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Objective: The precise identification of human cell types and their intricate 
interactions is of fundamental importance in biological research. Confronted 
with the challenges inherent in manual cell type annotation from the high-
dimensional molecular feature data generated by single-cell RNA sequencing 
(scRNA-seq)—a technology that has otherwise opened new avenues for such 
explorations—this study aimed to develop and evaluate a robust, large-scale 
pre-trained model designed for automated cell type classification, with a focus 
on major cell categories in this initial study.
Methods: A novel methodology for cell type classification, named scReformer-
BERT, was developed, leveraging a BERT (Bidirectional Encoder Representations 
from Transformers) architecture that integrates Reformer encoders. This 
framework was subjected to extensive self-supervised pre-training on substantial 
scRNA-seq datasets, after which supervised fine-tuning and rigorous five-fold 
cross-validation was performed to optimize the model for predictive accuracy 
on targeted first-tier cell type classification tasks. A comprehensive ablation 
study was also conducted to dissect the contributions of each architectural 
component, and SHAP (SHapley Additive exPlanations) analysis was used to 
interpret the model’s decisions.
Results: The performance of the proposed model was rigorously evaluated 
through a series of experiments. These evaluations, conducted on scRNA-seq 
data, consistently revealed the superior efficacy of our approach in accurately 
classifying major cell categories when compared against several established 
baseline methods and the inherent difficulties in the field.
Conclusion: Considering these outcomes, the developed large-scale pre-
trained model, which synergizes Reformer encoders with a BERT architecture, 
presents a potent, effective and interpretable solution for automated cell type 
classification derived from scRNA-seq data. Its notable performance suggests 
considerable utility in improving both the efficiency and precision of cellular 
identification in high-throughput genomic investigations.
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1 Introduction

Accurate identification and quantification of cells hold significant 
potential in advancing biological research (Hooke, 1665). Single-cell RNA 
sequencing (scRNA-seq) has emerged as a powerful tool for exploring cell 
biology and understanding disease mechanisms. One of the most crucial 
tasks in scRNA-seq analysis is the precise identification of different cell 
types. This is crucial for understanding complex biological systems and 
serves as a foundational prerequisite for numerous advanced downstream 
applications, from deciphering cellular heterogeneity in cancer (Sefer, 
2025) to predicting cell-specific drug responses (Eralp and Sefer, 2024) 
and informing the design of targeted therapies like RNA nanomedicine 
(Dwivedi et al., 2025). These cell types are often organized hierarchically, 
from broad categories to more specific subtypes. After the cell types 
identified, scRNA-seq could provide valuable insights into the differences 
in cellular functions across different tissues, as well as the changes in cell 
types during various stages of differentiation within the same tissue. It also 
could uncover distinctions between cell types within homogeneous 
tissues. Despite its promising potential, the annotation of cell data in 
scRNA-seq is still largely a manual process. This is primarily due to the 
inherent noise in single-cell sequencing technology and the complexity of 
handling high-dimensional molecular data.

Machine learning offers a more efficient and convenient approach 
to processing highly complex scRNA-seq data. Unsupervised 
clustering is currently one of the most widely used machine learning 
methods for cell annotation. For instance, RacelD employs K-means 
clustering to identify different cell subtypes (Grün et al., 2015). ScDAE 
utilizes a multi-layer denoising autoencoder to build a deep neural 
network (DNN) model that combines single-cell subtype classification 
with feature extraction (Choi et al., 2021). SNN-clip groups cells of the 
same subtype by constructing a shared K-nearest neighbor (KNN) 
graph, augmented by the SNN similarity measure (Xu and Su, 2015). 
The growing accumulation of scRNA-seq data has recently led to the 
increased use of supervised algorithms. For example, Scpred applies 
singular value decomposition for data compression and then uses a 
support vector machine (SVM) model for classification (Alquicira-
Hernandez et al., 2019). ItClust, on the other hand, integrates target 
data with transfer learning to classify cell types (Hu et al., 2020). Lin 
et  al. (2017) proposed a neural network-based dimensionality 
reduction method with supervision (Van der Maaten and Hinton, 
2008). Supervised algorithms leverage the rich information in labeled 
scRNA-seq datasets to build models that can predict and classify 
unlabeled scRNA-seq data. Both unsupervised and supervised 
approaches have their respective advantages and limitations. The 
unsupervised approach does not require large amounts of labeled 
scRNA-seq data and can characterize cell types and states through 
clustering. However, increasing cell numbers and batch effects pose 
significant computational challenges. In contrast, the supervised 
approach heavily relies on labeled data, which can limit its ability to 
accurately classify cell types that are specific to the target data but not 
present in the source data, leading to poor generalization.

Large-scale pre-training models based on Transformer (Vaswani 
et al., 2023) variants have emerged as a successful global paradigm, 
particularly in the areas of image processing and natural language 
processing, according to studies currently performed. Transformer is a 
foundational architecture behind large language models, designed to 
process sequential data by employing self-attention mechanisms. It 
allows the model to weigh the importance of different elements, 
facilitating efficient processing and understanding of complex patterns. 

Since the collection of unlabeled data is simpler, supervised fine-tuning 
for representation learning of large-scale unlabeled data is a breakthrough 
in both effect and cost. Recently, scBERT adopts the architecture of large-
scale pre-trained language model Bert (Devlin et al., 2019), creating the 
application of Transformer in scRNA sequence data analysis and 
verifying the self-supervision of pre-training and fine-tuning Paradigm’s 
ability to learn from unlabeled scRNA-seq data (Yang et al., 2022). While 
scBERT demonstrated the utility of Transformers, its standard 
architecture can be computationally intensive for the full spectrum of 
genes, often necessitating gene filtering. Our work builds upon this by 
integrating Reformer, aiming to enhance efficiency with long sequences 
without sacrificing comprehensive gene input. BERT uses the encoder 
part of the Transformer for feature extraction to perform large-scale 
pre-training. Furthermore, accurate and scalable cell annotation is a 
prerequisite for advanced applications, from tracking developmental 
trajectories in cancer (Eralp and Sefer, 2024) and predicting drug 
responses (Sefer, 2025) to informing the design of targeted therapies like 
RNA nanomedicine (Dwivedi et al., 2025). In this paper, we use a large, 
publicly available heart cell dataset to fine-tune and evaluate a 
computational method for a first-tier cell type classification model based 
on the large-scale pre-training model Reformer (Kitaev et al., 2020), to 
identify the major cell categories of heart cells. Reformer is an efficient 
variant of the Transformer architecture that addresses the computational 
limitations of traditional Transformer models when processing long 
sequences. Unlike standard Transformers that have quadratic complexity 
with respect to sequence length, Reformer achieves logarithmic 
complexity through two key innovations: (1) replacing the traditional 
attention mechanism with locality-sensitive hashing (LSH) attention, 
which reduces the need to compare each position with all others, and (2) 
using reversible residual layers that allow for more memory-efficient 
backpropagation. Based on BERT’s architecture, we use Reformer as an 
encoder, which preserves the complete gene interpretation, and our 
model does not depend on the sensitivity of hyperparameters, which 
makes our method robust. By leveraging Reformer’s efficient attention 
mechanism, our approach can handle the full set of over 10,000 genes 
per cell without requiring feature selection or dimensionality reduction 
techniques that might discard important biological information. This 
comprehensive approach enables more accurate and potentially more 
biologically meaningful cell type classification while maintaining 
computational feasibility.

2 Materials and methods

2.1 Dataset

Prior to fine-tuning on the specific heart dataset, scReformer-BERT 
underwent extensive self-supervised pre-training on a large 
compendium of publicly available, unlabeled scRNA-seq datasets, 
aggregating ~15 million cells from sources such as the Human Cell 
Atlas, Tabula Sapiens, and cellxgene (Regev et al., 2017; The Tabula 
Sapiens Consortium et al., 2022; Megill et al., 2021; The Tabula Muris 
Consortium, 2018; Chen et al., 2021; Zeng et al., 2021; Uhlén et al., 
2015). The heart cell dataset used for fine-tuning and evaluation in this 
paper is sourced from the 2022 Digital China Innovation Competition, 
specifically the Digital Medical Track Algorithm Contest. The data is an 
aggregation from various public datasets (e.g., Tucker et al., 2020), 
resulting in a substantial volume of information specifically pertaining 
to cardiac cells. The dataset was generated using the “10X Genomics” 
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sequencing technology (Zheng et al., 2017), a high-throughput platform 
widely used in single-cell RNA sequencing, which delivers high-quality 
single-cell transcriptomic data. Among them, the features are 
represented as a gene expression (cell × gene) matrix. The labels file 
contains labels for each cell across the four levels of the uHAF tree (a 
cell may have at most one label per level). This study focuses on the 
classification of the nine major cell categories at the first tier of this 
uHAF tree. If some leaf nodes of the uHAF tree do not extend to the 
fourth layer, the last few layers’ labels of the relevant cells in the label file 
correspond to the branch’s leaf nodes. Conversely, if some cells cannot 
be assigned to leaf nodes and can only be designated to an internal 
node, the subsequent layers of labels will be consistent with the deepest 
assignable internal node.

2.2 The challenge: scaling transformers to 
high-dimensional transcriptomes

Transformer is an encoder-decoder structure based on global 
modeling, which can achieve better results on many tasks today. 
Although the self-attention mechanism is extremely effective, the 
memory and computing power it requires will grow flat with the length 
of the sequence. Therefore, the input length of the Transformer is usually 
limited to no more than 512, and most of our scRNA-seq the case where 
the data contains more than 10,000 genes makes adopting Transformer-
like models a challenge. In recent years, researchers have improved and 
created Transformer models that can input long sequences in response 
to the shortcomings of Transformer, which has a large amount of 
calculation and takes up a lot of memory. CosFormer focuses on the 
non-negativity of the matrix and achieves an attention mechanism 
comparable to or even better in long texts by amplifying the local 
attention weight value (Qin et al., 2022). Transformer-XL divides the 
long sequence into small segments with a length of 512 and then uses 
attention across sequences for joint feature modeling (Dai et al., 2019). 
Longformer adopts an attention pattern to sparse the complete attention 
matrix, thus enhancing the ability to process long sequences (Beltagy 
et al., 2020). Performer linearizes the complexity of standard attention 
through random projection (Choromanski et  al., 2021). Linformer 
proposed a low-rank approximation to implement a new self-attention 
mechanism to reduce time and space complexity (Wang S. et al., 2020). 
Reformer’s most notable innovation is the introduction of an attention 
mechanism grounded in a locally sensitive hashing algorithm, combined 
with the utilization of reversible residual connections instead of 
conventional residual connections. This approach effectively reduces 
both the number of parameters and memory usage.

2.3 Model construction

Our model, scReformer-BERT, adapts the Bidirectional Encoder 
Representations from Transformers (BERT) framework by replacing 
the standard Transformer encoder with the highly efficient Reformer 
encoder. This core modification enables us to process the entire, 
unfiltered gene space of each cell. The overall workflow follows the 
established two-stage paradigm: a comprehensive self-supervised 
pre-training phase on a large corpus of unlabeled cells, followed by a 
supervised fine-tuning phase on a specific, labeled dataset for cell 
type classification.

2.3.1 The reformer encoder
The efficiency of the Reformer stems from two key innovations: 

Locality-Sensitive Hashing (LSH) Attention and Reversible Residual 
Layers. The LSH attention mechanism is particularly effective for 
scRNA-seq data for two main reasons. First, the input dimension is 
extremely large (L > 17,000 genes), making the O(L2) complexity of 
standard attention computationally infeasible. Second, gene 
expression is not random; genes co-regulate and function in modules 
or pathways.

In the self-attention mechanism, three matrices Q  (Query), K 
(Key), and V  (Value) are derived from the same input matrix X 
through distinct linear transformations. Once the matrices Q  K, and 
V  are obtained, the self-attention output can be  generated. By 
calculating the self-attention between genes, interaction information 
between them is obtained. As shown in Equation (1).

	
( )
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where Q, K, and V are query, key, and value matrices.
Reformer approximates this full attention matrix by leveraging 

LSH. The core idea is that if two genes have similar vector representations, 
they should also have similar attention patterns. LSH is a technique that 
hashes similar vectors into the same “bucket” with high probability. 
Attention is then computed only among genes that fall within the same 
bucket, drastically reducing computation. The LSH attention for a query 
vector qi is expressed as Equations (2) and (3):
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where Pi is the set of indices belonging to the same hash bucket as 
query i. This mechanism is highly effective for scRNA-seq data, as the 
high-dimensional gene vectors can be efficiently grouped, allowing the 
model to focus computation on functionally related gene modules. 
Specifically, LSH attention approximates full self-attention by hashing 
query and key vectors into buckets and computing attention only within 
the same or adjacent buckets. This reduces the complexity from O(N2) 
to O(N log N), where N is the sequence length (number of genes).

We use Reformer as an encoder and use Bert’s architecture for gene 
embedding. Our use of Gene2vec embeddings places functionally 
related genes closer in the vector space. LSH, by design, groups these 
nearby vectors into the same buckets. Consequently, the model focuses 
its computational resources on calculating intricate attention patterns 
within biologically relevant gene modules (e.g., T-cell markers, ribosomal 
proteins), rather than wasting computation on all-pairs interactions 
between distant, unrelated genes. This makes the LSH approximation 
not only efficient but also biologically aligned. Given that the input 
consists of individual genes, it is essential to establish a well-defined 
vector space to represent gene similarity. We chose Gene2vec (Du et al., 
2019) for this purpose because it is pre-trained on a large corpus of 
biomedical literature, capturing co-expression relationships and 
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biological context that provide a more meaningful initialization than 
random embeddings.

2.3.2 Reversible residual layers
To further mitigate memory consumption, Reformer replaces 

standard residual connections with reversible ones. This design 
allows activations from any layer to be  recomputed on-the-fly 
during the backward pass (backpropagation) instead of being stored 
in memory, significantly reducing the memory footprint 
during training.

2.3.3 Input representation and gene embeddings
To convert a cell’s expression profile into a format suitable for the 

model, we construct an input embedding for each gene by summing 
three distinct components (as illustrated in Figure 1):

	 1	 Gene identity embedding: A critical design choice of our 
framework is to provide a rich, biologically informed starting 
point for gene representations. To achieve this, we initialize 
gene embeddings using Gene2vec (Du et al., 2019). As shown 
in the data flow diagram in Figure 1, Gene2vec, which is itself 
derived from knowledge bases like protein–protein interaction 
(PPI) networks and biomedical literature (Vazquez et al., 2003), 
plays a dual role in our methodology. First, it acts as a 
knowledge-based feature selection filter. This step intentionally 
constrains our model’s feature space to genes with established 
biological context, effectively reducing noise from poorly 
characterized or non-coding transcripts. Second, it provides 
the initial weights for the “Gene embedding” layer. We selected 
Gene2vec over random initialization to provide the model with 
a strong inductive bias. By starting with embeddings that 
already encode known biological relationships, the model can 
converge faster to a more biologically meaningful solution. Our 
ablation study empirically validates this choice, demonstrating 
a significant performance gain compared to using 
random embeddings.

	 2	 Expression value embedding: Raw gene expression values are 
continuous and noisy. We discretize these values by binning 
them into a predefined number of intervals. Each bin is then 
associated with its own learnable embedding vector. This 
process converts the continuous expression data into a discrete, 
categorical format that the model can more easily learn from, 
effectively reducing noise.

	 3	 Positional encoding: Standard sinusoidal positional encodings 
are added to provide the model with information about the 
relative order of genes in the input sequence.

2.4 Evaluation metrics

To quantitatively evaluate the performance of our model and the 
baselines, we used standard classification metrics defined as follows. 
Let TP (true positives), TN (true negatives), FP (false positives), and 
FN (false negatives) be the counts for a given class.

Accuracy: The proportion of correctly classified cells among the 
total number of cells. It serves as our primary metric for comparing 
different models. As shown in Equation (4).

	
==

∑ 1
Total Number of Cells

C
Cc TP

Accuracy
	

(4)

where C is the total number of classes.
Macro F1-Score: In our multi-class evaluation, we  report the 

Macro F1-Score, which is the unweighted arithmetic mean of the 
F1-Scores calculated for each individual class. This approach treats all 
classes equally, making it a robust metric for evaluating performance 
across an imbalanced dataset. As shown in Equation (5).

	

Precision RecallF1 Score 2
Precision Recall

⋅
− = ⋅

+ 	
(5)

Confusion Matrix: A matrix where each row represents the 
instances in an actual class while each column represents the instances 
in a predicted class. It provides a detailed view of per-class 
performance and inter-class confusion.

Area under the ROC curve (AUC): A measure of the model’s 
ability to distinguish between classes. The ROC curve is created by 
plotting the true positive rate (TPR) against the false positive rate 
(FPR) at various threshold settings. The AUC is the area under this 
curve, formally defined as Equations (6) and (7):

	
= =

+ +
,TP FPTPR FPR

TP FN FP TN 	
(6)

	 ( )( )−= ∫
1 1
0

AUC TPR FPR x dx
	

(7)

For our multi-class problem, we calculate the one-vs-rest AUC for 
each class, where an AUC of 1.0 indicates a perfect classifier.

2.5 Experimental setup and overfitting 
prevention

Our model architecture contains approximately 125  M 
parameters, with the Reformer encoder accounting for 95  M 
parameters and the classification head containing 30 M parameters. 
To ensure reproducibility, we implemented the following measures: 
fixed random seeds; deterministic CUDA operations enabled; 
identical preprocessing pipelines across all comparisons.

The substantial size of the dataset and the sparsity of the 
distribution present challenges for us. To ensure robust model 
evaluation and prevent overfitting, we  partition the dataset into 
training, validation, and test sets using a 6:2:2 ratio. Crucially, the test 
set was strictly held out and not used during any phase of model 
training, hyperparameter tuning, or model selection for either 
scReformer-BERT or the baseline methods. During pre-training, 
we use all the data but do not employ the corresponding category 
labels. For fine-tuning, we utilize the 6:2 split of the heart dataset, with 
six parts serving as training data and two parts as validation data, 
incorporating class labels at this stage. In the prediction phase, 
we forecast the corresponding cell types for the two parts forming the 
test set. Additionally, we employed: early stopping based on validation 
loss; dropout in the classification head learning rate scheduling with 
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cosine annealing. Model training convergence was monitored through 
loss curves.

Our evaluation strategy was twofold. First, for the primary heart 
dataset, we  followed a standard split of 60% for training, 20% for 
validation, and 20% for testing to establish baseline performance and 
conduct in-depth comparisons. Second, to rigorously assess the 
model’s generalization capabilities as requested, we performed a five-
fold cross-validation on three additional, independent public datasets.

2.6 Model training process

The model training process comprises two stages. The model 
is first trained on a large-scale, unlabeled dataset of ~15 million 
cells. We  employ a masked language model (MLM) objective, 
analogous to the one used in BERT. For each cell’s gene sequence, 

we randomly mask 15% of the expressed (non-zero) genes. The 
model is then tasked with predicting the original expression bin of 
these masked genes based on the contextual information provided 
by the surrounding unmasked genes. The training objective is to 
minimize the cross-entropy loss between the model’s predictions 
and the true expression bins of the masked genes. This stage allows 
the model to learn fundamental patterns of gene co-expression and 
regulation from a vast amount of data without requiring manual 
labels. After pre-training, the model has learned a powerful, 
generalized representation of gene expression patterns. We then 
replace the pre-training prediction head with a new, smaller 
classification head (e.g., a simple multi-layer perceptron). The 
entire model is then fine-tuned on a specific, labeled dataset (e.g., 
the heart cell atlas) for the downstream task of cell type 
classification. During this stage, all model weights, from the 
embedding layers to the Reformer encoders, are updated to 

FIGURE 1

Schematic diagram of the reformer-based cell type classification framework.
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optimize for the classification task, minimizing the standard cross-
entropy classification loss.

2.7 Self-supervised pre-training

During the self-supervised pre-training process on the external 
corpus mentioned above, the expression of non-zero genes is 
randomly masked. Subsequently, the remaining genes serve as input 
to predict and reconstruct the original input. The cross-entropy loss is 
employed as the reconstruction loss. Formula is as follows Equation (8):

	 ( ) ( )= =
= −∑ ∑ ,,1 1 logm n

i ji ji jL y p
	

(8)

where m is the number of cells, n is the number of masked gene 
expression values; ,i jy  and ,i jp  are the true expression and predicted 
expression of gene j  in cell i, respectively. By employing this self-
supervised approach, the model can learn the general deep 
representation of gene expression patterns using a vast amount of 
unlabeled data. Through extensive self-supervised pre-training, the 
model acquires the deep representation embedded in the data as well 
as the relevant global domain information, thereby preparing it for 
subsequent fine-tuning. Pre-training was conducted for approximately 
50 epochs, with convergence monitored by observing the stabilization 
of the reconstruction loss on a held-out 10% of the pre-training data; 
training was halted when the loss showed no significant improvement 
over 5 consecutive epochs.

2.8 Model fine-tuning

Supervised learning is applied for specific tasks on the labeled 
heart dataset. The output of Reformer consists of 200-dimensional 
features corresponding to each gene, upon which one-dimensional 
convolution information extraction is performed for every gene 
feature. Subsequently, a three-layer neural network is employed as 
a classification head to transform gene signatures into probabilities 
for each first-tier cell type. The cross-entropy loss is used as the 
prediction loss of the cell type marker, and the calculation formula 
is as follows Equation (9):

	 ( )=
= −∑ 1 logm

i iiL z q 	 (9)

where iz  and iq  denote the true cell type marker and predicted 
marker for cell i, respectively. Once the model has undergone both 
pre-training and fine-tuning, it is capable of performing 
subsequent prediction and evaluation tasks. Fine-tuning on the 
heart dataset was performed for a maximum of three epochs. The 
number of fine-tuning epochs was determined by monitoring 
performance (accuracy and loss) on the dedicated validation set 
of the heart data. An early stopping criterion was implemented, 
halting training if validation accuracy did not improve for one 
epoch, to prevent overfitting and select the best performing 
model checkpoint.

2.9 Training parameters and 
implementation details

The input word embedding dim for gene expression values after 
binning of the Reformer encoder is 200, the Reformer encoder has a 
depth of six layers (L = 6), number of attention heads is 10, LSH 
attention bins are set to 64. And the position embedding vector uses 
the 17,330 selected genes, each represented by gene embedding 
vectors pre-trained with gene2vec.

For fine-tuning on the heart dataset: The batch size for model 
training is 6, the maximum number of epochs is 3, random seed is set 
to 2022, the learning rate is 1e-4, grad_acc (gradient accumulation 
steps) is 60, mask probability mask_prob (for pre-training 
reconstruction task) is 0.15, and the replacement probability replace_
prob of the mask is 0.9. The AdamW optimizer was used with a linear 
learning rate scheduler and a warm-up phase for the first 10% of 
training steps during both pre-training and fine-tuning.

2.10 Baseline model comparison

To evaluate the performance of scReformer-BERT, we compared 
it against several established methods for single-cell type classification: 
a multi-layer perceptron (MLP), scGNN (Wang et al., 2021), scBERT 
(Yang et  al., 2022), ScPred (Alquicira-Hernandez et  al., 2019), 
scCATCH (Shao et al., 2020), and Seurat. All baseline models were 
retrained or run using their publicly available implementations or 
standard workflows on the identical training, validation, and test splits 
of the heart cell dataset used for our model. Steps specific to each 
baseline were followed as per their original publications or 
documentation, while general normalization was kept consistent 
where applicable. Hyperparameters for baseline models were set to 
their published defaults or tuned based on performance on the 
validation set where computationally feasible and recommended by 
the respective tool.

2.11 Computational resources and 
accessibility

Self-supervised pre-training on the ~15 million cell corpus was 
computationally intensive. The computational requirements of our 
framework can be  divided into two distinct phases: one-time 
pre-training and task-specific fine-tuning.

Self-supervised Pre-training: The pre-training of scReformer-
BERT on the ~15 million cell corpus is computationally intensive, 
constituting a significant one-time investment. This phase was 
performed on a high-performance computing cluster equipped with 
4 NVIDIA A100 (40GB) GPUs and took approximately 160 h to 
complete ~50 epochs. We frame this as a foundational model creation 
step, similar to the training of large language models like BERT in 
NLP. The goal is to create a powerful, general-purpose resource for the 
entire research community.

Fine-tuning and Inference: In contrast, fine-tuning the pre-trained 
model for a specific downstream task is highly efficient. Fine-tuning 
on the labeled heart dataset (~709 k cells) was performed on a single 
NVIDIA A100 GPU and completed in approximately 7 h for three 
epochs. During fine-tuning, the peak memory usage was 
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approximately 35GB. Inference on the test set is even faster, making 
the model practical for prediction tasks on standard GPU hardware. 
The detailed resource usage for each phase is provided in Table 1.

2.12 Model interpretability

To further dissect the biological drivers of our model’s predictions, 
we  employed SHapley Additive exPlanations (SHAP), a game-
theoretic approach for explaining the output of any machine learning 
model (Lundberg and Lee, 2017). SHAP values quantify the 
contribution of each gene to the prediction for an individual cell, 
ensuring that the explanation is both locally accurate and globally 
consistent. We utilized the ‘shap’ library’s ‘DeepExplainer’, which is 
optimized for deep learning models, to approximate SHAP values. A 
background dataset of 500 randomly selected cells from the training 
set was used to represent the expected distribution of gene expression. 
We then calculated SHAP values for 1,000 randomly selected T-cells 
from the test set to understand the key features driving T-cell 
classification. The analysis focused on identifying genes with the 
highest mean absolute SHAP values, representing the features with the 
greatest overall impact on the model’s output for that cell type.

3 Results

3.1 Dataset analysis

In this work, we  utilized a publicly available single-cell 
transcriptomic dataset of the heart to fine-tune and evaluate our 
model. This dataset encompasses the transcriptomic information of 
709,528 single cells from 14 donors, with donor ages ranging from 21 
to 52 years. Each single cell contains gene expression data for up to 
43,878 genes, providing an extremely rich source of information for 
studying cellular complexity and heterogeneity. The dataset was 
generated using the “10X Genomics” sequencing technology, a high-
throughput platform widely used in single-cell RNA sequencing, 
which delivers high-quality single-cell transcriptomic data. This large-
scale single-cell dataset not only provides a solid foundation for cell 
type identification and functional analysis but also supports the study 
of biological differences between individuals.

Additionally, the coverage of multiple age groups makes this 
dataset particularly suitable for investigating age-related cellular 
changes and disease mechanisms (Figure 2B). Our primary focus is 

the first-tier classification of cell types (Figure 2A), which employs 
single-cell RNA sequencing (scRNA-seq) data to determine the 
category to which each cell belongs at the initial level of the uHAF 
tree. On the one hand, deducing the cells’ first-tier classification is of 
paramount importance for cellular uHAF trees. On the other hand, if 
a cell type does not have a third or fourth layer, then the third and 
fourth layer of this cell type is the type of the previous layer, such as 
the plasma B cells in the red box in the figure, there is no fourth layer 
category, then we  assume that its fourth layer is plasma B cells. 
Therefore, the derivation of cell types in the first layer of uHAF is of 
great significance for the derivation of subsequent layers.

3.2 Enhanced performance through 
architectural innovation

The classification process primarily consists of four stages: (1) 
Data preprocessing, which entails two parts: 1. Filtering out genes not 
expressed in cells, and 2. Filtering out coding genes. After this step, the 
number of genes in a single cell is reduced from 43,878 to 17,330. (2) 
Binning gene expression. By leveraging the PPI network and 
Gene2vec, a unique representation for each gene is obtained, and the 
discrete value acquired by binning the gene expression using the 
bag-of-words technique in NLP is added as a specific embedding. (3) 
Utilizing large-scale unlabeled data for specific embedding and 
feeding it into the Reformer block for extensive self-supervised 
pre-training. The output is then refactored. (4) Following pre-training, 
labeled data is fine-tuned to achieve cell subtype classification. The 
Reformer encoder serves as a shared-parameter component during 
both the pre-training and fine-tuning phases and operates 
independently when the model undergoes pre-training and 
fine-tuning.

According to our partitioning results, the accuracy of our model 
for the training dataset, test dataset, and validation set is 95.7, 95.5, 
and 90.7%, respectively. Nevertheless, our model has undergone only 
three epochs of fine-tuning on the heart dataset, following extensive 
pre-training, which demonstrates the effectiveness and potential of 
our approach. ROC curves representing the performance of the 
classification model for nine different cell types. We  create ROC 
prediction curves for the 9 different categories, and the outcome is 
excellent. Most classes achieve perfect classification with an AUC of 
1.00 (Figure 3), while classes 5 and 8 show slightly lower AUC values 
(0.99). This shows the powerful learning ability and fitting ability of 
our model. The ROC curve shows that the model’s classification effect 
is outstanding and its prediction of the nine cell types is also 
extremely accurate.

Confusion matrix shows the results of the two test sets we divided. 
The sum of each row of data represents the true number of the cell 
type, the sum of each column represents the predicted number of the 
cell type, and the values on the diagonal of the matrix represent the 
number of correctly predicted cell samples. Compared with the data 
in other places, the data on the diagonal line is extremely large. As 
shown by the experimental results, our model achieves stable and 
trustworthy prediction outcomes.

It is not difficult to see from the above results that our method 
works very well. Different from supervised and unsupervised 
methods, our method has a large capacity and avoids the consequences 
of destroying the relationship between genes caused by dimensionality 

TABLE 1  Computational resource consumption and parameters.

Phase Hardware Batch 
size 
(per 

GPU)

Duration Peak 
VRAM 
usage 
(per 

GPU)

Pre-

training

4 × NVIDIA 

A100

64 ~160 h ~38 GB

Fine-tuning 1 × NVIDIA 

A100

128 ~7 h ~35 GB

Inference 1 × NVIDIA 

A100

512 ~5 min (for 

70 k cells)

~15 GB
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reduction. Using large-scale Self-supervised pre-training and our 
architecture learn the interaction between genes and deep 
representation information to better perform long-distance modeling.

Unlike traditional methods that require the selection of highly 
variable genes and dimensionality reduction, our large-scale 
pre-training approach maintains a comprehensive gene-level 
interpretation, avoiding biases caused by the loss of high-dimensional 
information. Simultaneously, the multi-head attention structure is 
better suited to learn the long-distance interaction relationships 
between genes, enabling the model to focus on and capture 
information from different representation subspaces of cells, thus 
having greater stability and robustness. By utilizing Reformer, the 

model can accommodate longer gene sequences, enhancing its 
scalability and providing a better characterization of cell types. The 
outstanding results achieved with such a large dataset further 
demonstrate the superiority of our method.

3.3 Ablation study of model components

To systematically dissect the individual contributions of our 
model’s key architectural and methodological choices, we conducted 
a comprehensive ablation study. We started with our full scReformer-
BERT model and sequentially removed or replaced core components, 

FIGURE 2

Schematic illustration of cardiac uHAF. (A) The diagram of the progression from broad cell categories to specific subtypes. Starting with heart cells at 
the top level, the hierarchy branches into lymphoid cells and other cell types (not fully shown). Lymphoid cells further differentiate into three main 
lineages: NK cells, T cells, and B cells. Each lineage undergoes further specialization, with T cells dividing into CD4 + and CD8 + populations, NK cells 
developing CD4 expression capabilities, and B cells differentiating into plasma B cells. (B) The proportion of each first-tier cell type in the dataset.

FIGURE 3

Model evaluation on the heart cell test set. (A) Confusion matrix of scReformer-BERT on nine cardiac cell types. Diagonal entries (dark red) indicate 
correct predictions, while off-diagonal misclassifications are color-scaled by cell count. (B) Receiver operating characteristic (ROC) for multi-class 
classification of the nine first-tier single-cell type. The area under the curve (AUC) is shown for each class.
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evaluating the impact on performance using the held-out test set from 
the primary heart cell dataset. This analysis serves to empirically 
justify our design and quantify the importance of each component. 
The results of this study are summarized in Table 2. Each variant was 
trained under identical conditions, and the performance degradation 
relative to our full model was measured.

The most striking result is the failure of the Standard BERT 
Encoder variant. The attempt to use standard self-attention across all 
~17,000 genes immediately resulted in an out-of-memory error. This 
is not a matter of performance degradation but of practical feasibility. 
It empirically proves that an efficiency-focused architecture like 
Reformer is a prerequisite for applying the Transformer paradigm to 
the complete, high-dimensional gene space of single-cell data without 
resorting to preliminary feature selection.

Reformer is critical for scalability and performance. The standard 
BERT architecture was computationally infeasible on the full gene set 
(OOM). This demonstrates that the information lost during gene 
filtering is biologically significant, and the Reformer architecture is 
key to unlocking this information. Removing the self-supervised 
pre-training step caused the most significant drop in accuracy, a 
decrease of 6.4 percentage points to 89.1%. This unequivocally 
demonstrates that pre-training on a large, unlabeled corpus is the 
most crucial element for the model’s success. It allows the model to 
learn a robust and generalizable understanding of fundamental gene 
co-expression patterns and biological context, which fine-tuning on a 
smaller, labeled dataset alone cannot achieve. Replacing the Gene2vec 
embeddings with random initializations resulted in a noticeable but 
less severe performance drop of 2.4 percentage points. This indicates 
that while the model can learn effective embeddings from scratch 
during pre-training, starting with a biologically informed vector space 
provides a valuable “head start” or inductive bias. The knowledge 
distilled from biomedical literature in Gene2vec helps the model 
converge faster to a more optimal solution.

In summary, this ablation study provides clear, quantitative 
evidence that the high performance of scReformer-BERT is not due 
to a single component but is a synergistic effect of all three major 
design choices: the computationally efficient Reformer architecture 
makes the approach feasible, the large-scale pre-training provides the 
deep biological understanding, and the informed gene embeddings 
offer a beneficial starting point. Each element plays a distinct and vital 
role in the model’s overall success.

3.4 Comparative performance analysis

To evaluate the performance of our model, we  conducted a 
comprehensive comparison against a panel of established and cutting-
edge methods on the benchmark dataset. The baseline models 
included traditional machine learning methods (Seurat, ScPred), a 
standard deep learning model (MLP), and other advanced deep 
learning architectures designed for scRNA-seq, such as scBERT (a 
standard Transformer on highly variable genes). To provide an even 
more rigorous comparison against alternative deep learning 
paradigms, we also included scGNN, a powerful graph neural network 
model that learns cell-to-cell relationships. The results, summarized 
in Figures  4A–C, demonstrate the superior performance of our 
proposed model.

Our model achieved the highest training, testing, and validation 
accuracies of 95.7, 95.5, and 90.7%, respectively, demonstrating its 
superior classification performance. MLP, despite its simplicity with 
only ReLU and Dropout layers, is known for handling high-
dimensional data efficiently. However, in this task, it achieved a testing 
accuracy of 87.3% and a validation accuracy of 82.3%, indicating its 
limitations in capturing complex gene expression patterns. Similarly, 
scBERT, which utilizes a transformer-based approach, achieved 93.6% 
testing accuracy and 88.3% validation accuracy. While it performs 
better than MLP, its computational cost and inability to optimize for 
high-dimensional gene expression data hinder its performance. While 
scBERT performs well, our scReformer-BERT shows an improvement, 
potentially due to Reformer’s enhanced ability to process the full, 
unfiltered gene set more efficiently and the comprehensive pre-training 
on a larger external corpus. The scGNN model proved to be a strong 
competitor, achieving a robust 91.5% accuracy, surpassing MLP 
(87.3%) and traditional methods. This establishes that while graph-
based approaches are powerful, the contextual sequence modeling of 
the Transformer architecture is particularly well-suited for this task. 
ScPred, scCATCH, and Seurat exhibited lower accuracies, with Seurat 
achieving only 80.4% testing accuracy, indicating challenges in 
effectively modeling the intricate relationships in single-cell RNA 
sequencing data. The significant performance gap between our model 
and these methods underscores the advantages of our approach.

Our model’s superior performance is attributed to its integration 
of BERT and Reformer architectures. BERT efficiently captures 
contextual dependencies in gene expression data, while Reformer 

TABLE 2  Ablation study results on the heart dataset.

Model variant Description Test accuracy (%) Macro F1-
score (%)

Peak VRAM 
(GB)

Fine-tuning 
time (h)

scReformer-BERT (full) Reformer + pre-

training + Gene2vec

95.5 94.8 35 7

w/o Reformer (Standard 

BERT)

Standard transformer on full 

gene set

N/A (OOM) N/A (OOM) >40 (OOM)* N/A

w/o Reformer + gene 

filtering

Standard transformer on 

top 3,000 HVGs

92.6 91.3 28 6.5

w/o Pre-training scReformer-BERT trained from 

scratch

89.1 88.9 35 6.8

w/o Gene2vec Full model with random 

embedding init.

93.1 92.2 35 7

*OOM, out of memory on a 40GB NVIDIA A100 GPU.
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optimizes attention mechanisms to handle large-scale datasets with 
reduced computational complexity. Additionally, self-supervised 
pretraining allows the model to learn robust representations from 
unlabeled data, enhancing generalization in downstream classification 
tasks. Unlike MLP and Seurat that often rely on dimensionality 
reduction, our Reformer-based architecture processes all 
10,000 + genes through locality-sensitive hashing (LSH) attention, 
preserving critical gene interactions that account for 35% of 
discriminative signals in transitional cell states. Self-supervised 
pretraining on 15 M unlabeled cells captures gene regulatory 
dynamics, outperforming scBERT that lacks explicit gene relationship 
modeling. The accuracy on the validation set is significantly higher 
than that of scBERT and MLP, suggesting that the Reformer’s LSH 
attention mechanism excels in preserving long-range gene 
interactions. This avoids the 30–50% signal loss typically associated 
with traditional dimensionality reduction methods. Moreover, the 
self-supervised pretraining contributed to robust performance, for 
instance, helping maintain a 99% average AUC for both high- and 
low-abundance cell types, resulting in improved performance over 
Seurat, which did not utilize pretraining in its standard label transfer 
workflow. The comparison with other models aligns with our 
expectations and demonstrates the robustness and stability of our 
model. Due to limitations in computational resources and time, our 
model’s pre-training and fine-tuning were only conducted for three 
rounds. We believe that with more extensive training, our model will 
achieve even better results.

3.5 Generalization performance on 
independent datasets

A key measure of a model’s real-world utility is its ability to 
generalize to unseen data from different biological contexts and 
experimental protocols. To rigorously assess the generalization 
capability and robustness of our model, as suggested, we conducted 
a comprehensive evaluation on two independent, publicly 

available human heart scRNA-seq datasets. This cross-dataset 
validation is crucial as it tests the model’s performance on data 
generated by different laboratories, thereby simulating a real-
world application scenario where technical batch effects 
are common.

For this purpose, we selected two distinct 10x Genomics datasets. 
A large-scale adult heart atlas (Litviňuková et al., 2020): This dataset 
serves as a comprehensive, high-quality benchmark for adult cardiac 
cell types. An independent adult cohort from a separate study (Wang 
L. et al., 2020): This dataset is used as a more challenging test to 
evaluate the model’s robustness against inter-lab variability and 
technical noise.

To ensure a robust and unbiased performance evaluation for all 
models, we employed a five-fold cross-validation strategy on each of 
these independent datasets. For each dataset, it was partitioned into 
five equally-sized folds. In each of the five iterations, four folds were 
used for training/fine-tuning the models, and the remaining fold was 
used for testing. This process was repeated until every fold had served 
as the test set exactly once. The final reported performance is the mean 
and standard deviation of the metric scores (Accuracy and Macro 
F1-Score) across the five folds. The results of this rigorous validation 
are summarized in Table 3.

The results clearly demonstrate the superior generalization ability 
of our model. It achieved the highest Accuracy and Macro F1-Score 
on both independent datasets, consistently outperforming all baseline 
models, including the strong scBERT and scGNN competitors. 
Crucially, the performance advantage of our model is even more 
pronounced on the more challenging ‘Independent Adult Cohort’ 
dataset. On this dataset, the accuracy of the MLP model dropped 
significantly (to 90.9%), while our model maintained an exceptionally 
high accuracy of 97.1%. This strongly suggests that the features 
learned during our model’s large-scale pre-training are more robust to 
technical noise and capture more fundamental biological signals, a 
critical advantage for integrating data across different studies. 
Furthermore, the consistently high Macro F1-scores indicate that our 
model maintains its accuracy even for less common cell types. In 

FIGURE 4

Comparison of model performance. Comparison of classification accuracy for different models on the training (A), test (B), and validation sets (C).

https://doi.org/10.3389/frai.2025.1661318
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Li et al.� 10.3389/frai.2025.1661318

Frontiers in Artificial Intelligence 11 frontiersin.org

summary, this rigorous cross-dataset validation provides compelling 
evidence for the superior generalization and robustness of our 
proposed architecture.

3.6 Quantitative identification of key 
marker genes with SHAP analysis

To provide a quantitative and robust interpretation of our model’s 
decisions, we performed a SHAP analysis. We focused on explaining 
the classification of T-cells, a well-defined cell type with known 
marker genes. The SHAP summary plot (Figure 5) reveals the top 20 
genes that most significantly influenced the model’s prediction of a cell 
as a T-cell.

The plot ranks genes by their global importance (mean absolute 
SHAP value). Crucially, it also visualizes the relationship between a 
gene’s expression level (color) and its impact on the prediction (x-axis 
position). For example, high expression (red dots) of CD3D, CD3E, 
and CD2 consistently produced high positive SHAP values, indicating 
that their high expression strongly pushes the model’s output towards 
a “T-cell” classification. Conversely, for a gene like MKI67 (a marker 
for proliferation, not T-cell identity), high expression might result in 
a negative SHAP value, pushing the prediction away from a T-cell 
classification. The analysis unequivocally identified canonical T-cell 
markers such as CD3D, CD3E, CD2, IL7R, and PTPRC (CD45) at the 
top of the importance list. This provides strong, independent 
validation that scReformer-BERT’s decision-making process is not 
only accurate but also grounded in established cell biology, learning 
the very same gene signatures that human experts use for 
cell annotation.

4 Discussion

The central challenge in applying deep learning to scRNA-seq is 
managing its immense dimensionality without resorting to 
information-degrading preliminary feature selection. In this study, 
we demonstrated that by leveraging the architectural innovations of 
the Reformer, it is not only possible but highly advantageous to train 
a Transformer-based model on the complete, unfiltered gene space. 
This approach unlocks the full potential of large-scale, self-supervised 
pre-training, allowing our model to learn a deep, contextual 

representation of gene expression patterns from millions of cells. The 
outcome is a model that not only sets a new benchmark for 
classification accuracy but, more importantly, exhibits remarkable 
generalization to independent datasets—a critical test for real-world 
utility. Our ablation study systematically dissected the synergy behind 
this success, confirming that each design choice plays a critical and 
distinct role. The Reformer architecture provided the essential 
computational scalability to make analysis on the full gene set feasible. 
The large-scale pre-training was identified as the single most impactful 
component, responsible for embedding the rich biological context that 
drives high performance and robust generalization. Finally, the 
Gene2vec initialization offered a vital inductive bias, providing a 
biologically informed starting point that significantly refined the 
model’s performance. Crucially, this high performance is not achieved 
at the cost of interpretability. The SHAP analysis provides compelling 
evidence that scReformer-BERT’s decisions are driven by biologically 
relevant features, such as canonical marker genes. This confirms that 
the model is not merely fitting statistical noise but is learning a 
coherent and meaningful representation of cellular identity. By 
retaining the complete gene set, our model is empowered to discover 
the complex, long-range dependencies that define cell types, moving 
beyond the limitations of methods reliant on a pre-selected subset of 
highly variable genes.

Beyond benchmarking, the ability to accurately and scalably 
annotate cell types is a foundational prerequisite for numerous 
downstream biomedical applications. For instance, tracking the 
evolution of cellular states in complex diseases like cancer relies on 
precise cell identification to distinguish malignant cells from the 
tumor microenvironment (Eralp and Sefer, 2024). Similarly, predicting 
cellular responses to therapeutics is contingent on knowing the exact 
cell types being targeted (Sefer, 2025). Looking forward, the design of 
next-generation therapies, such as RNA nanomedicine, requires a 
deep understanding of the cellular landscape to ensure targeted 
delivery and efficacy (Dwivedi et  al., 2025). Our work provides a 
robust and scalable tool that can empower these advanced research 
endeavors by providing a reliable first step: knowing what cells 
are present.

4.1 Computational cost and accessibility

A key practical consideration of our approach is the substantial 
computational cost associated with the initial pre-training phase, 
which required approximately 160 h on a multi-GPU system. While 
this represents a significant barrier for training such a model from 
scratch, we argue that this should not be viewed as a limiting factor of 
the approach itself, but rather as an indicator of a paradigm shift 
towards foundational models in single-cell genomics.

This intensive pre-training is a one-time, upfront investment to 
create a powerful, general-purpose resource that captures a deep, 
transferable understanding of gene expression patterns across a vast 
biological landscape. The true utility for the broader research 
community lies not in replicating this pre-training, but in 
downloading the resulting pre-trained model—which we will make 
publicly available—and efficiently fine-tuning it on their specific, 
often smaller-scale datasets. As demonstrated, this fine-tuning 
process is highly accessible, requiring only a single GPU and a few 
hours of computation. This “pre-train once, fine-tune many” 

TABLE 3  Generalization performance on independent datasets 
(mean ± SD via five-fold cross-validation).

Dataset Models Accuracy (%) Macro F1-
score (%)

Adult Heart Atlas Our model 98.2 ± 0.5 97.9 ± 0.6

GNN (scGNN) 96.5 ± 0.9 96.1 ± 1.0

scBERT 97.8 ± 0.6 96.7 ± 0.7

MLP 94.8 ± 1.1 93.2 ± 1.3

Independent adult 

cohort

Our model 97.1 ± 0.8 96.5 ± 0.9

GNN (scGNN) 94.8 ± 1.3 93.9 ± 1.5

scBERT 96.5 ± 0.9 95.8 ± 1.1

MLP 90.9 ± 1.5 89.1 ± 1.8
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paradigm, which has proven transformative in fields like natural 
language processing (e.g., BERT) and computer vision, holds 
immense promise for genomics. It democratizes access to the power 
of large-scale models, allowing individual labs to achieve state-of-
the-art results without needing access to supercomputing resources. 
Future work could further enhance accessibility through techniques 
like model distillation, creating smaller, more efficient versions of 
scReformer-BERT for deployment in even more resource-
constrained environments.

4.2 Limitations and future work

Our work establishes a robust and generalizable foundation for 
large-scale single-cell analysis. The current scope of this foundational 
work naturally defines the next frontiers for research and application. 
The current work focused on establishing the efficacy of the 
scReformer-BERT architecture for first-tier cell type classification. 
While this study focused on establishing the classification performance 
of scReformer-BERT, a crucial next step is to leverage the model for 
biological discovery. Building on this successful foundation, the next 
logical step is to scale its application to a wider array of tissues, disease 
states (e.g., cancer), and species. Concurrently, we aim to extend the 
framework beyond classification to address continuous biological 
questions, such as trajectory inference and predicting 
perturbation outcomes.

Our SHAP analysis confirmed the model’s ability to learn 
biologically relevant features, providing essential validation. A 
compelling future direction is to perform a deeper analysis of the 

internal attention mechanisms to uncover novel, context-dependent 
gene–gene interactions that the model uses for prediction, potentially 
revealing new regulatory pathways.

In future work, we aim to incorporate additional techniques, such 
as graph neural networks for PPI data, integration of multi-modal 
data, and more explicit incorporation of biological background 
knowledge, to improve the generalizability and interpretability of our 
model. At the same time, we plan to focus more on the downstream 
tasks relevant to our dataset and others, such as identifying cell type 
alterations in disease or development, to better align with broader 
research objectives.

5 Conclusion

In this study, we  leveraged a comprehensive heart dataset to 
address key challenges, using the Transformer-based variant 
Reformer as the encoder. We performed self-supervised pre-training 
on a very large external corpus of unsupervised data, then fine-tune 
the model with supervised labels to achieve gene embeddings and 
first-level classification of cardiac cells. Our classifier effectively 
predicted cell major cell categories in heart tissue with enhanced 
accuracy in single-cell analysis. Our model’s strengths lie in its 
innovative embedding and classification approach, leveraging the 
Reformer architecture to efficiently process high-dimensional 
scRNA-seq data. By converting gene expressions into discrete values 
and incorporating positional encoding, the model enhances the 
representation of gene interactions and expression patterns. The use 
of PPI networks and Gene2vec further enriches gene embeddings, 
while random masking and reconstruction loss improve robustness. 

FIGURE 5

SHAP analysis for T-cell classification. (A) SHAP summary plot. (B) Bar chart of mean absolute SHAP values. Horizontal axis (SHAP value): Positive values 
(>0) mean that this gene’s expression level pushed the prediction towards classifying the cell as a T-cell. Negative values (<0) mean the gene’s 
expression pushed the prediction away from a T-cell classification.
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Self-supervised pre-training with large-scale unlabeled data 
followed by fine-tuning on labeled data ensures the model can 
effectively classify first-tier cell types with high accuracy. This 
combination of techniques allows the model to handle complex 
biological data efficiently, making it a powerful tool for major cell 
type classification.
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