:' frontiers ‘ Frontiers in Artificial Intelligence

@ Check for updates

OPEN ACCESS

EDITED BY
Xian-Hua Han,
Rikkyo University, Japan

REVIEWED BY
Marietjie Wilhelmina Maria Botes,
University of KwaZulu-Natal, South Africa
Guichuan Lai,

Chongging Medical University, China

*CORRESPONDENCE
Diala Haykal
docteur.haykal@gmail.com

RECEIVED 05 July 2025
ACCEPTED 30 September 2025
PUBLISHED 10 November 2025

CITATION
Haykal D, Flament F, Amar D, Cartier H,
Kourosh AS, Lee DH and

Rowland-Payne C (2025) Cosmetogenomics

unveiled: a systematic review of Al, genomics,

and the future of personalized skincare.
Front. Artif. Intell. 8:1660356.
doi: 10.3389/frai.2025.1660356

COPYRIGHT

© 2025 Haykal, Flament, Amar, Cartier,
Kourosh, Lee and Rowland-Payne. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Artificial Intelligence

TYPE Systematic Review
PUBLISHED 10 November 2025
pol 10.3389/frai.2025.1660356

Cosmetogenomics unveiled: a
systematic review of Al,
genomics, and the future of
personalized skincare

Diala Haykal®'*, Frédéric Flament?, David Amar?,
Hugues Cartier?, Arianne Shadi Kourosh*®, Dong Hun Lee® and
Christopher Rowland-Payne’

!Centre Laser Palaiseau, Palaiseau, France, ?L'Oréal Research and Innovation, Clichy, France,
5Centre Médical Saint Jean, Arras, France, “Department of Dermatology, Harvard Medical
School, Boston, MA, United States, °Department of Environmental Health, Harvard TH Chan
School of Public Health, Boston, MA, United States, °Seoul National University Hospital, Seoul
National University College of Medicine, Seoul, Republic of Korea, "The London Clinic, London,
United Kingdom

Introduction: The integration of genomics, proteomics, and artificial intelligence
(Al) is shaping the approach to personalized skincare and aesthetic dermatology,
moving from generalized protocols toward precision-based interventions.
Objective: To systematically review the emerging field of cosmetogenomics,
focusing on how Al and multi-omics technologies are enabling personalized
dermatologic treatments, and to critically evaluate the strength, scope, and
limitations of current evidence.

Methods: We conducted a systematic review in accordance with PRISMA 2020
guidelines. PubMed, Scopus, and Embase databases were searched for articles
from January 2012 to April 2025 using Boolean combinations of terms including
["cosmetogenomics” OR "Al in dermatology” OR “personalized skincare” OR
"multi-omics dermatology’] AND ['SNP” OR "genomics” OR “"proteomics”].
Eligible studies included peer-reviewed clinical or ex vivo research involving
human subjects and reporting measurable dermatologic outcomes related to
genomics, single nucleotide polymorphisms (SNPs), Al tools, or proteomics.
Study quality was assessed using the JAMA Users’ Guides to the Medical
Literature quality scheme.

Results: From 403 screened articles, 74 met inclusion criteria. Of these, 22
were randomized controlled trials (RCTs, Level | evidence), 35 observational
studies (Level 1), and 17 conceptual or expert opinion papers (Level ).
Al and genomics were found to enhance skincare personalization by
identifying SNPs associated with collagen degradation, oxidative stress, and
inflammation. Al-powered platforms integrate these insights with imaging,
lifestyle data, and digital twins to optimize interventions ranging from
topical regimens to laser and injectable treatments. However, a significant
proportion of studies were exploratory, with limited geographic diversity and
underrepresentation of darker skin phototypes. No quantitative synthesis
(meta-analysis) was performed due to heterogeneity in outcome measures,
though hydration, elasticity, and pigmentation outcomes may permit such
analysis in future work.

Conclusion: Al-driven cosmetogenomics is advancing dermatology into a
predictive, personalized era. While the evidence base is expanding, clinical
translation requires stronger validation, ethical safeguards, and regulatory
oversight. This field holds significant promise for enhancing treatment efficacy,
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patient satisfaction, and long-term skin health. Broader validation, greater
diversity in study populations, more transparent methodologies, and expanded
ethical safeguards, including genetic discrimination risks, data ownership, and
cross-border data transfer, are necessary before widespread clinical integration.

KEYWORDS

genomics, proteomics, predictive analysis, precision medicine, artificial intelligence,

skin aging

Introduction

The convergence of genetic research, artificial intelligence (AI),
and dermatology is reshaping the landscape of aesthetic medicine.
Traditional skincare regimens have relied on generalized formulations,
but advances in genetic analysis now enable treatments aligned with
an individual’s biological profile (Haykal, 2024a). DNA-based
dermatological assessments, combined with Al-driven insights,
represent a potentially more precise approach that considers genetic
predispositions to collagen degradation, oxidative stress, inflammatory
responses, and barrier function (Haykal, 2025a; Papaccio et al., 2022;
Hussein et al., 2025; Chmielewski and Lesiak, 2024). Personalized
skincare informed by genomics would help reduce trial-and-error in
clinical care, while AI technologies further integrate genetic,
environmental, and lifestyle factors to generate dynamic, evidence-
based recommendations (Su et al., 2024; Ho et al., 2020; Pandey and
Gupta, 2024; Molla and Bitew, 2024; Giansanti, 2024).

This precision-oriented perspective has given rise to the emerging
concept of cosmetogenomics. Derived from “cosmetics” and
“genomics,” cosmetogenomics refers to the study of how an individual’s
genetic makeup influences their response to cosmetic and aesthetic
dermatological interventions. While much literature currently
overlaps with broader dermatogenomics, which traditionally
emphasizes disease diagnostics and therapeutic strategies,
cosmetogenomics is distinguished by its focus on aesthetic outcomes
such as aging, pigmentation, hydration, and elasticity. By centering on
enhancement and maintenance of skin health and appearance, rather
than treatment of disease, cosmetogenomics represents a
complementary but distinct dimension within precision dermatology.

Despite these promising directions, integrating genetic analysis
into dermatology presents significant challenges. Key issues include
data privacy, ethical considerations, and the clinical validation of
Al-driven genomic predictions (Sengupta, 2023; Mondal and Mondal,
2024). Moreover, the interplay between genetics, epigenetics, and
environmental factors complicates the translation of genomic findings
into predictable skincare outcomes (Andersen and Millar, 2021;
Landau et al., 2024). As research progresses, striking a balance
between innovation and responsible implementation will be critical.

We performed a systematic review to evaluate the current
landscape of cosmetogenomics, emphasizing the methodological
rigor, evidence quality, and ethical considerations necessary for

responsible clinical adoption.

Methods

This systematic review was conducted in accordance with the
PRISMA 2020 guidelines. The objective was to synthesize available
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evidence regarding the application of genomics and Al in personalized
skincare, a field referred to as cosmetogenomics, with an emphasis on
distinguishing its aesthetic focus from broader dermatogenomics.

We carried out a comprehensive search of PubMed, Scopus, and
Embase databases for articles published between January 1, 2012, and
April 1, 2025. Boolean combinations of search terms were applied,
including [“cosmetogenomics” OR ‘Al in dermatology” OR
“personalized skincare” OR “multi-omics dermatology”] AND [“SNP”
OR “genomics” OR “proteomics”]. Medical Subject Headings (MeSH)
were used where available. Only articles published in English were
considered. Eligible studies were peer-reviewed original articles or
systematic reviews involving human subjects or ex vivo skin models,
addressing Al, genomics, SNPs, proteomics, or multi-omics in
dermatology and reporting measurable dermatologic or cosmetic
outcomes. Studies were excluded if they focused exclusively on animal
models, addressed non-dermatological conditions, or lacked specific
skin-related outcomes.

Two reviewers independently screened all titles and abstracts. Full
texts of potentially relevant articles were retrieved and assessed for
eligibility. Disagreements were resolved by discussion or by consulting
a third reviewer. Data extraction was performed independently using
a standardized template, capturing study type, population
characteristics, technologies employed (genomic, proteomic, Al),
type,
Methodological quality was assessed using the JAMA Users’ Guides

intervention outcome measures, and key findings.
to the Medical Literature rating scheme, ranging from Level
I (randomized controlled trials) to Level V (expert opinion or
conceptual articles).

A total of 403 articles were initially identified. After duplicate
removal and screening of titles and abstracts, 325 studies remained for
further consideration. Among these, 120 full-text articles were
assessed in detail, and 74 met eligibility criteria for inclusion. The
article selection process is outlined in Figure 1. Due to heterogeneity
in study designs and reported outcomes, a qualitative thematic
synthesis was performed. Studies were grouped based on their
primary focus (e.g., SNPs, Al tools, multi-omics, digital twins);
however, several studies addressed multiple thematic areas and were
therefore represented in more than one category. (Figure 2).

Results

The studies included in this review provide a multifaceted
understanding of how AI and genomics are being leveraged in
dermatology to individualize care and improve patient outcomes. The
findings span a range of innovations from genetic risk stratification to
advanced modeling and integrative diagnostics. While the findings
highlight emerging opportunities, they also reveal important
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(n = 403)

Records identified from databases (PubMed, Scopus, Embase):

(n = 325)

Records after duplicates removed:

Duplicates removed:

(n =78)

Records screened:
(n = 325)

Records excluded at screening:

(n = 205)

(n = 120)

Full-text articles assessed for eligibility:

Full-text articles excluded:

(n = 46)

Studies included in synthesis:

Thematic distribution of included studies.

(n =74)
FIGURE 1
Flowchart.
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FIGURE 2

limitations in methodological rigor, population diversity, and long-
term validation. The following subsections highlight the major themes
that emerged from the evidence synthesis.

The potential of DNA-based skincare

Advances in genomic sequencing have facilitated the identification
of genetic variations that influence skin aging, barrier function, and
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response to environmental stressors (Hussein et al., 2025; Russell-
Goldman and Murphy, 2020; Lopez-Otin et al., 2023). Genetic insights
provide an opportunity to personalize skincare interventions, moving
beyond traditional one-size-fits-all approaches (Markiewicz and
Idowu, 2022). For instance, individuals with genetic markers
indicating reduced antioxidant defenses could benefit from
antioxidant-enriched formulations, while those with inflammatory
predispositions may respond to anti-inflammatory compounds.
Similarly, barrier dysfunction markers may indicate a need for
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barrier-restoring ingredients. Although promising, these applications
remain largely hypothesis-driven, with limited large-scale clinical
validation. Moreover, evidence has been disproportionately drawn
from lighter phototypes and developed market populations, which
limits generalizability.

The application of DNA-based insights extends beyond topical
formulations. Understanding genetic variations in collagen synthesis
and degradation can inform decisions regarding procedural
dermatology, optimizing treatment choices for injectables, laser
resurfacing, and regenerative therapies (Dutra Alves et al., 2025). In
the future, Al-driven genomic analysis could enable real-time,
adaptive treatment plans, dynamically adjusting recommendations
based on continuous skin assessments (Alowais et al., 2023).

The role of single nucleotide
polymorphisms in personalized skincare

Single nucleotide polymorphisms (SNPs) are among the most
studied genetic variations in dermatology research (Haykal, 2025a).
SNPs in genes such as MMP1 (collagen degradation) and SOD2
(oxidative stress management) have been linked to differential skin
aging processes (Sepetiene et al., 2023). These findings provide a
rationale for individualized strategies, such as collagen-stimulating
treatments or antioxidant-focused regimens.

However, SNP-based personalization remains an emerging field.
Outcomes are influenced by environmental exposures, lifestyle factors,
and epigenetic modifications, which complicates direct clinical
translation. Standardized protocols and multi-center validation
studies are needed to determine the robustness of SNP-informed
interventions (Markiewicz and Idowu, 2018; Haykal, 2025b).

Al-powered tools in personalized skincare

Artificial intelligence (AI) is transforming personalized skincare

by enabling real-time analysis and dynamic treatment
recommendations. Al-powered platforms integrate clinical data,
environmental influences, and imaging-based skin assessments to
provide highly individualized skincare protocols (Ho et al., 20205
Rezayi et al., 2022; Haykal, 2024b). Machine learning algorithms
analyze skin texture, hydration levels, pigmentation patterns, and
wrinkle formation to detect subtle changes over time, allowing for
early intervention and adaptive skincare strategies (Quazi, 2022). Al
is also transforming diagnostic dermatology by enhancing image-
based skin assessments (Kania et al., 2024). AlI-driven imaging tools
assess hyperpigmentation, fine lines, and overall skin structure,
offering quantifiable insights that refine skincare product selection
and procedural recommendations (Li et al, 2022). Additionally,
Al-powered chatbots and virtual consultations provide real-time,
data-driven skincare guidance, making personalized skincare more
accessible beyond traditional clinical settings (Chakraborty et al.,
2024; Jing et al., 2024). Beyond skincare recommendations, Al is
enhancing treatment monitoring, tracking real-time changes in skin
health due to seasonal variations, hormonal shifts, and environmental
factors (Haykal, 2025¢). A key advancement of this transformation is
the integration of omics-based diagnostics with advanced imaging

analysis, both within clinical settings and through digital touchpoints
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such as smartphones and teleconsultations. This continuous
assessment allows for real-time adaptation of skincare
recommendations, ensuring treatments evolve based on a patient’s
biological profile and environmental exposures. Grounded in
cosmetogenomics, this approach enhances precision dermatology by
combining genetic, proteomic, and epigenetic insights with AI-based
image analysis, optimizing both at-home skincare and in-clinic
interventions (Tong et al., 2024).

Recent advancements in Al-driven personalized skincare devices
contributed to a shift toward tailored treatments (Flament et al., 2023).
These innovations illustrate how AI-driven formulation technologies are
bridging the gap between genetic insights and real-world applications,
delivering customized skincare products at the consumer level. Future
developments may integrate multi-omics data including genomics,
proteomics, and microbiome analysis for even more precise, dynamically
adaptive skincare solutions. To enhance adherence, predictive
perception engines, Al systems that analyze user behavior, preferences,
and feedback to anticipate future choices, personalize recommendations
by ensuring products not only address skin concerns but also align with
user preferences in texture and scent, creating a seamless and enjoyable
skincare routine (Rodan et al., 2016). Al further extends its capabilities
to detect unexpressed skin concerns, recognizing subtle indicators that
may affect quality of life, even if users do not explicitly report them
(Flament et al., 2024). By utilizing Generative Adversarial Networks and
Virtual Try-On technologies, AI adapts treatment intensity and
frequency to meet individual needs dynamically (Despois et al., 2020).

While these tools are expanding accessibility and personalization,
many remain at early proof-of-concept stages and lack independent
validation. Furthermore, training datasets often underrepresent

diverse skin phototypes, raising concerns about generalizability.

Al-based tools in genomics and proteomics

Al integration with genomic and proteomic datasets is being
explored for predictive modeling of skin health trajectories. Proteomic
analyses have identified biomarkers related to hydration, elasticity, and
pigmentation, while machine learning models aim to combine these
with genomic profiles to forecast outcomes and inform interventions.
To illustrate, AI-driven genomic analysis can rapidly identify genetic
markers associated with collagen degradation, oxidative stress
response, and skin barrier integrity, allowing dermatologists to design
targeted skincare regimens (Gupta and Margolis, 2020; Van Doren,
2015; Gupta et al., 2023). Beyond genomics, Al is transforming
proteomics and biomarker discovery, analyzing molecular-level skin
responses to determine early indicators of skin aging, inflammation,
and hydration loss (Guo et al., 2022). Deep learning models process
vast datasets to correlate genetic predispositions with clinical skin
characteristics, refining treatment precision in aesthetic procedures
such as laser resurfacing, bio-stimulatory injectables, and regenerative
therapies (Jeong et al., 2022).

AT ability to integrate multi-omics data (genomics, proteomics, and
metabolomics) enhances dermatological research by identifying complex
skin-aging pathways and predicting long-term skincare outcomes (Pun
etal,, 2023; Nakajima et al., 2024; Dessi et al.,, 2024). This Al-powered
approach ensures that genetic insights are viewed in the context of an
individuals full biological profile, bringing precision dermatology closer
to real-world clinical application (Bohr and Memarzadeh, 2020).
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The integration of omics-based diagnostics with AlI-driven
imaging and real-time teleconsultations bridges digital health with
dermatology, allowing skincare regimens to evolve dynamically. This
approach signifies a transition from static recommendations to real-
time, data-driven skincare solutions, marking the intersection of Al,
dermatology, and cosmetogenomics.

Digital twins, genomics, and predictive
dermatology

The integration of Al-driven digital twins with genomic insights is
being explored as a potential tool in predictive dermatology, with the
aim of supporting more refined approaches to personalized skincare
(Haykal, 2025b). A digital twin is a virtual representation of an
individuals skin, using genetic data, multi-omics profiling (genomics,
proteomics, metabolomics, and microbiome analysis), environmental
exposures, and lifestyle factors (De Domenico et al., 2025). Unlike
traditional static genetic assessments, digital twins dynamically evolve,
continuously updating based on new inputs such as UV exposure,
pollution, hydration levels, hormonal fluctuations, and treatment
responses (Papachristou et al., 2024; Meijer et al., 2023). By leveraging
genomics, these models can predict an individual’s predisposition to
collagen degradation, oxidative stress susceptibility, inflammatory
responses, and barrier dysfunction, enabling highly targeted skincare
and aesthetic interventions (Li et al., 2025; Wang et al, 2024).
Al-powered machine learning algorithms correlate genetic markers
with real-world skin responses to forecast aging patterns, treatment
efficacy, and risk factors for adverse reactions (Yang and Kar, 2023;
Zhavoronkov et al., 2019). In procedural dermatology, digital twins
could optimize laser resurfacing parameters based on genetic
predisposition to pigmentation disorders or determine the ideal
bio-stimulatory injectable protocol based on collagen synthesis capacity
(Haykal, 2025b). This approach marks a potential shift from reactive to
proactive and preventive dermatology, allowing both clinicians and
patients to anticipate skin concerns before they manifest, ultimately
enhancing treatment precision, efficacy, and patient satisfaction.

Discussion

The findings of this review suggest that Al and genomics are
contributing to new approaches in dermatology, particularly in
personalization and prediction of outcomes. Reported innovations
range from genetic markers that may guide topical formulations to
early-stage explorations of digital twins. However, enthusiasm should
be tempered by recognition of the modest evidentiary base, the
predominance of exploratory studies, limited population diversity, and
underdeveloped ethical frameworks. Addressing these gaps will
be essential for responsible clinical translation.

Clinical applications of Al and genomics in
aesthetic dermatology

Al is transforming aesthetic dermatology by enhancing precision,

safety, and predictive modeling in non-invasive treatments. While
Al-powered tools have already optimized personalized skincare
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formulations, their impact extends beyond product recommendations
to procedural interventions such as laser therapy, injectables, and
regenerative treatments (Haykal, 2024a). Al-driven algorithms analyze
a patient’s genetic profile, skin histology, and real-time imaging data
to refine treatment settings, product choices, and post-procedure care,
ensuring predictable and highly personalized outcomes (Schork, 2019).

In laser dermatology, Al is being integrated into energy-based
devices to automate treatment parameter selection, reducing the risk
of post-inflammatory hyperpigmentation or excessive collagen
remodeling in patients with genetically predisposed sensitivity (Haykal,
2025d). Al-powered software also assesses vascularity, melanin content,
and skin hydration levels in real-time, adjusting laser fluence and pulse
duration for optimized resurfacing outcomes. For example, a 28-year-
old woman with a TNF-a polymorphism predisposing to heightened
inflammatory responses underwent a personalized, low-fluence
non-ablative laser protocol, supported by an antioxidant-rich skincare
regimen. Regular imaging follow-up assessments demonstrated
decreased erythema and enhanced skin texture (Haykal, 2025a).

For injectable treatments, Al is advancing predictive analytics to
improve hyaluronic acid filler selection, toxin placement, and
collagen-stimulating treatments. Deep learning models can predict
how facial structures will change post-treatment based on genetic
predispositions to collagen degradation (MMP1 mutations) or
inflammatory responses (Freitas-Rodriguez et al., 2017). This assisted
clinicians in selecting the most appropriate filler, injection depth, and
volume to achieve natural and long-lasting results. In another instance,
a 50-year-old man with an MMP1 gene variant indicating accelerated
collagen degradation received biostimulatory injectables rather than
hyaluronic acid fillers. Evaluations at 1, 3, and 6 months showed
progressive structural improvement and skin elasticity. Moreover, Al
is mitigating adverse events by detecting early markers of
inflammation, vascular compromise, or delayed hypersensitivity
reactions in injectable treatments. By integrating real-time imaging
and patient history, Al-powered risk assessment tools provide
preemptive alerts for potential complications, improving treatment
safety and patient satisfaction. A third case involved a 45-year-old
woman with SOD2 polymorphisms suggesting poor oxidative stress
management. A preparatory antioxidant regimen was introduced six
weeks before her fractional CO, laser procedure. Post-treatment
follow-up revealed enhanced healing and reduced erythema,
highlighting the predictive value of genomic profiling in procedural
planning (Mansoor et al., 2025; Velarde et al., 2012).

These advancements mark a paradigm shift in aesthetic
dermatology, where Al-driven predictive modeling enables highly
personalized, risk-optimized treatments that align with individual
genetic and phenotypic characteristics. By leveraging data-driven
insights, automated procedural adjustments, and real-time risk analysis,
Al would help standardize aspects for precision, efficacy, and patient-
centered care in modern aesthetic medicine. Figure 3 illustrates the
integrative pipeline from genetic data acquisition through AI-powered
analysis to the development of personalized skincare protocols.

Level of evidence overview

To contextualize these clinical insights, we evaluated the strength
and quality of the supporting evidence. Among the 74 studies

reviewed, 22 were randomized controlled trials (Level I),
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demonstrating high internal validity and often investigating the
clinical efficacy of SNP-guided interventions and Al-based
customization in skincare. These RCTs reported statistically significant
improvements in skin hydration, elasticity, and texture when
treatment was personalized. Approximately 35 studies were
observational (Level II), including prospective and retrospective
cohorts exploring Al-assisted diagnostics, omics integration, and
personalized regimens. While they provided strong real-world
evidence, they frequently lacked randomization and blinding.

The remaining 17 studies were categorized as Level III evidence,
comprising expert consensus statements, pilot modeling projects, and
conceptual papers introducing digital twin strategies and predictive
simulation tools. Though conceptually robust, these studies had
limited empirical validation.

Overall, 57% of the studies (Levels I and II) offered moderate to high
quality evidence, while 23% were early-phase or exploratory. Many of the
higher-quality studies demonstrated consistent outcome improvements
aligned with genetic profiles or Al analysis. In addition, limited
geographic diversity and underrepresentation of darker phototypes
restrict generalizability. Yet, limitations included lack of population
diversity, inconsistent outcome measures, and limited follow-up.

Ethical and data security concerns

The ethical challenges of integrating AI and genomics into
dermatology extend beyond data privacy, algorithmic transparency,
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and bias (Clayton et al, 2023). Risks include potential genetic
discrimination in employment or insurance contexts if genomic
information is misused. Issues of data ownership and consent are
particularly salient, as for commercial purposes collection and control
by different players of skin genomic data increase drastically, raising
concerns about secondary use without explicit patient approval (Kaye,
2012; Sanderson et al., 2017).

Additionally, cross-border data transfer creates regulatory and
jurisdictional challenges, as protections vary widely (e.g., GDPR in
Europe vs. HIPAA in the United States), potentially exposing
individuals to vulnerabilities (Metta et al., 2024; Kovari, 2024; Chen
et al., 2022). Ensuring algorithmic transparency and explainability
remains critical to prevent opaque decision-making and to build
patient and clinician trust. Equity considerations are also central, since
underrepresentation of diverse phototypes in genomic and Al datasets
may exacerbate disparities in outcomes (Chassang, 2017; Mennella
etal., 2024; Faheem et al., 2025). Addressing these challenges through
robust ethical frameworks, regulatory oversight, and inclusive study
essential  for clinical  adoption

design is responsible

of cosmetogenomics.

The future of DNA-based aesthetic
dermatology

Looking ahead, advancements in DNA-based skincare and
aesthetic dermatology lies in multi-omics integration, combining
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TABLE 1 Summary of some studies.

Reference/Study

Population

Intervention/Study
design

Primary outcomes

10.3389/frai.2025.1660356

Quiality of evidence
(1-5)

Sepetiene et al. (2023) Subjects with genetic Subjects with genetic Subjects with genetic 2
polymorphisms polymorphisms polymorphisms
Flament et al. (2023) Women of various ages and Cross-sectional imaging analysis of = Improved facial sign analysis 2
skin types (cross-sectional) selfie-based Al scoring (JEADV) across diverse skin types
Dessi et al. (2024) Participants in integrative Multi-omics integration in skincare | Identified aging/inflammatory 3
multi-omics skin study personalization (Metabolites) biomarkers from omics
integration
Gupta and Margolis (2020) Patients with FLG mutations Review of filaggrin gene mutations = Identified FLG mutations 3
and barrier dysfunction and clinical implications affecting skin barrier,
supporting personalized
interventions
Haykal (2025a) Conceptual framework on Perspective on digital twin models | Theoretical model for AI- 5
digital twins in skincare in dermatology driven digital twin simulation
in dermatology

genomics with proteomics, metabolomics, and microbiome analysis
for a more comprehensive understanding of skin health (Dessi
etal., 2024; Li et al., 2023). AT and machine learning could further
enhance this field by refining predictive models and generating
truly personalized skincare algorithms (Elder et al., 2021; Mataraso
et al, 2025). In parallel with these diagnostic and predictive
advances, therapeutic innovation is rapidly evolving. Emerging
technologies such as gene editing and targeted epigenetic
modulation offer the potential to directly influence skin biology,
transitioning from surface-level product application to
interventions that operate at the molecular level (Baker and
Hayden, 2020; Dermitzakis et al., 2025).

While the integration of AI and multi-omics approaches offers
promising directions in aesthetic dermatology, it is important to
acknowledge current limitations. These include the high cost and
limited accessibility of SNP and omics testing, the lack of
standardized protocols for Al-driven dermatogenomic tools, and
challenges in clinical validation and reproducibility. These technical
and systemic barriers must be addressed to ensure equitable and
reliable implementation in real-world dermatology practice
(Table 1).

Beyond individual skincare, AI and genomics will reshape
procedural dermatology by optimizing non-invasive treatments such
as laser therapy, injectables, and regenerative medicine (Haykal et al.,
2024). Real-time Al-based genomic feedback could adjust laser
parameters according to an individual’s collagen synthesis capacity or
determine the most suitable dermal filler based on genetic
predisposition to inflammation (Haykal, 2025d). These innovations
bridge the gap between precision medicine and aesthetic dermatology,
ensuring safer and more effective treatments tailored to each patient’s
unique biology (Johnson et al., 2021; Marques et al., 2024).

The intersection of genomics and Al marks a pivotal evolution in
aesthetic dermatology. While early results are promising, widespread
clinical integration depends on rigorous validation, equitable access,
and ethical safeguards. Continued research and collaboration between
dermatologists, data scientists, and regulatory bodies will be essential
to fully realize the potential of personalized, precision-based skincare
and interventions.
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Conclusion

The integration of DNA analysis into aesthetic dermatology
represents a promising but still evolving frontier. The ability to
personalize skincare based on genetic predispositions offers potential
benefits, yet significant scientific, ethical, and practical challenges
remain before widespread adoption is feasible. AI-driven tools may
refine personalized approaches by supporting deeper analysis and
adaptive treatment recommendations, while SNP analysis, proteomics,
and predictive modeling can contribute to more precise interventions.
However, the current evidence base is modest, geographically limited,
and often exploratory.

Future research should prioritize the development of standardized
dermatogenomic databases, independent validation of AlI-driven
protocols, and greater inclusion of diverse populations. Equally
important are robust ethical safeguards addressing genetic
discrimination, data ownership, and cross-border governance. With
these measures in place, genetic-based skincare could move from
theoretical innovation toward clinically validated, evidence-based
practice. Al-driven genomic analysis, machine learning, and
predictive models have the potential to enhance dermatology, but
progress must be grounded in transparency, reproducibility, and
equity. The intersection of Al, genomics, and molecular science offers
opportunities for advancement, provided implementation is cautious,
ethical, and scientifically rigorous.
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