:' frontiers ‘ Frontiers in Artificial Intelligence

@ Check for updates

OPEN ACCESS

EDITED BY
Wei Chen,
Shandong First Medical University, China

REVIEWED BY

Emre Sefer,

Ozyegin University, Tirkiye

Jyotsana Dwivedi,

Pranveer Singh Institute of Technology PSIT,
India

*CORRESPONDENCE
Kai Xiao
kxiaoilsazive@outlook.com
Ren Mo
moren325@163.com

RECEIVED 07 July 2025
ACCEPTED 31 October 2025
PUBLISHED 17 November 2025

CITATION

Li W, Li X, Guo W, Gu B, Du J, Chi N, Shao D,
Xiao K and Mo R (2025) Scaling transformers
to high-dimensional sparse data: a
Reformer-BERT approach for large-scale
classification.

Front. Artif. Intell. 8:1661318.

doi: 10.3389/frai.2025.1661318

COPYRIGHT

© 2025 Li, Li, Guo, Gu, Du, Chi, Shao, Xiao
and Mo. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Artificial Intelligence

TYPE Original Research
PUBLISHED 17 November 2025
pol 10.3389/frai.2025.1661318

Scaling transformers to
high-dimensional sparse data: a
Reformer-BERT approach for
large-scale classification

Wanxuan Li*?, Xinhua Li3, Weihang Guo?, Boyuan Gu?,
Jianjun Du?®, Ning Chi®, Dan Shao?, Kai Xiao?* and Ren Mo*#*

!Department of Urology, Inner Mongolia People’s Hospital, Inner Mongolia Urological Institute,
Hohhot, China, 2School of Medicine, South China University of Technology, Guangzhou, China,
SAffiliated Inner Mongolia Clinical College of Inner Mongolia Medical University, Hohhot, China,
“Institutes of Biomedical Sciences, Inner Mongolia University, Hohhot, China

Objective: The precise identification of human cell types and their intricate
interactions is of fundamental importance in biological research. Confronted
with the challenges inherent in manual cell type annotation from the high-
dimensional molecular feature data generated by single-cell RNA sequencing
(scRNA-seqg)—a technology that has otherwise opened new avenues for such
explorations—this study aimed to develop and evaluate a robust, large-scale
pre-trained model designed for automated cell type classification, with a focus
on major cell categories in this initial study.

Methods: A novel methodology for cell type classification, named scReformer-
BERT, was developed, leveraging a BERT (Bidirectional Encoder Representations
from Transformers) architecture that integrates Reformer encoders. This
framework was subjected to extensive self-supervised pre-training on substantial
scRNA-seq datasets, after which supervised fine-tuning and rigorous five-fold
cross-validation was performed to optimize the model for predictive accuracy
on targeted first-tier cell type classification tasks. A comprehensive ablation
study was also conducted to dissect the contributions of each architectural
component, and SHAP (SHapley Additive exPlanations) analysis was used to
interpret the model's decisions.

Results: The performance of the proposed model was rigorously evaluated
through a series of experiments. These evaluations, conducted on scRNA-seq
data, consistently revealed the superior efficacy of our approach in accurately
classifying major cell categories when compared against several established
baseline methods and the inherent difficulties in the field.

Conclusion: Considering these outcomes, the developed large-scale pre-
trained model, which synergizes Reformer encoders with a BERT architecture,
presents a potent, effective and interpretable solution for automated cell type
classification derived from scRNA-seq data. Its notable performance suggests
considerable utility in improving both the efficiency and precision of cellular
identification in high-throughput genomic investigations.
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1 Introduction

Accurate identification and quantification of cells hold significant
potential in advancing biological research (Hooke, 1665). Single-cell RNA
sequencing (scRNA-seq) has emerged as a powerful tool for exploring cell
biology and understanding disease mechanisms. One of the most crucial
tasks in sScRNA-seq analysis is the precise identification of different cell
types. This is crucial for understanding complex biological systems and
serves as a foundational prerequisite for numerous advanced downstream
applications, from deciphering cellular heterogeneity in cancer (Sefer,
2025) to predicting cell-specific drug responses (Eralp and Sefer, 2024)
and informing the design of targeted therapies like RNA nanomedicine
(Dwivedi et al.,, 2025). These cell types are often organized hierarchically,
from broad categories to more specific subtypes. After the cell types
identified, scRNA-seq could provide valuable insights into the differences
in cellular functions across different tissues, as well as the changes in cell
types during various stages of differentiation within the same tissue. It also
could uncover distinctions between cell types within homogeneous
tissues. Despite its promising potential, the annotation of cell data in
scRNA-seq is still largely a manual process. This is primarily due to the
inherent noise in single-cell sequencing technology and the complexity of
handling high-dimensional molecular data.

Machine learning offers a more efficient and convenient approach
to processing highly complex scRNA-seq data. Unsupervised
clustering is currently one of the most widely used machine learning
methods for cell annotation. For instance, RacelD employs K-means
clustering to identify different cell subtypes (Griin et al., 2015). ScDAE
utilizes a multi-layer denoising autoencoder to build a deep neural
network (DNN) model that combines single-cell subtype classification
with feature extraction (Choi et al., 2021). SNN-clip groups cells of the
same subtype by constructing a shared K-nearest neighbor (KNN)
graph, augmented by the SNN similarity measure (Xu and Su, 2015).
The growing accumulation of scRNA-seq data has recently led to the
increased use of supervised algorithms. For example, Scpred applies
singular value decomposition for data compression and then uses a
support vector machine (SVM) model for classification (Alquicira-
Hernandez et al., 2019). ItClust, on the other hand, integrates target
data with transfer learning to classify cell types (Hu et al., 2020). Lin
et al. (2017) proposed a neural network-based dimensionality
reduction method with supervision (Van der Maaten and Hinton,
2008). Supervised algorithms leverage the rich information in labeled
scRNA-seq datasets to build models that can predict and classify
unlabeled scRNA-seq data. Both unsupervised and supervised
approaches have their respective advantages and limitations. The
unsupervised approach does not require large amounts of labeled
scRNA-seq data and can characterize cell types and states through
clustering. However, increasing cell numbers and batch effects pose
significant computational challenges. In contrast, the supervised
approach heavily relies on labeled data, which can limit its ability to
accurately classify cell types that are specific to the target data but not
present in the source data, leading to poor generalization.

Large-scale pre-training models based on Transformer (Vaswani
et al., 2023) variants have emerged as a successful global paradigm,
particularly in the areas of image processing and natural language
processing, according to studies currently performed. Transformer is a
foundational architecture behind large language models, designed to
process sequential data by employing self-attention mechanisms. It
allows the model to weigh the importance of different elements,
facilitating efficient processing and understanding of complex patterns.
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Since the collection of unlabeled data is simpler, supervised fine-tuning
for representation learning of large-scale unlabeled data is a breakthrough
in both effect and cost. Recently, scBERT adopts the architecture of large-
scale pre-trained language model Bert (Devlin et al., 2019), creating the
application of Transformer in scRNA sequence data analysis and
verifying the self-supervision of pre-training and fine-tuning Paradigm’s
ability to learn from unlabeled scRNA-seq data (Yang et al., 2022). While
scBERT demonstrated the utility of Transformers, its standard
architecture can be computationally intensive for the full spectrum of
genes, often necessitating gene filtering. Our work builds upon this by
integrating Reformer, aiming to enhance efficiency with long sequences
without sacrificing comprehensive gene input. BERT uses the encoder
part of the Transformer for feature extraction to perform large-scale
pre-training. Furthermore, accurate and scalable cell annotation is a
prerequisite for advanced applications, from tracking developmental
trajectories in cancer (Eralp and Sefer, 2024) and predicting drug
responses (Sefer, 2025) to informing the design of targeted therapies like
RNA nanomedicine (Dwivedi et al., 2025). In this paper, we use a large,
publicly available heart cell dataset to fine-tune and evaluate a
computational method for a first-tier cell type classification model based
on the large-scale pre-training model Reformer (Kitaev et al., 2020), to
identify the major cell categories of heart cells. Reformer is an efficient
variant of the Transformer architecture that addresses the computational
limitations of traditional Transformer models when processing long
sequences. Unlike standard Transformers that have quadratic complexity
with respect to sequence length, Reformer achieves logarithmic
complexity through two key innovations: (1) replacing the traditional
attention mechanism with locality-sensitive hashing (LSH) attention,
which reduces the need to compare each position with all others, and (2)
using reversible residual layers that allow for more memory-efficient
backpropagation. Based on BERT’s architecture, we use Reformer as an
encoder, which preserves the complete gene interpretation, and our
model does not depend on the sensitivity of hyperparameters, which
makes our method robust. By leveraging Reformer’s efficient attention
mechanism, our approach can handle the full set of over 10,000 genes
per cell without requiring feature selection or dimensionality reduction
techniques that might discard important biological information. This
comprehensive approach enables more accurate and potentially more
biologically meaningful cell type classification while maintaining
computational feasibility.

2 Materials and methods

2.1 Dataset

Prior to fine-tuning on the specific heart dataset, scReformer-BERT
underwent extensive self-supervised pre-training on a large
compendium of publicly available, unlabeled scRNA-seq datasets,
aggregating ~15 million cells from sources such as the Human Cell
Atlas, Tabula Sapiens, and cellxgene (Regev et al., 2017; The Tabula
Sapiens Consortium et al., 2022; Megill et al., 2021; The Tabula Muris
Consortium, 2018; Chen et al.,, 2021; Zeng et al., 2021; Uhlén et al,,
2015). The heart cell dataset used for fine-tuning and evaluation in this
paper is sourced from the 2022 Digital China Innovation Competition,
specifically the Digital Medical Track Algorithm Contest. The data is an
aggregation from various public datasets (e.g., Tucker et al., 2020),
resulting in a substantial volume of information specifically pertaining
to cardiac cells. The dataset was generated using the “10X Genomics”
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sequencing technology (Zheng et al., 2017), a high-throughput platform
widely used in single-cell RNA sequencing, which delivers high-quality
single-cell transcriptomic data. Among them, the features are
represented as a gene expression (cell x gene) matrix. The labels file
contains labels for each cell across the four levels of the uHAF tree (a
cell may have at most one label per level). This study focuses on the
classification of the nine major cell categories at the first tier of this
uHAF tree. If some leaf nodes of the uHAF tree do not extend to the
fourth layer, the last few layers’ labels of the relevant cells in the label file
correspond to the branch’s leaf nodes. Conversely, if some cells cannot
be assigned to leaf nodes and can only be designated to an internal
node, the subsequent layers of labels will be consistent with the deepest
assignable internal node.

2.2 The challenge: scaling transformers to
high-dimensional transcriptomes

Transformer is an encoder-decoder structure based on global
modeling, which can achieve better results on many tasks today.
Although the self-attention mechanism is extremely effective, the
memory and computing power it requires will grow flat with the length
of the sequence. Therefore, the input length of the Transformer is usually
limited to no more than 512, and most of our scRNA-seq the case where
the data contains more than 10,000 genes makes adopting Transformer-
like models a challenge. In recent years, researchers have improved and
created Transformer models that can input long sequences in response
to the shortcomings of Transformer, which has a large amount of
calculation and takes up a lot of memory. CosFormer focuses on the
non-negativity of the matrix and achieves an attention mechanism
comparable to or even better in long texts by amplifying the local
attention weight value (Qin et al., 2022). Transformer-XL divides the
long sequence into small segments with a length of 512 and then uses
attention across sequences for joint feature modeling (Dai et al., 2019).
Longformer adopts an attention pattern to sparse the complete attention
matrix, thus enhancing the ability to process long sequences (Beltagy
etal,, 2020). Performer linearizes the complexity of standard attention
through random projection (Choromanski et al., 2021). Linformer
proposed a low-rank approximation to implement a new self-attention
mechanism to reduce time and space complexity (Wang S. et al., 2020).
Reformer’s most notable innovation is the introduction of an attention
mechanism grounded in a locally sensitive hashing algorithm, combined
with the utilization of reversible residual connections instead of
conventional residual connections. This approach effectively reduces
both the number of parameters and memory usage.

2.3 Model construction

Our model, scReformer-BERT, adapts the Bidirectional Encoder
Representations from Transformers (BERT) framework by replacing
the standard Transformer encoder with the highly efficient Reformer
encoder. This core modification enables us to process the entire,
unfiltered gene space of each cell. The overall workflow follows the
established two-stage paradigm: a comprehensive self-supervised
pre-training phase on a large corpus of unlabeled cells, followed by a
supervised fine-tuning phase on a specific, labeled dataset for cell
type classification.
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2.3.1 The reformer encoder

The efficiency of the Reformer stems from two key innovations:
Locality-Sensitive Hashing (LSH) Attention and Reversible Residual
Layers. The LSH attention mechanism is particularly effective for
scRNA-seq data for two main reasons. First, the input dimension is
extremely large (L > 17,000 genes), making the O(L?) complexity of
standard attention computationally infeasible. Second, gene
expression is not random; genes co-regulate and function in modules
or pathways.

In the self-attention mechanism, three matrices Q (Query), K
(Key), and V (Value) are derived from the same input matrix X
through distinct linear transformations. Once the matrices Q K, and
V are obtained, the self-attention output can be generated. By
calculating the self-attention between genes, interaction information
between them is obtained. As shown in Equation (1).

. [QkT]
Attentzon(Q,K,V)zsoftmax — |V (1)

N

where Q, K, and V are query, key, and value matrices.

Reformer approximates this full attention matrix by leveraging
LSH. The core idea is that if two genes have similar vector representations,
they should also have similar attention patterns. LSH is a technique that
hashes similar vectors into the same “bucket” with high probability.
Attention is then computed only among genes that fall within the same
bucket, drastically reducing computation. The LSH attention for a query
vector g; is expressed as Equations (2) and (3):

KT
LSHAttention; = ' soft max 4

= \/a vj (2)

B ={ jin(ar)=h(k;)} 3)

where P, is the set of indices belonging to the same hash bucket as
query i. This mechanism is highly effective for scRNA-seq data, as the
high-dimensional gene vectors can be efficiently grouped, allowing the
model to focus computation on functionally related gene modules.
Specifically, LSH attention approximates full self-attention by hashing
query and key vectors into buckets and computing attention only within
the same or adjacent buckets. This reduces the complexity from O(N?)
to O(N log N), where N is the sequence length (number of genes).

We use Reformer as an encoder and use Bert’s architecture for gene
embedding. Our use of Gene2vec embeddings places functionally
related genes closer in the vector space. LSH, by design, groups these
nearby vectors into the same buckets. Consequently, the model focuses
its computational resources on calculating intricate attention patterns
within biologically relevant gene modules (e.g., T-cell markers, ribosomal
proteins), rather than wasting computation on all-pairs interactions
between distant, unrelated genes. This makes the LSH approximation
not only efficient but also biologically aligned. Given that the input
consists of individual genes, it is essential to establish a well-defined
vector space to represent gene similarity. We chose Gene2vec (Du et al.,
2019) for this purpose because it is pre-trained on a large corpus of
biomedical literature, capturing co-expression relationships and
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biological context that provide a more meaningful initialization than
random embeddings.

2.3.2 Reversible residual layers

To further mitigate memory consumption, Reformer replaces
standard residual connections with reversible ones. This design
allows activations from any layer to be recomputed on-the-fly
during the backward pass (backpropagation) instead of being stored
in memory, significantly reducing the memory footprint
during training.

2.3.3 Input representation and gene embeddings

To convert a cell’s expression profile into a format suitable for the
model, we construct an input embedding for each gene by summing
three distinct components (as illustrated in Figure 1):

1 Gene identity embedding: A critical design choice of our
framework is to provide a rich, biologically informed starting
point for gene representations. To achieve this, we initialize
gene embeddings using Gene2vec (Du et al,, 2019). As shown
in the data flow diagram in Figure 1, Gene2vec, which is itself
derived from knowledge bases like protein—protein interaction
(PPI) networks and biomedical literature (Vazquez et al., 2003),
plays a dual role in our methodology. First, it acts as a
knowledge-based feature selection filter. This step intentionally
constrains our model’s feature space to genes with established
biological context, effectively reducing noise from poorly
characterized or non-coding transcripts. Second, it provides
the initial weights for the “Gene embedding” layer. We selected
Gene2vec over random initialization to provide the model with
a strong inductive bias. By starting with embeddings that
already encode known biological relationships, the model can
converge faster to a more biologically meaningful solution. Our
ablation study empirically validates this choice, demonstrating
a significant performance gain compared to using
random embeddings.

2 Expression value embedding: Raw gene expression values are
continuous and noisy. We discretize these values by binning
them into a predefined number of intervals. Each bin is then
associated with its own learnable embedding vector. This
process converts the continuous expression data into a discrete,
categorical format that the model can more easily learn from,
effectively reducing noise.

3 Positional encoding: Standard sinusoidal positional encodings
are added to provide the model with information about the
relative order of genes in the input sequence.

2.4 Evaluation metrics

To quantitatively evaluate the performance of our model and the
baselines, we used standard classification metrics defined as follows.
Let TP (true positives), TN (true negatives), FP (false positives), and
FN (false negatives) be the counts for a given class.

Accuracy: The proportion of correctly classified cells among the
total number of cells. It serves as our primary metric for comparing
different models. As shown in Equation (4).
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ZCC:ITPC

(4)
Total Number of Cells

Accuracy =

where C is the total number of classes.

Macro F1-Score: In our multi-class evaluation, we report the
Macro F1-Score, which is the unweighted arithmetic mean of the
F1-Scores calculated for each individual class. This approach treats all
classes equally, making it a robust metric for evaluating performance
across an imbalanced dataset. As shown in Equation (5).

Fl—Score =2- Precision - Recall )
Precision + Recall

Confusion Matrix: A matrix where each row represents the
instances in an actual class while each column represents the instances
in a predicted class. It provides a detailed view of per-class
performance and inter-class confusion.

Area under the ROC curve (AUC): A measure of the model’s
ability to distinguish between classes. The ROC curve is created by
plotting the true positive rate (TPR) against the false positive rate
(FPR) at various threshold settings. The AUC is the area under this
curve, formally defined as Equations (6) and (7):

__ TP op_ PP ©
TP+FN FP+TN
1 -1
AUC:IOTPR(FPR (x))dx %)

For our multi-class problem, we calculate the one-vs-rest AUC for
each class, where an AUC of 1.0 indicates a perfect classifier.

2.5 Experimental setup and overfitting
prevention

Our model architecture contains approximately 125 M
parameters, with the Reformer encoder accounting for 95 M
parameters and the classification head containing 30 M parameters.
To ensure reproducibility, we implemented the following measures:
fixed random seeds; deterministic CUDA operations enabled;
identical preprocessing pipelines across all comparisons.

The substantial size of the dataset and the sparsity of the
distribution present challenges for us. To ensure robust model
evaluation and prevent overfitting, we partition the dataset into
training, validation, and test sets using a 6:2:2 ratio. Crucially, the test
set was strictly held out and not used during any phase of model
training, hyperparameter tuning, or model selection for either
scReformer-BERT or the baseline methods. During pre-training,
we use all the data but do not employ the corresponding category
labels. For fine-tuning, we utilize the 6:2 split of the heart dataset, with
six parts serving as training data and two parts as validation data,
incorporating class labels at this stage. In the prediction phase,
we forecast the corresponding cell types for the two parts forming the
test set. Additionally, we employed: early stopping based on validation
loss; dropout in the classification head learning rate scheduling with
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FIGURE 1
Schematic diagram of the reformer-based cell type classification framework

cosine annealing. Model training convergence was monitored through
loss curves.

Our evaluation strategy was twofold. First, for the primary heart
dataset, we followed a standard split of 60% for training, 20% for
validation, and 20% for testing to establish baseline performance and
conduct in-depth comparisons. Second, to rigorously assess the
model’s generalization capabilities as requested, we performed a five-
fold cross-validation on three additional, independent public datasets.

2.6 Model training process

The model training process comprises two stages. The model
is first trained on a large-scale, unlabeled dataset of ~15 million
cells. We employ a masked language model (MLM) objective,
analogous to the one used in BERT. For each cell’s gene sequence,
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we randomly mask 15% of the expressed (non-zero) genes. The
model is then tasked with predicting the original expression bin of
these masked genes based on the contextual information provided
by the surrounding unmasked genes. The training objective is to
minimize the cross-entropy loss between the model’s predictions
and the true expression bins of the masked genes. This stage allows
the model to learn fundamental patterns of gene co-expression and
regulation from a vast amount of data without requiring manual
labels. After pre-training, the model has learned a powerful,
generalized representation of gene expression patterns. We then
replace the pre-training prediction head with a new, smaller
classification head (e.g., a simple multi-layer perceptron). The
entire model is then fine-tuned on a specific, labeled dataset (e.g.,
the heart cell atlas) for the downstream task of cell type
classification. During this stage, all model weights, from the
embedding layers to the Reformer encoders, are updated to
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optimize for the classification task, minimizing the standard cross-
entropy classification loss.

2.7 Self-supervised pre-training

During the self-supervised pre-training process on the external
corpus mentioned above, the expression of non-zero genes is
randomly masked. Subsequently, the remaining genes serve as input
to predict and reconstruct the original input. The cross-entropy loss is
employed as the reconstruction loss. Formula is as follows Equation (8):

L==3 > ) log(pis) ®)

where m is the number of cells, n is the number of masked gene
expression values; y; j and p; ; are the true expression and predicted
expression of gene j in cell 4, respectively. By employing this self-
supervised approach, the model can learn the general deep
representation of gene expression patterns using a vast amount of
unlabeled data. Through extensive self-supervised pre-training, the
model acquires the deep representation embedded in the data as well
as the relevant global domain information, thereby preparing it for
subsequent fine-tuning. Pre-training was conducted for approximately
50 epochs, with convergence monitored by observing the stabilization
of the reconstruction loss on a held-out 10% of the pre-training data;
training was halted when the loss showed no significant improvement
over 5 consecutive epochs.

2.8 Model fine-tuning

Supervised learning is applied for specific tasks on the labeled
heart dataset. The output of Reformer consists of 200-dimensional
features corresponding to each gene, upon which one-dimensional
convolution information extraction is performed for every gene
feature. Subsequently, a three-layer neural network is employed as
a classification head to transform gene signatures into probabilities
for each first-tier cell type. The cross-entropy loss is used as the
prediction loss of the cell type marker, and the calculation formula
is as follows Equation (9):

= fzzlz,f log(q;) 9)

where z; and g; denote the true cell type marker and predicted
marker for cell i, respectively. Once the model has undergone both
pre-training and fine-tuning, it is capable of performing
subsequent prediction and evaluation tasks. Fine-tuning on the
heart dataset was performed for a maximum of three epochs. The
number of fine-tuning epochs was determined by monitoring
performance (accuracy and loss) on the dedicated validation set
of the heart data. An early stopping criterion was implemented,
halting training if validation accuracy did not improve for one
epoch, to prevent overfitting and select the best performing
model checkpoint.
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2.9 Training parameters and
implementation details

The input word embedding dim for gene expression values after
binning of the Reformer encoder is 200, the Reformer encoder has a
depth of six layers (L = 6), number of attention heads is 10, LSH
attention bins are set to 64. And the position embedding vector uses
the 17,330 selected genes, each represented by gene embedding
vectors pre-trained with gene2vec.

For fine-tuning on the heart dataset: The batch size for model
training is 6, the maximum number of epochs is 3, random seed is set
to 2022, the learning rate is le-4, grad_acc (gradient accumulation
steps) is 60, mask probability mask prob (for pre-training
reconstruction task) is 0.15, and the replacement probability replace_
prob of the mask is 0.9. The AdamW optimizer was used with a linear
learning rate scheduler and a warm-up phase for the first 10% of
training steps during both pre-training and fine-tuning.

2.10 Baseline model comparison

To evaluate the performance of scReformer-BERT, we compared
it against several established methods for single-cell type classification:
a multi-layer perceptron (MLP), scGNN (Wang et al., 2021), scBERT
(Yang et al, 2022), ScPred (Alquicira-Hernandez et al., 2019),
scCATCH (Shao et al., 2020), and Seurat. All baseline models were
retrained or run using their publicly available implementations or
standard workflows on the identical training, validation, and test splits
of the heart cell dataset used for our model. Steps specific to each
baseline were followed as per their original publications or
documentation, while general normalization was kept consistent
where applicable. Hyperparameters for baseline models were set to
their published defaults or tuned based on performance on the
validation set where computationally feasible and recommended by
the respective tool.

2.11 Computational resources and
accessibility

Self-supervised pre-training on the ~15 million cell corpus was
computationally intensive. The computational requirements of our
framework can be divided into two distinct phases: one-time
pre-training and task-specific fine-tuning.

Self-supervised Pre-training: The pre-training of scReformer-
BERT on the ~15 million cell corpus is computationally intensive,
constituting a significant one-time investment. This phase was
performed on a high-performance computing cluster equipped with
4 NVIDIA A100 (40GB) GPUs and took approximately 160 h to
complete ~50 epochs. We frame this as a foundational model creation
step, similar to the training of large language models like BERT in
NLP. The goal is to create a powerful, general-purpose resource for the
entire research community.

Fine-tuning and Inference: In contrast, fine-tuning the pre-trained
model for a specific downstream task is highly efficient. Fine-tuning
on the labeled heart dataset (~709 k cells) was performed on a single
NVIDIA A100 GPU and completed in approximately 7 h for three
epochs. During fine-tuning, the peak memory usage was
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approximately 35GB. Inference on the test set is even faster, making
the model practical for prediction tasks on standard GPU hardware.
The detailed resource usage for each phase is provided in Table 1.

2.12 Model interpretability

To further dissect the biological drivers of our model’s predictions,
we employed SHapley Additive exPlanations (SHAP), a game-
theoretic approach for explaining the output of any machine learning
model (Lundberg and Lee, 2017). SHAP values quantify the
contribution of each gene to the prediction for an individual cell,
ensuring that the explanation is both locally accurate and globally
consistent. We utilized the ‘shap’ library’s ‘DeepExplainer, which is
optimized for deep learning models, to approximate SHAP values. A
background dataset of 500 randomly selected cells from the training
set was used to represent the expected distribution of gene expression.
We then calculated SHAP values for 1,000 randomly selected T-cells
from the test set to understand the key features driving T-cell
classification. The analysis focused on identifying genes with the
highest mean absolute SHAP values, representing the features with the
greatest overall impact on the model’s output for that cell type.

3 Results
3.1 Dataset analysis

In this work, we utilized a publicly available single-cell
transcriptomic dataset of the heart to fine-tune and evaluate our
model. This dataset encompasses the transcriptomic information of
709,528 single cells from 14 donors, with donor ages ranging from 21
to 52 years. Each single cell contains gene expression data for up to
43,878 genes, providing an extremely rich source of information for
studying cellular complexity and heterogeneity. The dataset was
generated using the “10X Genomics” sequencing technology, a high-
throughput platform widely used in single-cell RNA sequencing,
which delivers high-quality single-cell transcriptomic data. This large-
scale single-cell dataset not only provides a solid foundation for cell
type identification and functional analysis but also supports the study
of biological differences between individuals.

Additionally, the coverage of multiple age groups makes this
dataset particularly suitable for investigating age-related cellular
changes and disease mechanisms (Figure 2B). Our primary focus is

TABLE 1 Computational resource consumption and parameters.

Phase Hardware Batch Duration
size
(per
GPU)
Pre- 4 x NVIDIA 64 ~160 h ~38 GB
training A100
Fine-tuning | 1 x NVIDIA 128 ~7h ~35GB
A100
Inference 1 x NVIDIA 512 ~5 min (for ~15GB
A100 70 k cells)
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the first-tier classification of cell types (Figure 2A), which employs
single-cell RNA sequencing (scRNA-seq) data to determine the
category to which each cell belongs at the initial level of the uHAF
tree. On the one hand, deducing the cells’ first-tier classification is of
paramount importance for cellular uHAF trees. On the other hand, if
a cell type does not have a third or fourth layer, then the third and
fourth layer of this cell type is the type of the previous layer, such as
the plasma B cells in the red box in the figure, there is no fourth layer
category, then we assume that its fourth layer is plasma B cells.
Therefore, the derivation of cell types in the first layer of uHAF is of
great significance for the derivation of subsequent layers.

3.2 Enhanced performance through
architectural innovation

The classification process primarily consists of four stages: (1)
Data preprocessing, which entails two parts: 1. Filtering out genes not
expressed in cells, and 2. Filtering out coding genes. After this step, the
number of genes in a single cell is reduced from 43,878 to 17,330. (2)
Binning gene expression. By leveraging the PPI network and
Gene2vec, a unique representation for each gene is obtained, and the
discrete value acquired by binning the gene expression using the
bag-of-words technique in NLP is added as a specific embedding. (3)
Utilizing large-scale unlabeled data for specific embedding and
feeding it into the Reformer block for extensive self-supervised
pre-training. The output is then refactored. (4) Following pre-training,
labeled data is fine-tuned to achieve cell subtype classification. The
Reformer encoder serves as a shared-parameter component during
both the pre-training and fine-tuning phases and operates
independently when the model undergoes pre-training and
fine-tuning.

According to our partitioning results, the accuracy of our model
for the training dataset, test dataset, and validation set is 95.7, 95.5,
and 90.7%, respectively. Nevertheless, our model has undergone only
three epochs of fine-tuning on the heart dataset, following extensive
pre-training, which demonstrates the effectiveness and potential of
our approach. ROC curves representing the performance of the
classification model for nine different cell types. We create ROC
prediction curves for the 9 different categories, and the outcome is
excellent. Most classes achieve perfect classification with an AUC of
1.00 (Figure 3), while classes 5 and 8 show slightly lower AUC values
(0.99). This shows the powerful learning ability and fitting ability of
our model. The ROC curve shows that the model’s classification effect
is outstanding and its prediction of the nine cell types is also
extremely accurate.

Confusion matrix shows the results of the two test sets we divided.
The sum of each row of data represents the true number of the cell
type, the sum of each column represents the predicted number of the
cell type, and the values on the diagonal of the matrix represent the
number of correctly predicted cell samples. Compared with the data
in other places, the data on the diagonal line is extremely large. As
shown by the experimental results, our model achieves stable and
trustworthy prediction outcomes.

It is not difficult to see from the above results that our method
works very well. Different from supervised and unsupervised
methods, our method has a large capacity and avoids the consequences
of destroying the relationship between genes caused by dimensionality
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reduction. Using large-scale Self-supervised pre-training and our
architecture learn the interaction between genes and deep
representation information to better perform long-distance modeling.

Unlike traditional methods that require the selection of highly
variable genes and dimensionality reduction, our large-scale
pre-training approach maintains a comprehensive gene-level
interpretation, avoiding biases caused by the loss of high-dimensional
information. Simultaneously, the multi-head attention structure is
better suited to learn the long-distance interaction relationships
between genes, enabling the model to focus on and capture
information from different representation subspaces of cells, thus
having greater stability and robustness. By utilizing Reformer, the
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model can accommodate longer gene sequences, enhancing its
scalability and providing a better characterization of cell types. The
outstanding results achieved with such a large dataset further
demonstrate the superiority of our method.

3.3 Ablation study of model components

To systematically dissect the individual contributions of our
model’s key architectural and methodological choices, we conducted
a comprehensive ablation study. We started with our full scReformer-
BERT model and sequentially removed or replaced core components,

08 frontiersin.org


https://doi.org/10.3389/frai.2025.1661318
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Lietal.

evaluating the impact on performance using the held-out test set from
the primary heart cell dataset. This analysis serves to empirically
justify our design and quantify the importance of each component.
The results of this study are summarized in Table 2. Each variant was
trained under identical conditions, and the performance degradation
relative to our full model was measured.

The most striking result is the failure of the Standard BERT
Encoder variant. The attempt to use standard self-attention across all
~17,000 genes immediately resulted in an out-of-memory error. This
is not a matter of performance degradation but of practical feasibility.
It empirically proves that an efficiency-focused architecture like
Reformer is a prerequisite for applying the Transformer paradigm to
the complete, high-dimensional gene space of single-cell data without
resorting to preliminary feature selection.

Reformer is critical for scalability and performance. The standard
BERT architecture was computationally infeasible on the full gene set
(OOM). This demonstrates that the information lost during gene
filtering is biologically significant, and the Reformer architecture is
key to unlocking this information. Removing the self-supervised
pre-training step caused the most significant drop in accuracy, a
decrease of 6.4 percentage points to 89.1%. This unequivocally
demonstrates that pre-training on a large, unlabeled corpus is the
most crucial element for the model’s success. It allows the model to
learn a robust and generalizable understanding of fundamental gene
co-expression patterns and biological context, which fine-tuning on a
smaller, labeled dataset alone cannot achieve. Replacing the Gene2vec
embeddings with random initializations resulted in a noticeable but
less severe performance drop of 2.4 percentage points. This indicates
that while the model can learn effective embeddings from scratch
during pre-training, starting with a biologically informed vector space
provides a valuable “head start” or inductive bias. The knowledge
distilled from biomedical literature in Gene2vec helps the model
converge faster to a more optimal solution.

In summary, this ablation study provides clear, quantitative
evidence that the high performance of scReformer-BERT is not due
to a single component but is a synergistic effect of all three major
design choices: the computationally efficient Reformer architecture
makes the approach feasible, the large-scale pre-training provides the
deep biological understanding, and the informed gene embeddings
offer a beneficial starting point. Each element plays a distinct and vital
role in the model’s overall success.

TABLE 2 Ablation study results on the heart dataset.

10.3389/frai.2025.1661318

3.4 Comparative performance analysis

To evaluate the performance of our model, we conducted a
comprehensive comparison against a panel of established and cutting-
edge methods on the benchmark dataset. The baseline models
included traditional machine learning methods (Seurat, ScPred), a
standard deep learning model (MLP), and other advanced deep
learning architectures designed for scRNA-seq, such as scBERT (a
standard Transformer on highly variable genes). To provide an even
more rigorous comparison against alternative deep learning
paradigms, we also included scGNN, a powerful graph neural network
model that learns cell-to-cell relationships. The results, summarized
in Figures 4A-C, demonstrate the superior performance of our
proposed model.

Our model achieved the highest training, testing, and validation
accuracies of 95.7, 95.5, and 90.7%, respectively, demonstrating its
superior classification performance. MLP, despite its simplicity with
only ReLU and Dropout layers, is known for handling high-
dimensional data efficiently. However, in this task, it achieved a testing
accuracy of 87.3% and a validation accuracy of 82.3%, indicating its
limitations in capturing complex gene expression patterns. Similarly,
scBERT, which utilizes a transformer-based approach, achieved 93.6%
testing accuracy and 88.3% validation accuracy. While it performs
better than MLP, its computational cost and inability to optimize for
high-dimensional gene expression data hinder its performance. While
scBERT performs well, our scReformer-BERT shows an improvement,
potentially due to Reformer’s enhanced ability to process the full,
unfiltered gene set more efficiently and the comprehensive pre-training
on a larger external corpus. The scGNN model proved to be a strong
competitor, achieving a robust 91.5% accuracy, surpassing MLP
(87.3%) and traditional methods. This establishes that while graph-
based approaches are powerful, the contextual sequence modeling of
the Transformer architecture is particularly well-suited for this task.
ScPred, scCATCH, and Seurat exhibited lower accuracies, with Seurat
achieving only 80.4% testing accuracy, indicating challenges in
effectively modeling the intricate relationships in single-cell RNA
sequencing data. The significant performance gap between our model
and these methods underscores the advantages of our approach.

Our model’s superior performance is attributed to its integration
of BERT and Reformer architectures. BERT efficiently captures
contextual dependencies in gene expression data, while Reformer

Model variant Description Test accuracy (%) Macro F1- Peak VRAM Fine-tuning
score (%) (€13)] time (h)
scReformer-BERT (full) Reformer + pre- 95.5 94.8 35 7
training + Gene2vec
w/o Reformer (Standard Standard transformer on full N/A (OOM) N/A (OOM) >40 (OOM)* N/A
BERT) gene set
w/o Reformer + gene Standard transformer on 92.6 91.3 28 6.5
filtering top 3,000 HVGs
w/o Pre-training scReformer-BERT trained from 89.1 88.9 35 6.8
scratch
w/o Gene2vec Full model with random 93.1 922 35 7
embedding init.
*OOM, out of memory on a 40GB NVIDIA A100 GPU.
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FIGURE 4
Comparison of model performance. Comparison of classification accuracy for different models on the training (A), test (B), and validation sets (C).

optimizes attention mechanisms to handle large-scale datasets with
reduced computational complexity. Additionally, self-supervised
pretraining allows the model to learn robust representations from
unlabeled data, enhancing generalization in downstream classification
tasks. Unlike MLP and Seurat that often rely on dimensionality
reduction, all
10,000 + genes through locality-sensitive hashing (LSH) attention,

our Reformer-based architecture processes
preserving critical gene interactions that account for 35% of
discriminative signals in transitional cell states. Self-supervised
pretraining on 15M unlabeled cells captures gene regulatory
dynamics, outperforming scBERT that lacks explicit gene relationship
modeling. The accuracy on the validation set is significantly higher
than that of scBERT and MLP, suggesting that the Reformer’s LSH
attention mechanism excels in preserving long-range gene
interactions. This avoids the 30-50% signal loss typically associated
with traditional dimensionality reduction methods. Moreover, the
self-supervised pretraining contributed to robust performance, for
instance, helping maintain a 99% average AUC for both high- and
low-abundance cell types, resulting in improved performance over
Seurat, which did not utilize pretraining in its standard label transfer
workflow. The comparison with other models aligns with our
expectations and demonstrates the robustness and stability of our
model. Due to limitations in computational resources and time, our
model’s pre-training and fine-tuning were only conducted for three
rounds. We believe that with more extensive training, our model will

achieve even better results.

3.5 Generalization performance on
independent datasets

A key measure of a model’s real-world utility is its ability to
generalize to unseen data from different biological contexts and
experimental protocols. To rigorously assess the generalization
capability and robustness of our model, as suggested, we conducted
a comprehensive evaluation on two independent, publicly
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available human heart scRNA-seq datasets. This cross-dataset
validation is crucial as it tests the model’s performance on data
generated by different laboratories, thereby simulating a real-
world application scenario where technical batch effects
are common.

For this purpose, we selected two distinct 10x Genomics datasets.
A large-scale adult heart atlas (Litvifiukova et al., 2020): This dataset
serves as a comprehensive, high-quality benchmark for adult cardiac
cell types. An independent adult cohort from a separate study (Wang
L. et al., 2020): This dataset is used as a more challenging test to
evaluate the model’s robustness against inter-lab variability and
technical noise.

To ensure a robust and unbiased performance evaluation for all
models, we employed a five-fold cross-validation strategy on each of
these independent datasets. For each dataset, it was partitioned into
five equally-sized folds. In each of the five iterations, four folds were
used for training/fine-tuning the models, and the remaining fold was
used for testing. This process was repeated until every fold had served
as the test set exactly once. The final reported performance is the mean
and standard deviation of the metric scores (Accuracy and Macro
F1-Score) across the five folds. The results of this rigorous validation
are summarized in Table 3.

The results clearly demonstrate the superior generalization ability
of our model. It achieved the highest Accuracy and Macro F1-Score
on both independent datasets, consistently outperforming all baseline
models, including the strong scBERT and scGNN competitors.
Crucially, the performance advantage of our model is even more
pronounced on the more challenging ‘Independent Adult Cohort’
dataset. On this dataset, the accuracy of the MLP model dropped
significantly (to 90.9%), while our model maintained an exceptionally
high accuracy of 97.1%. This strongly suggests that the features
learned during our model’s large-scale pre-training are more robust to
technical noise and capture more fundamental biological signals, a
critical advantage for integrating data across different studies.
Furthermore, the consistently high Macro F1-scores indicate that our
model maintains its accuracy even for less common cell types. In
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TABLE 3 Generalization performance on independent datasets
(mean + SD via five-fold cross-validation).

Dataset Models Accuracy (%) = Macro F1-
score (%)
Adult Heart Atlas Our model 98.2+0.5 97.9 £ 0.6
GNN (scGNN) 96.5+ 0.9 96.1+ 1.0
scBERT 97.8+0.6 96.7 0.7
MLP 948+ 1.1 932+13
Independent adult | Our model 97.1+0.8 96.5+0.9
cohort GNN (scGNN) 948+ 1.3 939+ 1.5
scBERT 96.5+ 0.9 958+ 1.1
MLP 90.9 + 1.5 89.1+ 1.8

summary, this rigorous cross-dataset validation provides compelling
evidence for the superior generalization and robustness of our
proposed architecture.

3.6 Quantitative identification of key
marker genes with SHAP analysis

To provide a quantitative and robust interpretation of our model’s
decisions, we performed a SHAP analysis. We focused on explaining
the classification of T-cells, a well-defined cell type with known
marker genes. The SHAP summary plot (Figure 5) reveals the top 20
genes that most significantly influenced the model’s prediction of a cell
asa T-cell.

The plot ranks genes by their global importance (mean absolute
SHAP value). Crucially, it also visualizes the relationship between a
gene’s expression level (color) and its impact on the prediction (x-axis
position). For example, high expression (red dots) of CD3D, CD3E,
and CD2 consistently produced high positive SHAP values, indicating
that their high expression strongly pushes the model’s output towards
a “T-cell” classification. Conversely, for a gene like MKI67 (a marker
for proliferation, not T-cell identity), high expression might result in
a negative SHAP value, pushing the prediction away from a T-cell
classification. The analysis unequivocally identified canonical T-cell
markers such as CD3D, CD3E, CD2, IL7R, and PTPRC (CD45) at the
top of the importance list. This provides strong, independent
validation that scReformer-BERT’s decision-making process is not
only accurate but also grounded in established cell biology, learning
the very same gene signatures that human experts use for
cell annotation.

4 Discussion

The central challenge in applying deep learning to scRNA-seq is
managing its immense dimensionality without resorting to
information-degrading preliminary feature selection. In this study,
we demonstrated that by leveraging the architectural innovations of
the Reformer, it is not only possible but highly advantageous to train
a Transformer-based model on the complete, unfiltered gene space.
This approach unlocks the full potential of large-scale, self-supervised
pre-training, allowing our model to learn a deep, contextual
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representation of gene expression patterns from millions of cells. The
outcome is a model that not only sets a new benchmark for
classification accuracy but, more importantly, exhibits remarkable
generalization to independent datasets—a critical test for real-world
utility. Our ablation study systematically dissected the synergy behind
this success, confirming that each design choice plays a critical and
distinct role. The Reformer architecture provided the essential
computational scalability to make analysis on the full gene set feasible.
The large-scale pre-training was identified as the single most impactful
component, responsible for embedding the rich biological context that
drives high performance and robust generalization. Finally, the
Gene2vec initialization offered a vital inductive bias, providing a
biologically informed starting point that significantly refined the
model’s performance. Crucially, this high performance is not achieved
at the cost of interpretability. The SHAP analysis provides compelling
evidence that scReformer-BERT’s decisions are driven by biologically
relevant features, such as canonical marker genes. This confirms that
the model is not merely fitting statistical noise but is learning a
coherent and meaningful representation of cellular identity. By
retaining the complete gene set, our model is empowered to discover
the complex, long-range dependencies that define cell types, moving
beyond the limitations of methods reliant on a pre-selected subset of
highly variable genes.

Beyond benchmarking, the ability to accurately and scalably
annotate cell types is a foundational prerequisite for numerous
downstream biomedical applications. For instance, tracking the
evolution of cellular states in complex diseases like cancer relies on
precise cell identification to distinguish malignant cells from the
tumor microenvironment (Eralp and Sefer, 2024). Similarly, predicting
cellular responses to therapeutics is contingent on knowing the exact
cell types being targeted (Sefer, 2025). Looking forward, the design of
next-generation therapies, such as RNA nanomedicine, requires a
deep understanding of the cellular landscape to ensure targeted
delivery and efficacy (Dwivedi et al., 2025). Our work provides a
robust and scalable tool that can empower these advanced research
endeavors by providing a reliable first step: knowing what cells
are present.

4.1 Computational cost and accessibility

A key practical consideration of our approach is the substantial
computational cost associated with the initial pre-training phase,
which required approximately 160 h on a multi-GPU system. While
this represents a significant barrier for training such a model from
scratch, we argue that this should not be viewed as a limiting factor of
the approach itself, but rather as an indicator of a paradigm shift
towards foundational models in single-cell genomics.

This intensive pre-training is a one-time, upfront investment to
create a powerful, general-purpose resource that captures a deep,
transferable understanding of gene expression patterns across a vast
biological landscape. The true utility for the broader research
community lies not in replicating this pre-training, but in
downloading the resulting pre-trained model—which we will make
publicly available—and efficiently fine-tuning it on their specific,
often smaller-scale datasets. As demonstrated, this fine-tuning
process is highly accessible, requiring only a single GPU and a few
hours of computation. This “pre-train once, fine-tune many”
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FIGURE 5
SHAP analysis for T-cell classification. (A) SHAP summary plot. (B) Bar chart of mean absolute SHAP values. Horizontal axis (SHAP value): Positive values
(>0) mean that this gene’s expression level pushed the prediction towards classifying the cell as a T-cell. Negative values (<0) mean the gene’s
expression pushed the prediction away from a T-cell classification.

paradigm, which has proven transformative in fields like natural
language processing (e.g., BERT) and computer vision, holds
immense promise for genomics. It democratizes access to the power
of large-scale models, allowing individual labs to achieve state-of-
the-art results without needing access to supercomputing resources.
Future work could further enhance accessibility through techniques
like model distillation, creating smaller, more efficient versions of
scReformer-BERT for deployment in even more resource-
constrained environments.

4.2 Limitations and future work

Our work establishes a robust and generalizable foundation for
large-scale single-cell analysis. The current scope of this foundational
work naturally defines the next frontiers for research and application.
The current work focused on establishing the efficacy of the
scReformer-BERT architecture for first-tier cell type classification.
While this study focused on establishing the classification performance
of scReformer-BERT, a crucial next step is to leverage the model for
biological discovery. Building on this successful foundation, the next
logical step is to scale its application to a wider array of tissues, disease
states (e.g., cancer), and species. Concurrently, we aim to extend the
framework beyond classification to address continuous biological
questions, such as trajectory inference and predicting
perturbation outcomes.

Our SHAP analysis confirmed the model’s ability to learn
biologically relevant features, providing essential validation. A

compelling future direction is to perform a deeper analysis of the

Frontiers in Artificial Intelligence

internal attention mechanisms to uncover novel, context-dependent
gene-gene interactions that the model uses for prediction, potentially
revealing new regulatory pathways.

In future work, we aim to incorporate additional techniques, such
as graph neural networks for PPI data, integration of multi-modal
data, and more explicit incorporation of biological background
knowledge, to improve the generalizability and interpretability of our
model. At the same time, we plan to focus more on the downstream
tasks relevant to our dataset and others, such as identifying cell type
alterations in disease or development, to better align with broader
research objectives.

5 Conclusion

In this study, we leveraged a comprehensive heart dataset to
address key challenges, using the Transformer-based variant
Reformer as the encoder. We performed self-supervised pre-training
on a very large external corpus of unsupervised data, then fine-tune
the model with supervised labels to achieve gene embeddings and
first-level classification of cardiac cells. Our classifier effectively
predicted cell major cell categories in heart tissue with enhanced
accuracy in single-cell analysis. Our model’s strengths lie in its
innovative embedding and classification approach, leveraging the
Reformer architecture to efficiently process high-dimensional
scRNA-seq data. By converting gene expressions into discrete values
and incorporating positional encoding, the model enhances the
representation of gene interactions and expression patterns. The use
of PPI networks and Gene2vec further enriches gene embeddings,
while random masking and reconstruction loss improve robustness.
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Self-supervised pre-training with large-scale unlabeled data
followed by fine-tuning on labeled data ensures the model can
effectively classify first-tier cell types with high accuracy. This
combination of techniques allows the model to handle complex
biological data efficiently, making it a powerful tool for major cell
type classification.
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