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Functional partitioning through
competitive learning
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for Continuum and Material Mechanics, Hamburg University of Technology, Hamburg, Germany

Datasets often incorporate various functional patterns related to different aspects
or regimes, which are typically not equally present throughout the dataset. We
propose a novel partitioning algorithm that utilizes competition between models
to detect and separate these functional patterns. This competition is induced by
multiple models iteratively submitting their predictions for the dataset, with the
best prediction for each data point being rewarded with training on that data
point. This reward mechanism amplifies each model’s strengths and encourages
specialization in different patterns. The specializations can then be translated
into a partitioning scheme. We validate our concept with datasets with clearly
distinct functional patterns, such as mechanical stress and strain data in a porous
structure. Our partitioning algorithm produces valuable insights into the datasets’
structure, which can serve various further applications. As a demonstration of
one exemplary usage, we set up modular models consisting of multiple expert
models, each learning a single partition, and compare their performance on
more than twenty popular regression problems with single models learning all
partitions simultaneously. Our results show significant improvements, with up to
56% loss reduction, confirming our algorithm’s utility.
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1 Introduction

Datasets can include multiple sections that adhere to distinct regimes. For instance, in
stress-strain tests of materials, the initial phase exhibits elastic behavior, which is reversible.
However, if the material is stretched further, it enters a phase of plastic behavior, resulting
in permanent changes. Similarly, self-driving cars face unique challenges when navigating
construction zones, which may be specific to certain regions of the parameter space, just
as they do on highways or country roads. This mixture of functional patterns affects how
difficult datasets are for models to learn. Typically, the more diverse the patterns within
a dataset, the more challenging it is for a model to achieve high accuracy. In this work,
we present a novel partitioning algorithm that detects such functional patterns and, when
possible, separates them.

Given these mixed regimes, the modeling task can be viewed in two steps: first,
split the domain, then build a model that covers all parts. In practice, these steps are
often implemented within a single process, but they can also be separated. The first
step—standalone domain splitting—is known as clustering. A classic example is k-means
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(Macqueen, 1967). Most clustering methods group points by
an assumed similarity measure. In k-means, spatial proximity
defines similarity. K-means iterates between assigning each point
to its nearest centroid and updating centroids to the mean
of assigned points. Extensions include fuzzy c-means for soft
assignments (Dunn, 1974) and game-based k-means, which
strengthens competition among centroids for samples (Rezaee
et al., 2021). Clustering has been extensively studied; the surveys by
Jain (2010), Du (2010), Aggarwal and Reddy (2013), and Ezugwu
et al. (2021) provide broader overviews.

A classical approach that unifies domain splitting with
modeling is the mixture of experts (MoE), introduced by Jacobs
et al. (1991). In MoE, a gating network makes soft partitions of the
input space and routes samples to local experts. Training is often
carried out with the expectation maximization (EM) algorithm.
The latent responsibilities decouple gate and expert updates and
induce competitive learning, so experts that better explain a sample
are rewarded and specialization emerges. The hierarchical MoE by
Jordan and Jacobs (1994) extends this idea with tree-structured
gating, which increases modularity and enables progressively
refined splits. Subsequent work explored localized gates based
on Gaussian densities, which yield analytic updates for the gate
and faster training while preserving competition among experts
(Xu et al., 1994). To manage overfitting and model complexity,
variational and Bayesian formulations place distributions over
parameters, improving regularization and model selection while
maintaining competitive allocation of data (Waterhouse et al.,
1995; Ueda and Ghahramani, 2002). Stability in multiclass
settings has been analyzed, and remedies such as small learning
rates and expectation conditional maximization (ECM) style
separate updates have been shown to sustain specialization despite
parameter coupling (Chen et al., 1999; Ng and McLachlan, 2004).
Beyond neural experts, MoE has been combined with support
vector machines (SVMs) and Gaussian processes (GP), including
a mixture of GP experts that assign regions of the input space to
different GP components. These combinations improve flexibility
and scalability for nonstationary data (Meeds and Osindero,
2005; Yuan and Neubauer, 2008; Lima et al., 2007; Tresp, 2000).
Extensions to time series and sequential data augment gates and
experts with temporal structure and allow partitions to evolve over
time (Weigend et al., 1995; Chen et al., 1996). For an accessible
orientation to developments over the past two decades, see the
survey of Yuksel et al. (2012). Shazeer et al. (2017) provided a
recent efficiency proof by realizing conditional computation at
scale. They introduced sparsely gated MoE layers with thousands
of feedforward experts and routed only a few per example, which
yielded very large capacity at modest computational cost and state-
of-the-art results in language modeling and machine translation.

Beyond the classical MoE approach, several ensemble methods
pursue localization and specialization without a gating network.
The self-organizing map by Kohonen (1990) uses competitive
learning to arrange prototypes on a low-dimensional lattice, which
promotes local specialization and is widely used for clustering and
visualization. Iterative splitting methods repeatedly partition the
dataset and spawn new models when accuracy remains insufficient,
so experts emerge that specialize on different regions (Gordon
and Crouson, 2008). Zhang and Liu (2002) introduced the one
prototype take one cluster paradigm (OPTOC), which creates

models as needed and lets them compete for data points, and Wu
et al. (2004) adapted it to gene expression clustering.

There is fast-growing work on sparse MoE for large language
models (LLMs) that aims to expand capacity without increasing
compute per token. As one example, Do et al. (2025) study routing
in transformer-based MoE and propose USMoE that compares
token choice and expert choice. Building on Shazeer et al. (2017),
Fedus et al. (2022) integrate MoE into the transformer with
a switch feedforward layer, enabling many more parameters at
modest per-token compute. Refining this method, Pham et al.
(2024) address expert collapse and routing imbalance with winner-
takes-all competition based on actual expert activations and with a
separate router trained to predict these outcomes, which improves
routing and representation diversity. For first-stage retrieval,
Guo et al. (2025) combine specialized lexical, local, and global
matching experts with competitive training to balance effectiveness
and efficiency.

Beyond applications, two recent theoretical studies develop
mathematical foundations for MoE, analyzing when they succeed
on clustered tasks and linking EM training to mirror descent
with convergence guarantees (Kawata et al., 2025; Fruytier et al.,
2024). Li et al. (2022) explore feature-level rather than sample-
level MoE using soft subspace clustering to assign features to
multiple specialists rather than clustering samples. Cortés et al.
(2025) apply multiple choice learning with a winner takes all loss
to time series forecasting, and Nikolic et al. (2025) use sparse
MoE variational autoencoders to study unsupervised specialization.
Piwko et al. (2025) propose hellsemble, an ensemble that partitions
data by difficulty and trains specialists on progressively harder
subsets. The sequential variant follows a fixed order and passes
misclassified instances forward, while the greedy variant selects
at each step the model that yields the largest validation gain. In
contrast to our approach, hellsemble is largely sequential, with later
models correcting earlier errors, whereas our experts operate fully
in parallel. Krishnamurthy et al. (2023) show that classical MoE can
yield unintuitive and imbalanced decompositions when the gate
and the experts are trained jointly, which weakens specialization.
They address this with attentive gating that leverages expert
outputs and with data-driven similarity regularization to encourage
balanced routing, an important issue they pursue along a different
path than we do. Eigen et al. (2013) study deep MoE with two expert
layers and a gating network for each layer, showing that the layers
specialize in different aspects while keeping a fixed expert set and
joint training. In another line of work, Oldfield et al. (2024) design a
generic MoE block that can be integrated into diverse architectures
and that remains fully differentiable, using dense input-dependent
routing rather than discrete selection to make the component
plug and play. Finally, Ukorigho and Owoyele (2025) present a
competition-based model discovery approach close in spirit to ours,
where models compete for data points and the winner discourages
others from capturing similar samples to sharpen specialization.
Key differences to our work include how the number of models
is chosen, since they keep adding models while validation loss
improves, whereas we add and drop models using explicit criteria
based on the hardest samples and redundancy among specialists.
Another difference is the training schedule, as they couple routing
and expert optimization, while we separate partitioning because
this partitioning enables a wide range of other uses, with analysis
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of regimes and active sampling as two examples. Furthermore, they
evaluate on structurally different tasks than we do.

We propose an alternative to the classical mixture of experts:
in our approach, multiple models compete for each data point. The
model with the most accurate prediction is rewarded with training
on that point, which drives specialization. The resulting expert
preferences define a partitioning of the dataset. In this paper, we
use that partitioning to build a modular model with one expert per
region, and we compare it to a single global model.

Methods such as the iterative splitting of Gordon and Crouson
(2008) and the hellsemble framework of Piwko et al. (2025)
organize competition rather in a sequential split and refine loop
than in parallel. While they are highly valuable for growing models,
they actually react to residual error and capacity limits as the
specialization they induce follows difficulty rather than stable
semantic regimes. Our goal is different. We aim to expose regimes
that arise from how different learners naturally win on different
subsets. A central difference to classical MoE is our two-step design.
We first partition the dataset, then we learn the final experts on
the induced regions. This separation gives wide freedom in how
to design the partitioning. In the present work, the partition is
driven purely by competition. Compared to Ukorigho and Owoyele
(2025), we use this freedom to establish flexible adding and
dropping modules that adjust the number of experts automatically.
The framework also allows for great flexibility regarding the model
class hyperparameter settings within the competition.

The partitioning we obtain enables multiple secondary uses,
such as facilitating data analysis or enabling efficient sampling
strategies. Consider a scenario where sampling is expensive because
each data point requires a costly experiment. One could collect
data in batches and rerun the partitioning after each batch.
After training a separate expert for each region, regions with
underperforming experts could be interpreted as harder and thus
prioritized for additional sampling. This approach aligns with
the paradigm of active learning, where models are deliberately
exposed to data points they are most uncertain about in order
to improve their weaknesses. Our approach, however, inverts this
idea. In our competition-based design, models do not train on their
weaknesses but on their strengths: they are rewarded with training
on those data points they predict most accurately. This deliberate
choice drives specialization and induces the resulting partitioning
of the dataset. Rather than seeking to reduce uncertainty, we
exploit certainty to create a structured division of the data, which
can then support downstream tasks such as expert modeling or
targeted analysis.

2 Materials and methods

2.1 Partitioning algorithm

The objective of our approach is to detect functional patterns
in datasets and separate them in case they appear separable. To
achieve this, we propose competition among multiple models. We
intentionally refer to models in a general sense, as our approach is
not limited by the type of model used. However, for simplicity, one
might consider simple feedforward networks as an example. The
models compete for data points, which requires them to specialize

in certain functional patterns of the dataset. This specialization can
be translated into a partitioning of the dataset.

Given the dataset:

D = {(xi, yi)}n
i=1,

we assume that the input features xi and the output labels yi are
known. However, we assume that both the number of partitions
and the location of their boundaries are unknown. We start with
K models in the competition: Let fθk :X → R denote the k-th
model prediction, parameterized by θk, where θk represents the set
of model parameters (e.g., weights and biases):

fθk (x), k = 1, . . . , K.

For each data point in the dataset, all models submit their
predictions. The prediction error for each model and data point is
calculated like this:

ei,k = (yi − fθk (xi))2.

Each data point is assigned to the model whose prediction is
closest to the true value, formally expressed as:

a(i) = arg min
k∈{1,...,K}

ei,k,

thereby also defining the subset of the dataset assigned to
each model:

Dk = {i | a(i) = k}.

As a reward for providing the most accurate prediction, the
winning model is allowed to update its parameters using this
subset of data points for one training epoch. The corresponding
mean squared error, which in the case of neural networks
is backpropagated through the network for optimization, is
defined as:

Lk(θk) = 1
|Dk|

∑

i∈Dk

(yi − fθk (xi))2.

The global mean squared error can be expressed as:

L(�) = 1
K

K∑

k=1

Lk(θk),

However, this global loss is not used for optimization, as there
is no trainable gating mechanism; instead, the partitioning of
the dataset emerges from the competitive interaction among the
networks. Algorithm 1 describes the implementation of this idea.
A corresponding flowchart is shown in Figure 1.

This process—models submitting predictions, ranking the
predictions, and training the models on the data points for which
they provided the best predictions—is iterated. We call one such
iteration an epoch of the algorithm. As the models specialize, we
expect the assignments of data points to models to stabilize: a
specialized expert will usually submit the best predictions for its
domain. After a predefined number of epochs, the assignments
of data points to models are considered final. Each model’s won
data points translate to a separate partition of the dataset. The

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2025.1661444
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Tacke et al. 10.3389/frai.2025.1661444

procedure main
for each epoch do

for each model do
Submit predictions for all data points.

end for
for each datapoint do

Rank models according to their predictions.
end for
for each model do

Train for one epoch with all won data
points.

end for
end for

end procedure

Algorithm 1. Partitioning: best predictions are rewarded with training.

FIGURE 1

Flow chart of the partitioning algorithm: each data pointed is
assigned to the model that submitted the best prediction. All models
are trained with the data points in their partition for one epoch. This
process is iterated.

hyperplanes between the partitions are stored in a support vector
machine (SVM), making the partitioning technically available for
other applications. Snapshots of the application of the algorithm to
a one-dimensional function that we designed as a test dataset are
shown in Figure 2. The transition from random predictions at the
beginning to specialized experts at the end is clearly visible. The
assignments of data points to the specialized experts are translated
into the final partitioning.

Since the number of partitions is usually unknown beforehand,
the partitioning algorithm includes an adding and a dropping
mechanism to dynamically adapt the number of competing models
to the dataset. To evaluate whether a new model should be added

to the competition, we regularly identify the data points with
the poorest predictions in the dataset and train a new model
on these points. The new model is added to the competition
in case that improves the overall loss. Figure 3 demonstrates
the addition of a model that successfully captures a significant
portion of the sinusoidal section of a test function, which had
previously been unlearned. For more details, see the pseudo-code
of the adding mechanism in Appendix Algorithm 2. Conversely,
redundant models that do not uniquely capture their own pattern
should be eliminated. Such redundancy is indicated by models
not winning any data points or by their predictions significantly
overlapping with those of other models. The degree of redundancy
is assessed by the increase in overall loss if the model were deleted.
This factor is regularly checked, and all highly redundant models
are removed. Figure 4 demonstrates the removal of the red model,
as it only captures data points similarly well as the purple model.
Appendix Algorithm 3 provides the corresponding pseudo-code.
The adding and dropping mechanism are designed to balance each
other. Figure 2 shows exemplary how the number of competing
models is adapted to the dataset from initially ten to finally
three. This process involves both adding new models to capture
previously unlearned patterns and removing redundant ones.

A significant asset of our partitioning algorithm is its ability
to extend to a pattern-adaptive model type, architecture, and
hyperparameter search without incurring additional costs. So far,
competing models have been considered similar in terms of
their type, architecture, and hyperparameter settings. However,
all three can be randomly varied among the models, as it
is reasonable to assume that different patterns may require,
for example, wider neural networks or smaller learning rates.
Consequently, the algorithm’s output can not only be a partitioning
but also an optimal configuration of model type, architecture, and
hyperparameters for each partition.

2.2 Modular model

Applying the partitioning algorithm to datasets reveals
interesting and valuable insights about the dataset’s structure, as
illustrated in Figure 2. Additionally, the partitioning can be utilized
for various other purposes, such as learning the dataset using
a divide-and-conquer approach. Traditionally, the entire dataset
is used to train and optimize a single model. However, if the
partitioning algorithm detects distinct functional patterns, it may
be beneficial to have multiple expert models, each learning only
one pattern, instead of pressing all patterns into a single model.
Therefore, multiple expert models that each learn one partition are
combined into a modular model. The SVM, which incorporates
the boundaries between the partitions, serves as a switch between
the experts. For each data point, the SVM decides which partition
it belongs to and, consequently, which expert model to train or
test. The structure of the modular model is illustrated with a
flowchart in Figure 5. With this approach, we believe that we can
reduce model complexity and increase model accuracy for datasets
that are structured by multiple distinct functional patterns with
little overlap.
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FIGURE 2

Exemplary partitioning. (a) Presents the self-designed test dataset, while (b) displays an exemplary partitioning result. (c) Illustrates the partitioning
process, transitioning from networks with initial random predictions to the orange, red, and green networks each capturing distinct patterns. The
process involves adding and removing networks as patterns are identified or networks deemed redundant.

FIGURE 3

Adding a new network (red network 12) to the competition. Regularly, a new network is trained using the data points with the poorest predictions at
that time. If the new network improves the overall loss, it is added to the competition. Here, the red network 12 is the first to capture the sinusoidal
pattern.

To evaluate this approach, we compared the performance of a
single model trained on the entire dataset with that of a modular
model comprising multiple expert models. We speak of models in

general, as the type of model can be varied. In our experiments,
we used feedforward neural networks. To ensure a fair comparison,
we allowed the single model to have as many trainable parameters
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FIGURE 4

Dropping a network (red network 12) from the competition as it appears redundant, failing to capture any patterns uniquely. Regularly, for each
model, we check how much the overall loss would increase if the network were removed. If the increase is small, the corresponding network is
considered redundant and is discarded. Here, the red network’s predictions were too similar to the purple network’s predictions.

(weights and biases) as the combined total of all experts in the
modular model. We conducted a hyperparameter optimization for
each expert and separately for the single model serving as the
baseline. To keep the hyperparameter search space manageable, we
limited the search to the most influential parameters and applied
reasonable constraints: the number of layers was varied between 2
and 6, the number of neurons per layer between 4 and 10, and the
learning rate between 0.0001 and 0.005. All other hyperparameters
were fixed at values listed in Appendix Table 2. Within this
reduced search space, we performed 100 grid search trials for
each expert model and each single model. This process ensures
that any advantages or disadvantages are not due to unfitting
parameters or outliers. To estimate the stability of both approaches,
we repeated each run, which—partitioning the dataset, training
the modular model including hyperparameter optimization, and
training the single model including hyperparameter optimization -
ten times.

2.3 Datasets

We designed one-dimensional, section-wise defined functions
to serve as test datasets for validating the effectiveness of our
approach and its implementation. The anomaly-crest function
is illustrated in Figure 2a, and the wave-climb function is
depicted in Figure 6a. Due to their section-wise definition, these
functions exhibit different local functional patterns, akin to several
engineering problems. One such example is modeling the stress-
strain curves of materials with porous structures. These materials
offer an excellent balance between weight and strength, but their
stress-strain curves are typically challenging to model due to
the presence of diverse functional patterns. An exemplary stress-
strain curve for such a material is shown in Figure 6b. The data
for this porous structure’s stress-strain curve were generously
provided by Ambekar et al. (2021), who collected them. We

FIGURE 5

Flow chart of the modular model: each partition is learned by a
separate expert model. For each data point, the SVM as a result of
the partitioning algorithm decides which expert to train or to test.
This way, the experts are combined to a modular model.

have observed a high robustness of our partitioning approach
to variations in the models random initializations. Figures 2, 6
illustrate typical results.

In addition to the one-dimensional datasets, we evaluated our
method using 22 popular higher-dimensional real-world datasets
from the UCI Machine Learning Repository (Kelly et al., 2024).
Our tests focused exclusively on regression problems, though
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FIGURE 6

Datasets to test the partitioning algorithm, illustrated with exemplary partitioning results. (a) Self-designed wave-climb function with three patterns
identified by the algorithm (gray, green, blue). (b) Porous structure’s stress-strain dataset generously provided by Ambekar et al. (2021) with three
patterns identified by the algorithm (red, green, orange).

our approach can be readily extended to classification problems.
Acknowledging that our assumption of distinct and separable
characteristics may not apply to all datasets, we tested these 22
additional datasets to assess the frequency and extent to which the
modular model, based on the partitioning algorithm, outperforms
a single model (Imran et al., 2020; Cortez et al., 2009; Nash et al.,
1995; Palechor and la Hoz Manotas, 2019; Schlimmer, 1987; Cortez
and Morais, 2008; Feldmesser, 1987; Yeh, 2018; E and Cho, 2020;
Tsanas and Xifara, 2012; Yeh, 2007; Tfekci and Kaya, 2014; Cortez,
2014; Quinlan, 1993; Matzka, 2020; Wolberg et al., 1995; Fernandes
et al., 2015; Janosi et al., 1988; Tsanas and Little, 2009; Chen, 2017;
Moro et al., 2016; Hamidieh, 2018). A characterization of all test
cases is provided in Appendix Table 3.

3 Results

We evaluated the predictions of both approaches using mean
squared error (MSE) and R2. We expected our pipeline of
partitioning algorithm and modular model to outperform the single
model in some, but not all test cases. This was confirmed: the
pipeline showed clear advantages in 6 out of 25 cases. For the
two synthetic test functions, the modular model outperformed the
single model by orders of magnitude, validating the concept. On
the porous structure’s stress-strain data, which inspired the test
functions, the modular model reduced the test MSE by 54% on
average over 10 runs. The modular model also showed strong
performance on three real-world datasets. On the energy efficiency
dataset, it achieved a 56% reduction in test MSE, on the automobile
dataset, 29%, and on the student performance dataset, 10%, all
averaged over 10 runs.

Figure 7 shows histograms of test MSE for the modular and
single models. Figure 8 shows the same predictions evaluated with
R2, offering a more intuitive illustration of the performance. Both

figures focus on the six datasets where the modular model had
a significant advantage. Each histogram displays results from ten
runs per model. The x-axis shows either test MSE or R2; the y-axis
shows the number of runs achieving each value. Higher bars on the
left indicate better performance.

Table 1 summarizes the six datasets shown in the histograms,
listing features, labels, and data points. Appendix Table 3 includes
this information for all 25 datasets and is placed in the appendix
due to its length.

Since training efficiency is key in machine learning, we also
compared the training times of the modular model and single
model approach. We measured the time required for a 100-
trial grid search for hyperparameter tuning. For the modular
model, we also included the time to run the partitioning
algorithm. Figure 9 presents a bar plot of training times for
the six highlighted datasets. The x-axis shows the datasets, the
y-axis (log scale) shows computation time in seconds on a
standard desktop computer (Intel Core i9-11950H @ 2.60GHz,
64GB RAM, NVIDIA RTX A5000 with 24GB VRAM). Compared
to the hyperparameter search, the partitioning algorithm adds
negligible time. More impactful is the modular model’s use of
multiple but smaller models, which speeds up backpropagation.
Overall, training times are similar, with a slight advantage for the
modular model.

4 Discussion

As introduced in Section 2.1, the partitioning algorithm is
based on the competition between multiple models: iteratively,
each model is trained on the data points for which it provided
the best predictions. The progressive reinforcement of each model’s
strengths drives their specialization, which we exploit to partition
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FIGURE 7

Histograms illustrating the test mean squared error (MSE) of single and modular model for ten runs with each of the six selected datasets. The higher
the bars on the left side, the better the performance.

FIGURE 8

Histograms illustrating the test R2 scores of single and modular model for ten runs with each of the six selected datasets. The higher the bars on the
left side, the better the performance.
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TABLE 1 Characterization of the six datasets in Figures 7 and 8.

Dataset URL Synthetic # features # labels # samples

Anomaly-Crest function URL Yes 1 1 10,000

Wave-climb function URL Yes 1 1 10,000

Automobile insurance URL No 25 1 205

Energy efficiency URL No 8 2 768

Students’ grades URL No 30 1 649

Stress-strain curve URL No 1 1 4,065

the dataset. Through competition, the models naturally align with
distinct functional patterns in the data.

The application of our partitioning algorithm to the anomaly-
crest function demonstrates that the competition between multiple
models is generally effective for developing specialized experts
and separating different functional patterns. The primary value
of this partitioning lies in its ability to detect these distinct
patterns and provide insights into the dataset’s structure. For the
anomaly-crest function, the four identified sections clearly differ
in their functional characteristics (see Figure 2). In the case of
the wave-climb function, the algorithm successfully separates the
two sinusoidal sections with different frequencies and amplitudes,
as well as a final u-shaped section, which seems reasonable (see
Figure 6a). For the porous structure’s stress-strain dataset, it is
noteworthy that the first hook is identified as a distinct pattern.
Subsequently, all sections with concave curvature are captured
by the green model, while all sections with convex curvature are
captured by the orange model. This partitioning was surprising,
but it appears that the models find it easier to learn either concave
or convex curvatures exclusively (see Figure 6b). The models
themselves detecting which functional patterns can be learned well
coherently was exactly what we were aiming for.

One potential concern is that a single model might, due to
a lucky initialization, dominate the competition and suppress the
emergence of specialized models. On the one hand, our adding
mechanism tackles this by relying on relative performance: new
networks are iteratively trained on the samples with the least
accurate predictions. Because this threshold is relative to the
best models performance rather than absolute, a newly initialized
model, trained specifically on challenging samples, can always
outperform the current model and enter the competition. That said,
we do not claim that every dataset can be effectively partitioned
using our approach. Some datasets exhibit a single coherent pattern
or contain overlapping patterns that resist separation. If a single
model consistently outperforms others, it may simply reflect that
the dataset is best modeled holistically. In such cases, we view
it as a strength of our method that it naturally converges to
a single domain, signaling to the user that partitioning is not
beneficial and that a unified model may be more appropriate. This
behavior aligns with our results: while the modular model was not
superior across all datasets, it outperformed the single model on
six out of the 25 datasets tested. For the porous structure’s stress-
strain dataset and the energy efficiency dataset, the modular model
achieved a loss reduction of over 50% (see Figure 7). These findings
support our hypothesis that for datasets with separable patterns,

specialized expert models can offer significant advantages over a
single unified model.

Even in cases where the modular model achieves lower average
loss than the single model, the histograms show that individual
trials can still favor the single model. This variability arises
in part from randomness in the partitioning process: although
the algorithm tends to converge to similar partitions, some
runs produce splits that are more effective than others. More
importantly, both approaches are influenced by stochastic factors
during training, such as initialization and sample shuffling, which
naturally lead to performance variance. Additionally, since we are
dealing with standard feedforward neural networks and standard
optimization algorithms, we also encounter standard challenges,
such as models getting stuck in local minima, which can affect
individual outcomes.

In Appendix Section 1, we describe a detailed analysis of the
factors contributing to the performance of the modular model.
Our findings reveal a correlation between the number of patterns
identified by the partitioning algorithm and the modular model’s
performance: the more distinct patterns in the dataset, the better
the modular model performs relative to the single model. This
aligns with our expectation that not all datasets are suitable for our
approach. The partitioning algorithm should primarily be applied
to datasets that are expected to exhibit predominant patterns
with minimal overlap. The clearer the patterns, the more effective
the modular model is expected to be. Additionally, we examined
the impact of our pattern-adaptive hyperparameter search, which
optimizes the hyperparameter settings for each pattern. We
discovered that tailoring the learning rates to each partition
enhances the modular model’s performance. However, our results
indicate that adjusting the numbers of layers and neurons per
layer for each pattern does not provide any significant advantage.
Finally, we aimed to verify that the partitioning algorithm
identifies substantial patterns rather than merely separating small
and challenging snippets. Our results confirm that the more
homogeneous the partition proportions, the more successful the
modular model tends to be.

While this study exclusively uses feedforward neural networks,
our framework is not limited to this model type. Since competition
is moderated solely by prediction accuracy, the approach is flexible
enough to incorporate a wide range of models, from simple
linear regressors to very complex architectures such as large
language models (LLMs). This generality opens up opportunities
for future experiments with diverse model types, depending on
dataset characteristics.
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FIGURE 9

Bar plot showing the computation time for the training of both the
single-model and modular-model approaches. For the modular
model, the total time includes the execution of the partitioning
algorithm. For both approaches, the time required to perform a
100-trial grid search for hyperparameter optimization is included.

There are numerous potential applications of our partitioning,
many of which we may not have yet considered. We found
it important to illustrate a path that leads to measurable
improvements by leveraging our partitioning results. One
application we plan to explore in the future is using the
partitioning algorithm for active learning. In the context of
expensive data points, the following data collection loop could
be advantageous: first, collect a batch of data points; then, apply
the partitioning algorithm; and finally, train each partition with
a separate model, akin to the modular model approach. Instead
of immediately combining their predictions, we could assess each
expert’s performance and adjust the collection of new data points
accordingly. Partitions that are more challenging to learn should
receive more data points, while easier partitions should receive
fewer. This approach could lead to a more efficient use of the
data point budget. The process can be repeated iteratively. For
instance, with a budget of 500 data points, we could run this
process 10 times, each time distributing 50 data points according
to the difficulty of the experts in learning their partitions in the
last iteration.

5 Conclusions

In this paper, we introduced a novel partitioning algorithm.
To the best of our knowledge, this algorithm is unique in its
use of competition between models to generate a general-purpose
partitioning scheme, without constraints on the dataset’s origin
or order. The partitioning is achieved by having multiple models
iteratively submit their predictions for all points in the dataset
and being rewarded for the best predictions with training on the
corresponding data points. This process induces specialization in
the models, which is then translated into a partitioning.

We demonstrated that our algorithm is both widely applicable
and useful. Its wide applicability was shown by valuable
results across datasets of varying dimensionalities, sparsities, and
contexts—from student education to engineering stress-strain tests.
The utility of our algorithm was illustrated in two primary

ways: first, the partitioning inherently provides insights into
the dataset’s structure. For instance, three distinct patterns were
detected in the porous structure’s stress-strain dataset: an initial
hook, convex, and concave parts. Second, certain datasets can
be learned more accurately with a modular model based on our
partitioning algorithm than with a single model. If a model’s
accuracy in learning a dataset is unsatisfactory and the dataset is
likely structured along predominant patterns with little overlap,
we recommend applying our pipeline of the partitioning algorithm
and modular model. Particularly in the context of expensive data
points, improving the model on this path without adding more data
points can be financially beneficial. In the future, we will explore a
third application: adapting data collection strategies based on our
partitioning algorithm.
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