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Use of machine learning models
to predict mechanical ventilation,
ECMO, and mortality in COVID-19

Nina Moorman?, Erin Hedlund-Botti!, Grace Gombolay**' and
Matthew C. Gombolay*'

!Georgia Institute of Technology, Atlanta, GA, United States, ?Division of Neurology, Children’s
Healthcare of Atlanta, Atlanta, GA, United States, *Division of Pediatric Neurology, Department of
Pediatrics, Emory University School of Medicine, Atlanta, GA, United States

Introduction: Patients with severe COVID-19 may require MV or ECMO.
Predicting who will require interventions and the duration of those interventions
are challenging due to the diverse responses among patients and the dynamic
nature of the disease. As such, there is a need for better prediction of the
duration and outcomes of MV use in patients, to improve patient care and aid
with MV and ECMO allocation. Here we develop and examine the performance
of ML models to predict MV duration, ECMO, and mortality for patients with
COVID-19.

Methods: In this retrospective prognostic study, hierarchical machine-learning
models were developed to predict MV duration and outcome prediction from
demographic data and time-series data consisting of vital signs and laboratory
results. We train our models on 10,378 patients with positive severe acute
respiratory syndrome-related coronavirus (SARS-CoV-2) virus testing from
Emory’'s COVID CRADLE Dataset who sought treatment at Emory University
Hospital between February 28, 2020, to January 24, 2022. Analysis was
conducted between January 10, 2022, and April 5, 2024. The main outcomes
and measures were the AUROC, AUPRC and the F-score for MV duration, need
for ECMO, and mortality prediction.

Results: Data from 10,378 patients with COVID-19 (median [IQR] age, 60 [48-72]
years; 5,281 [50.89%] women) were included. Overall MV class distributions for
0 days, 1-4 days, 5-9 days, 10-14 days, 15-19 days, 20-24 days, 25-29 days,
and >30 days of MV were 8,141 (78.44%), 812 (7.82%), 325 (3.13%), 241 (2.32%),
153 (1.47%), 97 (0.93%), 87 (0.84%), and 522 (5.03%), respectively. Overall ECMO
use and mortality rates were 15 (0.14%) and 1,114 (10.73%), respectively. On MV
duration, ECMO use, and mortality outcomes, the highest-performing model
reached weighted average AUROC scores of 0.873, 0.902, and 0.774, and the
highest-performing model reached weighted average AUPRC scores of 0.790,
0.999, and 0.893.

Conclusions and relevance: Hierarchical ML models trained on vital signs,
laboratory results, and demographic data show promise for the prediction of
MV duration, ECMO use, and mortality in COVID-19 patients.
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1 Introduction

Coronavirus disease 2019 (termed COVID-19) is caused by the
severe acute respiratory syndrome-related coronavirus (SARS-CoV-2)
virus (About COVID-19, 2024). There have been more than 775
million cases and 7 million deaths confirmed due to COVID-19 as of
May 20, 2024 (Cumulative confirmed COVID-19 cases and deaths,
World, n.d.). Patients with severe COVID-19 may require mechanical
ventilation (MV) or extracorporeal membrane oxygenation (ECMO)
and are at risk for mortality (Shaefi et al., 2021). While MV may be
lifesaving (Cronin et al., 2022; Bellani et al., 2021), MV can result in
injury and other complications (Butler et al., 2023; Esteban et al., 2013;
Loss et al., 2015). Thus, predictors of outcomes in COVID-19 are
critical for the management of patients with COVID-19 and can aid
in allocated limited resources (Santini et al., 2022).

Researchers have sought to develop data-driven mechanisms to
predict outcomes in COVID-19, including developing heuristic
scoring systems heuristic (Shah et al., 2023; Supady et al., 2021;
Garcia-Gordillo et al.,, 2021; Kafan et al., 2021). More sophisticated
computational models have been developed to predict the need for
(Shashikumar et al., 2021) and duration of MV (Kobara et al., 2023;
Ryan et al., 2020; Taleb et al., 2021), mortality (Ryan et al., 2020;
Ohshimo et al., 2022) and intensive care unit (ICU) duration (Taleb
etal., 2021). Machine learning (ML) algorithms have also predicted
adverse outcomes in COVID-19 (Yu et al,, 2021; Bendavid et al.,
2022; Douville et al., 2021; Lorenzoni et al., 2021; George et al., 2021;
Kim et al., 2021). However, none of these approaches have
holistically combined the prediction of these outcome metrics to
systematically understand the course of COVID-19 patients. Instead,
prior work has modeled MV usage and duration, ECMO usage, or
mortality as distinct phenomena (Rodriguez et al.,, 2021; He et
al., 2022).

In this work, we develop a long short-term memory artificial
recurrent neural network approach (RNN), which naturally encodes
time-series information, that integrates patient demographics and
time-series vitals and laboratory values for jointly predicting MV and
ECMO use, MV duration, and mortality. Our unique approach is
hierarchical in that it makes sequential predictions that are
subsequently used for more predictions. This hierarchy provides a
helpful inductive bias for model training, helping the model to learn
to think step-by-step. On a novel dataset of 10,378 COVID-19
patients, we find that our RNN-based approach outperforms standard
ML baselines. Unlike prior work (Rodriguez et al., 2021; He et al,,
2022), our approach encodes time-series data in a flexible graphical
model, which can improve model performance and enable real-time
predictions with streaming data. Further, we include ECMO as a
distinct outcome from MV unlike some prior work (He et al., 2022;
Zayat et al., 2021; Tabatabai et al., 2021; Dreier et al., 2021) as it is
associated with mortality (Henry and Lippi, 2020).

Further, we inspect the reasoning of our approach through feature
permutation importance (PI) and SHapley Additive exPlanations
(SHAP) to gain clinical insights. We propose that our ML modeling
could be helpful for clinical decision- making for individual patients
in deciding the need for and the length of MV. Moreover, these models
could help with resource utilization, by predicting the number of
patients in a hospital who will require MV and the duration of MV,
along with the need for ECMO, which could help the staft prepare to
have the necessary equipment to manage patients with COVID-19.
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2 Methods
2.1 Source of data

This study was conducted on the COVID dataset composed
of electronic health records of protected health information
provided by Emory University, as part of the CRADLE (Emory
Clinical Research Analytics Data Lake Environment) Project. We
followed the Transparent Reporting of a multivariable prediction
model for Individual Prognosis or Diagnosis (TRIPOD)
reporting guidelines.

2.2 Study cohort

Our single-center study cohort was selected from the 41,319
patients at Emory Healthcare (EHC) diagnosed with COVID-19
between February 1, 2020 and January 24, 2022. Additionally, patients
must meet at least one of the following eligibility criteria:

1 A positive/detected lab result verified on/after February 1, 2020
for one of the following (1) SARS-CoV-2 PCR completed at
either Emory University Hospital (Emory), ARUP Laboratories
|National Reference Laboratory (ARUP), or Quest Diagnostics
(Quest); (2) SARS-Cov-2 RNA completed at EHC.

2 A positive SARS-CoV-2 test conducted by an outside lab and
documented on the COVID-19 Non-EHC Labs power form
with a service date on or after February 1, 2020.

3 An International Classification of Diseases, Tenth Revision
(ICD-10) code of U07.1 captured as the primary or secondary
billing diagnosis from Medical Records Coding or the Charms
2000 PowerAbstract system (Vendor: Meta Health Technology
Inc.) for encounters not considered long-term care or hospice
discharged on or after April 1, 2020 from Emory- related hospitals:
Emory Johns Creek (EJCH), EUH, Wesley Woods, EUH Midtown
(EUHM), or Emory Saint Joseph's Hospital (ESJH).

We restricted this cohort to those whose hospital stay was at least
3 days and had at least one documented measurement for all feature
types in Section, yielding 10,378 patients.

2.3 Data selection and preparation

2.3.1 Features

We consider two types of features: dynamic and static. Dynamic
features are vitals values and laboratory results measured over the first
3 days of the hospital stay. These features include Oxygen (O,)
Saturation, Temperature (C), the fraction of inspired oxygen (FiO,),
oxygen flow rate, heart rate (HR), sitting systolic BP, and sitting
diastolic BP. Static features consist of demographics (i.e., race, ethnicity,
age, and gender), BMI, and weight (see Supplementary material).
These features are associated with COVID-19 outcomes (Bonaventura
et al., 2022; Kimhi et al., 2020; Dhanani and Franz, 2022).

2.3.2 Labels

Our models predict a probability distribution over the following:
(1) MV duration (days) in ranges: 0 (i.e., no MV), 1-4, 5-9, 10-14,
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15-19, 20-24, 25-29, and >30days; (2) ECMO use; and (3)
in-hospital mortality.

2.3.3 Dataset preparation

For patient confidentiality, our dataset did not include admission/
discharge times. We heuristically distinguished visits based on these
criteria: (1) There must be at least 3 days (not necessarily consecutive)
of feature information collected for that individual, to constitute a
hospital visit; (2) No more than 3 days may elapse between
measurements for that individual before the measurement is assigned
to a new hospital visit; and (3) Each individual’s hospital stay must
contain at least one measurement of all feature types to be included.
After filtering, the number of hospital visit data points was reduced
from 33,552 to 23,174.

We choose only to leverage the first three consecutive days’ worth
of feature data in keeping with prior work (Hu et al., 2020). Further,
we limited the number of measurements of each dynamic feature type
to the first 100 measurements. If a patient had fewer than 100 dynamic
measurements, we padded the feature array with zeros.

2.4 Model development

We randomly separated our dataset into a training (60%),
validation (20%), and hold-out testing (20%) datasets. The training
dataset was used to train our ML models, and the testing dataset was
used for hyper-parameter selection (see Supplementary material). We
report performance on the hold-out dataset. Figure 1 depicts our data
analysis pipeline.

We note that it is possible that the same patient was admitted to
the hospital more than once. Because we defined each “visit” using our
own criteria and treated visits as independent data points, patient
identifiers were not retained in the final dataset. As a result, a patient
could have data from different visits appear in both the training and
test sets. We recognize this as a limitation, but also note that it reflects
real-world clinical practice, where models are often applied across
multiple admissions for the same patient.

We provide a quantitative estimate of the impact of this
overlap. To do so, we generate a new dataset from our database
with the additional feature of participant id and assess variability
in participant overlap between the training and test datasets by
repeating the data-splitting procedure 1,000 times. We note that
the data was de-identified, and no patient identifiers were
accessible after pre-processing. Across these splits, we find that an
average of 4.19 + 0.39% of data in the test dataset (87.07 + 8.09 /
2076) originated from patients who also appear in the
training dataset.

2.3.1 Recurrent neural network

LSTM neural networks are a type of recurrent neural network,
which have been used for COVID-19 modeling (Rasmy et al.,
2022; Kumar et al., 2021; Sun et al., 2021; Villegas et al., 2023) due
to their ability to capture long-term dependencies and temporal
patterns (Hochreiter and Schmidhuber, 1997). We employ
TensorFlow’s Keras API to create our custom RNN (Abadi et al.,
2015). As depicted in Figure 2, our hierarchical RNN first
leverages bi-directional LSTM layers to capture the temporal
dependencies in our sequential dynamic features. This is
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FIGURE 1
This figure depicts an overview of the pipeline, from data collection
and preparation to model evaluation.

concatenated with the static feature data and leveraged to predict
MYV duration. Next, using both the predicted MV duration and the
hidden activations (i.e., the output of a dense layer with ReLU
activation), we predict the ECMO outcome. Finally, using the
predicted ECMO outcome and the next set of hidden activations,
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FIGURE 2
This figure depicts the hierarchical RNN architecture as well as the model-chained decision tree and logistic regression architectures.

we predict mortality. This architecture predicts these three 2.4.2 Decision tree
outcomes and combines their cross-entropy losses into an overall We train a set of decision tree (DT) classifiers, as per prior work
loss to train the model. (Ryan et al., 2020; Yu et al., 2021; Bendavid et al., 2022; Douville et al.,
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2021; Elhazmi et al., 2022), using sklearn (Pedregosa et al., 2011;
Buitinck et al., 2013). As in Figure 2, the architecture includes three
DT classifiers, each trained separately. As with our RNN approach,
each prediction of the DT is passed as input to the next DT module
along with the dynamic and static features. Hyperparameter
optimization is performed, as described in the Supplementary material.

2.4.3 Logistic regression

As depicted in Figure 2, we leverage logistic regression (LR) with
elastic net regularization (Takada et al., 2022) using sklearn (Pedregosa
etal., 2011; Buitinck et al., 2013) and perform a grid search over the
C and L1 ratio hyperparameters (See Supplementary material).

2.4.4 Metrics

We employ four metrics based upon prior work (Hicks et al., 2022;
Saito and Rehmsmeier, 2015): (1) the area under the receiver operating
characteristic (AUROC), area under the precision recall curve (AUPRC)
(2) precision, (3) recall, and (4) F-score. Due to our imbalanced dataset,
we do not report accuracy as it yields misleadingly high performance.

2.4.5 Statistical analysis

We assessed the performance of three models in this study (i.e.,
the RNN, DT, and LR) on a holdout dataset. As our dataset has heavily
unbalanced classes, we report class-specific metrics, weighted
averages, and macro-averages (Zhang and Yang, 2003).

3 Results

3.1 Demographic and clinical
characteristics

Table 1 show the demographics and outcomes of our cohort.
Among 10,378 patients (median [IQR] age, 60 [48-72] years; 5,281
(50.89%) female and 5,097 (49.11%) male) included in our analysis,
0.14% experienced ECMO, 10.73% died in hospital. 78.44, 7.82, 3.13,
2.32, 1.47, 0.93, 0.84, and 5.03% experienced 0 days, 1-4 days,
5-9 days, 10-14 days, 15-19 days, 20-24 days, 25-29 days, and
>30 days of MV, respectively.

Due to class imbalances, we perform random up-sampling for our
training and validation datasets (Provost, 2000) of patients with
low-frequency outcome classes (defined as outcome frequency < 15%
with respect to the overall dataset), resulting in a bootstrapped dataset
with outcome distributions listed in Table 1.

3.2 Model comparison

Table 2 depicts the results of the model performances on our
holdout dataset, reporting AUROC, AUPRC, and F-score with
respective confidence intervals (normal approximation intervals).

AUROC: On mechanical ventilator duration, ECMO use, and
mortality outcome, the RNN reached weighted average AUROC
scores of 0.873, 0.902, and 0.774; the highest performing DT model
reached weighted average AUROC scores of 0.812, 0.498, 0.669; and
the highest performing LR model reached weighted average AUROC
scores of 0.727, 0.499, and 0.636, respectively.
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AUPRC: On mechanical ventilator duration, ECMO use, and
mortality outcome, the RNN reached weighted average AUPRC scores
0f 0.790, 0.999, and 0.893; the highest performing DT model reached
weighted average AUPRC scores of 0.775, 0.998, 0.860; and the highest
performing LR model reached weighted average AUPRC scores of
0.780, 0.999, and 0.891, respectively.

F-score: On mechanical ventilator duration, ECMO use, and
mortality outcome, the RNN reached weighted average F-score of
0.688, 0.997, and 0.862; the highest performing DT model reached
weighted average AUROC scores of 0.762, 0.997, 0.868; and the
highest performing LR model reached weighted average AUROC
scores of 0.651, 0.997, and 0.839, respectively.

3.3 Feature importance

Following the PI procedure (Altmann et al., 2010), we randomly
permute the feature column across patients of the holdout dataset 100
times, and evaluate the resulting model performance to evaluate
feature importance (Figure 3). Each timestep of each dynamic feature
is a distinct feature type. If the model performs poorly for a given
permuted feature, this suggests that the feature is informative. See
Supplementary material for SHAP analysis.

The RNN pipeline was most impacted by BP sitting systolic and
diastolic measurements, heart rate, O, saturation, age, BMIJ, race, and
weight. As evaluated by F-score, the RNN pipeline was most impacted by
O, saturation. In addition to O, saturation, the RNN pipeline, as evaluated
by AUROC, was most impacted by BP sitting systolic and diastolic
measurements, age, BMI, and weight. Heart rate and race were also
important for the RNN pipeline as evaluated by AUPRC.

The DT and LR pipelines rely on a greater variety of features
than the RNN. The DT pipeline was most impacted by BP sitting
systolic and diastolic measurements, FiO, nursing decimal,
oxygen flow rate, O, saturation, age, BMI, ethnic group, gender,
race, and weight. From the feature permutation analysis, the DT
pipeline, as evaluated by F-score, was most impacted by BP sitting
systolic and diastolic measurements, oxygen flow rate, gender,
and weight. The DT pipeline, as evaluated by AUROC, was most
impacted by BP sitting systolic, FiO, nursing decimal, oxygen
flow rate, age, BMI, ethnic group, gender, race, and weight. The
DT pipeline, as evaluated by AUPRC, was most impacted by most
of the same features as AUROC, with the removal of oxygen flow
rate and the addition of O, saturation. From the SHAP analysis,
we find that the DT pipeline was also strongly impacted by
temperature and heart rate.

The LR pipeline was most impacted by O, saturation, BP
sitting systolic and diastolic measurements, heart rate, weight,
race, age, BMI, ethnic group, and gender. From the feature
permutation analysis, the LR pipeline, as evaluated by F-score
and AUROC, was most impacted by BP sitting systolic and
diastolic measurements, heart rate, age, BMI, ethnic group,
gender, race, and weight. The LR pipeline, as evaluated by
AUPRC, was most impacted by most of the same features, with
the removal of BP sitting diastolic measurement and the addition
of O, saturation. From the SHAP analysis, we find that the LR
pipeline was also strongly impacted by oxygen flow rate and FiO,
nursing decimal.
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TABLE 1 The upper portion of the table outlines the demographic characteristics of participants. The lower portion of the table outlines the label
distributions of participants, including patient count with and without each outcome before and after upsampling the low-frequency classes.

Characteristic Cohort, No. (%)
Race African American or Black 5,636 (54.31%)
Asian 3,749 (36.12%)
Caucasian or White 31(0.30%)
American Indian or Alaskan Native 23 (0.22%)
Native Hawaiian or Other Pacific Islander 43 (0.41%)
Multiple, Unknown, Unavailable, Unreported, Not Reported 896 (8.63%)
Ethnicity Non-Hispanic or Latino 8,640 (83.25%)
Hispanic or Latino 690 (6.65%)
Unreported, Unknown, Unavailable, Not Recorded 1,048 (10.10%)
Gender Female 5,281 (50.89%)
Male 5,097 (49.11%)
BMI <18.5 457 (4.40%)
18.5-24.9 2065 (19.90%)
24.9-29.9 2,904 (27.98%)
>30 4,952 (47.72%)
Characteristic Median [IQR]
Age 60 [48-72]

Frequency, No. (%)

Pre-Upsampling Post-Upsampling

Overall Train Validate Test Train Validate
MV Duration
0 days 8,141 (78.44) 4,907 (78.81) 1,609 (77.50) 1,625 (78.28) 4,907 (15.76) 1,609 (15.50)
1-4 days 812 (7.82) 469 (7.53) 175 (8.43) 168 (8.09) 3,916 (12.58) 1,583 (15.25)
5-9 days 325(3.13) 200 (3.21) 60 (1.97) 65 (3.13) 3,313 (10.64) 1,098 (10.58)
10-14 days 241 (2.32) 165 (2.65) 41(1.97) 35 (1.69) 3,899 (12.52) 1,079 (10.39)
15-19 days 153 (1.47) 84 (1.35) 38 (1.83) 31 (1.49) 3,502 (11.25) 1,438 (13.85)
20-24 days 97 (0.93) 56 (0.90) 20 (0.96) 21 (1.01) 3,445 (11.07) 1,058 (10.19)
25-29 days 87 (0.84) 50 (0.80) 17 (0.82) 20 (0.96) 3,163 (10.16) 1,055 (10.16)
30 + days 522 (5.03) 295 (4.74) 116 (5.59) 111 (5.35) 4,985 (16.01) 1,460 (14.07)
ECMO
True 15 (0.14) 10 (0.16) 3(0.14) 2(0.10) 3,335 (10.71) 1,078 (10.39)
False 10,363 (99.86) 6,216 (99.84) 2073 (99.86) 2074 (99.90) 27,795 (89.29) 9,302 (89.61)
Mortality
True 1,114 (10.73) 667 (10.71) 222 (10.69) 225 (10.84) 10,900 (35.01) 3,223 (31.05)
False 9,264 (89.27) 5,559 (89.29) 1854 (89.31) 1851 (89.16) 20,230 (64.99) 7,157 (68.95)

The lower portion of the table outlines the label distributions of participants, including patient count with and without each outcome before and after upsampling the low-frequency classes.
Quality of evidence: Level 2.

4 Discussion 4.1 Model performance in held-out cohort

In this retrospective, prognostic study we developed and validated The highest-performing model for the weighted average AUROC
three ML models on 10,378 COVID-19 patients to predict MV~ was the RNN, with MV duration, ECMO, and mortality AUROC of
duration, as well as ECMO and mortality outcome, which is novel ~ 0.873, 0.902, and 0.774. Similarly, the highest-performing model for
compared to other algorithms that did not examine all three as distinct ~ macro average AUROC, which treats all classes as equally weighted
outcomes in the same model. when averaging, was the RNN, with MV duration, ECMO, and
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TABLE 2 This table depicts the MV duration, ECMO, and mortality prediction results for all three models.

Model performance

10.3389/frai.2025.1661637

Model Class F-score AUROC Precision Recall
MV Duration
RNN Weighted Avg 0.688 0.790 0.873 0.785 0.626
Macro Avg 0.229 0.214 0.834 0.221 0.266
0 Days 0.823 (0.806-0.839) 0.968 (0.960-0.975) 0.891 (0.878-0.905) 0.958 (0.949-0.966) 0.721 (0.702-0.741)
1-4 Days 0.238 (0.220-0.257) 0.164 (0.149-0.180) 0.742 (0.723-0.760) 0.171 (0.155-0.187) 0.393 (0.372-0.414)
5-9 Days 0.118 (0.104-0.132) 0.091 (0.078-0.103) 0.765 (0.746-0.783) 0.087 (0.075-0.099) 0.185 (0.168-0.201)
10-14 Days 0.104 (0.091-0.117) 0.063 (0.053-0.074) 0.837 (0.821-0.853) 0.075 (0.064-0.086) 0.171 (0.155-0.188)
15-19 Days 0.103 (0.090-0.116) 0.078 (0.067-0.090) 0.890 (0.876-0.903) 0.076 (0.064-0.087) 0.161 (0.145-0.177)
20-24 Days 0.102 (0.089-0.115) 0.045 (0.036-0.054) 0.784 (0.767-0.802) 0.079 (0.067-0.091) 0.143 (0.128-0.158)
25-29 Days 0.045 (0.036-0.054) 0.048 (0.038-0.057) 0.881 (0.867-0.895) 0.042 (0.033-0.050) 0.050 (0.041-0.059)
30 + Days 0.294 (0.275-0.314) 0.258 (0.239-0.277) 0.882 (0.868-0.896) 0.283 (0.264-0.303) 0.306 (0.286-0.326)
DT Weighted Avg 0.762 0.775 0.812 0.800 0.733
Macro Avg 0.254 0.184 0.613 0.246 0.273
0 Days 0.904 (0.891-0.916) 0.953 (0.944-0.962) 0.865 (0.850-0.880) 0.962 (0.954-0.970) 0.852 (0.837-0.868)
1-4 Days 0.336 (0.316-0.357) 0.194 (0.177-0.211) 0.672 (0.651-0.692) 0.268 (0.249-0.287) 0.452 (0.431-0.474)
5-9 Days 0.100 (0.087-0.113) 0.042 (0.033-0.050) 0.537 (0.515-0.558) 0.093 (0.081-0.106) 0.108 (0.094-0.121)
10-14 Days 0.083 (0.071-0.095) 0.026 (0.019-0.033) 0.552 (0.530-0.573) 0.059 (0.049-0.069) 0.143 (0.128-0.158)
15-19 Days 0.032 (0.025-0.040) 0.016 (0.010-0.021) 0.509 (0.487-0.530) 0.032 (0.025-0.040) 0.032 (0.025-0.040)
20-24 Days 0.051 (0.042-0.061) 0.012 (0.008-0.017) 0.520 (0.498-0.541) 0.056 (0.046-0.065) 0.048 (0.038-0.057)
25-29 Days 0.143 (0.128-0.158) 0.025 (0.018-0.032) 0.570 (0.549-0.592) 0.136 (0.122-0.151) 0.150 (0.135-0.165)
30 + Days 0.379 (0.358-0.400) 0.203 (0.186-0.220) 0.679 (0.659-0.699) 0.364 (0.343-0.384) 0.396 (0.375-0.417)
LR Weighted Avg 0.651 0.780 0.727 0.769 0.577
Macro Avg 0.202 0.270 0.592 0.196 0.251
0 Days 0.787 (0.769-0.804) 0.959 (0.950-0.968) 0.769 (0.751-0.787) 0.947 (0.938-0.957) 0.673 (0.652-0.693)
1-4 Days 0.211 (0.193-0.228) 0.150 (0.135-0.166) 0.578 (0.557-0.600) 0.171 (0.155-0.187) 0.274 (0.255-0.293)
5-9 Days 0.139 (0.124-0.154) 0.105 (0.091-0.118) 0.590 (0.569-0.611) 0.094 (0.082-0.107) 0.262 (0.243-0.280)
10-14 Days 0.116 (0.102-0.130) 0.087 (0.075-0.099) 0.601 (0.580-0.622) 0.075 (0.064-0.086) 0.257 (0.238-0.276)
15-19 Days 0.032 (0.024-0.039) 0.034 (0.026-0.042) 0.510 (0.488-0.531) 0.021 (0.015-0.027) 0.065 (0.054-0.075)
20-24 Days 0.031 (0.024-0.039) 0.051 (0.042-0.061) 0.514 (0.492-0.535) 0.023 (0.017-0.030) 0.048 (0.038-0.057)
25-29 Days 0.118 (0.104-0.132) 0.063 (0.052-0.073) 0.589 (0.568-0.610) 0.083 (0.071-0.095) 0.200 (0.183-0.217)
30 + Days 0.187 (0.170-0.204) 0.209 (0.192-0.227) 0.581 (0.560-0.602) 0.156 (0.140-0.171) 0.234 (0.216-0.252)
ECMO
RNN Weighted Avg 0.997 0.999 0.902 0.998 0.997
Macro Avg 0.499 0.504 0.902 0.500 0.499
True 0.000 (0.000-0.000) 0.007 (0.004-0.011) 0.902 (0.890-0.915) 0.000 (0.000-0.000) 0.000 (0.000-0.000)
False 0.998 (0.997-1.000) 1.000 (0.999-1.000) 0.902 (0.890-0.915) 0.999 (0.998-1.000) 0.998 (0.995-1.000)
DT Weighted Avg 0.997 0.998 0.498 0.998 0.996
Macro Avg 0.499 0.500 0.498 0.500 0.498
True 0.000 (0.000-0.000) 0.001 (0.000-0.002) 0.498 (0.477-0.520) 0.000 (0.000-0.000) 0.000 (0.000-0.000)
False 0.998 (0.996-1.000) 0.999 (0.998-1.000) 0.498 (0.477-0.520) 0.999 (0.998-1.000) 0.997 (0.994-0.999)
LR Weighted Avg 0.997 0.999 0.499 0.998 0.997
Macro Avg 0.499 0.502 0.499 0.500 0.499
True 0.000 (0.000-0.000) 0.005 (0.002-0.009) 0.499 (0.477-0.520) 0.000 (0.000-0.000) 0.000 (0.000-0.000)
False 0.998 (0.997-1.000) 1.000 (0.999-1.000) 0.499 (0.477-0.520) 0.999 (0.998-1.000) 0.998 (0.995-1.000)
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TABLE 2 (Continued)

Model performance

10.3389/frai.2025.1661637

Model Class F-score AUROC Precision Recall
Mortality
RNN Weighted Avg 0.862 0.893 0.774 0.858 0.866
Macro Avg 0.633 0.637 0.774 0.641 0.626
True 0.340 (0.320-0.361) 0.312 (0.292-0.332) 0.774 (0.756-0.792) 0.364 (0.343-0.384) 0.320 (0.300-0.340)
False 0.925 (0.914-0.936) 0.963 (0.955-0.971) 0.774 (0.756-0.792) 0.919 (0.907-0.930) 0.932 (0.921-0.943)
DT Weighted Avg 0.868 0.860 0.669 0.870 0.866
Macro Avg 0.664 0.600 0.669 0.659 0.669
True 0.403 (0.382-0.425) 0.267 (0.248-0.286) 0.669 (0.649-0.689) 0.390 (0.369-0.411) 0.418 (0.397-0.439)
False 0.925 (0.913-0.936) 0.993 (0.922-0.943) 0.669 (0.649-0.689) 0.929 (0.918-0.940) 0.921 (0.909-0.932)
LR Weighted Avg 0.839 0.891 0.636 0.853 0.828
Macro Avg 0.615 0.624 0.636 0.604 0.636
True 0.330 (0.309-0.350) 0.284 (0.265-0.304) 0.636 (0.615-0.657) 0.285 (0.265-0.304) 0.391 (0.370-0.412)
False 0.901 (0.888-0.914) 0.965 (0.957-0.973) 0.636 (0.615-0.657) 0.922 (0.911-0.934) 0.881 (0.867-0.895)

The highest weighted average and macro average results across each metric are bolded. Quality of evidence: Level 2.

mortality AUROC of 0.834, 0.902, and 0.774, outperforming other
models by a margin of 0.221 for MV duration, 0.403 for ECMO, and
0.105 for mortality.

The highest-performing model for the weighted average AUPRC
was the RNN, with MV duration, ECMO, and mortality AUPRCs of
0.790, 0.999, and 0.893. For MV duration, the highest-performing
model for macro average AUPRC was the LR with 0.270,
outperforming the other models by a margin of 0.056. The highest-
performing model for macro average AUPRC was the RNN for
ECMO and mortality with AUROC of 0.504 and 0.637, outperforming
other models by a margin of 0.002 for ECMO and 0.013 for mortality.

The highest-performing model with respect to weighted average
F-score was the DT for MV duration and mortality, with F-scores of
0.762 and 0.868. The highest-performing model for macro average
F-score was the DT for MV duration and mortality with F-scores of
0.254 and 0.664, outperforming the other models by a margin of 0.025
for MV duration and 0.031 for mortality. For ECMO, three models
demonstrate equal performance with weighted average and macro
average F-scores of 0.997 and 0.499.

Finally, the Brier scores for the RNN model's MV duration,
ECMO, and mortality predictions were 0.44, 0.01, and 0.22,
respectively. The Brier scores for the DT model's MV duration, ECMO,
and mortality predictions were 0.47, 0.01, and 0.25, respectively. The
Brier scores for the LR model's MV duration, ECMO, and mortality
predictions were 0.51, 0.01, and 0.24, respectively. While lower Brier
scores indicate higher calibration, the low ECMO Brier scores
observed are likely reflective of the class imbalance rather than
superior model performance.

These findings suggest that the RNN architecture would be best
suited for the task of predicting the duration of MV use, ECMO, and
mortality in COVID-19 patients, as this model is the highest-
performing with respect to weighted and macro averaged AUROC
and weighted AUPRC. We hypothesize the RNN demonstrated higher
performance as it was naturally able to incorporate time-series data
and learn more complex representations of the data. In addition to the

Frontiers in Artificial Intelligence

RNN's ability to more effectively process temporal data, the RNN was
the only model that backpropagated throughout the layers that
predicted each outcome, performing end-to- end learning. This means
that the different components of the model were learned together,
rather than sequentially, resulting in higher performance. On the
other hand, the LR and DT models were chained, training each
component of the pipeline sequentially and independently. These
factors may have contributed to the RNN’s superior models
performance, compared to the DT and LR models.

4.2 Saliency analysis

We perform feature permutation among the models to identify
factors important in all models. The strong predictors shared across
all three models include BP sitting systolic and diastolic
measurements, heart rate, O, saturation, age, BMI, race, weight. The
DT and LR pipelines rely on a greater variety of features than the
RNN. This is notable, as a model that relies on fewer strong
predictors requires fewer features to be collected to perform well,
facilitating the data collection process. However, a model that relies
on a larger variety of features may be more robust to missing data
compared to a model that relies heavily on a constrained set of
features. Additional strong predictors shared across only the DT and
LR include FiO, nursing decimal, oxygen flow rate, ethnic group,
and gender.

4.3 Limitations and future work

We only kept individuals in our dataset that have at least one
measurement for each data feature; however, this could be addressed
with training procedures, e.g., random feature dropout. Further, our
models do not perform real-time prediction; however, our
RNN-based approach naturally affords the inclusion of additional
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FIGURE 3

Feature permutation importance with respect to weighted average F-Score, AUROC, and AUPRC Score for RNN, DT, and LR models, for the MV
duration, ECMO, and mortality outcomes. The x-axis lists feature names, and the y-axis captures model performance. Lower model performance
indicates higher feature importance for that model. Nominal model performance (with no feature permutations) is indicated with the red dotted line.
Note that while this figure reports individual metrics (F-Score, AUROC, AUPRC) across three different outcomes (ventilation duration, ECMO, and
mortality), permuting a single feature may improve performance for one model's outcome while degrading performance for another.
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data in real-time as it becomes available. For this paper, we focused
on early detection, leveraging only the first three consecutive days of
hospital visit data.

The highest-performing model in this work was the
RNN. Transformer-based architectures, which also perform
sequential processing, could be a promising option for future work.
However, data-hungry Transformers require larger datasets, but
transfer learning could help (Agarwal et al., 2022).

Additionally, while a patient may visit the hospital multiple times
throughout their life, we do not incorporate previous visits medical
data to improve our models’ predictions. Future work could investigate
leveraging prior medical history to improve model accuracy.

Due to the scarcity of ECMO in our dataset, ECMO predictions
may have limited clinical applicability. Furthermore, excluding
patients without at least one measurement per feature type may bias
our model toward more closely monitored or severe cases.

We include race and ethnic group as features in our model to
mitigate bias, as our dataset’s demographics are not representative of
the typical U. S. hospital population. Future work could evaluate
model transferability to populations with different demographics and
consider replacing race/ethnicity with structural and social
determinants of health related to factors such as economic stability
and access to healthcare and education.

Finally, future work could investigate real-time prediction and
validation in a clinical deployment setting.

5 Conclusion

In conclusion, in this retrospective, prognostic study, we
compare the performance of ML models trained on clinical variables
and demographic information on the prediction of COVID- 19
outcomes. Our RNN-based approach was the highest- performing
model for predicting mechanical ventilation duration
(AUROC =0.873, AUPRC =0.790), extracorporeal membrane
oxygenation (AUROC =0.902, AUPRC =0.999), and mortality
(AUROC =0.774, AUPRC =0.893). This work suggests that
hierarchical ML models have the potential to support clinicians in
personalizing treatment and mitigating the risk of prolonged
mechanical ventilation.
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SHAP summary plots for the DT and LR models, for the MV duration, ECMO,
and mortality outcomes.

SUPPLEMENTARY FIGURE 2

ROC plots for the RNN, DT, and LR models, for the mechanical ventilation
duration, ECMO, and mortality outcomes. The closer the ROC curve is to the
top left corner, the higher the model's accuracy (higher true positive rate and
lower false positive rate).

SUPPLEMENTARY FIGURE 3

Confusion matrices for the RNN, DT, and LR models, for the mechanical
ventilation duration, ECMO, and mortality outcomes. The higher the diagonal
values, the better the model performed.
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