digital accessibility
and communication. To the best of our knowledge, we are the first
study comparing prominent LLMs specially GPT 5 on MT task
from MSA to DA over 15 countries.

The remainder of this study is organized as follows: The related
work is described in Section 2, and the proposed methodology
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is detailed in Section 3. Experimental results are reported and
analyzed in Section 4. Finally, the concluding remarks and future
research directions are described in Section 5.

2 Related work

This section highlights the challenges of processing the Arabic
language and its dialects in Section 2.1, followed by Section
2.2, which explains and explores different LLMs and Section 2.3
describes various MT approaches.

2.1 Challenges for processing Arabic and
its dialects

Contemporary Arabic consists of different varieties such as
MSA, the official language of the Arab world that is used in formal
settings, and dialects of different countries that are commonly used
in different informal contexts. In general, Arabic is a complex
language with a rich inflectional morphology expressed both
templatically and affixationally, as well as various attachable clitic
classes (Wright and Caspari, 2011). The dialects of different
countries differ from MSA in terms of phonology, morphology,
and, to some extent, syntactically, where the differences are based
on the presence of clitics and affixes, unlike MSA, are widely used
(Salloum and Habash, 2012). Dialects are considered to share all
of MSA’s problems when it comes to NLP (e.g., optional diacritics
and spelling inconsistencies). However, adding to these problems,
the absence of standard orthographies for the dialects and their
diverse variants, which in turn pose additional issues (Guellil et al.,
2021). In addition, there are very few Arabic dialects of English
corpora and even fewer dialects of MSA parallel corpora, which
makes the number of morphological analyses and tools for these
dialects constrained (Salloum and Habash, 2012).

These linguistic challenges pose different difficulties for LLMs
in MT. Unlike the English language, which dominates the
training of most LLMs, different Arabic dialects are widely
underrepresented (Alyafeai et al., 2023; Khondaker et al., 2023).
Research papers comparing LLM performance between different
languages such as English and Arabic address this gap and confirm
it by showing that LLMs achieve better scores in English translation
than in Arabic (Peng et al., 2023). Furthermore, within Arabic itself,
MSA is better handled in LLMs than in different dialects (Kadaoui
et al.,, 2023). These demonstrate that the wide variation of dialects
in the Arabic language and their complexities pose a challenge
in MT. Hence, understanding of LLMs ability to translate MSA
to different dialects along with the strengths and weaknesses of
LLMs in different DAs needs to be addressed as it is critical in the
development of NLP tools.

2.2 Large language models

LLMs have exhibited a remarkable transformation throughout
the years, where they have evolved from generating only natural
texts to understanding them through AI (Jiang et al., 2020). LLMs
are trained to predict the next token in a sequence based on the
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context, making the generated outputs coherent. They are able to
capture long-range dependencies and perform complex tasks such
as translation, summarization, and question answering. Moreover,
LLMs can generalize across different domains and diverse dialects
through prompting techniques (Alabdullah et al., 2025). Research
studies vary in terms of whether to include prompts in the
analysis or not. For example, Lilli (2023) has studied ChatGPT
4 using Italian dialects; however, the analysis was done using
zero-shot analysis only, and the results showed that the model
exhibits a significant gap in analytical skills and struggles with
text production and interactive tasks, suggesting superior passive
linguistic capabilities compared to active ones. Similarly, GPT 4,
GPT 3.5, and Bard (Gemini) were compared in terms of Inductive,
Mathematical, and Multi-hop Reasoning Tasks using zero-shot, and
GPT 4 was found to be better in all of them compared to GPT 3.5
and Bard (Gemini) (Lopez Espejel et al., 2023). Currently, LLMs are
widely used in evaluating the performance of NLP tasks in different
languages (Kadaoui et al., 2023). However, LLMs are known to have
some issues with rare or unseen words, the problem of overfitting,
and the difficulty in capturing complex linguistic phenomena.

Researchers have been evaluating different LLM techniques
to shed light on future research in the domain (Chang et al,
2023). Other multilingual models such as XGLM (De Varda
and Marelli, 2023) have also been studied and were shown to
improve significantly in terms of translation performance. It was
found that the model performs best if the answer is estimated
based on the probability of the first token in the generated
answer. However, these models are yet to be studied further
(Zhu et al,, 2023). Models such as BERT (Devlin et al., 2018)
have also been analyzed in terms of language analysis, such as
the Arabic language. However, due to its weakness in Arabic
dialects, researchers (Baert et al., 2020) created an enhanced
language model (BAERT) that showed better performance than
BERT in sentiment analysis. LLM research remains a prominent
topic across multiple disciplines, including the development and
customization of LLMs tailored to specific languages, dialects,
or tasks (Mashaabi et al., 2024). There are various LLMs
that support the Arabic language, with GPT being the most
prominent. Some researchers suggest that ArabianGPT, specifically
designed for Arabic, aligns better with Arabic language and
rules (Koubaa et al., 2024).

2.3 Machine translation approaches

Machine translation (MT) is an example of an NLP task
that addresses grammatical, semantic, and morphological elements
between the source and output languages. Importantly, it becomes
a challenging task when those elements are significantly different
(Joshi et al., 2024). The need for MT systems has been increasing
due to the large dialects available on the Internet and their usage
in various fields (Sghaier and Zrigui, 2020). Researchers have been
studying LLM MT capabilities around the world for different
languages. For instance, English to Japanese MT was tested on
mBART50, m2m100, Google Translation, Multilingual T5, GPT-
3, ChatGPT, and GPT 4 using BLEU, Character Error Rate (CER),
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WER, Metric for Evaluation of Translation with Explicit ORdering
(METEOR), and BERT score, as well as qualitative evaluations by
four experts. The analysis showed that GPT 4 outperformed all
other models in MT from English to Japanese (Chan and Tang,
2024). Due to their grammatical structure, DA forms a challenge
for MT systems (Baniata et al.,, 2022). MT is an example of an
NLP task that addresses grammatical, semantic, and morphological
elements between the source and output languages. Importantly, it
becomes a challenging task when those elements are significantly
different (Joshi et al., 2024). Several approaches and tools are
available to perform MT, such as rule-based approaches, hybrid
approaches, and sequence-to-sequence (seq2seq) models as well as
LLMs (Okpor, 2014). For instance, Salloum and Habash (2012)
created a rule-based approach system to translate DA to MSA,
which depends on a morphological analyzer, transfer rules, and
dictionaries to generate sentences and choose the best matches.

Several researchers have widely used the rule-based approach
to translate Arabic dialects to MSA (Al-Gaphari and Al-Yadoumi,
2010; Hamada and Marzouk, 2018; Bouamor et al., 2014). Another
study created a hybrid approach to translate the Egyptian dialect to
MSA and achieved 90% performance through tokenization (Bakr
etal.,, 2008). Beyond these, Hamed et al. (2025) developed Lahjawi,
a customized model specialized in cross-dialectal translation (DA
to MSA) that supports 15 dialects. Lahjawi was trained on 7 well-
known datasets, including MADAR and Parallel Arabic Dialectal
Corpus (PADIC), and fine-tuned above a small language model
- Kuwain 1.5B. The model achieved adequate BLEU scores and
an accuracy of 58% based on human evaluation. Moreover, Alimi
et al. (2024) developed MT model to translate DA to MSA. The
model was trained on MADAR and PADIC datasets and fine-tuning
transformers such as T5X and AraT5 and some existing tools. The
best translation results revealed were for Levantine and Maghrebi
region dialects. Some authors also adapted a hybrid approach
to translate the Moroccan dialect to MSA using processing
tools for MSA (Ridouane and Bouzoubaa, 2014; Hamada and
Marzouk, 2018), whereas other studies focused on Neural Machine
Translation (NMT) for Arabic dialects (Baniata et al., 2018;
Guellil et al., 2017). For example, Baniata et al. (2022) developed
an NMT model to translate DA to MSA through multi-head
attention with reverse positional encoding and sub-word units. The
model achieved high BLEU scores, proving their encoding method
across several datasets. In addition, other researchers expand the
Dial2MSA dataset through seq2seq datasets in different domains,
including social media covering different regions. Leaving a reliable
NMT training, the authors conducted a performance evaluation,
and it was found that AraT5 achieved the highest performance
(Khered et al., 2025). Moreover, researchers Alabdullah et al. (2025)
evaluated six LLMs on DA to MSA translation, including Levantine,
Egyptian, and Gulf Dialects using different prompting techniques.
They demonstrated that GPT 4o achieved the highest score in
translation performance, while a fine-tuned version of Gemma2-9B
achieved a higher CHrF++ score compared to GPT 4o in zero-show
prompting.

Furthermore, researchers utilized LLMs to perform MT
tasks. For instance, Zhu et al. (2023) evaluated the multilingual
translation of four LLMs, namely, GPT, XGLM, OPT, and
BLOOMZ. Interestingly, the researchers found that such models
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adapt new patterns to translate. GPT proved excellent capability
in MT and outperformed Google Translate according to Peng
et al. (2023). In addition, the AraFinNLP shared tasks highlight
critical challenges and discussions for cross-dialect translation
in preservation of intents using the known ArbBanking77
dataset. The findings highlight that accurate MSA to DA
(Moroccan, Tunisian, and Palestinian) translation is possible
yet challenging. They demonstrated that fine-tuned BERT
models and data augmentation achieve high performance in
handling Arabic dialects for financial applications (Malaysha
et al, 2024). Moreover, SHAMI-MT developed bidirectional
MT models built on the AraT5v2 model and fine-tuned on
the Nbra corpus. They evaluated the translation between
MSA and the Syrian dialect and used MADAR for benchmark
(Sibaee et al., 2025). Similarly, Mohamed et al. (2012) presented
a method to convert MSA to Egyptian dialect, applied on
part-of-speech  (POS). They showed that such MT task
improves tagging and is considered as valuable training data
for underrepresented dialects.

Prior research studies addressed the translation from MSA to
different dialects. A study conducted empirical analysis focusing on
Arabic-based LLMs to assess their ability to translate DA to MSA,
utilizing four datasets with English-based LLMs as a baseline (Jibrin
etal., 2025). They highlighted that AceGPT and Jais performed the
best BLEU scores across all data sets, establishing their reliability
in Arabic formality. In another study, GPT was evaluated on
various NLP tasks. It was revealed that GPT, in comparison with
BLOOMZ, struggles on some Arabic tasks yet comparable to
human judgment (Khondaker et al., 2023). Several studies explored
this field with more precision in relation to the Nuance Arabic
Dialect Identification (NADI) 2023 competition. Demidova et al.
(2024) performed sentence-based translation from DA to MSA
across four dialects through Jais, No Language Left Behind (NLLB),
GPT 3.5, and GPT 4 LLMs. They found that Jais outperforms the
other models consistently, achieving high BLEU scores whereas
NLLB was the least performer. Similarly, other researchers mainly
focused on fine-tuning LLama-3 with 8B parameters through
Parameter Efficient Fine-Tuning (PEFT) and Low Rank Adaptation
(LoRA) methods. The task was also DA-MSA translation across
four datasets. LLama fine-tuned model exhibits strong performance
related to BLEU metric. Moreover, the 6th Workshop on Open-
Source Arabic Corpora and Processing Tools (OSACT) showed
interesting findings through different studies specifically for Dialect
to MSA MT task including 5 dialects. Atwany et al. (2024) evaluated
AraT5, NLLB, and GPT 3.5. The results show that fine-tuning
Arat5 and NLLB on the MADAR dataset demonstrates low BLEU
scores, whereas prompting GPT 3.5 achieved high BLEU scores.
Moreover, other researchers used GPT 3.5 for dataset generation
(Abdelaziz et al., 2024). They used the Saudi Audio Dataset for
Arabic (SADA) to translate the audio dialects to MSA texts, leading
to notable performance in machine translation achieving high
BLEU scores between 25.5 and 31.5. Alahmari et al. (2024) fine-
tuned four versions of AraT5 model highlighting that AraT5v2-
base-1024 model achieved the highest BLEU score of 21.0. Various
researchers have utilized MT with a special focus on the context of
Arabic dialects. Table 1 summarizes the MT approaches proposed
by the researchers.
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3 Proposed methodology

This section discusses the chosen dataset in Section 3.1,
followed by Section 3.2, which describes the prompting techniques.
Model selection is mentioned in Section 3.3, and the chosen
performance metrics are detailed in Section 3.4.

3.1 Dataset

Translating Arabic dialects has been a wide area of research
(Harrat et al.,, 2019). In our research, we aim to use the QADI
dataset and the MADAR corpus dataset. QADI dataset is a pre-
processed dataset collected through X media platform, and it
includes 18 dialects from different Arab countries, the dataset is
already cleaned and has no hashtags, emojis, or such symbols which
might affect the translation quality (Abdelali et al., 2020). The
dataset has 540k training tweets and 3,303 test tweets in total. The
rationale for choosing the QADI dataset is the large number of
dialects it has which will help us address our research questions
and compare the performance evaluation of LLMs. However, in
the current study, 50K samples will be used from all countries for
the analysis due to computational resource restrictions. We applied
random sampling, the QADI dataset was balanced across dialects,
our random selection ensured that the selected 50K tweets have no
bias and ensure equal selection among the sentences. Table 2 shows
different country codes using ISO-3166-1 with corresponding users
and tweet count of QADI dataset.

Similarly, the MADAR corpus dataset (Bouamor et al., 2019)
contains 25 cities representing 15 countries, each with a unique
dialect where some countries feature multiple cities (e.g., Egypt has
Aswan, Cairo, and Alexandria) with 2K samples from each dialect.
The advantage of using the MADAR dataset is that it includes MSA
baseline translation for the sentences present inside the dialects
of each country. Hence, making the evaluation of GPT and Bard
(Gemini) stronger by comparing the results of these models with
the baseline given within the dataset. This study will analyze 15
countries from the MADAR dataset primarily focusing on the
capitals of countries that are also included in QADI. Table 3 shows
all the city dialects from the MADAR dataset, showing the different
cities with their dialects from various Arabic countries.

3.2 Prompting techniques

Prompting strategies have been developed to optimize LLMs’
performance and outcomes. The most frequent of these tactics are
zero-shot and few-shot. The zero-shot prompt plainly describes the
task and provides information without examples (Allingham et al.,
2023). Figures 1, 2 show an example of the prompts used to perform
the translation task. Unlike zero-shot prompts, few-shot prompts
include data examples and sample responses (Jiang et al., 2022).
On the other hand, a few-shot prompting technique is established
by providing an example within the prompt itself, where one-shot
includes a single example, two-shot includes 2 examples, etc. We
will include both zero-shot and few-shot prompts. As well as a few
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TABLE 1 Summary of machine translation (MT) approaches for Arabic dialects.

Research Dialect(s) Approach
Bakr et al., 2008 Egyptian — MSA Hybrid
Al-Gaphari and Al-Yadoumi, 2010 Sana’ani — MSA Rule-based
Salloum and Habash, 2012 Arabic Dialects — MSA Rule-based
Mohamed et al., 2012 MSA — Egyptian Rule-based

Bouamor et al., 2014 Mainly Egyptian Rule-based, Corpus of 2,000 sentences
Ridouane and Bouzoubaa, 2014 Moroccan — MSA Hybrid
Guellil et al., 2017 Algerian NMT

Hamada and Marzouk, 2018 Egyptian — MSA

Hybrid/Rule-based

Baniata et al., 2018 Arabic dialects — MSA

Neural MT (NMT)

Hamed et al., 2025 15 Dialects — MSA

Custom cross-dialectal model

Alimi et al., 2024 Levantine, Maghrebi — MSA

Transformer-based MT (AraT5, T5X)

Alabdullah et al., 2025

Levantine, Egyptian, Gulf — MSA

LLM-based MT (GPT 40, Gemma2-9B)

Zhu et al., 2023 Multilingual/Arabic

LLM-based MT (GPT, XGLM, OPT, BLOOMZ)

Malaysha et al., 2024

Moroccan, Tunisian, Palestinian — MSA

LLM + fine-tuned BERT

Sibaee et al., 2025 Syrian — MSA

AraT5v2-based bidirectional MT

Khered et al., 2025 Arabic Dialects — MSA

Seq2seq / Transformer (AraT5)

Jibrin et al., 2025 Arabic Dialects — MSA

LLM-based MT (AceGPT, Jais)

Khondaker et al., 2023 Arabic Dialects — MSA

LLM-based MT (GPT, BLOOMZ)

Demidova et al., 2024

Egyptian, Emirati, Jordanian, and Palestinian — MSA

LLM-based MT (Jais, NLLB, GPT 3.5, GPT 4)

Atwany et al., 2024

Gulf, Egyptian, Levantine, Iragi and Maghrebi — MSA

LLM-based MT (AraT5, NLLB, GPT 3.5)

Abdelaziz et al., 2024 Saudi Dialect — MSA

LLM-based MT (GPT 3.5)

Alahmari et al., 2024 Arabic dialects — MSA

Transformer MT (AraT5v2)

shot prompts (one-shot) for the country with the weakest dialect
translation given by the models to check whether including an
example within the prompt would enhance the overall accuracy of
the translation. An example of a prompt is shown in Figure 3 to test
whether the models would provide a better translation as compared
to zero-shot approaches.

3.3 Model selection

This research paper will be using OpenAl’s most recent
model GPT 5 along with GPT 3.5, GPT 4, and Google’s Bard
(Gemini) “text-bison” model due to their exceptional performance
in research (Zhu et al., 2023; Peng et al., 2023; Khondaker et al,,
2023; Kadaoui et al, 2023). LLMs are widely used to evaluate
the performance of Arabic NLP tasks such as GPT 3.5, GPT
4, Bard (Gemini), XGLM, and OPT (Zhu et al., 2023). To save
computational cost and time, GPT 5 will only be ran on MADAR
dataset, whereas QADI will include all remaining models. This
study’s selection criteria for the models aim to balance between
budget and computing resources. In addition, LLM languages that
do not include the Arabic language, such as Falcon-7b (Penedo
et al,, 2023), were initially excluded from the search scope of
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suitable LLMs. A brief summarization of both models is shown in
Table 4.

Figure 4 shows the experiment pipeline implemented for GPT
and Bard (Gemini). The experiment starts using the data in the
dataset as a prompt for each LLM. Initially, all prompts will be
applied with zero-shot techniques, meaning that no example will
be included within the prompt. However, after performing the
analysis, the country with the least translation performance will be
analyzed again but with the few-shot prompting technique. In the
QADI dataset, to have a baseline to compare the LLM results with,
the back translation process is used (Behr, 2017), where dialects
are translated to MSA; then, the resulting MSA is translated back
to the corresponding dialect to compare the final resulting dialect
with the original dialect from the dataset. However, MADAR offers
a baseline for dialects and MSA; therefore, no back-translation will
be needed.

For LLM inference, we used the code provided on the
Application Programming Interface (API) websites with some
correction techniques; rerunning the prompt if the model returns
an error to ensure a correct response. After doing so, the error rate
in the resulting samples has dropped sufficiently. Cost optimization
technique has also been adapted by running 10 translations per API
request, which reduced the cost. A threshold of 10 requests was set
as the maximum accumulation; as the threshold increases, the error

frontiersin.org


https://doi.org/10.3389/frai.2025.1661789
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Beidas et al.

TABLE 2 QADI dataset: users and tweet counts by country using
1ISO-3166-1 codes.

Country Users Training Test
tweets (k) tweets
Iraq (IQ) 142 18.4 178
Bahrain (BH) 169 283 184
Kuwait (KW) 160 49.9 190
Saudi Arabia (SA) 149 354 199
United Arab Emirates (AE) 172 27.8 192
Oman (OM) 176 24.8 169
Qatar (QA) 139 36.7 198
Yemen (YE) 138 11.6 193
Syria (SY) 139 18.3 194
Jordan (JO) 146 34.1 180
Palestine (PL) 145 48.6 173
Lebanon (LB) 141 38.4 194
Egypt (EG) 150 67.8 200
Sudan (SD) 139 16.3 188
Libya (LY) 149 40.9 169
Tunisia (TN) 68 12.9 154
Algeria (DZ) 130 17.6 170
Morocco (MA) 73 12.8 178

TABLE 3 All the city dialects and regions that were included in the
building of the MADAR dataset.

Region Sub- Cities Codes
region
Maghreb Morocco Rabat, Fes RAB, FES
Algeria Algiers ALG
Tunisia Tunis, Sfax TUN, SFX
Libya Tripoli, Benghazi TRI, BEN
Nile Egypt Cairo, Alexandria, CAIL ALX, ASW
Basin Aswan
Sudan Khartoum KHA
Levant South Levant Jerusalem, Amman, JER, AMM, SAL
Salt
North Levant Beirut, Damascus, BEI, DAM, ALE
Aleppo
Gulf Iraq Mosul, Baghdad, Basra MOS, BAG, BAS
Gulf Doha, Muscat, Riyadh, DOH, MUS, RIY,
Jeddah JED
Yemen Yemen Sana’a SAN

rate also increases. Finally, the experiment results will be evaluated
by calculating the selected performance metrics described in the
upcoming section.
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The following array has multiple JSON objects, each object
has 3 keys, DS which is the Dialectal Arabic sentence,
MSA is the translation of DS to Modern Standard Arabic
and BT is the translation of MSA to Yemeni Arabic.
Complete Both MSA and BT in the array:
${JSON.stringify({ tmpArray })}

FIGURE 1
Zero-shot prompt - QADI.

The following array has multiple JSON objects, each
containing two keys: MSA, representing the Modern
Standard Arabic sentence, and MSAtoD, which is the
translation of MSA to Tunisian Arabic. Complete the
MSALtoD field in the array with the appropriate
translations. Here's the array:
${JSON.stringify({ tmpArray })}

FIGURE 2
Zero-shot prompt - MADAR.

3.4 Performance metrics

We aim to quantify the differences in performance between
GPT 3.5, GPT 4, GPT 5, and Bard (Gemini) and to determine how
these models can perform the translation task given the complexity
of the Arabic language. There are various common evaluation
metrics for comparison. The present study will use 7 evaluation
metrics (i.e., cosine similarity, sentence BERT, semantic universal
encoder, TER, BLEU, ROUGE, and ANOVA test). These metrics
were chosen based on their strengths and popularity in analyzing
Arabic sentences. To attest for normality, the Shapiro-Wilk test was
used for ANOVA (Alabdullah et al., 2025).

One of the common MT metrics is the universal similarity
encoder, which is a neural network architecture for learning
similarity-preserving  embeddings  that uses  pre-trained
embeddings (e.g., Word2Vec, GloVe, or BERT embeddings)
to compare two sentences, rather than having a specific calculation
formula. Its range varies from -1 to 1, where results closer to 1 are
indicative of high semantic similarity.

However, cosine similarity calculates the cosine of the angle
formed by two vectors that represent phrases in several dimensions
that represent a word or contextual information. Equation 1 below
shows the cosine similarity, where A and B are vectors.

A-B

Cosine similarity = TAT 1Bl

1)

High positive values in cosine similarity (close to 1) indicate
that there is great similarity between the two vectors.

Sentence BERT is a transformer that adapts cosine similarity by
using Tensorflow. The general process involves encoding sentences
into fixed-size vectors using pre-trained BERT embedding and then
calculating a similarity score between these vectors (Mrinalini et al.,
2022). Since sentence BERT adapts cosine similarity, it follows the
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1. MSA: "fellla (o (La "
MSAtoD: "felllal (La y"

2. MSA: "sc ¥ deld) S
MSAtoD: "$alaald Jai"

3. MSA: "eellint a0 oo e oliSas A"

MSALOD: "Suclluab (o 8 lai "

${JSON.stringify({ tmpArray })}

The following array has multiple JSON objects, each containing two keys: MSA, representing
the Modern Standard Arabic sentence, and MSAtoD, which is the translation of MSA to Tunisian
Arabic. Your task is to complete the MSAtoD field in the array with appropriate translations.
Below are examples of MSA sentences and their translations into Tunisian Arabic:

Complete the MSAtoD field in the array with the appropriate translations. Here's the array:

FIGURE 3
Few-shot prompt - MADAR.

Optimization:

1.Reduce Costs
2.Resend the prompts in
case the request failed

Back Translation
Algorithm:

1.Tr | Dialect to MSA
2.The result of 1 will be
translated back to

Prompt Generation

Datab.

Zero Shots for all
countries

(Arabic Dialects)

Dialect
QADI Dataset:
Back Ti lati
Algorithm ’ l
LLM Inference ; Eval
MADAR dataset:

MSA to Dialect

FIGURE 4
Experiment pipeline.

same metric measures of -1 to 1, where close values to -1 mean
that the two vectors are completely dissimilar, and values close to
1 mean that there is a high similarity between the vectors. The
universal sentence encoder finds the similarity between sentences
based on semantics, where it is used to convert phrases into dense
vector representations.

Finally, the TER metric is specifically used for MT tasks by
comparing the MT outputs against human-generated translation to

Frontiersin Artificial Intelligence

assess the quality of MT outputs, as shown in Equation 2.

Total edits
" Total words in reference translation

TER (2)

A lower TER score indicates a better translation quality as
it means that fewer edits are needed to align the machine-
generated translation.
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TABLE 4 Tabular comparison between GPT and Bard.

10.3389/frai.2025.1661789

Aspect GPT 3.5 GPT 4 GPT 5 Bard

Source OpenAl OpenAl OpenAl Google

Language model GPT 3.5-turbo-16k 'GPT 4-0125-preview’ "GPT 5’ ’text-bison’

Model architecture Transformer decoder based Transformer decoder based Transformer decoder based Transformer based
Availability Limited free access Paid Paid Limited free access
Languages Multilingual Multilingual Multilingual Multilingual
Parameter Size 175 Billion 1.76 Trillion Not Announced 137 Billion

Moreover, the BLEU metric is a widely popular metric
used in research (Sallam and Mousa, 2024) where individual
translated segments, usually sentences, are scored by comparing
them with a collection of high-quality reference translations.
These scores are then averaged throughout the entire corpus
to provide an approximation of the translation’s overall quality
(Papineni et al, 2002). It aims to find the similarity between
the translated text and the reference sentence by employing n-
grams; contiguous group of n-words that are similar. The metric
values range from 0 to 1, and typically a higher value means
that more words are overlapping between the machine-translated
sentence and the referenced sentence, as shown in Equation 3
(Papineni et al., 2002).

BLEUW(S; S): = BP(@; S) - exp (Z Wy logpn(g; S)) (3)

n=1

where BP is the brevity penalty, w is the weights for each n-gram,
and p is the precision of n-grams.

Furthermore, ROUGE is a collection of metrics and software
packages for assessing automatic summarization and MT
software in natural language processing. The metrics assess an
automatically generated summary or translation to a reference
or a collection of references (human-created summary or
translation). ROUGE measures range from 0 to 1, with
higher scores indicating a stronger resemblance between the
automatically generated summary and the reference (Lin and
Hovy, 2003).

ANOVA is a statistical approach for comparing the means
of three or more samples to determine whether one of them is
substantially different from the others (Keselman et al., 1998).
It accomplishes this by analyzing the variance in the data
and categorizing it as the variance between groups and the
variance within groups. The p-value is calculated using the
ANOVA test statistic, also known as the F-statistic, as shown
in Equation 4.

F-statistic (ANOVA Coefficient) = (4)
Mean Sum of Squares due to Treatment (MST)

Mean Sum of Squares due to Error (MSE)

The p-value indicates whether the differences in group
means are statistically significant (Keselman et al., 1998). In this
study, since we are performing various analyses and tests, it
became important to employ ANOVA to determine the statistical
significance of the results.
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4 Experimental results

This section discusses the model responsiveness in Section
4.1, followed by the metric performance and dialect variations in
Section 4.2. Finally, Section 4.3 discusses the impact of sentence
length on the model accuracy.

4.1 Model responsiveness

In general, in terms of responsiveness, the models were
responsive when given a prompt with input. However, there were
differences in the output details of both models. GPT gave a direct
response where Gemini explained each word in a row.

When running APIs, Bard (Gemini) has shown varying error
rates when translating ranging from 5% up to 71%. This error rate
was varying based on the load on the network at the execution
time and length of the dataset being analyzed. Hence, to reduce
the error rate, we ran Bard (Gemini) when the network was not
preoccupied with many other tasks and ran the dataset in smaller
batches to reduce the chances of error. There were several cases
where Bard (Gemini) has either returned the same input as output,
empty output, or a message that says that it is unable to handle a
given task.

The rate of failing to give an output is most noticeable when
performing the back translation from MSA to a certain dialect in
QADI dataset. For example, for the back translation for IQ dialect,
Bard (Gemini) failed to give an output with the rate of 37.5%,
whereas GPT 3.5 has only failed to do so with a 5.6% rate, and
GPT 4 had 0.2% error rate. Therefore, a correction technique was
added in the code, where the response was checked, if it included
an error, resend the same prompt. After doing so, the error rate in
the resulting samples has dropped considerably.

4.2 Performance metrics and dialect
variations

4.2.1 Similarity metrics

This section discusses the similarity metrics and the
performance of the LLMs on the MADAR and QADI datasets in
terms of universal similarity encoder, cosine similarity, sentence
BERT, BLEU, and ROUGE F1 scores. The metrics aimed to assess
the efficiency and accuracy of the translation process of different
dialects. The analysis explained below is further demonstrated in
Tables 5 — 11. To address the research questions, both GPT 3.5/4
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TABLE 5 Bard metric similarities mean among 18 dialects from QADI

10.3389/frai.2025.1661789

TABLE 7 GPT 3.5 metric similarities mean among 18 dialects from QADI

dataset. dataset.
Dialect Univ. Cosine Sent. BLEU ROUGE- Dialect Univ. Cosine Sent. BLEU ROUGE-
Sim. Sim. BERT Sim. Sim. BERT
Enc. Enc.
AE 0.65 0.38 0.92 0.35 0.38 AE 0.66 0.37 0.88 0.39 0.43
LB 0.67 0.40 0.87 0.38 0.40 LB 0.65 0.40 0.94 0.48 0.50
1Q 0.64 0.40 0.91 0.39 0.41 1Q 0.62 0.33 0.84 0.38 0.40
BH 0.67 0.46 0.88 0.07 0.46 BH 0.67 0.40 0.87 0.44 0.47
DZ 0.64 0.41 0.89 0.39 0.41 DZ 0.59 0.29 0.91 0.28 0.31
EG 0.72 0.47 0.89 0.45 0.47 EG 0.65 0.35 0.86 0.32 0.35
KW 0.67 0.46 0.94 0.43 0.45 KW 0.65 0.39 0.90 0.45 0.48
LY 0.70 0.48 0.90 0.45 0.47 LY 0.63 0.34 0.85 0.32 0.36
MA 0.63 0.38 0.94 0.04 0.38 MA 0.64 0.34 0.89 0.37 0.40
OM 0.64 0.45 0.94 0.43 0.45 OM 0.64 0.39 0.84 0.46 0.49
PL 0.64 0.42 0.94 0.40 0.42 PL 0.67 0.43 0.84 0.53 0.55
QA 0.67 0.42 0.94 0.05 0.42 QA 0.63 0.35 0.87 0.25 0.40
SA 0.65 0.39 0.93 0.37 0.39 SA 0.63 0.33 0.89 0.32 0.36
SD 0.68 0.44 0.90 0.06 0.43 SD 0.65 0.37 0.85 0.35 0.46
SY 0.66 0.46 0.90 0.43 0.45 SY 0.65 0.39 0.90 0.43 0.46
N 0.65 0.42 0.89 0.39 0.41 ™~ 0.66 0.41 0.83 0.46 0.49
YE 0.68 0.47 0.93 0.44 0.47 YE 0.63 0.39 0.85 0.43 0.45

TABLE 6 Bard metric similarities mean among 15 dialects from MADAR

TABLE 8 GPT 3.5 metric similarities mean among 15 dialects from MADAR

dataset. dataset.
Dialect Univ. Cosine Sent. BLEU ROUGE- Dialect Univ. Cosine Sent. BLEU ROUGE-
Sim. Sim. BERT Sim. Sim. BERT
Enc. Enc.
LB 0.53 0.35 0.93 0.34 0.28 LB 0.52 0.32 0.91 0.32 0.25
Q 0.50 033 0.93 0.32 0.26 Q 0.51 0.29 0.93 0.28 0.22
DZ 0.52 0.31 0.93 0.29 0.23 DZ 0.50 0.28 0.93 0.26 0.20
EG 0.57 0.38 0.93 0.37 0.32 EG 0.54 0.34 0.93 0.33 0.28
LY 0.53 0.32 0.93 0.31 0.25 LY 0.51 0.27 0.93 0.27 0.20
MA 0.50 0.31 0.93 0.29 0.23 MA 0.50 0.27 0.93 0.26 0.20
OM 0.58 0.40 0.93 0.38 0.33 oM 0.53 0.31 0.92 0.29 0.24
PL 0.56 0.39 0.92 0.37 0.32 PL 0.54 0.34 0.92 033 0.28
QA 0.53 0.36 0.93 0.34 0.28 QA 0.53 0.31 0.93 0.30 0.24
SA 0.53 0.35 0.93 0.33 0.27 SA 0.55 0.34 0.93 0.34 0.28
SD 0.56 0.38 0.94 0.37 0.32 SD 0.53 0.31 0.92 0.29 0.24
SY 0.55 0.39 0.93 0.37 0.32 SY 0.55 0.36 0.92 0.35 0.30
N 0.48 0.26 0.93 0.25 0.17 ™ 0.48 0.24 0.93 0.23 0.16
YE 0.50 0.28 0.93 0.27 0.20 YE 0.50 0.26 0.93 0.25 0.19
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TABLE 9 GPT 4 metric similarities mean among 18 dialects from QADI
dataset.

10.3389/frai.2025.1661789

TABLE 11 GPT 5 metric similarities mean among 15 dialects from MADAR
dataset.

Dialect Univ. Cosine Sent. BLEU ROUGE- Dialect Univ. Cosine Sent. BLEU ROUGE-
Sim. Sim. BERT L Sim. Sim. BERT
Enc. Enc.

JO 0.73 0.50 0.82 0.49 0.51 JO 0.62 0.46 0.93 0.47 0.43
AE 0.71 0.45 0.91 0.44 0.46 LB 0.58 0.39 0.92 0.39 0.34
LB 0.74 0.50 0.94 0.49 0.51 1Q 0.55 0.37 0.92 0.37 0.31
1Q 0.70 0.43 0.88 0.43 0.45 DZ 0.50 0.28 0.93 0.26 0.20
BH 0.72 0.48 0.91 0.48 0.49 EG 0.59 0.44 0.92 0.44 0.40
DZ 0.75 0.53 091 055 0.57 LY 0.54 0.37 0.92 0.36 0.30
EG 077 0.55 0.90 055 057 MA 0.56 0.40 0.92 0.39 034
KW 0.68 0.45 0.88 0.45 0.47 oM 0.52 034 0.93 037 0.28
o 0.70 043 0.87 0.42 044 PL 0.61 0.46 0.92 0.47 0.42
MA 0.70 0.41 0.89 0.40 0.41

QA 0.59 0.43 0.92 0.44 0.38
oM 0.65 0.39 0.77 0.38 0.39

SA 0.58 0.42 0.92 0.43 0.38
PL 0.71 0.49 0.88 0.48 0.50

SD 0.54 0.38 0.92 0.37 0.32
QA 0.66 0.37 0.87 0.36 0.37

SY 0.62 0.47 0.92 0.49 0.44
SA 0.69 0.38 0.89 0.36 0.38

N 0.53 0.34 0.92 0.33 0.27
SD 0.74 0.50 0.93 0.51 0.53

YE 0.55 0.35 0.93 0.34 0.28
SY 0.72 0.48 0.92 0.46 0.49
TN 0.71 0.44 0.88 0.44 0.45
YE 0.69 0.43 0.91 0.41 0.43 . . . .

outperformed its prior models in MADAR dataset. Figures 5, 6

TABLE 10 GPT 4 metric similarities mean among 15 dialects from MADAR
dataset.

Dialect Univ. Cosine Sent. BLEU ROUGE-
Sim. Sim. BERT L
Enc.
JO 0.60 0.42 0.93 0.41 0.37
LB 0.54 0.34 0.43 0.36 0.28
Q 0.54 0.34 0.93 0.33 0.27
DZ 0.51 0.30 0.93 0.29 0.23
EG 0.56 0.38 0.93 0.38 0.33
LY 0.52 0.31 0.93 0.30 0.24
MA 0.47 0.26 0.93 0.25 0.18
oM 0.53 0.33 0.93 0.32 0.26
PL 0.59 0.41 0.92 0.41 0.36
QA 0.57 0.39 0.93 0.38 0.33
SA 0.58 041 0.93 0.40 0.35
SD 0.54 033 0.93 0.32 0.26
SY 0.59 0.41 0.92 0.41 0.36
N 0.48 0.26 0.93 0.25 0.18
YE 0.52 0.30 0.92 0.29 0.22

and Bard (Gemini) exhibited similar performance levels across the
metrics among dialects in both datasets.

The BLEU score values for GPT 3.5/4 are similar among
the LLMs and countries for QADI, whereas GPT 5 slightly
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visualize the BLEU scores labeled by each country where the LLMs
showed consistent results in MADAR. Bard (Gemini) in the QADI
dataset achieved a low score for some countries. These numbers
explain that a few words were overlapping between the input and
the translated dialect.

Furthermore, when employing a universal similarity encoder
and cosine similarity in QADI as shown in Table 12, GPT 4
outperforms the models, which makes it the dominant, followed
by Bard (Gemini) and then GPT 3.5. The mean universal similarity
encoder score is 71% for GPT 4, 64% for GPT 3.5, and 66% for Bard
(Gemini) among all countries. For the MADAR dataset in Table 13,
GPT 5 outperforms all models by having a 57% average, whereas
GPT 4 has a mean of 54%, GPT 3.5 mean is 52%, whereas Bard
(Gemini) has a mean of 53%. This suggests that Bard (Gemini)
has shown comparable skill to older GPT models in understanding
and conveying the semantic connections among the translated
sentences in the MADAR dataset, whereas GPT 5 stands out
overall. Whereas for the QADI dataset, GPT 4 had a higher mean,
which indicates that it has the best skill in conveying the semantic
connections with the existence of the back translation algorithm.

In Table 12 for QAD], the cosine similarity showed a mean of
46% for GPT 4, 43% for Bard (Gemini), and 37% for GPT 3.5.
Table 13 exhibits a similar performance of 35% for GPT 4, 39%
for Bard (Gemini), and 31% for GPT 3.5 on MADAR. This shows
that GPT 4 is the best performer which aligns with the results of
Alyafeai et al. (2023) and Peng et al. (2023). GPT 5 outperforms
other models with a mean of 39% in MADAR. Noticeably, GPT
3.5 encountered the most struggles in translating to dialects from
MSA which exhibits to a similar behavior in the conclusion drawn
by Kadaoui et al. (2023).
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FIGURE 5
Average BLEU scores QADI.

On the other hand, sentence BERT shows the highest mean
among all metrics as it uses a transformer model which makes it
most accurate in finding similarities between the input dialect and
the back-translated dialect. In addition, it showed consistent results
for all LLMs across the two datasets. In Table 12 for QADI, Bard
(Gemini) shows an average efficiency of 91%, hence outperforming
GPT 4 and GPT 3.5 which shows an average efficiency of 89%
and 87% consecutively. Similarly for MADAR in Table 13, Bard
(Gemini) shows a total mean value of 93%, tying with GPT 3.5
whereas GPT 5 shows 92%, GPT 4 shows 90%. GPT 4 has witnessed
a drop in accuracy due to poorer performance in LB dialect because
of an outlier compared to other countries as its individual score
shows 43% score, whereas others scored approximately 93%. This
is due to an error occurred when running the data where sentences
were translated to English instead of Arabic which drops the
accuracy rate of the overall translation. Given that the error was
only observed in the Lebanese dialect, it could be attributed that
the model had unresolved difficulties in the background which was
also passed down to the updated GPT 5 model as well.

In QADI dataset in Table 12, GPT 3.5 and Bard (Gemini)
have an average score of 43% for ROUGE-L where GPT 4 scored
an average of 47%. The analysis note that at least one Maghrebi
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dialect was of the highest ROUGE-L values observed for all models.
However, GPT 3.5 achieved the top score for Palestine. This
indicates a greater number of sentences overlap. These results
indicate that GPT 4 was specifically well trained and consistent in
at least one Magherbi dialect (e.g., Moroccon, Algerian, or Tunisian
Arabic), whereas GPT 3.5 was a better fit in Palestinian dialect (i.e.,
Levantine Arabic).

In the same vein for the MADAR in Table 13, ROUGE-L
scores were similar showing an average of 27%, 24%, 28% for Bard
(Gemini), GPT 3.5/4, respectively, whereas GPT 5 outperforms
other models showing 34%. Figures 7, 8 show the averages for each
model to further illustrate the scores.

Overall, all datasets
demonstrated a decently high average score for ROUGE-1
and ROUGE-L but lower scores for ROUGE-2. These results
indicate that GPT 3.5, GPT 4, and Bard (Gemini) all had higher
overlap between single words and long sequences between the

three models among different

compared text with GPT 4 being the highest in Figure 7, whereas
GPT 5 clearly outperforms all other models in MADAR as
demonstrated in Figure 8.

Overall, the results show that GPT 5 followed by GPT 4, Bard
(Gemini), and GPT 3.5 are efficient in translating MSA to different
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FIGURE 6
Average BLEU scores MADAR.
TABLE 12 Average similarity metrics for QADI dataset. TABLE 13 Average similarity metrics for MADAR dataset.
Metric GPT 35 GPT4 Bard Metric GPT GPT4 GPT5 Bard
(Gemini) 35 (Gemini)
Universal similarity encoder 0.64 0.71 0.66 Universal similarity 0.52 0.54 0.57 0.53
encoder
Cosine similarity 0.37 0.46 0.43
Cosine similarity 0.31 0.35 0.39 0.34
Sentence BERT 0.87 0.89 0.91
Sentence BERT 0.93 0.90 0.92 0.93
BLEU 0.39 0.45 0.31
BLEU 0.30 0.34 0.39 0.33
ROUGE-L 0.43 0.47 0.43
ROUGE-L 0.24 0.28 0.34 0.27
TER 15.62% 15.75% 16.55%
TER 6.76% 6.74% 6.61% 6.90%
Lower error rates are denoted by green.

DA, with slight difference and weaknesses noted in some of the
dialects and models.

4.2.2 TER

Table 14 shows the TER for all the countries for QADI dataset
for GPT 3.5, GPT 4, and MADAR, whereas the Figures9, 10
visualize some dialects’ results from QADI representing the average
TER as a red line. The ranges of error demonstrated by TER range
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Lower error rates are denoted by green.

from approximately 10% up to 25% for all LLMs. Furthermore, the
models have the lowest TER rate of approximately 11% for the OM
dialect, whereas Bard (Gemini) has the highest worst TER rate in
EG of 25.6%. Comparing the Gulf region countries (AE, BH, KW,
OM, QA, and SA) specifically on GPT 3.5, OM showed the lowest
TER of approximately 10%, whereas the other countries from the
region showed an average ranging from 14% to 18%.
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Average ROUGE scores for QADI dataset.

Average ROUGE Scores for MADAR on Different LLMs
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Average ROUGE scores for MADAR dataset.
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On the other hand, Table 15 and Figure 11 specifically showing
GPT 4 illustrate the TER values of each country employing
MADAR dataset as an example. In comparison with QADI dataset,
the TER rates are closer together and have an overall lower value
ranging from 6% to 7%, with JO being the highest and QA, SY, and
OM being the lowest in the MADAR and QADI datasets. This may
be explained by the fact that the MADAR dataset gathers sentences
from a single source as a CORPUS, unlike the QADI dataset, which
gathers sentences from X platform (Twitter) which is more prone
to errors due to difficulty in filtering the sentences as tweets.

Overall, in terms of efficiency and consistency combined,
all models show competitive results and proved capable of
translating multiple dialects regardless of the region as they all had
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approximately close values across the Middle East such as PL, LB,
SY, and JO, the Gulf region such as KW, AE, SA, BH, OM, and
QA, the Arab Maghreb region such as MA, LY, DZ, and TN and the
African and Asian countries such as EG, SD, YE, and IQ. In QADI,
GPT 4 outperforms the other LLMs in all similarity metrics and
TER, Bard (Gemini) comes in the second place and then GPT 3.5
as shown in Table 12 whereas GPT 5 outperforms GPT 4 and other
models in MADAR in Table 13 proving it being a more reliable
model in translating from MSA to DA. This is further demonstrated
in Figures 12, 13 which further demonstrate LLM performance
upon the metrics used in this study. Models exhibited consistent
scores among all metrics with GPT 5 being the highest and most
appropriate LLM to deal with Arabic dialects.
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TABLE 14 TER for comparison for Bard, GPT 3.5, and GPT 4 for each
dialect in the QADI dataset, where lower TER means higher performance.

Dialect Bard GPT 3.5 GPT 4
JO 18.08% 17.51% 18.02%
AE 17.02% 16.94% 17.75%
LB 18.16% 16.56% 17.34%
1Q 15.17% 15.06% 15.86%
BH 15.87% 14.97% 13.70%
DZ 16.64% 14.90% 13.37%
EG 25.60% 21.54% 22.91%
Kw 14.81% 13.52% 12.47%
LY 18.65% 17.53% 17.66%
MA 14.80% 15.14% 17.23%
oM 11.43% 11.02% 10.82%
PL 11.82% 11.62% 11.38%
QA 17.98% 16.14% 14.83%
SA 15.89% 15.93% 16.75%
SD 19.10% 17.85% 16.89%
SY 14.59% 14.38% 14.42%
™N 16.28% 15.62% 16.69%
YE 16.04% 14.92% 15.35%

High error rates are colored by red, lower rates are denoted by green.

4.2.3 ANOVA

ANOVA test is a common test used to check whether the data
and mean difference are significant based on different conditions
and factors. In previous sections, we found that the average
translation performance among similarity metrics and TER are
quite similar. To better understand the significance difference, one-
way ANOVA is applied to all countries and models with alpha 0.05
threshold. We have applied Shapiro-Wilk test diagnostic to verify
the residuals normality and applicable for ANOVA. This is a similar
approach adapted by Alabdullah et al. (2025). The ANOVA results
are shown in Table 16 for QADI and Table 17 for the MADAR
dataset. The models GPT and Gemini are the independent variables
and the performance metrics including similarity metrics, BLEU,
and ROUGE were considered dependent variables. In reference
to Table 16, ANOVA test is applied among all similarity metrics,
and there is a significant difference between the model translation
performance with a p-value close to 0 in universal similarity
encoder, cosine similarity, and sentence BERT, which indicates
that the probability of the average similarities are different is
approximately 99.96%. Metrics such as BLEU, ROUGE-L, and TER
show insignificant difference among the models meaning that all
models have similar scores/error rates in translation. Moreover, the
f-value <1 suggested that there is no variance across the means.

As for MADAR, Table 17 shows that there is no difference
between the means and all models exhibited similar translation
performance on sentence BERT, ROUGE-L, and TER. However,
the other metrics show significant differences between the
LLMS scores.
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FIGURE 9

Scatter plots showing the TER for QADI datasets on Bard for highest
and lowest countries. (A) Bard - EG Highest TER. (B) Bard - OM
Lowest TER.

4.2.4 Evaluation divergence (lexical vs. semantic
metrics)

Upon evaluating different models with different performance
metrics, some conflicts between the metrics were noted. To
strengthen our analysis, we have chosen different metrics, each
evaluating a certain category of the LLMs ability. BLEU and
ROUGE rely on lexical overlap with the reference translation (the
original dialect in our case) and count the n-gram overlap. On the
other hand, universal similarity encoder and sentence-BERT are
semantic measures that focus on meaning equivalence regardless
of literal word matching. TER is concerned with the number of
edits to match the generated dialect with the base dialect reference.
As we are evaluating the 15 dialects, this variation often involves
synonym choice, morphological difference, and substitutions. A
model can semantically translate to the correct dialect yet not the
exact word matching which leads to lower BLEU and ROUGE
scores. Conversely, high lexical overlap does not always guarantee
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TABLE 15 TER Comparison for Bard, GPT 3.5, GPT 4, and GPT 5 for each
dialect in the MADAR dataset, where lower TER means higher

A performance.
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FIGURE 10

Scatter plots showing the TER for QADI datasets on GPT 3.5 for
highest and lowest countries. (A) GPT 3.5 - EG Highest TER. (B) GPT
3.5 - OM Lowest TER.

semantic accuracy if the matched words are used in a different
sense. The is noted in Table 9, and some dialects such as DZ
and EG scored low BLEU/ROUGE scores while achieving high
values in the semantic evaluation perspective. These findings
support our approach and analysis, highlighting the need to adapt
different metric scores, as each captures different aspects of LLM
translation quality.

4.3 Effects of model accuracy

4.3.1 Few-shots analysis

In this section, we will explore the opportunity to check
whether increasing the prompt size from zero-shot to few-shot
would enhance the translation quality of each LLM. We used the
MADAR dataset as it has more consistency in results with TN
having the lowest similarity scores in Table 18 and a high TER rate
as shown in Table 19, indicating a need to enhance the translation
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Although adding a few-shot approach provides models with
additional examples and reference points, most models exhibited
a decline performance in compared to zero-shot. This is illustrated
in Tables 20, 21. In particular, GPT 3.5 showed consistency, with
no significant differences between the zero-shot and few-shot
approach. Suddenly, GPT 4 translated almost 35% of the input
sentences into English despite clear instructions. This might be
explained by the model’s biases or training to adapt English
translations in unclear contexts for the model. Given that the
few-shot prompt is considered as a long prompt and has several
examples and details, GPT 4 might find the prompt ambiguous and
refer to the default language setting, which is “English”.

4.3.2 Impact of sentence length on model
accuracy

This subsection analyzes the impact of sentence length on
translation accuracy, hence addressing the third research question.
Since the universal similarity encoder is used to compare two
sentences, it enabled us to explore the correlation.

For QADI dataset, the highest correlation was 0.42 in MA for
GPT 4. The highest correlation for Bard was 0.39 in QA. GPT
3.5 showed a low correlation between the sentence length and the
translation accuracy (i.e., similarity between input and output).
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FIGURE 11

Scatter plots showing the TER for MADAR dataset on GPT 4 for each
corresponding country. (A) GPT 4 - JO Highest TER. (B) GPT 4 - QA
Lowest TER.

Figure 14 visualizes the results where showing no strong correlation
between the sentence length and the universal similarity encoder.
Such low positive correlations indicate that there is no relation
between the sentence length and the accuracy of the translation.
For MADAR, GPT 3.5/4 show a weak correlation, yet the
highest compared to Bard with a value of 0.24 for some Maghreb
Countries (i.e., DZ, MA, and TN) where Bard show no significant
correlation. Figure 14 supports this finding as GPT 3.5/4 indicate a
broader range of similarity scores as sentence length varies.

5 Conclusion

5.1 Concluding remarks

The study utilizes the QADI and MADAR datasets to evaluate
the performance of GPT 3.5, GPT 4, and Bard (Gemini) in
translating MSA to Arabic dialects, with GPT 5 evaluated
exclusively on the MADAR dataset. Several performance metrics
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LLMs performance scores per metric - MADAR dataset.

such as cosine similarity, universal similarity encoder, sentence
BERT, BLEU, ROUGE, and TER were used to test the models’
efficiency and accuracy. The analysis revealed close translations
among LLMs in similarity and error rate. In QADI dataset, there
was a significant difference between the models where GPT 4 was
the best LLM in translating MSA to Arabic dialects showing a p-
value of 0.000006 through ANOVA test on cosine similarity metric.
It shows significant difference on all metrics except for BLEU and
TER. For the MADAR dataset, there were no significant differences
in translation performance measuring on sentence BERT, ROUGE-
L, and TER. However, the results show significant differences
through universal similarity encoder, cosine similarity, and BLEU,
with GPT 5 being the top performer. GPT 4 demonstrates the
best performance across both datasets (MADAR and QADI); it
consistently showed high translation quality with low error rates.
This proves the models sufficiency and the ability to be used in
several dialect contexts and applications. GPT-4 showed consistent
high translation scores for the majority of metrics, specifically on
Levantine and Egyptian dialects; however, it shows low results on
Maghrebi regions such as Tunisian dialect. Overall, GPT-4 provides
the most reliable performance while GPT 5 outperforms all models
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TABLE 16 ANOVA results for models per metric - QADI dataset.

10.3389/frai.2025.1661789

TABLE 21 Tunisia few-shot metric performance.

Metric p-value F-statistic ‘ Model USE Cosine S- BLEU Rouge-
Sim BERT
Universal similarity encoder 0.009111 7.65
Bard 0.47 0.23 0.93 0.21 0.15 6.77%
Cosine similarity 0.000006 28.85
GPT 3.5 0.48 0.24 0.92 0.24 0.16 6.53%
Sentence BERT 0.000068 20.57
GPT 4 0.32 0.20 0.93 0.20 0.12 6.64%
BLEU 0.058 3.85
ROUGE-L 0.00018 0.16
TER 0.56 0.59
A
GPT 3.5 (Sentence Length vs Universal Similarity Encoder)
TABLE 17 ANOVA results for models per metric - MADAR dataset.
Metric p-value F-statistic ‘ 5
o
Universal similarity encoder 0.005 4.64 §
w
Cosine similarity 0.00009 8.57 2
-
&
Sentence BERT 0.44 0.91 E
:
BLEU 0.000029 9.73 -ﬁ
[}
ROUGE-L 0.68 7.87 -
£0
>
TER 0.31 1.2

TABLE 18 Countries with lowest values in MADAR dataset similarity
metrics.

Cosine  Sent. BLEU ROUGE
Sim. BERT

Bard TN TN PL TN TN

GPT 3.5 TN TN LB TN TN

GPT 4 MA but TN TN-MA LB TN- N

similar score MA
GPT 5 DZ DZ Not DZ DZ
applicable

TABLE 19 Countries with highest TER values in MADAR dataset.

Model TER |
Bard JO but TN similar score
GPT 3.5 JO but TN similar score
GPT 4 JO but TN similar score
GPT 5 JO but DZ similar score

TABLE 20 Tunisia zero-shot metric performance.

Model USE Cosine S- BLEU Rouge-

Sim BERT
Bard 0.48 026 0.93 025 0.41 6.71%
GPT3.5 | 048 0.24 0.93 023 0.49 6.52%
GPT 4 0.48 0.26 0.93 025 0.45 6.53%

specifically on the MADAR dataset in finding sentences overlap
measured by BLEU and ROUGE-L.

However, its performance is not uniform across all dialects’
while it excels in dialects with larger training representation
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FIGURE 14
Correlation (sentence length vs universal similarity) for GPT 3.5. (A)
GPT 3.5 - QADIL. (B) GPT 3.5 - MADAR.

(e.g., Egyptian and Levantine), the accuracy slightly decreases
in underrepresented dialects (e.g., Maghrebi). On the MADAR
dataset, GPT-5 shows particularly strong performance on overlap-
sensitive metrics such as BLEU and ROUGE-L, suggesting it
captures sentence-level correspondences more effectively. Taken
together, GPT-4 provides the most reliable overall performance
across both datasets, while GPT-5 demonstrates an emerging
advantage in fine-grained similarity for MADAR dialectal
translations.

Furthermore, models have shown TER rates ranging from 6%
up to 25%, indicating that despite slight errors, their translations
are generally considered to be of good quality. However, GPT
has shown better response to a given prompt in terms of output
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results compared to Bard (Gemini). GPT in all versions specifically
GPT 5 showed the best results for translation through the Levant
countries. Zero-shot prompts were adapted for all countries, while
few-shot for the country with the least translation performance,
Tunisia. Unexpectedly, the few-shot technique did not enhance the
performance of translation especially for Bard (Gemini) and GPT
4 as they performed worse while GPT 3.5 performed consistently
in both prompting techniques. Overall, all LLMs proved capable
and efficient in translating diverse Arabic dialects from over
15 countries to provide valuable insights for future applications
in NLP.

This research establishes a benchmark for Arabic dialect
translation and derives significant findings for advancing NLP
capabilities in Arabic, paving the way for more inclusive and
efficient models that address the linguistic diversity of the Arab
world. Other researchers in the field may rely on GPT 4 and GPT 5
over GPT 3.5 and adapt Bard (Gemini), considering them feasible
and effective LLMs for handling underrepresented languages,
particularly Arabic and its linguistic complexities. The study also
opens opportunities for future work, such as incorporating open
source models, improving data sets, and optimizing prompting
techniques. Moreover, we show the impact of few-shot prompting
and how its impact was not significant, which could be replaced by
other alternatives or prompt engineering techniques in future or
relevant works.

5.2 Future works

We are aiming to extend this research by incorporating
additional Arabic LLMs and other well-known applicable LLMs
to generalize our findings. In addition, more data samples and
datasets can be included to strengthen the analysis. Looking ahead,
enhancing prompt and prompting techniques to optimize the
translation process would add value to this research.

5.3 Limitations

This study faces several limitations that could influence the
study results. Despite their remarkable success in various NLP tasks
and the popularity of closed-source LLMs, models such as GPT
3.5, GPT 4, and GPT 5 have several limitations (Yu et al., 2023).
These models are accessed through APIs which eliminates the need
for computer infrastructure. Although cloud-based Al services are
easy to use, they lack control over processing or training data.
Furthermore, it is challenging to produce studies on closed-source
models due to the high expense of conducting experiments through
APIs. Another limitation is that the LLMs are closed models, as
the name suggests, closed LLMs lack transparency in their internal
architecture and training process, making it difficult for researchers
to fully understand the output generation. The limitations also
include cost constraints while running LLMs such as GPT 3.5/4
and Bard (Gemini) which results in running only 50K out of
500K samples in QADI dataset. Expanding the sample size in
future studies could improve the robustness and reliability of the
results. Moreover, both GPT and Bard (Gemini) had restrictions
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on the rate limit (i.e., the number of API requests). Thus, limiting
the running process of the data to a specific rate daily, this
consumed the time to complete the running. It is possible that
recently published versions have increased the rate limit, which
could be explored. In addition, there is lack in LLMs that can
deal with Arabic dialects; having more LLMs would definitely
strengthen the comparison. While this study adapted datasets
encompassing 15 to 18 dialects, it does not cover all 22 Arabic-
speaking countries, thus limiting the generalizability of the findings.
Furthermore, QADI dataset, which is collected from X, may require
cleaning to remove slang and informal expressions in social media,
which can improve the quality of translation outputs. In addition,
only one dataset (i.e., MADAR) had a MSA baseline, which was
substituted by a back-translation algorithm for the QADI dataset.
This approach may potentially limit the accuracy and effectiveness
of the translations derived from QADI dataset. Moreover, the
MADAR dataset exhibits a travel domain bias, which may affect
the findings and limit the model’s translation capability to other
domains. In some cases, the models were not able to translate the
dialect, resulting in an empty output, English translated sentence
instead of Arabic or incomplete response. Finally, since most of the
metrics are calculated as mean scores with only a single inferential
statistical test (ANOVA) applied, generalizing the results might
be tricky.
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