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Introduction: The integration of genomics, proteomics, and artificial intelligence 
(AI) is shaping the approach to personalized skincare and aesthetic dermatology, 
moving from generalized protocols toward precision-based interventions.
Objective: To systematically review the emerging field of cosmetogenomics, 
focusing on how AI and multi-omics technologies are enabling personalized 
dermatologic treatments, and to critically evaluate the strength, scope, and 
limitations of current evidence.
Methods: We conducted a systematic review in accordance with PRISMA 2020 
guidelines. PubMed, Scopus, and Embase databases were searched for articles 
from January 2012 to April 2025 using Boolean combinations of terms including 
[“cosmetogenomics” OR “AI in dermatology” OR “personalized skincare” OR 
“multi-omics dermatology”] AND [“SNP” OR “genomics” OR “proteomics”]. 
Eligible studies included peer-reviewed clinical or ex  vivo research involving 
human subjects and reporting measurable dermatologic outcomes related to 
genomics, single nucleotide polymorphisms (SNPs), AI tools, or proteomics. 
Study quality was assessed using the JAMA Users’ Guides to the Medical 
Literature quality scheme.
Results: From 403 screened articles, 74 met inclusion criteria. Of these, 22 
were randomized controlled trials (RCTs, Level I evidence), 35 observational 
studies (Level II), and 17 conceptual or expert opinion papers (Level III). 
AI and genomics were found to enhance skincare personalization by 
identifying SNPs associated with collagen degradation, oxidative stress, and 
inflammation. AI-powered platforms integrate these insights with imaging, 
lifestyle data, and digital twins to optimize interventions ranging from 
topical regimens to laser and injectable treatments. However, a significant 
proportion of studies were exploratory, with limited geographic diversity and 
underrepresentation of darker skin phototypes. No quantitative synthesis 
(meta-analysis) was performed due to heterogeneity in outcome measures, 
though hydration, elasticity, and pigmentation outcomes may permit such 
analysis in future work.
Conclusion: AI-driven cosmetogenomics is advancing dermatology into a 
predictive, personalized era. While the evidence base is expanding, clinical 
translation requires stronger validation, ethical safeguards, and regulatory 
oversight. This field holds significant promise for enhancing treatment efficacy, 
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patient satisfaction, and long-term skin health. Broader validation, greater 
diversity in study populations, more transparent methodologies, and expanded 
ethical safeguards, including genetic discrimination risks, data ownership, and 
cross-border data transfer, are necessary before widespread clinical integration.

KEYWORDS

genomics, proteomics, predictive analysis, precision medicine, artificial intelligence, 
skin aging

Introduction

The convergence of genetic research, artificial intelligence (AI), 
and dermatology is reshaping the landscape of aesthetic medicine. 
Traditional skincare regimens have relied on generalized formulations, 
but advances in genetic analysis now enable treatments aligned with 
an individual’s biological profile (Haykal, 2024a). DNA-based 
dermatological assessments, combined with AI-driven insights, 
represent a potentially more precise approach that considers genetic 
predispositions to collagen degradation, oxidative stress, inflammatory 
responses, and barrier function (Haykal, 2025a; Papaccio et al., 2022; 
Hussein et al., 2025; Chmielewski and Lesiak, 2024). Personalized 
skincare informed by genomics would help reduce trial-and-error in 
clinical care, while AI technologies further integrate genetic, 
environmental, and lifestyle factors to generate dynamic, evidence-
based recommendations (Su et al., 2024; Ho et al., 2020; Pandey and 
Gupta, 2024; Molla and Bitew, 2024; Giansanti, 2024).

This precision-oriented perspective has given rise to the emerging 
concept of cosmetogenomics. Derived from “cosmetics” and 
“genomics,” cosmetogenomics refers to the study of how an individual’s 
genetic makeup influences their response to cosmetic and aesthetic 
dermatological interventions. While much literature currently 
overlaps with broader dermatogenomics, which traditionally 
emphasizes disease diagnostics and therapeutic strategies, 
cosmetogenomics is distinguished by its focus on aesthetic outcomes 
such as aging, pigmentation, hydration, and elasticity. By centering on 
enhancement and maintenance of skin health and appearance, rather 
than treatment of disease, cosmetogenomics represents a 
complementary but distinct dimension within precision dermatology.

Despite these promising directions, integrating genetic analysis 
into dermatology presents significant challenges. Key issues include 
data privacy, ethical considerations, and the clinical validation of 
AI-driven genomic predictions (Sengupta, 2023; Mondal and Mondal, 
2024). Moreover, the interplay between genetics, epigenetics, and 
environmental factors complicates the translation of genomic findings 
into predictable skincare outcomes (Andersen and Millar, 2021; 
Landau et  al., 2024). As research progresses, striking a balance 
between innovation and responsible implementation will be critical.

We performed a systematic review to evaluate the current 
landscape of cosmetogenomics, emphasizing the methodological 
rigor, evidence quality, and ethical considerations necessary for 
responsible clinical adoption.

Methods

This systematic review was conducted in accordance with the 
PRISMA 2020 guidelines. The objective was to synthesize available 

evidence regarding the application of genomics and AI in personalized 
skincare, a field referred to as cosmetogenomics, with an emphasis on 
distinguishing its aesthetic focus from broader dermatogenomics.

We carried out a comprehensive search of PubMed, Scopus, and 
Embase databases for articles published between January 1, 2012, and 
April 1, 2025. Boolean combinations of search terms were applied, 
including [“cosmetogenomics” OR “AI in dermatology” OR 
“personalized skincare” OR “multi-omics dermatology”] AND [“SNP” 
OR “genomics” OR “proteomics”]. Medical Subject Headings (MeSH) 
were used where available. Only articles published in English were 
considered. Eligible studies were peer-reviewed original articles or 
systematic reviews involving human subjects or ex vivo skin models, 
addressing AI, genomics, SNPs, proteomics, or multi-omics in 
dermatology and reporting measurable dermatologic or cosmetic 
outcomes. Studies were excluded if they focused exclusively on animal 
models, addressed non-dermatological conditions, or lacked specific 
skin-related outcomes.

Two reviewers independently screened all titles and abstracts. Full 
texts of potentially relevant articles were retrieved and assessed for 
eligibility. Disagreements were resolved by discussion or by consulting 
a third reviewer. Data extraction was performed independently using 
a standardized template, capturing study type, population 
characteristics, technologies employed (genomic, proteomic, AI), 
intervention type, outcome measures, and key findings. 
Methodological quality was assessed using the JAMA Users’ Guides 
to the Medical Literature rating scheme, ranging from Level 
I  (randomized controlled trials) to Level V (expert opinion or 
conceptual articles).

A total of 403 articles were initially identified. After duplicate 
removal and screening of titles and abstracts, 325 studies remained for 
further consideration. Among these, 120 full-text articles were 
assessed in detail, and 74 met eligibility criteria for inclusion. The 
article selection process is outlined in Figure 1. Due to heterogeneity 
in study designs and reported outcomes, a qualitative thematic 
synthesis was performed. Studies were grouped based on their 
primary focus (e.g., SNPs, AI tools, multi-omics, digital twins); 
however, several studies addressed multiple thematic areas and were 
therefore represented in more than one category. (Figure 2).

Results

The studies included in this review provide a multifaceted 
understanding of how AI and genomics are being leveraged in 
dermatology to individualize care and improve patient outcomes. The 
findings span a range of innovations from genetic risk stratification to 
advanced modeling and integrative diagnostics. While the findings 
highlight emerging opportunities, they also reveal important 
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limitations in methodological rigor, population diversity, and long-
term validation. The following subsections highlight the major themes 
that emerged from the evidence synthesis.

The potential of DNA-based skincare

Advances in genomic sequencing have facilitated the identification 
of genetic variations that influence skin aging, barrier function, and 

response to environmental stressors (Hussein et al., 2025; Russell-
Goldman and Murphy, 2020; López-Otín et al., 2023). Genetic insights 
provide an opportunity to personalize skincare interventions, moving 
beyond traditional one-size-fits-all approaches (Markiewicz and 
Idowu, 2022). For instance, individuals with genetic markers 
indicating reduced antioxidant defenses could benefit from 
antioxidant-enriched formulations, while those with inflammatory 
predispositions may respond to anti-inflammatory compounds. 
Similarly, barrier dysfunction markers may indicate a need for 

FIGURE 1

Flowchart.

FIGURE 2

Thematic distribution of included studies.
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barrier-restoring ingredients. Although promising, these applications 
remain largely hypothesis-driven, with limited large-scale clinical 
validation. Moreover, evidence has been disproportionately drawn 
from lighter phototypes and developed market populations, which 
limits generalizability.

The application of DNA-based insights extends beyond topical 
formulations. Understanding genetic variations in collagen synthesis 
and degradation can inform decisions regarding procedural 
dermatology, optimizing treatment choices for injectables, laser 
resurfacing, and regenerative therapies (Dutra Alves et al., 2025). In 
the future, AI-driven genomic analysis could enable real-time, 
adaptive treatment plans, dynamically adjusting recommendations 
based on continuous skin assessments (Alowais et al., 2023).

The role of single nucleotide 
polymorphisms in personalized skincare

Single nucleotide polymorphisms (SNPs) are among the most 
studied genetic variations in dermatology research (Haykal, 2025a). 
SNPs in genes such as MMP1 (collagen degradation) and SOD2 
(oxidative stress management) have been linked to differential skin 
aging processes (Sepetiene et  al., 2023). These findings provide a 
rationale for individualized strategies, such as collagen-stimulating 
treatments or antioxidant-focused regimens.

However, SNP-based personalization remains an emerging field. 
Outcomes are influenced by environmental exposures, lifestyle factors, 
and epigenetic modifications, which complicates direct clinical 
translation. Standardized protocols and multi-center validation 
studies are needed to determine the robustness of SNP-informed 
interventions (Markiewicz and Idowu, 2018; Haykal, 2025b).

AI-powered tools in personalized skincare

Artificial intelligence (AI) is transforming personalized skincare 
by enabling real-time analysis and dynamic treatment 
recommendations. AI-powered platforms integrate clinical data, 
environmental influences, and imaging-based skin assessments to 
provide highly individualized skincare protocols (Ho et  al., 2020; 
Rezayi et  al., 2022; Haykal, 2024b). Machine learning algorithms 
analyze skin texture, hydration levels, pigmentation patterns, and 
wrinkle formation to detect subtle changes over time, allowing for 
early intervention and adaptive skincare strategies (Quazi, 2022). AI 
is also transforming diagnostic dermatology by enhancing image-
based skin assessments (Kania et al., 2024). AI-driven imaging tools 
assess hyperpigmentation, fine lines, and overall skin structure, 
offering quantifiable insights that refine skincare product selection 
and procedural recommendations (Li et  al., 2022). Additionally, 
AI-powered chatbots and virtual consultations provide real-time, 
data-driven skincare guidance, making personalized skincare more 
accessible beyond traditional clinical settings (Chakraborty et  al., 
2024; Jing et  al., 2024). Beyond skincare recommendations, AI is 
enhancing treatment monitoring, tracking real-time changes in skin 
health due to seasonal variations, hormonal shifts, and environmental 
factors (Haykal, 2025c). A key advancement of this transformation is 
the integration of omics-based diagnostics with advanced imaging 
analysis, both within clinical settings and through digital touchpoints 

such as smartphones and teleconsultations. This continuous 
assessment allows for real-time adaptation of skincare 
recommendations, ensuring treatments evolve based on a patient’s 
biological profile and environmental exposures. Grounded in 
cosmetogenomics, this approach enhances precision dermatology by 
combining genetic, proteomic, and epigenetic insights with AI-based 
image analysis, optimizing both at-home skincare and in-clinic 
interventions (Tong et al., 2024).

Recent advancements in AI-driven personalized skincare devices 
contributed to a shift toward tailored treatments (Flament et al., 2023). 
These innovations illustrate how AI-driven formulation technologies are 
bridging the gap between genetic insights and real-world applications, 
delivering customized skincare products at the consumer level. Future 
developments may integrate multi-omics data including genomics, 
proteomics, and microbiome analysis for even more precise, dynamically 
adaptive skincare solutions. To enhance adherence, predictive 
perception engines, AI systems that analyze user behavior, preferences, 
and feedback to anticipate future choices, personalize recommendations 
by ensuring products not only address skin concerns but also align with 
user preferences in texture and scent, creating a seamless and enjoyable 
skincare routine (Rodan et al., 2016). AI further extends its capabilities 
to detect unexpressed skin concerns, recognizing subtle indicators that 
may affect quality of life, even if users do not explicitly report them 
(Flament et al., 2024). By utilizing Generative Adversarial Networks and 
Virtual Try-On technologies, AI adapts treatment intensity and 
frequency to meet individual needs dynamically (Despois et al., 2020).

While these tools are expanding accessibility and personalization, 
many remain at early proof-of-concept stages and lack independent 
validation. Furthermore, training datasets often underrepresent 
diverse skin phototypes, raising concerns about generalizability.

AI-based tools in genomics and proteomics

AI integration with genomic and proteomic datasets is being 
explored for predictive modeling of skin health trajectories. Proteomic 
analyses have identified biomarkers related to hydration, elasticity, and 
pigmentation, while machine learning models aim to combine these 
with genomic profiles to forecast outcomes and inform interventions. 
To illustrate, AI-driven genomic analysis can rapidly identify genetic 
markers associated with collagen degradation, oxidative stress 
response, and skin barrier integrity, allowing dermatologists to design 
targeted skincare regimens (Gupta and Margolis, 2020; Van Doren, 
2015; Gupta et  al., 2023). Beyond genomics, AI is transforming 
proteomics and biomarker discovery, analyzing molecular-level skin 
responses to determine early indicators of skin aging, inflammation, 
and hydration loss (Guo et al., 2022). Deep learning models process 
vast datasets to correlate genetic predispositions with clinical skin 
characteristics, refining treatment precision in aesthetic procedures 
such as laser resurfacing, bio-stimulatory injectables, and regenerative 
therapies (Jeong et al., 2022).

AI’s ability to integrate multi-omics data (genomics, proteomics, and 
metabolomics) enhances dermatological research by identifying complex 
skin-aging pathways and predicting long-term skincare outcomes (Pun 
et al., 2023; Nakajima et al., 2024; Dessì et al., 2024). This AI-powered 
approach ensures that genetic insights are viewed in the context of an 
individual’s full biological profile, bringing precision dermatology closer 
to real-world clinical application (Bohr and Memarzadeh, 2020).
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The integration of omics-based diagnostics with AI-driven 
imaging and real-time teleconsultations bridges digital health with 
dermatology, allowing skincare regimens to evolve dynamically. This 
approach signifies a transition from static recommendations to real-
time, data-driven skincare solutions, marking the intersection of AI, 
dermatology, and cosmetogenomics.

Digital twins, genomics, and predictive 
dermatology

The integration of AI-driven digital twins with genomic insights is 
being explored as a potential tool in predictive dermatology, with the 
aim of supporting more refined approaches to personalized skincare 
(Haykal, 2025b). A digital twin is a virtual representation of an 
individual’s skin, using genetic data, multi-omics profiling (genomics, 
proteomics, metabolomics, and microbiome analysis), environmental 
exposures, and lifestyle factors (De Domenico et al., 2025). Unlike 
traditional static genetic assessments, digital twins dynamically evolve, 
continuously updating based on new inputs such as UV exposure, 
pollution, hydration levels, hormonal fluctuations, and treatment 
responses (Papachristou et al., 2024; Meijer et al., 2023). By leveraging 
genomics, these models can predict an individual’s predisposition to 
collagen degradation, oxidative stress susceptibility, inflammatory 
responses, and barrier dysfunction, enabling highly targeted skincare 
and aesthetic interventions (Li et  al., 2025; Wang et  al., 2024). 
AI-powered machine learning algorithms correlate genetic markers 
with real-world skin responses to forecast aging patterns, treatment 
efficacy, and risk factors for adverse reactions (Yang and Kar, 2023; 
Zhavoronkov et al., 2019). In procedural dermatology, digital twins 
could optimize laser resurfacing parameters based on genetic 
predisposition to pigmentation disorders or determine the ideal 
bio-stimulatory injectable protocol based on collagen synthesis capacity 
(Haykal, 2025b). This approach marks a potential shift from reactive to 
proactive and preventive dermatology, allowing both clinicians and 
patients to anticipate skin concerns before they manifest, ultimately 
enhancing treatment precision, efficacy, and patient satisfaction.

Discussion

The findings of this review suggest that AI and genomics are 
contributing to new approaches in dermatology, particularly in 
personalization and prediction of outcomes. Reported innovations 
range from genetic markers that may guide topical formulations to 
early-stage explorations of digital twins. However, enthusiasm should 
be  tempered by recognition of the modest evidentiary base, the 
predominance of exploratory studies, limited population diversity, and 
underdeveloped ethical frameworks. Addressing these gaps will 
be essential for responsible clinical translation.

Clinical applications of AI and genomics in 
aesthetic dermatology

AI is transforming aesthetic dermatology by enhancing precision, 
safety, and predictive modeling in non-invasive treatments. While 
AI-powered tools have already optimized personalized skincare 

formulations, their impact extends beyond product recommendations 
to procedural interventions such as laser therapy, injectables, and 
regenerative treatments (Haykal, 2024a). AI-driven algorithms analyze 
a patient’s genetic profile, skin histology, and real-time imaging data 
to refine treatment settings, product choices, and post-procedure care, 
ensuring predictable and highly personalized outcomes (Schork, 2019).

In laser dermatology, AI is being integrated into energy-based 
devices to automate treatment parameter selection, reducing the risk 
of post-inflammatory hyperpigmentation or excessive collagen 
remodeling in patients with genetically predisposed sensitivity (Haykal, 
2025d). AI-powered software also assesses vascularity, melanin content, 
and skin hydration levels in real-time, adjusting laser fluence and pulse 
duration for optimized resurfacing outcomes. For example, a 28-year-
old woman with a TNF-α polymorphism predisposing to heightened 
inflammatory responses underwent a personalized, low-fluence 
non-ablative laser protocol, supported by an antioxidant-rich skincare 
regimen. Regular imaging follow-up assessments demonstrated 
decreased erythema and enhanced skin texture (Haykal, 2025a).

For injectable treatments, AI is advancing predictive analytics to 
improve hyaluronic acid filler selection, toxin placement, and 
collagen-stimulating treatments. Deep learning models can predict 
how facial structures will change post-treatment based on genetic 
predispositions to collagen degradation (MMP1 mutations) or 
inflammatory responses (Freitas-Rodríguez et al., 2017). This assisted 
clinicians in selecting the most appropriate filler, injection depth, and 
volume to achieve natural and long-lasting results. In another instance, 
a 50-year-old man with an MMP1 gene variant indicating accelerated 
collagen degradation received biostimulatory injectables rather than 
hyaluronic acid fillers. Evaluations at 1, 3, and 6 months showed 
progressive structural improvement and skin elasticity. Moreover, AI 
is mitigating adverse events by detecting early markers of 
inflammation, vascular compromise, or delayed hypersensitivity 
reactions in injectable treatments. By integrating real-time imaging 
and patient history, AI-powered risk assessment tools provide 
preemptive alerts for potential complications, improving treatment 
safety and patient satisfaction. A third case involved a 45-year-old 
woman with SOD2 polymorphisms suggesting poor oxidative stress 
management. A preparatory antioxidant regimen was introduced six 
weeks before her fractional CO₂ laser procedure. Post-treatment 
follow-up revealed enhanced healing and reduced erythema, 
highlighting the predictive value of genomic profiling in procedural 
planning (Mansoor et al., 2025; Velarde et al., 2012).

These advancements mark a paradigm shift in aesthetic 
dermatology, where AI-driven predictive modeling enables highly 
personalized, risk-optimized treatments that align with individual 
genetic and phenotypic characteristics. By leveraging data-driven 
insights, automated procedural adjustments, and real-time risk analysis, 
AI would help standardize aspects for precision, efficacy, and patient-
centered care in modern aesthetic medicine. Figure 3 illustrates the 
integrative pipeline from genetic data acquisition through AI-powered 
analysis to the development of personalized skincare protocols.

Level of evidence overview

To contextualize these clinical insights, we evaluated the strength 
and quality of the supporting evidence. Among the 74 studies 
reviewed, 22 were randomized controlled trials (Level I), 
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demonstrating high internal validity and often investigating the 
clinical efficacy of SNP-guided interventions and AI-based 
customization in skincare. These RCTs reported statistically significant 
improvements in skin hydration, elasticity, and texture when 
treatment was personalized. Approximately 35 studies were 
observational (Level II), including prospective and retrospective 
cohorts exploring AI-assisted diagnostics, omics integration, and 
personalized regimens. While they provided strong real-world 
evidence, they frequently lacked randomization and blinding.

The remaining 17 studies were categorized as Level III evidence, 
comprising expert consensus statements, pilot modeling projects, and 
conceptual papers introducing digital twin strategies and predictive 
simulation tools. Though conceptually robust, these studies had 
limited empirical validation.

Overall, 57% of the studies (Levels I and II) offered moderate to high 
quality evidence, while 23% were early-phase or exploratory. Many of the 
higher-quality studies demonstrated consistent outcome improvements 
aligned with genetic profiles or AI analysis. In addition, limited 
geographic diversity and underrepresentation of darker phototypes 
restrict generalizability. Yet, limitations included lack of population 
diversity, inconsistent outcome measures, and limited follow-up.

Ethical and data security concerns

The ethical challenges of integrating AI and genomics into 
dermatology extend beyond data privacy, algorithmic transparency, 

and bias (Clayton et  al., 2023). Risks include potential genetic 
discrimination in employment or insurance contexts if genomic 
information is misused. Issues of data ownership and consent are 
particularly salient, as for commercial purposes collection and control 
by different players of skin genomic data increase drastically, raising 
concerns about secondary use without explicit patient approval (Kaye, 
2012; Sanderson et al., 2017).

Additionally, cross-border data transfer creates regulatory and 
jurisdictional challenges, as protections vary widely (e.g., GDPR in 
Europe vs. HIPAA in the United  States), potentially exposing 
individuals to vulnerabilities (Metta et al., 2024; Kovari, 2024; Chen 
et al., 2022). Ensuring algorithmic transparency and explainability 
remains critical to prevent opaque decision-making and to build 
patient and clinician trust. Equity considerations are also central, since 
underrepresentation of diverse phototypes in genomic and AI datasets 
may exacerbate disparities in outcomes (Chassang, 2017; Mennella 
et al., 2024; Faheem et al., 2025). Addressing these challenges through 
robust ethical frameworks, regulatory oversight, and inclusive study 
design is essential for responsible clinical adoption 
of cosmetogenomics.

The future of DNA-based aesthetic 
dermatology

Looking ahead, advancements in DNA-based skincare and 
aesthetic dermatology lies in multi-omics integration, combining 

FIGURE 3

Integrative pipeline for AI-driven personalized skincare.
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genomics with proteomics, metabolomics, and microbiome analysis 
for a more comprehensive understanding of skin health (Dessì 
et al., 2024; Li et al., 2023). AI and machine learning could further 
enhance this field by refining predictive models and generating 
truly personalized skincare algorithms (Elder et al., 2021; Mataraso 
et  al., 2025). In parallel with these diagnostic and predictive 
advances, therapeutic innovation is rapidly evolving. Emerging 
technologies such as gene editing and targeted epigenetic 
modulation offer the potential to directly influence skin biology, 
transitioning from surface-level product application to 
interventions that operate at the molecular level (Baker and 
Hayden, 2020; Dermitzakis et al., 2025).

While the integration of AI and multi-omics approaches offers 
promising directions in aesthetic dermatology, it is important to 
acknowledge current limitations. These include the high cost and 
limited accessibility of SNP and omics testing, the lack of 
standardized protocols for AI-driven dermatogenomic tools, and 
challenges in clinical validation and reproducibility. These technical 
and systemic barriers must be addressed to ensure equitable and 
reliable implementation in real-world dermatology practice 
(Table 1).

Beyond individual skincare, AI and genomics will reshape 
procedural dermatology by optimizing non-invasive treatments such 
as laser therapy, injectables, and regenerative medicine (Haykal et al., 
2024). Real-time AI-based genomic feedback could adjust laser 
parameters according to an individual’s collagen synthesis capacity or 
determine the most suitable dermal filler based on genetic 
predisposition to inflammation (Haykal, 2025d). These innovations 
bridge the gap between precision medicine and aesthetic dermatology, 
ensuring safer and more effective treatments tailored to each patient’s 
unique biology (Johnson et al., 2021; Marques et al., 2024).

The intersection of genomics and AI marks a pivotal evolution in 
aesthetic dermatology. While early results are promising, widespread 
clinical integration depends on rigorous validation, equitable access, 
and ethical safeguards. Continued research and collaboration between 
dermatologists, data scientists, and regulatory bodies will be essential 
to fully realize the potential of personalized, precision-based skincare 
and interventions.

Conclusion

The integration of DNA analysis into aesthetic dermatology 
represents a promising but still evolving frontier. The ability to 
personalize skincare based on genetic predispositions offers potential 
benefits, yet significant scientific, ethical, and practical challenges 
remain before widespread adoption is feasible. AI-driven tools may 
refine personalized approaches by supporting deeper analysis and 
adaptive treatment recommendations, while SNP analysis, proteomics, 
and predictive modeling can contribute to more precise interventions. 
However, the current evidence base is modest, geographically limited, 
and often exploratory.

Future research should prioritize the development of standardized 
dermatogenomic databases, independent validation of AI-driven 
protocols, and greater inclusion of diverse populations. Equally 
important are robust ethical safeguards addressing genetic 
discrimination, data ownership, and cross-border governance. With 
these measures in place, genetic-based skincare could move from 
theoretical innovation toward clinically validated, evidence-based 
practice. AI-driven genomic analysis, machine learning, and 
predictive models have the potential to enhance dermatology, but 
progress must be  grounded in transparency, reproducibility, and 
equity. The intersection of AI, genomics, and molecular science offers 
opportunities for advancement, provided implementation is cautious, 
ethical, and scientifically rigorous.
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TABLE 1  Summary of some studies.

Reference/Study Population Intervention/Study 
design

Primary outcomes Quality of evidence 
(1–5)

Sepetiene et al. (2023) Subjects with genetic 

polymorphisms

Subjects with genetic 

polymorphisms

Subjects with genetic 

polymorphisms

2

Flament et al. (2023) Women of various ages and 

skin types (cross-sectional)

Cross-sectional imaging analysis of 

selfie-based AI scoring (JEADV)

Improved facial sign analysis 

across diverse skin types

2

Dessì et al. (2024) Participants in integrative 

multi-omics skin study

Multi-omics integration in skincare 

personalization (Metabolites)

Identified aging/inflammatory 

biomarkers from omics 

integration

3

Gupta and Margolis (2020) Patients with FLG mutations 

and barrier dysfunction

Review of filaggrin gene mutations 

and clinical implications

Identified FLG mutations 

affecting skin barrier, 

supporting personalized 

interventions

3

Haykal (2025a) Conceptual framework on 

digital twins in skincare

Perspective on digital twin models 

in dermatology

Theoretical model for AI-

driven digital twin simulation 

in dermatology
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