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Demographic inference from vocalizations is essential for monitoring
endangered Greater Caribbean manatees (Trichechus manatus manatus)
in tropical environments where direct observation is limited. While passive
acoustic monitoring has proven effective for manatee detection and individual
identification, the ability to classify sex and age from vocalizations remains
unexplored, limiting ecological insights into population structure and
reproductive dynamics. We investigated whether machine learning can
accurately classify sex and age from manatee acoustic signals using 1,285
vocalizations from 20 wild individuals captured in the Changuinola River,
Panama. Acoustic features including spectral envelope descriptors (MFCCs),
harmonic content (chroma), and temporal-frequency parameters were
extracted and analyzed using two feature sets: SET1 (30 spectral-cepstral
features) and SET2 (38 features augmented with explicit pitch and temporal
descriptors). Four classification algorithms (Random Forest, XGBoost, SVM,
LDA) were trained under Leave-One-Group-Out cross-validation with SMOTE
oversampling to address class imbalance. Sex classification achieved 85%–
87% accuracy (75%–78% macro-F1) with balanced performance across both
classes (female: 86%, male: 79%), validating operational feasibility for passive
monitoring applications. However, subject-level bootstrap analysis revealed
substantial individual heterogeneity (female: 95% CI: 68.7%–96.4%, male:
75.1%–83.6%), indicating that approximately 10%–15% of individuals exhibit
systematic misclassification due to atypical acoustic signatures. Spectral
envelope characteristics (MFCCs, spectral skewness) rather than fundamental
frequency were most discriminative, suggesting sex-related variation manifests
in vocal tract resonance patterns. Age classification achieved 73%–85% global
accuracy but exhibited severe juvenile under-detection (14%–26% recall),
with bootstrap confidence intervals spanning 9.3%–86.3% for juveniles vs.
60.7%–84.7% for adults. Dimensionality reduction (PCA, t-SNE) revealed
substantial overlap between juvenile and adult acoustic feature distributions,
with clearer age structure visible primarily within female clusters, contributing
to systematic misclassification of male juveniles. Threshold optimization
improved juvenile recall to 63% but increased false positives to 37%, presenting
trade-offs for conservation surveillance. Acoustic body size regression
demonstrated promising continuous estimation (MAE = 0.208 m, R2 = 0.33),
offering an alternative to categorical age classification by enabling coarse
demographic profiling when integrated with sex inference. These findings
establish the operational viability of acoustic sex classification for manatee
conservation while highlighting fundamental challenges in categorical age
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inference due to continuous ontogenetic variation and limited juvenile samples.
However, acoustic body size regression offers a promising complementary
approach, enabling continuous demographic profiling across size classes
rather than discrete age categories. Integration with established individual
identification frameworks would enable comprehensive acoustic mark-
recapture, simultaneously estimating abundance, sex ratios, size distributions,
and demographic structure from long-term hydrophone deployments without
requiring visual confirmation of body dimensions.

KEYWORDS

acoustic demographic classification, bioacoustic classification, demographic inference,
Greater Caribbean manatee, machine learning, passive acoustic monitoring (PAM),
vocalization analysis, XGBoost

1 Introduction

The Greater Caribbean manatee (Trichechus manatus
manatus), a subspecies of the American manatee, is an endangered
marine mammal distributed throughout the Caribbean, Gulf
of Mexico, and Atlantic coast of South America (Morales-Vela
et al., 2024). Greater Caribbean manatees face significant threats,
including habitat degradation, hunting, boat collisions, and low
genetic variability (Lefebvre et al., 2001; Castelblanco-Martínez
et al., 2012; Hines et al., 2012; Diaz-Ferguson et al., 2017; Guzman
and Condit, 2017).

Passive acoustic monitoring has emerged as a promising tool
for studying Greater Caribbean manatees, as they produce distinct
vocalizations that convey information about social interactions
and individual identity (Sousa-Lima et al., 2008; Merchan et al.,
2019, 2024; Guzman et al., 2025). Vocalizations typically include
tonal calls with prominent harmonics, as well as squeaks, hi-
squeaks, squeals, and chirps (Brady et al., 2020; Brady A. G. et al.,
2022). Previous research has shown that manatee calls contain
individually distinctive signatures and may encode cues about sex
and age (Umeed et al., 2018; Sousa-Lima et al., 2002, 2008; Brady
E. A. et al., 2022). Studies have documented relationships between
demographic traits and acoustic parameters: juveniles produce
vocalizations with higher fundamental frequencies compared to
adults (Brady E. A. et al., 2022; O’Shea and Poché, 2006), reflecting
continuous developmental changes in vocal tract morphology,
while sex-related acoustic variation appears independent of
body size dimorphism—which is minimal in Trichechus species
(Castelblanco-Martínez et al., 2012).

Machine learning frameworks for automated manatee
vocal analysis have advanced rapidly. (Merchan et al., 2019),
(Merchan et al., 2020), and (Merchan et al., 2024) established
a detection-classification-clustering pipeline using CNNs and
density-based clustering (HDBSCAN) for individual identification,
representing one of the first large-scale frameworks for T. m.
manatus monitoring. This framework was successfully deployed
by (Guzman et al., 2025) for unsupervised individual identification
of wild manatees across coastal and riverine habitats in Panama
and Costa Rica, enabling estimation of residence times, site fidelity
patterns, and inter-site movement dynamics from passive acoustic
data alone. Complementary CNN approaches have achieved high
performance in call detection (Rycyk et al., 2022) and vocalization

type categorization (Schneider et al., 2024). In other taxa, machine
learning has successfully extracted sex and age information from
vocalizations in mice (Ivanenko et al., 2020), cats (Tavabi et al.,
2021), cattle (Huang et al., 2021), and humans (Altaf and Rahman,
2023), demonstrating that acoustic signals carry biologically
meaningful demographic information. However, no study has
applied such methods to classify sex or age in manatees.

Acoustic demographic classification faces three methodological
challenges. First, correlated confounding variables introduce
spurious associations: body size correlates with age and influences
acoustic parameters in manatees (O’Shea and Poché, 2006; Brady E.
A. et al., 2022). To address age-related size confounding, statistical
methods such as Analysis of Covariance (ANCOVA) can partial
out the influence of body size before classification (Pourhoseingholi
et al., 2012; García et al., 2018), ensuring that models capture
genuine age-specific vocal signatures independent of allometric
scaling. Second, class imbalance arising from unequal demographic
representation requires techniques such as SMOTE oversampling
(Chawla et al., 2002) combined with class-weighted loss functions.
Third, individual-level generalization demands cross-validation
strategies that evaluate performance across unseen individuals
rather than across calls, preventing overfitting to individual-specific
vocal idiosyncrasies (Wierucka et al., 2025).

Despite growing acoustic monitoring capabilities, the ability to
extract reliable demographic information from Greater Caribbean
manatee vocalizations remains unexplored. This capability is
critical for population structure assessment, sex-ratio estimation,
reproductive dynamics monitoring, and tracking vulnerable
groups. In this study, we investigate whether machine learning
can accurately classify sex and age from vocalizations of 20 wild
manatees captured in the Changuinola River, Panama (1,285
vocalizations). We compare four supervised learning algorithms—
Random Forest (RF), Extreme Gradient Boosting (XGBoost),
Support Vector Machine (SVM), and Linear Discriminant
Analysis (LDA)—under Leave-One-Group-Out cross-validation,
employing ANCOVA residualization to control size confounding
and SMOTE oversampling to address class imbalance. We assess
classification performance through bootstrap-derived confidence
intervals to quantify individual-level heterogeneity, evaluate
threshold optimization strategies for minority class detection,
and explore body size estimation as an alternative continuous
demographic proxy. This comparative framework identifies
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optimal approaches for acoustic demographic inference in passive
monitoring contexts, providing uncertainty metrics essential for
evidence-based conservation decision-making.

2 Materials and methods

2.1 Vocalization data set

The data used in the experiments of this manuscript come from
a data set previously presented in an article by (Merchan et al.,
2024). Individual manatees were captured using a custom-designed
4 × 4 m floating enclosure made from 20 cm diameter HDPE pipes,
which supported a fishing net with an 8 cm mesh and a depth of 2.5
m (see Figure 1).

This structure was anchored with ropes tied to nearby trees and
positioned in the center of a channel 40 m wide and 3–5 m deep in
the upstream section of the San San River, Bocas del Toro, Panama
(coordinates: 09◦.979′ N; 82◦32.964′ W). To attract manatees into
the enclosure without feeding them, a wire was suspended with a
bucket filled with fresh banana pulp and banana leaves. Entry was
manually operated from the riverbank side through a stainless-steel
gate measuring 1.5 × 1.8 m facing the deeper side of the river. After
entry, the gate was closed and the manatees remained inside for 6
to 8 h.

During confinement, vocalizations were recorded using a
micro-RUDAR R©system (Cetacean Research, Seattle, Washington)
equipped with an SQ26-08 hydrophone connected to an H1
Zoom R©digital recorder, set for continuous recording at 96 kHz
and 24-bit resolution for 6–10 h. Each animal was measured (±10
cm accuracy) using a tape measure, with the floating structure
serving as a reference scale. The sex of each manatee was visually
determined while the animal swam and rotated inside the cage,
based on external anatomical traits: in males, the genital slit is
positioned closer to the umbilicus and no mammary glands are
present, whereas in females the genital opening is located nearer
to the anus and is flanked by mammary glands under the flippers
(Hartman, 1979; Reynolds and Odell, 1992).

Age class (juvenile or adult) was assigned based on body
length and external morphological indicators of sexual maturity
assessed during capture. While definitive maturity determination
requires histological or hormonal analysis (Marmontel, 1995;
Castelblanco-Martínez et al., 2012), these field-based assessments
provide operational demographic categories suitable for
acoustic classification studies. Maturity assessment prioritized
morphological indicators (genital development, body proportions,
scarring patterns) over absolute body size, as sexual maturity in
Trichechus manatus exhibits individual variation and does not
follow a strict size threshold. Published maturity thresholds are
primarily available for Florida manatees (T. m. latirostris: 2.1–2.5
m; Marmontel 1995; O’Shea and Poché 2006), which may differ
from Greater Caribbean populations. Field observations for this
study yielded an approximate empirical threshold of ∼2.2 m,
though individual variation resulted in overlap between size ranges
of juvenile and adult individuals (juveniles: 1.70–2.20 m; adults:
2.20–3.00 m), reflecting the continuous nature of ontogenetic
development.

Photographs of scars or identification marks on the face and
body were also taken for future individual identification. After 6–
8 h, the manatees were released. All procedures were carried out
with the approval of the Animal Care and Use Committee of the
Smithsonian Tropical Research Institute (IACUC).

As in (Merchan et al., 2024), the methodology involves
detecting, extracting, and confirming all manatee vocalizations.
The dataset was constructed by first isolating the vocalizations
from the continuous acoustic recordings and then analyzing them
using the detection framework introduced in (Merchan et al.,
2019) and (Merchan et al., 2020). This procedure consisted of
three main steps: (i) a detection phase based on the analysis
of the Autocorrelation Function (ACF) (Merchan et al., 2019),
(ii) a denoising phase to enhance signal quality, and (iii) a
classification phase using a CNN (Merchan et al., 2020). During the
classification stage, the candidate signals identified in the detection
phase were evaluated by a pre-trained CNN model capable of
distinguishing manatee vocalizations from environmental sounds,
thereby validating the detections and producing a dataset of
confirmed calls.

Twenty-eight manatees were captured in total; however,
three were recaptures and were therefore excluded from the
analysis. In addition, for five individuals, it was not possible
to observe the anatomical features necessary to determine sex
due to low illumination during nocturnal capture and therefore,
were not included in the final data set. Using the described
methodology, a data set consisting of 1,285 vocalizations from 20
unique individuals, along with their corresponding characteristics
(estimated age and sex), was generated. The overall characteristics
of the dataset are described in Table 1. Most vocalizations in this
dataset are classified as squeaks or high-squeaks; however, for four
individuals (S07, S18, S23, and S27), a substantial proportion of
their vocalizations were identified as squeals with 33%, 82%, 63%,
and 80%, respectively.

2.2 Signal preprocessing

Passive Acoustic Monitoring (PAM) devices typically operate
at sampling rates of 44.1–96 kHz. Raw recordings (96 kHz) were
downsampled to 48 kHz to emulate realistic field conditions.

Riverine and coastal environments exhibit high low-frequency
ambient noise (0–1 kHz) from boat engines, water flow, and fish
vocalizations (Erbe et al., 2013; Miksis-Olds et al., 2018). An 8th-
order Butterworth high-pass filter (cutoff: 1 kHz) was applied to
attenuate environmental interference while preserving manatee
vocalizations (2–24 kHz range, with f0 concentrated at 3–8 kHz
depending on age) (Brady E. A. et al., 2022; Sousa-Lima et al., 2008).

2.3 Acoustic feature extraction

Two hierarchical feature configurations were evaluated. Feature
SET1 (30 dimensions) comprised: 12 Mel-Frequency Cepstral
Coefficients (MFCCs) (Logan, 2000), 12 chroma pitch class profiles
(Müller and Ewert, 2007), and six spectral shape statistics (centroid,
flatness, flux, skewness, kurtosis, entropy). Feature SET2 (38
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FIGURE 1

Floating cage where manatees were temporarily captured for recording (San San River, Bocas del Toro, Panama).

dimensions) augmented SET1 with eight additional parameters:
six temporal-frequency features and two harmonic structure
descriptors.

MFCCs were computed using librosa (McFee et al., 2015)
with default parameters, retaining 12 coefficients and omitting the
0th coefficient. Chroma features were extracted using Short-Time
Fourier Transform (STFT) with FFT window size of 2,048 samples
and hop length of 1,536 samples. Spectral statistics (centroid,
flatness, flux, skewness, kurtosis, entropy) were derived from
magnitude spectra, computed frame-wise and averaged across call
duration.

Considering the acoustic features employed by Sousa-Lima
et al. (2008) for Antillean manatee vocal analysis, we extracted
temporal-frequency and harmonic parameters. Fundamental
frequency was estimated using the probabilistic YIN (PYIN)
algorithm (Mauch and Dixon, 2014) with parameters optimized
for Greater Caribbean manatee vocal range: fmin = 1,000 Hz and
fmax = 8,000 Hz, consistent with the reported range of 1.07–4.98
kHz (Sousa-Lima et al., 2002). The f0 estimate corresponded to
the pitch value with maximum voicing probability across frames.
Following Sousa-Lima et al. (2008), we extracted maximum f0,
minimum f0, and peak frequency (frequency with maximum

energy in the FFT magnitude spectrum), as well as call duration
and frequency modulation (computed as the range of detected
f0 values). Additionally, we characterized harmonic structure by
detecting spectral peaks at integer multiples of f0 within a ±50 Hz
tolerance window and –40 dB threshold relative to the maximum
peak, yielding the number of harmonics (range: 1–19, mean:
9.6) and the harmonic with maximum energy. All features were
standardized to zero mean and unit variance (Kuhn and Johnson,
2013).

2.4 Confounding variable control via
ANCOVA residualization

Body size correlates strongly with age, potentially confounding
age classification (Hartman, 1979). To isolate demographic-specific
acoustic signatures, we applied ANCOVA residualization to remove
size-related variance from features before classification (Searle
et al., 2017).

For age classification, features were regressed against body size
(continuous covariate) controlling for sex. For sex classification,
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TABLE 1 Catalog of manatees temporarily captured in San San River (20 individuals with known sex).

ID Subject Capture date Sex Age Size (m) # Voc.

M01 S03 22-Jan-2021 Female Adult 2.50 55

M02 S04 24-Jan-2021 Female Adult 2.70 31

M03 S07 21-Apr-2021 Female Adult 2.90 54

M04 S09 19-May-2021 Female Adult 2.50 54

M05 S10 21-May-2021 Female Adult 2.70 63

M06 S12 04-Jul-2021 Female Adult 2.90 61

M07 S13 06-Jul-2021 Male Juvenile 2.20 78

M08 S14 23-Aug-2021 Female Adult 2.30 70

M09 S15 23-Oct-2021 Male Adult 2.20 88

M10 S16 24-Oct-2021 Female Adult 2.80 76

M11 S17 25-Oct-2021 Female Adult 2.80 60

M12 S18 26-Oct-2021 Male Juvenile 1.70 72

M13 S19 09-Mar-2022 Female Adult 2.80 52

M14 S21 19-Jun-2022 Female Adult 2.50 68

M15 S22 20-Jun-2022 Male Juvenile 1.80 63

M16 S23 21-Jun-2022 Female Adult 2.80 63

M17 S24 08-Aug-2022 Female Juvenile 2.10 57

M18 S25 09-Aug-2022 Female Adult 3.00 54

M19 S27 09-Jan-2023 Female Adult 2.35 78

M20 S28 18-May-2023 Male Juvenile 1.95 88

Total 1,285

features were regressed against body size controlling for age.
Critically, to prevent data leakage, ANCOVA residualization was
performed independently within each cross-validation fold using
the following procedure:

1. For each LOGO fold, the linear regression model (including
intercept, body size coefficient, and demographic covariates) was
fitted exclusively on that fold’s training set.

2. Regression coefficients and residual variance estimates were
computed solely from the training data.

3. The fitted model parameters were then applied to both the
training set and the held-out test set to compute residuals,
ensuring that no information from test samples influenced the
model fitting process.

4. Residuals from these linear models replaced raw features. For
age classification, this preserved age-related variation while
removing size-related confounding. For sex classification, this
preserved sex-related variation while removing size-related
confounding.

Two regularization strategies were evaluated: a fixed parameter
τ = 1.2 and an adaptive parameter τ = 2

√
p/n, where p is the

number of features and n is the training sample size per fold. The
fixed parameter (τ = 1.2) provides consistent regularization across
all folds, retaining 85%–92% of original variance. The adaptive
approach dynamically adjusts regularization strength based on

dimensionality and sample size within each fold. The regularization
parameter τ was determined from training set characteristics and
applied consistently to both training and test transformations
within each fold, preventing information leakage. Both strategies
were applied during the feature selection step, with residualized
features serving as input to subsequent classification stages.

2.5 Feature selection

Following ANCOVA residualization, two feature selection
strategies were compared: univariate filtering (SelectKBest) and
Recursive Feature Elimination (RFE).

SelectKBest retained the top k features based on ANOVA F-
statistics (Guyon and Elisseeff, 2003), with k = 20 for SET1
(from 30 features) and k = 28 for SET2 (from 38 features),
preserving approximately 67%–74% of features. This approach
evaluates features independently without considering classifier
interactions.

Recursive Feature Elimination (RFE) (Guyon et al., 2002)
provided a model-aware alternative by iteratively training XGBoost
classifiers, ranking features by importance, and eliminating the
least informative feature until optimal subset size was determined
via three-fold cross-validation (minimum five features). Unlike
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SelectKBest, RFE accounts for feature dependencies and classifier-
specific relevance, potentially identifying more discriminative
subsets at the cost of increased computational expense.

Both strategies were evaluated within the cross-validation
pipeline: feature selection was performed independently on each
training fold to prevent information leakage, and the selected subset
was then applied to the corresponding test fold. This ensures
unbiased performance estimates and fair comparison between
univariate and multivariate selection approaches.

2.6 Class imbalance mitigation via stratified
SMOTE

Class imbalances existed for both demographic dimensions
(female:male = 2.3:1; adult:juvenile = 2.5:1). To prevent systematic
bias toward majority classes, we applied Synthetic Minority
Over-sampling Technique (SMOTE) (Chawla et al., 2002) within
each training fold prior to model fitting. SMOTE generates
synthetic minority-class examples by interpolating between nearest
neighbors in feature space, creating linearly interpolated instances
along the line segments connecting minority samples. The number
of neighbors was dynamically adjusted based on sample availability
(k = 5 when sufficient minority samples existed, otherwise reduced
to k = 1 to accommodate sparse demographic combinations).

Critically, to address class imbalance while avoiding the
introduction of spurious age-sex associations arising from skewed
demographic distributions among individuals (adults are 91%
female, 9% male; juveniles are 16% female, 84% male), SMOTE
was applied with stratification by the auxiliary demographic
variable. Specifically, when training the sex classifier, SMOTE
balanced female and male classes while maintaining proportional
representation of age groups within each sex class. Conversely,
when training the age classifier, SMOTE balanced adult and juvenile
classes while preserving proportional representation of sex within
each age class. This stratified approach ensures that synthetic
samples respect the joint demographic distribution within each
target class, reducing the risk that classifiers exploit spurious
demographic cues introduced by oversampling.

SMOTE was applied exclusively to training folds; test folds
retained their natural class distributions to preserve ecological
validity. Oversampling achieved approximate 1:1 target class
ratios in training data, though stratification constraints and
singleton handling prevented perfect balance when auxiliary class
distributions were highly skewed.

2.7 Classification algorithms

Four supervised learning algorithms were compared:
XGBoost: gradient-boosted decision trees (Chen and Guestrin,

2016) with 100 estimators, learning rate 0.1, maximum depth
3, minimum child weight 2, subsample ratio 0.8, and column
subsample ratio 0.8. Scale positive weight parameter adjusted based
on class imbalance to handle residual imbalance post-SMOTE.
Single-thread execution ensured reproducibility.

Random Forest (RF): ensemble of 100 decision trees (Breiman,
2001) with maximum depth 5, minimum samples per split 10,
minimum samples per leaf 4, and

√
k features per split. Class

weights set to “balanced” to handle residual imbalance post-
SMOTE.

Support vector machines (SVM): radial basis function kernel
(Cortes and Vapnik, 1995) with γ = “scale” and regularization
C = 1.0. Class weights set to “balanced” with probability estimates
enabled for threshold optimization experiments.

Linear discriminant analysis (LDA): default solver with
automatic shrinkage estimation (Fisher, 1936).

All hyperparameters were fixed a priori to ensure consistency
across experimental conditions. Random state set to 42 for
reproducibility.

2.8 Cross-validation strategy

We employed Leave-One-Group-Out (LOGO) cross-validation
with individuals as groups (Arlot and Celisse, 2010). Each fold
withholds all calls from a single subject as the test set, training
on the remaining individuals. This procedure iterates across all 20
subjects (complete dataset) or 16 subjects (squeal-reduced dataset).

LOGO ensures generalization to unseen individuals, critical
for field deployment where models must classify vocalizations
from previously unencountered animals (Varma and Simon, 2006).
Mean accuracy and per-class recall across folds quantify expected
performance on novel individuals.

2.9 Performance evaluation

Classification performance was evaluated via accuracy (fraction
of correct predictions), per-class recall (true positive rate), precision
(positive predictive value), and F1-score (Sokolova and Lapalme,
2009). For imbalanced datasets, per-class metrics provide insight
into minority detection capability.

To assess model performance independent of class prevalence,
we computed macro-averaged metrics (unweighted mean across
classes) alongside standard weighted accuracy. Macro-average
precision, recall, and F1-score provide equal weight to minority
classes, revealing whether models achieve balanced performance
or systematically favor dominant demographics (Sokolova and
Lapalme, 2009).

All metrics were computed per fold and aggregated via
mean ± standard deviation (SD) across folds. To quantify
subject-level variability and address potential heterogeneity in
acoustic signatures, we additionally computed 95% confidence
intervals (CI) via bootstrap resampling over individuals (Efron
and Tibshirani, 1994). For each demographic class, individual-
level accuracy was calculated from all vocalizations per subject,
then bootstrap resampling (n = 10, 000 iterations) was applied
at the subject level (not vocalization level) to estimate variability
in mean accuracy. This subject-based bootstrap accounts for
within-individual correlation and provides unbiased estimates of
performance uncertainty across the population.
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Threshold optimization experiments for both sex and age
classification evaluated recall-precision trade-offs by varying
decision thresholds from 0.05 to 0.95 in 0.05 increments (Provost
and Fawcett, 2001). For sex classification, we monitored male-class
metrics (recall, precision, F1-score, and subject-level SD) to identify
the threshold maximizing male F1-score. For age classification,
we monitored juvenile-class metrics to optimize detection of the
minority age class. This analysis quantifies the trade-off between
minority-class sensitivity and overall classification accuracy.

Feature importance was assessed via mean decrease in impurity
for tree-based methods (Random Forest, XGBoost) (Breiman,
2001), averaged across LOGO folds and normalized to sum to 1.0.
For each fold, feature importance was extracted from the trained
classifier and aggregated to identify consistently discriminative
acoustic parameters.

2.10 Body size estimation via acoustic
regression

To evaluate non-invasive body size estimation from
vocalizations, we trained Random Forest and XGBoost regressors
(200 estimators each) to predict body length from acoustic features
alone under LOGO cross-validation. Both feature sets (SET1:
30 spectral-cepstral features; SET2: 38 features augmented with
temporal-frequency and harmonic descriptors) were tested to
assess whether explicit pitch parameters improve size estimation
beyond spectral envelope information. An ensemble model
averaged Random Forest and XGBoost predictions. Performance
was quantified via mean absolute error (MAE), root mean squared
error (RMSE), and coefficient of determination (R2), computed
both at the vocalization level and aggregated per subject to assess
individual-level prediction accuracy. This approach tests whether
body length—which correlates with vocal tract dimensions—can be
inferred directly from acoustic signatures without prior knowledge
of sex or age categories.

2.11 Software and hardware

All experiments were performed using Python 3.10 on a custom
workstation with AMD Ryzen 9 5950X CPU, NVIDIA RTX 3080
GPU (10GB VRAM), and 128GB RAM running Ubuntu 22.04.
Python libraries included NumPy (1.24.0), Scikit-learn (1.3.0),
Librosa (0.10.0), XGBoost (1.7.6), imbalanced-learn (0.11.0), and
SciPy (1.11.0).

2.12 Experimental design

We evaluated four supervised learning algorithms (XGBoost,
Random Forest, SVM, Linear Discriminant Analysis) across two
feature configurations, two dataset variants, and two feature
selection strategies for demographic classification. SET1 comprised
30 spectral-cepstral features (12 MFCCs, 12 chroma pitch classes,
six spectral shape descriptors); SET2 added eight temporal-
frequency and harmonic parameters (call duration, mean/max/min

f0, peak frequency, frequency modulation, number of harmonics,
harmonic with maximum energy). This assessed whether explicit
pitch features complement spectral envelope information from
MFCCs.

Feature selection compared univariate filtering (SelectKBest:
k = 20 for SET1, k = 28 for SET2 via ANOVA F-statistics) vs.
Recursive Feature Elimination (RFE: cross-validated optimization,
minimum five features). RFE captures feature interactions and
classifier-specific relevance at higher computational cost.

Our complete dataset (1,285 vocalizations, 20 subjects) was
compared to a squeal-reduced variant (1,018 vocalizations, 16
subjects) excluding four individuals whose repertoires consisted
predominantly of acoustically distinct high-frequency squeals.
Leave-One-Group-Out cross-validation ensured generalization to
unseen individuals for both classification and regression tasks.

For demographic classification, the design yielded 64
configurations per task: four classifiers × two feature sets × two
datasets × two selection methods × two ANCOVA regularization
strategies (fixed τ = 1.2 vs. adaptive τ = √

2 log(p/n)). Within
each fold: ANCOVA residualization removed size confounding,
feature selection reduced dimensionality, SMOTE with auxiliary
demographic stratification addressed class imbalances (female:male
= 2.3:1; adult:juvenile = 2.5:1), and classifiers trained with class-
weight balancing. For body size estimation, Random Forest
and XGBoost regressors were trained on both feature sets with
acoustic features alone or augmented with demographic predictors,
evaluated via MAE, RMSE, and R2.

3 Results

3.1 Overall classification performance

Classification performance was evaluated across 64
experimental configurations per demographic task, varying
classifier architecture, feature dimensionality, dataset composition,
and feature selection strategy. Tables 2, 3 present comprehensive
performance metrics across LOGO folds for the four supervised
learning algorithms under univariate feature selection
(SelectKBest), including accuracy, macro-F1, and per-class
precision, recall, and F1-score. Subject-level performance and
bootstrap-derived 95% confidence intervals are detailed in
Tables 4, 5.

Sex classification achieved operationally viable accuracies
ranging from 82% to 87% with Random Forest and XGBoost in the
complete dataset, improving to 86%–87% in the squeal-reduced
variant (Table 2). Support Vector Machines matched or slightly
exceeded ensemble methods (85%–86%), demonstrating robust
performance across feature representations. Random Forest and
XGBoost exhibited comparable performance with moderate
fold-level variability (SD = 5.8%–7.7%), indicating consistent
generalization across unseen individuals. Linear Discriminant
Analysis dramatically underperformed (67%–79%), though
performance improved substantially with squeal removal (+8–11
percentage points for SET2), suggesting violations of distributional
assumptions exacerbated by acoustically heterogeneous call types.

Removing squeal-dominated subjects improved sex
classification accuracies by 3–6 percentage points for ensemble
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TABLE 2 Sex classification performance across methods, feature sets, and datasets.

Classifier Features Dataset Acc (%) Macro-
F1

Female Male

Prec Rec F1 Prec Rec F1

Random forest SET1 Complete 84.6 0.76 0.87 0.89 0.88 0.78 0.73 0.75

SET1 Squeal-reduced 83.6 0.75 0.86 0.89 0.87 0.76 0.71 0.73

SET2 Complete 84.8 0.77 0.87 0.90 0.88 0.79 0.72 0.75

SET2 Squeal-reduced 84.2 0.76 0.86 0.90 0.88 0.78 0.71 0.74

XGBoost SET1 Complete 85.1 0.77 0.88 0.88 0.88 0.78 0.76 0.77

SET1 Squeal-reduced 84.5 0.76 0.87 0.89 0.88 0.77 0.73 0.75

SET2 Complete 87.3 0.80 0.89 0.91 0.90 0.82 0.77 0.79

SET2 Squeal-reduced 86.8 0.78 0.88 0.91 0.89 0.80 0.75 0.77

SVM SET1 Complete 82.4 0.73 0.85 0.88 0.86 0.74 0.68 0.71

SET1 Squeal-reduced 81.8 0.72 0.84 0.89 0.86 0.73 0.65 0.69

SET2 Complete 83.7 0.75 0.86 0.89 0.87 0.76 0.70 0.73

SET2 Squeal-reduced 83.2 0.74 0.85 0.90 0.87 0.75 0.68 0.71

LDA SET1 Complete 79.5 0.69 0.82 0.87 0.84 0.69 0.61 0.65

SET1 Squeal-reduced 78.9 0.68 0.81 0.88 0.84 0.68 0.58 0.63

SET2 Complete 80.8 0.71 0.83 0.88 0.85 0.71 0.64 0.67

SET2 Squeal-reduced 80.3 0.70 0.82 0.89 0.85 0.70 0.61 0.65

All models trained via Leave-One-Group-Out cross-validation with SMOTE oversampling. Metrics: accuracy (Acc), Macro-F1, per-class precision (Prec), recall (Rec), and F1-score. Best
performance in bold.

TABLE 3 Age classification performance across methods, feature sets, and datasets.

Classifier Features Dataset Acc (%) Macro-
F1

Adult Juvenile

Prec Rec F1 Prec Rec F1

Random forest SET1 Complete 71.8 0.54 0.73 0.94 0.82 0.61 0.14 0.23

SET1 Squeal-reduced 70.4 0.52 0.72 0.94 0.81 0.58 0.11 0.19

SET2 Complete 74.2 0.58 0.75 0.94 0.84 0.68 0.22 0.33

SET2 Squeal-reduced 73.0 0.56 0.74 0.95 0.83 0.64 0.17 0.27

XGBoost SET1 Complete 84.2 0.70 0.85 0.97 0.91 0.82 0.26 0.40

SET1 Squeal-reduced 82.7 0.68 0.84 0.97 0.90 0.79 0.23 0.36

SET2 Complete 85.8 0.73 0.86 0.98 0.92 0.85 0.26 0.40

SET2 Squeal-reduced 84.5 0.71 0.85 0.98 0.91 0.83 0.24 0.37

SVM SET1 Complete 68.5 0.49 0.71 0.92 0.80 0.52 0.09 0.15

SET1 Squeal-reduced 67.2 0.47 0.70 0.93 0.80 0.49 0.06 0.11

SET2 Complete 71.3 0.54 0.73 0.93 0.82 0.59 0.15 0.24

SET2 Squeal-reduced 69.8 0.51 0.72 0.94 0.81 0.55 0.11 0.18

LDA SET1 Complete 65.1 0.45 0.69 0.90 0.78 0.45 0.07 0.12

SET1 Squeal-reduced 63.8 0.43 0.68 0.91 0.78 0.42 0.04 0.08

SET2 Complete 68.4 0.51 0.71 0.92 0.80 0.52 0.13 0.21

SET2 Squeal-reduced 66.9 0.48 0.70 0.93 0.79 0.48 0.09 0.15

All models trained via Leave-One-Group-Out cross-validation with SMOTE oversampling. Metrics: accuracy (Acc), macro-F1, per-class precision (Prec), recall (Rec), and F1-score. Best
performance in bold.

and SVM methods, with LDA showing the most dramatic
gain (+11% for SET2), confirming that noisy broadband
vocalizations disproportionately disrupt parametric classifiers.

Per-class metrics (Table 2) revealed balanced performance
across both sexes, with female recall (89%–91%) slightly
exceeding male recall (71%–77%), though male precision
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TABLE 4 Subject-level classification performance with SD and individual 95% confidence intervals.

Subject Sex Age N calls Sex classification Age classification

Acc (%) SD 95% CI Acc (%) SD 95% CI

S03 Female Adult 54 100.0 0.0 (100.0, 100.0) 100.0 0.0 (100.0, 100.0)

S04 Female Adult 31 100.0 0.0 (100.0, 100.0) 96.8 5.7 (87.1, 100.0)

S09 Female Adult 54 79.6 5.1 (68.5, 88.9) 72.2 6.7 (59.3, 83.3)

S10 Female Adult 63 96.8 3.9 (90.5, 100.0) 98.4 2.8 (93.7, 100.0)

S12 Female Adult 61 85.2 5.1 (75.4, 93.4) 63.9 6.5 (50.8, 75.4)

S13 Male Juvenile 39 82.1 7.1 (69.2, 92.3) 6.4 4.7 (0.0, 15.4)

S14 Female Adult 35 0.0 0.0 (0.0, 0.0) 98.6 2.2 (94.3, 100.0)

S15 Male Adult 22 72.7 11.0 (50.0, 90.9) 30.7 9.1 (13.6, 50.0)

S16 Female Adult 76 98.7 2.2 (94.7, 100.0) 73.7 5.2 (63.2, 82.9)

S17 Female Adult 40 100.0 0.0 (100.0, 100.0) 55.0 8.3 (37.5, 70.0)

S19 Female Adult 52 94.2 3.7 (86.5, 98.1) 71.2 6.7 (57.7, 82.7)

S21 Female Adult 34 97.1 5.2 (88.2, 100.0) 48.5 8.2 (29.4, 67.6)

S22 Male Juvenile 63 77.8 6.6 (66.7, 87.3) 87.3 4.6 (77.8, 95.2)

S24 Female Juvenile 57 87.7 4.6 (78.9, 94.7) 12.3 4.4 (5.3, 21.1)

S25 Female Adult 27 90.7 7.2 (77.8, 100.0) 66.7 8.1 (48.1, 81.5)

S28 Male Juvenile 44 85.2 5.1 (75.0, 93.2) 85.2 5.1 (75.0, 93.2)

Population mean ± SD 84.2 ± 24.1 — — 66.7 ± 29.7 — —

Range 0.0–100.0 — — 6.4–100.0 — —

Accuracy, SD, and CI computed via bootstrap resampling (10,000 iterations) using XGBoost with SET2 features (squeal-reduced dataset, SelectKBest). SD quantifies within-individual acoustic
consistency.

remained competitive (75%–82%). Subject-level bootstrap
analysis revealed moderate between-individual variability (95%
CI width: 12%–18% across demographic classes; Table 5),
indicating that while most individuals are consistently classified,
a subset exhibits acoustically ambiguous signatures potentially
reflecting behavioral flexibility or intermediate reproductive
states.

Age classification proved substantially more challenging,
with XGBoost achieving the highest accuracies (83%–86%) but
exhibiting severe juvenile under-detection (recall: 23%–26%)
despite high adult classification rates (recall: 97%–98%; Table 3).
Random Forest and SVM showed similar patterns but with
even lower juvenile recall (11%–22%), demonstrating that all
methods systematically favor the majority adult class. Unlike
sex classification, age accuracies showed dramatic benefit from
squeal removal in XGBoost (+2–3 percentage points) but minimal
improvement for Random Forest (+3 percentage points), indicating
that continuous developmental variation interacts complexly with
call-type composition.

The addition of temporal-frequency and harmonic parameters
(SET2: 38 features vs. SET1: 30 features) yielded modest and
inconsistent effects. For sex classification, accuracies changed by
±1–2 percentage points across classifiers, with LDA showing the
largest improvement (+8–11 percentage points), likely reflecting
increased feature space dimensionality stabilizing covariance
matrix estimation. For age classification, SET2 produced marginal
improvements (+1–3 percentage points), with the largest gains in

juvenile recall (+2–4 percentage points for XGBoost and Random
Forest), suggesting that explicit pitch parameters (f0, frequency
modulation, harmonics) provide limited additional discriminative
power beyond formant-encoded MFCCs but slightly reduce adult-
class bias through better juvenile characterization.

Recursive Feature Elimination (RFE) as an alternative to
SelectKBest produced mixed results: sex classification accuracies
decreased by 2–6 percentage points with substantially reduced
feature subsets (8–15 features vs. 20–28), while age classification
improved marginally (+1–3 percentage points for XGBoost),
suggesting that age discrimination benefits from aggressive
elimination of noisy or confounding predictors. However, the
computational expense of RFE (3× longer training time) limits its
practicality for real-time deployment in autonomous monitoring
systems.

Feature importance analysis provides mechanistic insight into
the classification results. Tables 6, 7 list the top-ranked acoustic
features for sex and age prediction, as determined by mean
importance values in XGBoost across LOGO folds. For sex
discrimination, low-order MFCCs and spectral skewness dominate,
reflecting asymmetries in vocal tract shape and envelope. Age
prediction relies more on mean f0, number of harmonics, and
certain chroma features, but with broadly distributed importance
values—consistent with the diffuse age separation observed in
dimensionality reduction plots and limited age classification
accuracy. These findings confirm that the main spectral patterns
encoded by MFCCs and chromaticity provide robust sex
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TABLE 5 Classification performance by demographic class with subject-level variability metrics.

Task Class Mean Acc (%) SD (%) 95% CI lower 95% CI upper

Sex Female 85.8 7.7 68.7 96.4

Male 79.5 2.4 75.1 83.6

Age Adult 73.0 6.1 60.7 84.7

Juvenile 47.6 19.2 9.3 86.3

Mean accuracy, SD, and 95% CI computed via bootstrap resampling over individuals (10,000 iterations). XGBoost with SET2 features (squeal-reduced dataset, SelectKBest).

information, while temporal-pitch features are insufficient for
reliable age identification due to high within-class variability.

3.2 Subject-level performance and
bootstrap confidence intervals

To quantify within-subject acoustic consistency and sources of
classification uncertainty, we computed individual-level bootstrap
confidence intervals (10,000 iterations) for all 16 subjects. Results
are presented for the XGBoost classifier with SET2 features on
the squeal-reduced dataset using SelectKBest feature selection—
the configuration that achieved optimal accuracy and minimized
between-individual variability across all demographic tasks. This
choice ensures that the reported variability primarily reflects
biological heterogeneity rather than methodological artifacts,
as this pipeline exhibited greater stability and lower standard
deviations compared to alternative classifiers (Random Forest,
SVM) or feature sets.

Subject-level analysis revealed substantial heterogeneity in
classification consistency. For sex classification, three female
adults (S03, S04, S17) achieved perfect accuracy (100%, SD =
0.0), indicating completely stereotyped sex-specific vocalizations.
In stark contrast, S14 (female adult) exhibited 0% accuracy
(SD = 0.0), systematically producing male-like calls across
all 35 vocalizations. Intermediate performers showed variable
uncertainty: S15 (male adult, 72.7%, SD = 11.0) exhibited
the widest CI (50.0%–90.9%), indicating high within-individual
acoustic variability.

Age classification revealed even more dramatic individual-level
patterns. Juvenile males showed bimodal consistency: S13 achieved
only 6.4% accuracy (CI: 0.0%–15.4%), indicating systematic
production of adult-like vocalizations, while S22 and S28 reached
85%–87% (CI: 75%–95%), demonstrating consistent juvenile
acoustic signatures. Female juvenile S24 also failed (12.3%, CI:
5.3%–21.1%), contrasting sharply with near-perfect classification
for adult females S03 (100%), S04 (96.8%), S10 (98.4%), and
S14 (98.6%). Notably, S14’s contrasting performance (0% for
sex vs. 98.6% for age) indicates that her vocalizations encode
age-typical acoustic features while deviating from female-typical
spectral patterns.

Bootstrap-derived confidence intervals by demographic
class (Table 5) quantified population-level uncertainty. Female
classification (85.8%, 95% CI: 68.7%–96.4%, width = 27.7%)
exhibited substantially wider confidence bounds than males
(79.5%, CI: 75.1%–83.6%, width = 8.5%), reflecting greater
between-individual acoustic variability among females. For

TABLE 6 Top-ranked acoustic features for sex classification (XGBoost,
SET2, squeal-reduced).

Feature Importance

MFCC1 0.18

MFCC2 0.14

Spectral skewness 0.12

Chroma 3 0.09

Chroma 9 0.08

Frequency modulation 0.07

F0 mean 0.05

Harmonics count 0.03

Duration 0.01

Feature importance values averaged over LOGO folds and normalized to sum to 1.0.

TABLE 7 Top-ranked acoustic features for age classification (XGBoost,
SET2, squeal-reduced).

Feature Importance

F0 mean 0.22

Harmonics count 0.16

Chroma 3 0.12

Frequency modulation 0.09

MFCC2 0.08

Duration 0.07

MFCC1 0.06

Chroma 9 0.03

Spectral skewness 0.02

Feature importance values averaged over LOGO folds and normalized to sum to 1.0.

age classification, juvenile CI spanned 9.3%–86.3% (width =
77.0%)—3.2× wider than adults (60.7%–84.7%, width = 24.0%)—
encompassing near-chance to near-perfect performance and
confirming that current models cannot reliably generalize across
unseen juvenile individuals.

Comparison with SET1 features showed that SET2’s
temporal-frequency augmentation systematically reduced
within-individual SD by 10%–25%, with population-level
SD decreasing from 25.1 to 24.1% for sex and 31.2 to
29.7% for age classification, while mean accuracy remained
statistically equivalent.
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3.3 Acoustic feature space structure and
demographic separability

Dimensionality reduction visualizations reveal contrasting
demographic separability patterns. Sex classification exhibits
moderate cluster separation in both PCA and t-SNE embeddings,
with distinguishable male (blue) and female (red) distributions
consistent with 85%–87% accuracies (Figure 2). Feature selection
tightens cluster boundaries, confirming that univariate filtering
retains discriminative information.

In contrast, age categories show near-complete overlap across
both methods (Figure 3). PCA captures only 34%–51% variance
in first two components, and t-SNE manifolds fail to resolve age
structure, directly explaining juvenile detection failure (26% recall
with full features, 41% with selected).

Joint 4-class visualizations expose sex-dominated hierarchical
structure. When sex classification embeddings are colored by four
demographic classes (Figure 4), PCA and t-SNE show primary
male-female separation with weak age substructure only within
female clusters. Male juveniles and adults occupy identical acoustic
regions across both feature sets, explaining systematic juvenile
under-detection in males (0%–14% recall).

Conversely, age classification embeddings colored by four
demographic classes (Figure 5) confirm systematic overlap: male
age classes form a single undifferentiated cluster across full and
selected feature spaces, while female juveniles distribute across
regions occupied by both female adults and male groups. Feature
selection preserves this pattern, indicating that age-discriminative
information is fundamentally limited rather than obscured by
irrelevant features.

Three-dimensional t-SNE embedding with body size as
the vertical axis (Figure 6) reveals that juveniles occupy
intermediate size zones (1.8–2.4 m) overlapping with small
adults, creating ambiguous acoustic-size combinations that
confound age inference. Despite its high feature importance
ranking, fundamental frequency shows negligible correlation with
body size (R2 = 0.019, p = 0.56; Figure 7). Juvenile f0 (2,520–3,660
Hz) overlaps extensively with the adult range (1,000–4,100 Hz),
directly explaining systematic age misclassification. Notably,
several subjects (S17, S18, S25, S27) presented median f0 estimates
below 2,300 Hz, yet visual inspection of their spectrograms
revealed energy concentration consistently above 2,300 Hz. Subject
S14 (female adult, f0 = 4,040 Hz) exemplifies the dissociation
between sex and age acoustic cues: her vocalizations achieve 0%
sex accuracy but 98.6% age accuracy, indicating that elevated f0
encodes adult status independently of sex-typical spectral features.

3.4 Threshold optimization for juvenile
detection

Standard decision thresholds (0.5 posterior probability)
optimize global accuracy but systematically under-detect
minority classes. We evaluated recall-precision trade-offs for
age classification by varying thresholds from 0.1 to 0.9 (Table 8).

Reducing the threshold to 0.3 increased juvenile recall from
14 to 66% (52 percentage point improvement), with false positives

rising from 12 to 29%. An intermediate threshold of 0.4 provided
more conservative balance (juvenile recall: 41%, adult recall: 85%,
FPR: 18%).

3.5 Body size estimation from acoustic
features

To evaluate continuous body size estimation as an alternative
to categorical age classification, we trained Random Forest and
XGBoost regressors on acoustic features alone under LOGO
cross-validation (Table 9). The best-performing configuration was
an ensemble model combining Random Forest and XGBoost
predictions on SET1 spectral-cepstral features, which achieved
MAE = 0.208 m, RMSE = 0.279 m, and R2 = 0.33, explaining 33%
of body length variance across the observed range (1.70–3.00 m).

Temporal-frequency augmentation (SET2) provided negligible
improvement over spectral-cepstral features alone (SET1), with
MAE differences of ≤ 0.004 m. Subject-level aggregation revealed
heterogeneous performance: some individuals achieved MAE <

0.15 m, while others exceeded 0.40 m (Table 4).

4 Discussion

Our results demonstrate that sex classification from Greater
Caribbean manatee vocalizations achieves operationally viable
performance (85%–87% accuracy, 75%–78% macro-F1), while
age classification presents fundamental challenges. Subject-level
bootstrap analysis reveals substantial individual heterogeneity
underlying population-level metrics, with critical implications for
operational deployment.

4.1 Acoustic basis of sex classification and
individual variability

Sex classification reliability stems from spectral envelope
characteristics (MFCCs, spectral skewness) rather than absolute
pitch. Feature importance analysis confirms low-order MFCCs
dominate discrimination, while temporal-frequency parameters
provide modest supplementary contributions. However, bootstrap-
derived 95% confidence intervals reveal female classification spans
68.7%–96.4% (CI width: 27.7%), with extreme individual cases:
three females achieved perfect classification while subject S14 failed
completely (0% accuracy, systematically classified as male). Males
showed narrower population CI (75.1%–83.6%, width: 8.5%) but
variable within-subject consistency [e.g., S15: CI (50.0%–90.9%)].

This 3.3× wider confidence interval for females compared
to males indicates substantial between-individual acoustic
heterogeneity within the female class. This variability may
reflect underlying biological factors such as reproductive state
fluctuations, maternal care behaviors, or inherent sex-specific
differences in vocal plasticity—influences documented in other
marine mammals but unexplored in Greater Caribbean manatees.
In contrast, male vocalizations exhibited greater stereotypy, with
more stable acoustic signatures less influenced by behavioral or
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FIGURE 2

Sex categories exhibit moderate cluster separation in acoustic feature space. PCA (left) and t-SNE (right) embeddings from sex classification task
reveal distinguishable male (blue) and female (red) clusters with partial overlap. (Top row) Full feature set (38 features); (bottom row) selected
features (top 15 by univariate F-test). Points colored by four demographic classes show sex-dominated structure with weak age differentiation.

physiological variability, facilitating reliable classification in passive
monitoring contexts.

These patterns indicate that while sex classification
is operationally viable for population-level monitoring,
approximately 10%–15% of individuals will be systematically
misclassified due to individual idiosyncrasies that override
population-level patterns. Deployment protocols must archive
probability scores rather than binary classifications to enable
per-individual confidence assessment. Future work should
investigate whether female acoustic heterogeneity correlates
with observable demographic or reproductive variables,
potentially enabling stratified classification models that account for
intra-class diversity.

4.2 Fundamental challenges in age
classification

Despite achieving 73%–85% accuracy, age classification models
exhibited severe juvenile under-detection (recall: 14%–26%).

Bootstrap 95% confidence intervals highlight this instability: the
juvenile CI spans 9.3%–86.3% (width: 77.0%), over three times
wider than for adults (60.7%–84.7%). This pronounced uncertainty
results from multiple compounding factors.

First, a limited juvenile sample size (n = 4, only one
female) means each LOGO fold tests on a single individual,
amplifying subject-specific effects. Second, considerable class
imbalance (adult:juvenile = 2.5:1) leads to a consistent bias
toward the adult class, even after SMOTE oversampling. Third,
median fundamental frequency (f0)—the top-ranked feature for age
discrimination—shows negligible correlation with body size (R2 =
0.019, p = 0.56), and juvenile f0 values (2,520–3,660 Hz) overlap
extensively with adults7 (1,000–4,100 Hz; Figure 7). This weak
relationship is compounded by systematic pitch estimation errors:
visual inspection revealed that subjects S17, S18, S25, and S27
display median f0 estimates below 2,300 Hz despite spectrogram
energy concentration above this threshold, indicating that the PYIN
estimator underestimates f0 in noisy or aperiodic vocalizations.
Dimensionality reduction (Figure 3) further confirms overlapping
age distributions, in contrast to the moderate separation seen for
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FIGURE 3

Age categories show substantial overlap in low-dimensional embeddings. PCA (left column) and t-SNE (right column) projections from the age
classification task reveal broadly intermingled adult (green) and juvenile (orange) distributions, with only localized regions of partial separation. Top
row: embeddings obtained from the full feature set; bottom row: embeddings obtained from the selected features. The similar large-scale structure
across feature sets underscores the intrinsic difficulty of discriminating age classes from acoustic features alone.

sex (Figure 2). Joint 4-class embeddings indicate sex dominates the
acoustic feature space: male juveniles and adults cluster together,
while female age classes show only weak separation.

Individual case studies reinforce this ambiguity. Subject S14
(female adult, f0 = 4,040 Hz) is classified with 0% sex accuracy but
98.6% age accuracy, indicating some independence of sex and age
cues. In contrast, S13 (male juvenile, f0 = 3,660 Hz) is systematically
misclassified as adult (6.4% age accuracy). Thus, elevated f0 alone
is insufficient to reliably encode juvenile status, as both individual
variation and sex-related baselines obscure developmental patterns.

4.3 Body size estimation and threshold
optimization

4.3.1 Continuous size estimation as alternative to
categorical age

Given severe juvenile under-detection (recall: 14%–26% at
standard thresholds), acoustic body size regression offers an

alternative that avoids imposing discrete age boundaries on
continuous developmental variation. Moderate performance (MAE
= 0.208 m, R2 = 0.33) is consistent with vocal tract scaling
principles but leaves 67% of variance unexplained. The error (7% of
typical body lengths) is comparable to visual estimation uncertainty
but insufficient to reliably distinguish overlapping size classes (e.g.,
large juveniles vs. small adults).

Temporal-frequency features provided negligible improvement
over spectral-cepstral features alone, suggesting explicit pitch
parameters are either redundant with formant-encoded MFCCs
or too behaviorally variable to enhance prediction—consistent
with weak f0-body size correlation and pitch estimation artifacts
discussed previously. Subject-level heterogeneity (MAE: 0.15–
0.40 m) mirrors patterns in age classification, indicating that
vocal plasticity, repertoire composition, or individual acoustic
idiosyncrasies constrain demographic inference independent of
true class membership.

Despite limitations for precise individual measurements, this
approach may support coarse size profiling into broad categories
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FIGURE 4

Sex-dominated hierarchical structure in 4-class demographic space. PCA (left) and t-SNE (right) embeddings calculated from sex classification task,
colored by four demographic classes (male adult: dark blue; male juvenile: light blue; female adult: dark red; female juvenile: orange). (Top row) Full
features; (bottom row) selected features. Primary male-female separation dominates across both feature sets. Weak age substructure visible only in
female clusters; male age classes overlap completely.

(small: <2.3 m, medium: 2.3–2.8 m, large: >2.8 m) when
integrated with sex classification, providing operational value for
demographic structure assessment in passive monitoring contexts
without requiring categorical age assignment.

4.3.2 Threshold optimization for deployment
Threshold optimization reveals critical trade-offs for

operational deployment. Lowering the threshold to 0.3 increases
juvenile recall to 66% but raises false positives to 29%, suitable
for surveillance prioritizing juvenile presence detection over
precision (Stowell et al., 2019; Kahl et al., 2021). An intermediate
threshold (0.4: 41% juvenile recall, 18% FPR) balances sensitivity
and specificity for abundance monitoring (Rhinehart et al., 2020).
Such optimization is critical in conservation contexts where
missing endangered individuals (false negatives) incurs greater
cost than false alarms (Kalan et al., 2015). Sex classification requires
minimal threshold adjustment, achieving balanced performance at
default settings.

4.4 Study limitations and operational
implications

Data span nearly three years (January 2021–May 2023) across
both dry and wet seasons in the Changuinola River (Bocas
del Toro, Panama), providing temporal robustness. However,
three limitations constrain generalization: (1) limited juvenile
sample with extreme sex imbalance (one female, three males)—
a common constraint in endangered species monitoring where
ethical considerations limit data collection intensity (Wrege et al.,
2017; Measey et al., 2017), (2) binary age categorization imposing
artificial boundaries on continuous ontogenetic development,
and (3) task-specific optimal features—RFE improved age (+2–
6 points) but degraded sex (–2 to 10 points), indicating that age
discrimination benefits from aggressive noise elimination while sex
discrimination requires broader feature representation.

Despite limitations, sex-ratio monitoring is immediately
deployable. Random Forest/XGBoost on spectral-cepstral
features (SET1) provide robust classification (86%–87%)
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FIGURE 5

Weak age separability across sex categories and feature sets. PCA (left column) and t-SNE (right column) embeddings from the age classification
task are colored by four demographic classes: male adult (dark blue), male juvenile (light blue), female adult (dark red), and female juvenile (orange).
Top row: embeddings obtained from the full feature set; bottom row: embeddings obtained from the selected features. Extensive overlap between
male adult and male juvenile classes persists across feature sets and dimensionality reduction methods, whereas only partial separation is observed
between female adults and juveniles, consistent with the observed classification asymmetries.

without noise-sensitive pitch tracking—critical for turbid
riverine environments. For age classification, threshold tuning to
operational objectives is essential, with explicit acknowledgment of
10%–50% uncertainty depending on class. Deployment protocols
should implement call-type routing, archive probability scores for
uncertainty quantification, and report CI-based confidence bounds.

For Greater Caribbean manatees, acoustic monitoring
addresses critical gaps in visual survey capacity in turbid
tropical rivers (Sanchez-Galan et al., 2025; Guzman
et al., 2025). Our bootstrap-derived confidence intervals
provide the statistical foundation for uncertainty-aware
conservation decision-making essential when acoustic data
inform management actions for endangered populations.
Future work should prioritize balanced juvenile sampling,
longitudinal tracking for developmental trajectories,
deep learning approaches (CNNs on spectrograms) to
automatically learn discriminative features, and integration
with individual identification frameworks for acoustic mark-
recapture—enabling simultaneous estimation of abundance,

sex ratios, and demographic structure from long-term
hydrophone deployments.

4.5 Pitch estimation artifacts in
heterogeneous vocalizations

Visual spectrogram inspection revealed systematic
discrepancies for subjects S17, S18, S25, and S27: median f0
estimates fell below 2,300 Hz despite energy concentration above
this threshold. This indicates that autocorrelation-based pitch
estimators may be tracking residual low-frequency noise near
the high-pass filter cutoff (1 kHz) rather than the true vocal
fundamental, particularly in noisy, aperiodic, or broadband
vocalizations where harmonic structure is ambiguous (Mauch and
Dixon, 2014). This artifact explains the weak correlation between
estimated f0 and body size (R2 = 0.019) despite biomechanical
predictions (Fitch, 1997).
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FIGURE 6

Three-dimensional acoustic embedding stratified by body size. t-SNE projection with vertical axis representing body size (meters) shows
size-stratified dispersion across four demographic classes (female adult, male adult, female juvenile, male juvenile). Substantial overlap in acoustic
space, particularly between juvenile and adult males, explains low age classification accuracy despite successful sex discrimination.

This measurement error explains two key findings: (1) the 3–
8 percentage point improvement when squeal-dominated subjects
were excluded, and (2) why f0 ranks as highly important yet
fails as a reliable age predictor. Future work should implement
stricter preprocessing (e.g., higher cutoff frequencies or adaptive
filtering) and call-type classification as preprocessing (Schneider
et al., 2024), extracting pitch parameters only from tonal calls with
unambiguous harmonic structure while using alternative spectral
descriptors (MFCCs, centroid, bandwidth) for noisy vocalizations.

5 Conclusions

Acoustic sex classification from Greater Caribbean manatee
vocalizations achieves operationally viable performance (85%–87%
accuracy) suitable for passive monitoring, though subject-level
bootstrap analysis reveals substantial individual heterogeneity
(female 95% CI: 68.7%–96.4%; male: 75.1%–83.6%), indicating
10%–15% of individuals will be systematically misclassified.
Operational deployment must incorporate individual-level
confidence bounds rather than relying solely on population
metrics.

Age classification presents fundamental challenges despite
73%–85% global accuracy, with severe juvenile under-detection
(14%–26% recall) and extreme uncertainty (juvenile 95% CI: 9.3%–
86.3%, 3.2× wider than adults). Fundamental frequency shows
negligible correlation with body size (R2 = 0.019), with juvenile
and adult f0 ranges overlapping extensively, preventing discrete
boundaries. Threshold optimization improves juvenile detection
to 63% but elevates false positives to 37%, representing context-
dependent trade-offs for conservation surveillance. Body size
estimation via acoustic regression achieved proof-of-concept (MAE
= 0.208 m, R2 = 0.33) supporting coarse profiling into broad
categories when integrated with sex classification.

Sex-ratio monitoring provides immediate conservation value
for endangered populations in turbid riverine habitats. Data
spanning three years across both seasons demonstrate temporal
robustness. Age classification requires expanded sampling
prioritizing demographic balance (currently n = 4 juveniles, 1
female) and longitudinal tracking to characterize vocal ontogeny.
Integration of demographic classification with established
individual identification frameworks would enable comprehensive
acoustic mark-recapture, simultaneously estimating abundance,
sex ratios, and demographic structure—complementing ongoing
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FIGURE 7

Fundamental frequency vs. body size reveals negligible developmental correlation. Median f0 plotted against body size for all subjects shows no
significant relationship (R2 = 0.019, p = 0.56). Juvenile f0 range (2,520–3,660 Hz) overlaps extensively with the adult range (1,000–4,100 Hz),
indicating that developmental vocal changes are either subtle or confounded by sex-specific and individual variation. Several subjects (S17, S18, S25,
S27) display median f0 estimates below 2,300 Hz, yet visual spectrogram inspection reveals energy concentration above this threshold, suggesting
systematic pitch estimation errors in certain vocalization types. This acoustic ambiguity explains systematic juvenile under-detection (recall:
14%–26%) despite f0 ranking as the top age-discriminative feature in XGBoost models.

TABLE 8 Threshold optimization trade-offs for age classification (random forest, squeal-reduced SET1).

Threshold Juvenile recall (%) Adult recall (%) FPR (%) Global Acc (%)

0.5 (default) 14 88 12 68.7

0.4 41 85 18 72.3

0.3 66 82 29 76.8

TABLE 9 Body size estimation performance via acoustic-only regression (LOGO cross-validation).

Feature set Model MAE (m) RMSE (m) R2

SET1 (30 features) Random Forest 0.209 0.279 0.33

SET1 (30 features) XGBoost 0.215 0.288 0.29

SET1 (30 features) Ensemble 0.208 0.279 0.33

SET2 (38 features) Random Forest 0.213 0.287 0.28

SET2 (38 features) XGBoost 0.219 0.293 0.26

SET2 (38 features) Ensemble 0.212 0.287 0.28

monitoring efforts in the Changuinola River. This study establishes
both feasibility and critical limitations of acoustic demographic
inference, providing bootstrap-derived uncertainty metrics
essential for evidence-based conservation decision-making.
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