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Background: The proliferation of tobacco-related misinformation poses 
significant public health risks, requiring scalable solutions for credibility 
assessment. Traditional manual fact-checking approaches are resource-
intensive and cannot match the pace of misinformation spread.
Objective: To develop and validate a proof-of-concept multi-agent AI pipeline 
for automated credibility assessment of tobacco misinformation claims, 
evaluating its performance against expert human reviewers.
Methods: We constructed a three-agent pipeline using OpenAI GPT-4.1 and 
the Crewai framework. The Serper API provided real-time evidence retrieval. 
The Content Analyzer classifies claims into four types: health impact, scientific 
assertion, policy, or statistical. The Scientific Fact Verifier queries authoritative 
sources (WHO, CDC, PubMed Central, Cochrane). The Health Evidence Assessor 
applies weighted scoring across five dimensions to assign 0–100 credibility 
scores on a five-level scale.
Results: The framework achieved an MAE of 6.25 points against expert scores, 
a weighted Cohen’s κ of 0.68 (95% CI: 0.52–0.84) indicating substantial 
agreement, 70% exact category agreement, 95% adjacent-level agreement, and 
processed each claim in under 7 s—over 1,000 × faster than manual review.
Limitations: We validated our approach using 20 diverse tobacco claims through 
intensive expert review (2–4 h per claim). The system exhibited a conservative 
bias (+3.25 points, p = 0.03) and did not classify any claims as “Highly Unlikely” 
despite expert assignment of two claims to this category. This proof-of-concept 
demonstrates technical feasibility and substantial inter-rater agreement while 
identifying areas for calibration in future large-scale implementations.
Conclusion: Our proof-of-concept agentic AI pipeline demonstrates substantial 
agreement with expert assessments of tobacco-related claims while providing 
dramatic speed improvements. By combining zero-shot LLM reasoning, retrieval-
grounded evidence verification, and a transparent five-level scoring schema, the 
system offers a practical tool for real-time misinformation monitoring in public 
health. This proof-of-concept establishes technical feasibility for automated 
tobacco misinformation assessment, with validation results supporting further 
development and larger-scale testing before operational deployment.
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1 Introduction

Tobacco-related misinformation poses a critical challenge to 
public health initiatives worldwide. Despite decades of progress in 
tobacco control, misinformation continues to undermine evidence-
based efforts and contributes to preventable mortality. While the 
World Health Organization attributes over 8 million annual deaths to 
tobacco use (Reitsma et al., 2021; World Health Organization, 2025), 
tobacco industry misinformation and false claims about product 
safety have historically delayed public health interventions and 
undermined cessation efforts, potentially contributing to this 
mortality burden. In the digital era, this misinformation has 
proliferated across platforms at unprecedented rates, creating 
significant challenges for health authorities (Gilmore et al., 2015; Luk 
et al., 2021).

The scope of this problem spans multiple domains—from 
misleading health claims and cessation methods to deceptive 
messaging about novel products and policy impacts. This 
misinformation ecosystem is particularly concerning as tobacco 
companies increasingly leverage social media and third-party 
advocates to target vulnerable populations, including youth and 
disadvantaged communities (Tan and Bigman, 2020; Alpert et al., 
2021). The velocity and volume of digital misinformation has 
overwhelmed traditional verification approaches, creating an urgent 
public health need (Vraga and Bode, 2020).

Current misinformation management relies predominantly on 
manual expert fact-checking—a labor-intensive, time-consuming 
process that cannot scale to meet the challenge. These resource 
constraints create verification bottlenecks, with misleading claims 
spreading extensively before experts can provide evidence-based 
corrections (Eysenbach, 2020; Sylvia Chou et al., 2020). Manual 
approaches face three critical limitations: (1) they cannot match 
the speed of misinformation dissemination, (2) they require scarce 
specialist expertise, and (3) they struggle to provide consistent, 
transparent assessment methodologies (Wang et al., 2019). Recent 
studies have demonstrated the emerging potential of generative AI 
for monitoring and counteracting tobacco-related misinformation 
on social media platforms (Kong et al., 2024). These approaches 
leverage multimodal analysis techniques to identify problematic 
content across text, images, and videos (Sharp et al., 2025). Our 
work builds upon these advances by focusing specifically on 
claim-level verification and assessment, rather than content 
filtering, to provide transparent, evidence-grounded 
credibility ratings.

To address these challenges, we present a novel multi-agent AI 
pipeline specifically designed for tobacco-related misinformation 
detection and verification. Our approach leverages advances in natural 
language processing, information retrieval, and evidence assessment 
to create a system that is both scalable and aligned with public health 
priorities (Nyhan, 2021). By automating while maintaining scientific 
rigor, this framework offers a practical solution to the growing 
challenge of tobacco misinformation in digital spaces.

Our contributions include: (1) a specialized multi-agent AI 
pipeline that deconstructs misinformation assessment into claim 
extraction, evidence-based verification, and credibility evaluation; (2) 
a comprehensive five-level classification system calibrated for tobacco-
related claims; and (3) empirical validation against expert benchmarks 
with systematic analysis of performance patterns and limitations. This 
proof-of-concept establishes technical feasibility and provides a 
foundation for scalable misinformation monitoring with identified 
pathways for addressing current limitations.

Unlike existing approaches that rely on static training data or 
generic fact-checking, our system provides domain-specific tobacco 
misinformation assessment with real-time evidence integration from 
authoritative health sources. This work bridges data science and public 
health by offering a practical tool for enhancing tobacco control 
information integrity. By prioritizing authoritative sources and 
scientific consensus, the system aligns technical innovation with 
established public health practice while dramatically accelerating the 
verification process. A glossary of key terms is provided in 
the Appendix.

2 Related work

2.1 Tobacco misinformation overview

Tobacco misinformation represents a deliberate, documented 
strategy in industry practices spanning decades. Historical patterns of 
science manipulation (Proctor, 2012; Oreskes and Conway, 2011) have 
evolved into sophisticated digital tactics promoting unsubstantiated 
claims about products across multiple platforms (Jackler et al., 2019; 
Allem et al., 2017). These misleading claims follow distinct typological 
patterns—including health risk minimization, exaggeration of 
cessation benefits, misleading statistics, and policy impact 
distortions—creating predictable information distortion that 
undermines public health (Apollonio and Malone, 2009). The 
consequences are substantial: exposure to misinformation correlates 
with decreased cessation attempts and increased youth susceptibility 
to product initiation (Brennan et al., 2017; Tan et al., 2015), 
underscoring the urgency of effective countermeasures.

2.2 Manual fact-checking limitations

Traditional approaches to tobacco misinformation management 
rely on resource-constrained expert verification processes. Major 
health authorities maintain dedicated fact-checking resources (World 
Health Organization, 2022; Centers for Disease Control and 
Prevention, 2023), but face significant efficiency barriers, with 
comprehensive claim assessment typically requiring 2–4 h per claim 
(Bodaghi et al., 2024). While structured protocols for tobacco claim 
assessment exist (Leone et al., 2018), scaling these approaches faces 
fundamental challenges: expert availability constraints, verification 
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delays, and inconsistent methodologies across fact-checking entities 
(Schmidt et al., 2018). These limitations extend beyond resource 
constraints to include cognitive biases in expert assessments (Erku et 
al., 2021) and the predominantly reactive nature of manual 
verification, occurring after misinformation has achieved substantial 
dissemination (Hendlin et al., 2019).

2.3 Computational approaches

Recent years have seen significant advances in computational 
methods for misinformation detection, though few target tobacco 
content specifically. General approaches typically employ content-
based, social context-based, or hybrid methodologies (Zhou and 
Zafarani, 2020), while health-specific implementations have 
demonstrated promising results using linguistic features and credibility 
metrics (Pérez-Rosas et al., 2018; Ghenai and Mejova, 2018). However, 
three critical limitations persist in existing computational approaches: 
(1) they often employ binary classification (true/false) rather than 
nuanced credibility assessment required for complex tobacco claims 
(Dai et al., 2020); (2) they rarely incorporate domain-specific knowledge 
and authoritative health sources; and (3) they struggle with limited 
training data availability in specialized domains like tobacco control.

Advances in large language models (LLMs) show potential for 
health misinformation detection, particularly through retrieval-
augmented generation approaches that improve factual accuracy 
(Gargari and Habibi, 2025; Baashirah, 2024). However, these models 
risk perpetuating rather than detecting misinformation without 
domain-specific training and robust evidence retrieval mechanisms 
(Zhang et al., 2025). Parallel developments in biomedical natural 
language processing (NLP) offer promising techniques for evidence 
extraction (Sarrouti and El Alaoui, 2017), automated implementation 
of evidence quality assessment frameworks (Marshall et al., 2015; 
Wallace et al., 2010), and methods for quantifying scientific consensus 
(Luo et al., 2017; Zhang et al., 2016), creating opportunities for more 
sophisticated tobacco misinformation assessment. Other research 
found that specialized LLM instruction tuning significantly improved 
adherence to health guidelines in smoking cessation advice, achieving 
72.2% guideline adherence compared to 47.8% for general-purpose 
models, highlighting the importance of domain-specific optimization 
for health information assessment (Abroms et al., 2025).

2.4 Gap analysis

Despite significant advances in computational health information 
assessment, several critical gaps remain unaddressed. First, tobacco-
specific misinformation detection has received limited attention despite 
its public health significance and unique characteristics. Second, 
existing approaches often lack integration with authoritative evidence 
sources and public health priorities. Third, most systems provide binary 
classifications rather than nuanced credibility assessments reflecting 
evidence quality variations. Our work addresses these gaps by 
introducing a specialized multi-agent AI pipeline that: (1) integrates 
advanced NLP with authoritative tobacco-specific evidence sources; (2) 
introduces a nuanced, five-level credibility framework grounded in 
evidence-based public health principles.; and (3) provides transparent 
evidence trails supporting assessment outcomes. This approach bridges 

technical innovation with practical public health needs in tobacco 
information management while demonstrating how multi-agent AI 
pipeline can effectively coordinate specialized components in complex 
healthcare information tasks (Isern and Moreno, 2016; Yuan and 
Herbert, 2014; Wimmer et al., 2016; Amith et al., 2020).

3 Methodology

3.1 System framework and multi-agent AI 
pipeline

Our system uses a modular, three-agent AI framework. Each 
agent has distinct responsibilities: extraction, verification, and 
credibility assessment. The agents work sequentially but independently 
(Figure 1). This design separates concerns while maintaining 
information flow between stages.

The system operates in three sequential phases:

	 1	 Claim extraction and characterization: Identification and 
structuring of tobacco-related claims from textual data.

	 2	 Evidence-based verification: Algorithmic comparison of 
extracted claims against authoritative scientific sources.

	 3	 Credibility assessment and scoring: Quantitative evaluation 
of claim credibility based on evidence quality and 
scientific consensus.

Our pipeline comprises three sequential agents—Content 
Analyzer, Scientific Verifier, and Health Evidence Assessor—each 
exchanging messages as shown in Figure 1. Blue arrows trace the user’s 
claim as it moves through the Content Analyzer, Scientific Verifier, 
and Health Evidence Assessor agents. Green arrows illustrate calls to 
external data sources (WHO Database, CDC Reports, PubMed/
Cochrane), and the purple arrow marks the return of the computed 
credibility score and justification back to the user.

This pipeline approach ensures each claim undergoes consistent, 
thorough analysis while maintaining processing efficiency. The 
modular design allows for independent optimization of each 
component and facilitates system scalability as data volumes increase.

3.2 Data sources and claim selection

3.2.1 Data collection
We sourced data exclusively from authoritative public health 

repositories and scientific databases. Including:

	•	 World Health Organization (WHO) Framework Convention on 
Tobacco Control documentation

	•	 Centers for Disease Control and Prevention (CDC) 
tobacco factsheets

	•	 PubMed Central peer-reviewed research articles
	•	 Cochrane Database of Systematic Reviews

For each source, we retrieved both metadata and full-text content 
where available through the Serper API, which provides real-time 
access to authoritative health databases. From WHO and CDC 
sources, we extracted complete documentation including guidelines, 
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policy statements, and statistical reports. For academic sources 
(PubMed Central and Cochrane), we accessed both abstracts and 
available full-text articles, with priority given to systematic reviews 
and meta-analyses. The Serper API’s domain-specific search 
capabilities were restricted to predetermined authoritative domains 
(WHO, CDC, PubMed Central, and Cochrane), with automated 
verification of source URLs and publication dates.

Data collection was restricted to authoritative public health 
repositories and scientific databases. While these sources (particularly 
WHO and CDC) maintain institutional independence from industry 
influence, and PubMed Central and Cochrane require conflict of 
interest declarations, we did not perform detailed analysis of potential 
industry sponsorship at the individual study level. Our approach relies 
on institutional credibility and multi-source evidence triangulation to 
mitigate potential bias. Future implementations could enhance 
robustness by incorporating automated conflict-of-interest detection 
and evidence weighting based on funding transparency.

Our core algorithmic framework operates through a sequential 
pipeline where first the Content Analyzer Agent identifies tobacco-
related health claims using NLP techniques. Extracted claims are then 
processed by the Evidence Retrieval Agent, which queries authoritative 
health databases and applies relevance filtering to compile evidence 
packages. The Credibility Assessment Agent evaluates these packages 
across five dimensions using weighted scoring from authoritative 
sources, producing numerical credibility scores (0–100). Finally, the 
Classification Agent maps these scores to our five-level credibility 
scale through predefined thresholds, ensuring consistent and 
interpretable outputs for end users as shown in Figure 2.

3.2.2 Claim categorization
To ensure comprehensive coverage across the tobacco information 

landscape, we categorized claims into four distinct types:

	 1	 Health impact claims: Assertions regarding physiological or 
psychological effects of tobacco products (e.g., “Smoking 
reduces life expectancy by 10 years”).

	 2	 Scientific assertions: Claims regarding chemical properties, 
biological mechanisms, or research findings (e.g., “Nicotine 
replacement therapy doubles cessation success rates”).

	 3	 Policy-related statements: Declarations about regulatory 
effectiveness or industry practices (e.g., “Plain packaging has 
no impact on smoking initiation rates”).

	 4	 Statistical claims: Numeric assertions about prevalence, 
mortality, or economic impacts (e.g., “Over 8 million people 
die annually from tobacco-related illnesses”).

This taxonomic approach facilitated systematic processing and 
enabled analysis of performance variations across claim types. The 20 
claims were systematically selected by the research team to ensure 
balanced representation across our four credibility categories and 
diverse evidence complexity levels. Selection criteria prioritized claims 
with established expert consensus in the literature, documented public 
health significance, varying degrees of evidence availability, and 
representation of common tobacco misinformation patterns identified 
in prior content analyses. We selected tobacco misinformation as our 
validation domain for several methodological reasons. First, tobacco 
represents a well-documented baseline of established scientific 
consensus, providing reliable ground truth against which to validate 
automated assessments. Second, it addresses a significant public health 
challenge with documented industry misinformation campaigns 
spanning decades (Gannon et al., 2023). Third, it offers diverse claim 
types (health impacts, policy effects, statistical assertions) within a 
coherent domain. While the relative stability of tobacco evidence 
compared to rapidly evolving domains such as emerging infectious 
diseases may favor our system’s performance, this choice provides 
essential proof-of-concept validation before tackling more challenging, 
time-sensitive health topics. In assembling our 20-claim test set, we 
applied four selection criteria to ensure a realistic and challenging 
evaluation. First, each claim addresses a clear public-health impact 
(e.g., morbidity, mortality, or policy implications). Second, we 
balanced representation across our four claim categories (health 
impact, scientific assertion, policy, and statistical) to probe 

FIGURE 1

Sequence diagram of the multi-agent claim verification pipeline: blue arrows show the core processing flow, green arrows denote external evidence 
retrieval, and the purple arrow, the final score return.
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FIGURE 2

Core algorithmic framework with key decision thresholds.
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performance on diverse content types. Third, we prioritized claims 
with high visibility—drawing from authoritative WHO/CDC 
publications and recent social-media or web-search trends—to reflect 
real-world misinformation exposure. Finally, we included both well-
established statements and emerging or contested assertions to test the 
pipeline’s ability to handle varying levels of scientific consensus.

3.3 Agent design and implementation

3.3.1 Content analyzer agent
The Content Analyzer Agent performs claim extraction and initial 

characterization using advanced NLP techniques. This agent employs:

	•	 Named entity recognition (NER): Identifies tobacco products, 
health conditions, and intervention terms within text.

	•	 Dependency parsing: Analyzes grammatical structure to extract 
complete claim statements.

	•	 Semantic analysis: Classifies claims into the four categories.
	•	 Claim prioritization: Ranks claims based on potential public 

health impact and information spread.

The classification system recognizes that tobacco-related claims often 
span multiple categories simultaneously. For instance, a single claim might 
combine statistical evidence with health impact assertions, or policy 
statements with scientific findings. In such cases, the Content Analyzer 
assigns both primary and secondary classifications based on the dominant 
characteristics present in the claim, with corresponding confidence scores 
for each category assignment. This multi-category approach ensures that 
complex claims receive comprehensive analysis reflecting their full 
informational content.

The classification process follows a structured NLP pipeline that 
integrates several analytical techniques. First, named entity 
recognition pinpoints tobacco-specific terms, health conditions, and 
key statistics. Next, dependency parsing reconstructs each claim’s full 
syntactic structure. In the semantic analysis phase, claim embeddings 
are compared against category-specific reference sets to yield 
confidence scores for each potential classification. These scores are 
combined with structural completeness metrics and subject-matter 
keyword matching to produce final category assignments. Claims are 
subsequently prioritized based on their potential public health impact, 
considering factors such as population reach, evidence strength, and 
dissemination patterns.

3.3.2 Scientific fact verifier agent
The Scientific Fact Verifier Agent evaluates extracted claims 

against authoritative scientific evidence. This agent:

	 1	 Transforms claims into structured queries optimized for 
scientific database retrieval

	 2	 Accesses multiple authoritative data sources including WHO, 
CDC, and PubMed Central

	 3	 Retrieves relevant scientific literature, systematic reviews, and 
health authority statements

	 4	 Analyzes evidence quality, consistency, and relevance to the 
specific claim

	 5	 Documents evidence trails with bibliographic references 
for transparency

The agent employs retrieval-augmented prompting to ensure 
verified information is grounded in authoritative sources rather than 
model-generated content. Unlike traditional RAG systems that 
append raw documents to prompts, our agent processes and 
synthesizes retrieved evidence before passing structured summaries 
to subsequent agents. This methodology enhances factual accuracy 
while reducing hallucination risks commonly associated with LLMs. 
Our approach aligns with recent advancements in retrieval-augmented 
techniques which demonstrated that enhancing instruction diversity 
and structured knowledge integration improved both accuracy and 
transparency in knowledge-intensive tasks (Liu and Chen, 2025). 
Similar principles could further enhance our Scientific Fact Verifier 
agent’s ability to retrieve and integrate evidence from 
authoritative sources.

3.3.3 Health evidence assessor agent
The Health Evidence Assessor Agent performs credibility 

assessment and generates final scores based on verification results. 
This agent:

	 1	 Evaluates evidence strength using established frameworks (e.g., 
GRADE methodology principles; Guyatt et al., 2025)

	 2	 Assesses alignment with scientific consensus across 
authoritative sources

	 3	 Analyzes evidence consistency, recency, and 
methodological quality

	 4	 Generates a numerical credibility score (0–100) with 
qualitative justification

	 5	 Maps scores to the five-level credibility classification system

The agent implements a weighted scoring algorithm that 
prioritizes high-quality evidence (e.g., systematic reviews, meta-
analyses) over lower-quality evidence (e.g., case reports, opinion 
pieces), with explicit weighting factors (Chloros et al., 2023).

3.3.4 Core algorithmic framework
The system implements four key algorithms that form the 

backbone of our multi-agent AI pipeline. These algorithms work in 
concert to process, verify, and assess tobacco-related claims, with each 
addressing a specific aspect of the misinformation detection pipeline.

The claim extraction algorithm (Algorithm 1) implements the 
initial processing phase, focusing on identifying and structuring 
tobacco-related claims from input text. It employs natural language 
processing techniques to isolate relevant sentences and applies a 
multi-step analysis process to extract, normalize, and categorize 
claims. The algorithm’s confidence scoring mechanism ensures that 
only well-formed claims proceed to subsequent stages, while the 
prioritization step orders claims based on their potential public 
health impact.

The evidence verification algorithm (Algorithm 2) represents the 
core fact-checking component of our system. It implements a 
sophisticated retrieval-augmented generation approach (Liu and Chen, 
2025), querying multiple authoritative sources with carefully weighted 
credibility scores. The algorithm’s hierarchical evidence gathering 
process ensures comprehensive coverage while maintaining efficiency. 
By incorporating source-specific weights derived from expert 
consensus, the system can effectively differentiate between varying 
levels of authority in health information sources (Kington et al., 2021).
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The credibility scoring algorithm (Algorithm 3) implements our 
novel multi-dimensional assessment framework. Drawing inspiration 
from evidence-based medicine hierarchies, it evaluates claims across 
five key dimensions: evidence quality, scientific consensus, consistency, 
recency, and scientific plausibility. The weighted scoring system 
reflects the relative importance of each factor in determining overall 
credibility, with higher weights assigned to fundamental aspects like 
evidence quality (40%) and scientific consensus (25%). The pipeline 
orchestration algorithm (Algorithm 4) serves as the system’s 
coordination layer, managing the flow of information between agents 
and ensuring proper uncertainty propagation throughout the 
assessment process. This algorithm implements a robust error 
handling mechanism and maintains detailed confidence metrics at 
each stage. By tracking uncertainty propagation, it provides 
transparent reliability indicators for final assessments.

In summary, the integration of Algorithms 1–4 describe our three 
main contributions—a modular, claim-by-claim processing pipeline; 
an evidence-grounded verification stage drawing on WHO, CDC, 
PubMed Central, and Cochrane; and a transparent, five-level 
credibility scoring system. Each algorithm maps directly to one phase 
in the workflow depicted in Figures 1, 2, and when run end-to-end, 
this framework delivers the accuracy, inter-rater agreement, and 
processing-time results presented in Section 4.

The framework’s design emphasizes reproducibility and 
scalability, with explicit error handling and confidence scoring at 
each stage. Our evidence verification process employs state-of-
the-art retrieval-augmented generation techniques (Liu and Chen, 
2025) to ensure factual grounding, while the credibility scoring 
implements the five-dimensional assessment framework that 

achieved strong agreement with expert reviewers. This comprehensive 
approach enables rapid, reliable assessment of tobacco-related claims 
while maintaining the rigor required for public health applications.

3.4 Credibility assessment framework

3.4.1 Five-level classification system
We developed a five-level classification system for credibility 

assessment, providing nuanced differentiation between varying 
degrees of scientific support:

	•	 Highly likely to be credible (81–100): Claims with overwhelming 
scientific evidence and consensus from authoritative sources. 
These claims are consistently supported by multiple high-quality 
studies, systematic reviews, or meta-analyses with minimal 
contradictory findings.

	•	 Likely to be credible (61–80): Claims with substantial supporting 
evidence but with minor limitations or areas of ongoing research. 
These claims are supported by multiple studies with generally 
consistent findings, though some methodological limitations or 
gaps may exist.

ALGORITHM 1

Claim extraction.

Input: claim c, source weights W 

Output: verifica�on result V 

1: E ← ∅ 

2: Q ← GenerateQueries(c) 

3: for each source s with weight w ∈ W do 

4:     R ← SerperAPI.Search(Q, domain=s) 

5:     for each result r ∈ R do 

6:         E ← E ∪ { 

7:             source: s, 

8:             weight: w, 

9:             relevance: AssessRelevance(r, c), 

10:            content: ExtractEvidence(r) 

11:        } 

12: return { 

13:     evidence: E, 

14:     consensus: CalculateConsensus(E), 

15:     temporal_relevance: AssessTemporalRelevance(E) 

16: } 
ALGORITHM 2

Evidence verification.
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	•	 Moderate credibility (41–60): Claims with mixed evidence or 
where scientific consensus is still developing. These claims 
typically have supporting and contradicting evidence of similar 
quality or volume, or represent areas where research is 
still evolving.

	•	 Unlikely to be credible (21–40): Claims with limited supporting 
evidence and substantial contradictory findings. These claims 
contradict most available evidence but may have minimal or 
low-quality supporting data.

	•	 Highly unlikely to be credible (0–20): Claims that directly 
contradict established scientific consensus or lack any credible 
supporting evidence. These claims are inconsistent with 
fundamental scientific principles or are contradicted by 
substantial high-quality evidence.

This granular classification enhances decision support for public 
health officials and improves communication clarity for non-technical 
audiences compared to broader three-level systems.

3.4.2 Scoring algorithm
The Health Evidence Assessor Agent employs a multi-

dimensional scoring algorithm that evaluates claims across five 
key dimensions:

	 1	 Evidence quality (40%): Evaluates the methodological rigor 
of supporting studies, with higher weights assigned to 
systematic reviews, randomized controlled trials, and 
meta-analyses.

	 2	 Scientific consensus (25%): Measures agreement across 
authoritative sources and relevant expert bodies.

	 3	 Evidence consistency (15%): Assesses whether findings from 
multiple studies demonstrate consistent conclusions.

	 4	 Evidence recency (10%): Evaluates whether the claim reflects 
current understanding, with higher weights for evidence 
published within the last 5 years.

	 5	 Scientific plausibility (10%): Considers alignment with 
established scientific principles and mechanisms.

Each dimension contributes to the final score through a 
weighted formula:

( ) ( ) ( )
( ) ( )

= × + × + ×
+ × + ×

Score Eq 0.4 Sc 0.25 Ec 0.15
Er 0.1 Sp 0.1 .

Where:

	•	 Eq = Evidence Quality score (0–100)
	•	 Sc = Scientific Consensus score (0–100)
	•	 Ec = Evidence Consistency score (0–100)
	•	 Er = Evidence Recency score (0–100)
	•	 Sp = Scientific Plausibility score (0–100)

These component weights were determined through expert 
consensus and validated in our pilot study with public health 
specialists, as described in the following section.

3.5 Validation approach

Our 20-claim validation was designed as a proof-of-concept study 
to establish technical feasibility before larger-scale implementation. 
The achieved Cohen’s κ of 0.68 demonstrates substantial agreement 
according to established interpretation guidelines, with the 95% CI 
(0.52–0.84) spanning from moderate to substantial agreement ranges. 
The substantial agreement achieved represents a significant milestone 
for automated health misinformation assessment, establishing that 
multi-agent AI pipeline can replicate expert-level judgment patterns 
in controlled validation conditions.

3.5.1 Manual assessment comparison
To validate the automated framework’s credibility scores, two expert 

reviewers independently evaluated all 20 claims. Reviewer A holds a PhD 
in public health with 12 + years of tobacco control research experience; 
Reviewer B holds a PhD in epidemiology with 8 + years of tobacco-
related health outcomes research. Both reviewers were blinded to 
automated scores during initial assessment. Inter-rater reliability between 
the two primary reviewers before adjudication was κ = 0.74 (95% CI: 
0.59–0.89). Six claims required third-party adjudication due to score 
differences >15 points. The adjudication process involved structured 
discussion of evidence interpretation differences, with a third expert 
(PhD in public health, 15 + years tobacco policy research) providing final 
consensus scores. For each claim, reviewers assigned a 0–100 score using 
the same five-level classification and recorded detailed justifications.

3.5.2 Performance metrics
We evaluated framework performance using multiple 

complementary metrics:

	 1	 Accuracy: Percentage of claims where automated and manual 
classifications matched exactly

	 2	 Adjacent accuracy: Percentage of claims where automated 
classification was within one level of manual classification

Input: verifica�on result V, weights W 

Output: credibility score S ∈ [0,100] 

1: components ← { 

2:     evidence_quality: AssessQuality(V.evidence), 

3:     consensus: V.consensus, 

4:     consistency: AssessConsistency(V.evidence), 

5:     recency: V.temporal_relevance, 

6:     plausibility: AssessPlausibility(V) 

7: } 

8: S ← 0 

9: for each component c, weight w ∈ W do 

10:    S ← S + (components[c] × w) 

11: return Normalize(S, 0, 100) 
ALGORITHM 3

Credibility scoring.
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	 3	 Mean absolute error (MAE): Average absolute difference 
between automated and manual numerical scores

	 4	 Weighted Cohen’s kappa: Measure of inter-rater reliability 
between automated and manual classifications, accounting for 
partial agreement

	 5	 Processing time: Time required for complete claim processing 
(extraction to final score)

These metrics provided comprehensive assessment of both 
classification accuracy and operational efficiency.

3.6 Technical implementation and 
infrastructure

Our multi-agent AI pipeline is powered by OpenAI’s GPT-4.1 (no 
fine-tuning) as the core language model. To ground claims in up-to-
date evidence, we integrated the Serper API for real-time web search 
retrieval; snippets and source URLs are appended to prompts passed 
to GPT-4.1. The overall workflow—claim extraction, evidence 
verification, and credibility scoring—is orchestrated by the CrewAI 
framework, which manages agent definitions, asynchronous tool 
invocations, and inter-agent messaging. This technical approach 
ensures the framework remains adaptable to evolving misinformation 
patterns and public health needs. All agent–API interactions are 
automatically instrumented with Langtrace, producing timestamped 
traces of every Serper query and API call—enabling exact 
reproduction of the outlier assessments (Langtrace, 2024).

At its heart, our infrastructure combines structured prompt 
schemas, a lightweight multi-agent orchestrator, and a dynamic 
retrieval-grounding layer. Each agent operates from a templated 
instruction set defining its role, goal, and narrative context, with 

runtime placeholders that inject the specific research topic. A central 
orchestrator then sequences agent execution and carries outputs 
forward through each stage—ensuring smooth, reproducible 
transitions from claim extraction to final scoring. Meanwhile, agents 
invoke a web-search API on the fly to fetch, filter, and integrate real-
world evidence from trusted domains directly into the GPT-4.1 context, 
minimizing hallucinations and keeping responses current. An optional 
preferences module can further tailor prompts with user-centric 
context when needed. Together, these elements yield a scalable, 
transparent framework that balances precise agent responsibilities with 
robust workflow management and dynamic, evidence-based prompting.

Complete implementation details, including agent definitions, 
prompt templates, and scoring algorithms, are available in our GitHub 
repository (Elmitwalli, 2025). The repository includes full source code. 
This ensures full reproducibility and enables independent verification 
of our methodological claims. Planned enhancements include: (i) an 
optional COI down-weighting heuristic for industry-funded studies; 
(ii) an optional calibration module (e.g., isotonic regression and 
contradiction-penalty rules) to improve sensitivity for low-credibility 
claims; and (iii) optional retrieval-logging/export to support third-
party computation of Recall@k/MRR and faithfulness (Silva Filho et 
al., 2023).

4 Results

4.1 Performance overview

Our multi-agent AI framework for tobacco misinformation 
assessment demonstrated substantial agreement with expert 
evaluations while achieving remarkable processing efficiency. The 
framework evaluated 20 representative tobacco-related claims 

Input: text T, API interface I 

Output: assessment A with confidence intervals 

1: claims ← ExtractClaims(T, I) 

2: results ← ∅ 

3: for each claim c ∈ claims do 

4:     verifica on ← VerifyClaim(c, I) 

5:     score ← CalculateCredibility(verifica on) 

6:     results ← results ∪ { 

7:         claim: c, 

8:         score: score, 

9:         confidence: PropagateUncertainty(c, verifica on, score) 

10:    } 

11: return results 
ALGORITHM 4

Pipeline orchestration.
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spanning health effects, policy impacts, scientific assertions, and 
statistical claims.

4.2 Claim-level assessment analysis

Table 1 presents a comprehensive comparison of automated and 
manual credibility scores for the 20 tobacco-related claims evaluated. 
The framework assigned scores on a 0–100 scale and mapped them to 
a five-level classification framework (Highly Unlikely, Unlikely, 
Moderate, Likely, Highly Likely; Figure 3).

4.3 Quantitative performance metrics

Table 2 summarizes the key performance metrics comparing 
automated and manual assessments. The framework achieved a mean 
absolute error of 6.25 points on the 0–100 scale, with a conservative 
bias showing a mean upward adjustment of +3.25 points (p = 0.03). 
This bias was most evident in low-credibility classifications: the system 
did not classify any claims as “Highly Unlikely” despite experts 
assigning two claims to this category. The maximum absolute 
difference between automated and manual scoring was 25 points, with 
a standard deviation of differences of 8.9 points. While this 
conservative approach may reduce false flagging of legitimate health 
information, it indicates a need for calibration to improve 
identification of low-credibility claims.

Our agent-based architecture differs from traditional RAG systems 
in ways that require adapted evaluation approaches. While conventional 
RAG metrics like Recall@k and MRR evaluate raw document retrieval 
quality, and faithfulness metrics assess generation-document 
alignment, our Scientific Fact Verifier Agent performs evidence 
synthesis and structured assessment internally. This design choice 
prioritizes domain expertise integration over document-level retrieval 

optimization. To validate our evidence integration quality, we 
conducted supplementary analysis on a subset of 10 claims, manually 
reviewing the sources retrieved by our Serper API queries. We found 
87% of retrieved sources were directly relevant to claim assessment, 
with 94% coming from our target authoritative domains (WHO, CDC, 
PubMed Central, Cochrane). More importantly, our end-to-end 
validation demonstrates that this evidence integration approach 
maintains fidelity to expert judgment (κ = 0.68), suggesting effective 
synthesis of retrieved information. Future implementations could 
benefit from component-level evaluation by logging intermediate 
retrieval results and implementing domain-specific relevance scoring. 
However, for this proof-of-concept focused on overall system 
validation, our primary metrics effectively capture whether evidence 
retrieval and synthesis support accurate credibility assessment.

The framework processed each claim in under 7 s, representing 
substantial efficiency gains over manual evidence synthesis processes. 
This automation specifically targets the most time-intensive phases of 
fact-checking: systematic evidence retrieval across multiple 
authoritative databases, source credibility assessment, and preliminary 
evidence synthesis—tasks that typically require 1–2 h of manual 
research per claim according to manual misinformation assessment 
research (Bodaghi et al., 2024).

4.4 Credibility-level performance analysis

Figure 4 presents a confusion matrix visualizing automated versus 
manual credibility level assignments across the five-level scale. This 
analysis reveals patterns in how the framework assigns credibility 
levels relative to expert judgment.

The framework demonstrated varying performance across 
credibility categories. Table 3 details category-level recall rates, 
showing how often the automated framework correctly identified 
claims that experts assigned to each category.

The framework exhibited varying performance across 
credibility categories, with conservative bias most evident in 
low-credibility classifications. While achieving excellent recall for 
claims manually categorized as “Likely” (100%) and “Highly 
Likely” (88.9%), performance was lower for “Unlikely” claims 
(50% recall), “Moderate” claims (0% recall), ‘‘Highly Unlikely” 
claims (0% recall). This pattern suggests the framework requires 
calibration to improve sensitivity for identifying problematic 
misinformation while maintaining its strong performance on 
well-supported claims.

4.5 Analysis of classification discrepancies

Three claims exhibited score discrepancies of 20 points or more 
between automated and manual assessment:

	 1	 “Tobacco farming employs over 1 million people worldwide”
Automated: 65 (Likely), Manual: 90 (Highly Likely), Difference: 

−25. This represented the largest discrepancy, where the framework 
underestimated credibility relative to expert assessment. The 
discrepancy stemmed from differing interpretations of magnitude—
while the claim is technically correct, it substantially understates 
global employment figures according to FAO/ILO data.

FIGURE 3

Scatter plot of manual vs. automated scores for all 20 claims, 
showing strong linear correlation with a 95% confidence band, 
demonstrating consistent agreement across the full scoring range.

https://doi.org/10.3389/frai.2025.1659861
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Elmitwalli et al.� 10.3389/frai.2025.1659861

Frontiers in Artificial Intelligence 11 frontiersin.org

TABLE 1  Automated vs. manual assessment of 20 tobacco-related claims.

Claim Automated 
score

Manual 
score

Automated 
category

Manual 
category

Reviewer comments

Smoking reduces life expectancy by 

10 years

95 95 Highly Likely Highly Likely Robust, consistent epidemiological evidence 

(WHO, CDC, meta-analyses).

Second-hand smoke exposure increases 

lung cancer risk by 25%

90 90 Highly Likely Highly Likely Well-documented 20–30% increased risk in 

cohort and case–control studies.

E-cigarettes are completely safe for long-

term use

25 10 Unlikely Highly Unlikely “Completely safe” is misleading; long-term safety 

unproven and emerging data show harms.

Smokeless tobacco products like snus 

significantly reduce oral cancer risk relative 

to smoking

65 60 Likely Moderate Some studies show reduced risk, but evidence is 

mixed and dependent on use patterns.

Nicotine consumption leads to irreversible 

brain damage in adolescents

90 90 Highly Likely Highly Likely Strong consensus on developmental neurotoxicity 

from animal and human studies.

Tobacco taxation is the most effective 

method to reduce smoking rates

85 85 Highly Likely Highly Likely Tax increases consistently rank among top 

tobacco control measures in econometric and 

public-health reviews.

Plain packaging has no impact on smoking 

initiation rates

45 30 Moderate Unlikely Empirical studies demonstrate modest reductions 

in youth appeal and initiation; “no impact” is 

unlikely.

E-cigarettes are banned in over 50 countries 

worldwide

40 30 Unlikely Unlikely Fewer than 50 full bans (WHO reports ~35); 

claim overstates the global count.

Tobacco industry lobbying weakens public 

health policies globally

85 85 Highly Likely Highly Likely Extensive literature documents lobbying’s 

negative influence on FCTC implementation.

Flavored tobacco products target youth 

users

90 95 Highly Likely Highly Likely Clear marketing strategies and youth-prevalence 

data confirm flavor targeting.

Nicotine replacement therapies (NRTs) 

double quitting success

75 75 Likely Likely Meta-analyses show ~1.5–2 × improvement in 

quit rates with NRT vs. placebo.

Tobacco companies have funded research 

denying the link between smoking and 

cancer

95 95 Highly Likely Highly Likely Historical internal documents confirm industry-

sponsored denial campaigns.

The harmful effects of vaping exceed those 

of smoking

30 10 Unlikely Highly Unlikely Increasing evidence vaping less harmful than 

smoking; claim contradicts major reviews; 

“exceed” is highly unlikely

Smoking cessation reduces heart disease 

risk within 5 years

70 70 Likely Likely Risk declines by ~50% within 5 years of quitting; 

supported by cohort studies.

The tobacco industry’s harm-reduction 

investment is predominantly profit-driven

80 80 Likely Likely Strong evidence from financial reports and 

industry documents shows profit-driven strategy, 

with limited secondary involvement in health 

initiatives.

Smoking rates have decreased by 20% 

globally over the past decade

60 40 Moderate Unlikely Global adult prevalence fell ~10–15%; a 20% drop 

overstates the decline.

Over 8 million people die annually from 

tobacco-related illnesses

95 95 Highly Likely Highly Likely WHO and GBD consistently report ~7–8 million 

annual deaths.

Youth smoking rates remain unchanged in 

strong-policy countries

40 30 Unlikely Unlikely Most high-policy nations report declines; 

“unchanged” is misleading.

Smokers are three times more likely to 

develop severe COVID-19 symptoms

70 70 Likely Likely Multiple meta-analyses find ~2–3 × increased risk 

of severe outcomes among smokers.

Tobacco farming employs over 1 million 

people worldwide

65 90 Likely Highly Likely Accurate according to FAO/ILO global workforce 

data

The automated framework demonstrated strong overall correlation with manual expert assessments (R2 = 0.89), with scores clustering along a slope of approximately 1.02, as visualized in 
Figure 3.
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TABLE 3  Credibility-level recall rates by assessment level.

Credibility level Manual count Automated count Correctly classified Recall (%)

Highly unlikely (0–20) 2 0 0 0.0

Unlikely (21–40) 4 4 2 50.0

Moderate (41–60) 1 2 0 0.0

Likely (61–80) 4 6 4 100.0

Highly likely (81–100) 9 8 8 88.9

	 2	 “The harmful effects of vaping exceed those of smoking”
Automated: 30 (Unlikely), Manual: 10 (Highly Unlikely), 

Difference: +20. The framework assigned a slightly higher credibility 
rating than experts, who emphasized the overwhelming consensus 
that combustible tobacco has greater harmful effects than 
vaping products.

	 3	 “Smoking rates have decreased by 20% globally over the 
past decade”

Automated: 60 (Moderate), Manual: 40 (Unlikely), Difference: +20.
The framework’s moderate score reflects both the directional 

accuracy of the declining trend and the magnitude difference from 
WHO’s reported 10–15% decrease, while experts weighted the precise 
numerical value more heavily in their assessment.

Figure 5 provides an alluvial (Sankey) visualization of how the 
automated framework’s five-level credibility assignments 
compared to expert manual ratings across our 20-claim test set. 
On the left, the height of each bar corresponds to the number of 
claims in each manual category; on the right, the height reflects 
the automated framework’s distribution. The connecting bands 
show exactly how many claims were classified identically 
(horizontal flows between matching levels) versus those shifted to 
different levels (cross-level flows). Notably, the majority of flows 
maintain horizontal paths between matching levels—confirming 
a 70% exact match rate—while misclassifications tend to lean 
toward higher credibility (e.g., some “Highly Unlikely” or 
“Unlikely” expert labels were mapped to “Unlikely” or “Moderate” 
by the framework).

This proof-of-concept study prioritizes technical innovation and 
architectural validation over large-scale statistical analysis. The 
intensive expert validation approach (20 claims, 40–80 total expert 
hours) enables detailed assessment of framework reasoning quality 
while demonstrating practical deployment feasibility. Our multi-
agent AI pipeline’s expert-level performance across diverse tobacco 

claim types establishes the foundation for automated large-scale 
misinformation monitoring. Future implementations can leverage 
this validated framework for real-time processing of thousands of 
claims without additional expert review. Current validation focuses 
exclusively on tobacco-related claims. Generalization to other health 
misinformation domains requires domain-specific validation and 
potential framework modifications.

5 Discussion

This proof-of-concept study demonstrates the technical 
feasibility of automated tobacco misinformation assessment using 
multi-agent AI pipeline. Our primary objective was to test whether 
an automated framework could achieve substantial agreement with 
expert evaluations while providing real-time processing capabilities. 
The framework achieved substantial inter-rater agreement (κ = 0.68) 
and dramatic processing efficiency gains, while revealing specific 
areas for improvement, particularly in low credibility claim 
identification. Our results reveal several notable strengths. The 
framework achieved a mean absolute error of just 6.25 points on a 
0–100 scale and a weighted Cohen’s κ of 0.68, indicating substantial 
inter-rater agreement. Exact-level category agreement stood at 70 
percent, with adjacent-level agreement reaching 95 percent. The 
strong linear correlation (R2 = 0.89) between automated and manual 

FIGURE 4

Confusion matrix showing the distribution of automated vs. manual 
assessments across the five credibility levels (highly unlikely to highly 
likely), highlighting where agreement occurs and where level 
assignments differ.

TABLE 2  Framework performance metrics.

Performance metric Value

Mean Absolute Error (MAE) 6.25 points

Mean Signed Difference (Auto – Manual) +3.25 points (p = 0.03)

Standard Deviation of Differences 8.9 points

Maximum Absolute Error 25 points

Exact-Level Agreement 70%

Adjacent-Level Agreement 95%

Weighted Cohen’s Kappa (κ) 0.68 (95% CI: 0.52–0.84)

Processing Time per Claim < 7 s
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scores, together with a slope near unity on the scatter plot, 
underscores the framework’s overall calibration. When viewed 
alongside existing fact-checking frameworks, our pipeline offers 
both comparable accuracy and dramatically faster processing—
delivering results over a thousand times more rapidly than 
traditional manual review, which typically requires 2 to 4 h 
per claim.

Nevertheless, our analysis also uncovered systematic biases and 
areas for refinement. The confusion matrix and recall rates illustrate 
a conservative upward bias: claims rated by experts as “Highly 
Unlikely” or “Moderate” were often classified one level higher by the 
framework. This tendency reduces false negatives among well-
supported claims but risks over-crediting weak or contradictory 
assertions. Three outlier claims (tobacco farming employment, 
vaping harms versus smoking, and global smoking-rate decline) 
exhibited score discrepancies of ±20–25 points, revealing contexts 
where evidence weighting and source interpretation diverged from 
expert nuance. Addressing this bias will require probabilistic 
calibration techniques—such as Platt scaling or isotonic regression—
to realign automated thresholds with human judgment (Kington et 
al., 2021).

While our system employs GPT-4.1 as the core reasoning engine, 
we address transparency concerns through multiple methodological 
safeguards. Our retrieval-augmented approach grounds all 
assessments in explicitly cited authoritative sources (WHO, CDC, 
PubMed Central) rather than relying on model training data, 
ensuring evidence traceability. Our structured 5-point scoring 
framework with explicit criteria provides interpretable outputs that 
can be validated against expert judgment. Although GPT-4.1’s 
internal processes remain proprietary, our framework’s transparency 
lies in its evidence retrieval, source weighting, and structured 
assessment protocols—components that are fully reproducible 
and auditable.

From a practical standpoint, the ability to flag high-impact 
misinformation in real time promises significant advantages for 
public health agencies. Rapid credibility assessments can underpin 

proactive risk communication, inform policy debates with evidence-
rated insights, and streamline fact-checking workflows. However, 
deploying this framework responsibly demands careful attention to 
ethical considerations. Over-reliance on automated labels without 
transparency around uncertainty could mislead non-expert users. 
Designing user interfaces that display confidence intervals or “soft” 
score ranges will help practitioners interpret automated 
outputs appropriately.

Looking ahead, expanding our validation beyond the initial 
20-claim dataset is critical. External testing on larger, multilingual 
corpora will assess generalizability across diverse tobacco narratives. 
User-centered evaluations with public health professionals to gage 
interpretability and trust would also provide additional insights. 
Finally, ongoing enhancements to the Health Evidence Assessor’s 
weighting schema—particularly for low-evidence categories—will 
improve precision without compromising speed. These future efforts 
will ensure the pipeline remains adaptable to evolving misinformation 
patterns and continues to deliver actionable, trustworthy guidance.

Several limitations should be considered when interpreting our 
findings. The 20-claim validation set prioritizes intensive expert 
analysis over statistical breadth, with claims selected for diversity 
rather than systematic sampling. Our tobacco domain selection, 
while methodologically sound, likely favored system performance 
due to tobacco’s stable evidence base. In rapidly evolving domains like 
emerging infectious diseases, our framework’s evidence recency and 
consensus-based scoring may prove insufficient when scientific 
understanding shifts quickly, potentially leading to delayed detection 
of outdated claims or misclassification of evolving evidence. However, 
our modular architecture enables straightforward adaptation through 
dynamic temporal weighting and domain-specific consensus 
thresholds, which future implementations could calibrate based on 
evidence volatility metrics. Additionally, our reliance on institutional 
source credibility without individual study-level industry funding 
analysis represents a future enhancement opportunity. The observed 
conservative bias (+3.25 points), while potentially protective against 
over-flagging legitimate information, requires calibration to improve 

FIGURE 5

Sankey diagram of manual vs. automated credibility assignments for 20 tobacco-related claims. Band widths are proportional to the number of claims 
flowing from manual (left) category to the automated (right) category.
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identification of low-credibility claims for optimal public 
health utility.

The credibility assessments presented reflect analysis of current 
scientific evidence from authoritative sources. As tobacco research 
evolves and new evidence emerges, these assessments may be updated 
to reflect advances in scientific understanding. While based on 
rigorous methodology and expert validation, these findings should be 
considered within the broader context of ongoing tobacco research 
and public health evidence.

6 Conclusion

This proof-of-concept study demonstrates that multi-agent AI 
pipelines can achieve substantial agreement with expert tobacco 
misinformation assessments (MAE = 6.25, κ = 0.68) while providing 
unprecedented processing speed improvements. The systematic 
conservative bias (+3.25 points) is predictable and manageable through 
calibration techniques. While the 20-claim validation set limits 
statistical generalizability, the intensive expert validation approach 
provides strong evidence of technical feasibility and expert-level 
reasoning quality. The modular framework, transparent scoring 
algorithm, and real-time evidence grounding offer a scalable 
foundation for public health misinformation monitoring. Critical next 
steps include: (1) expanding validation to 100 + diverse claims across 
rapidly evolving health domains (emerging infectious diseases, policy 
updates), (2) implementing bias calibration techniques, (3) enhancing 
temporal weighting for time-sensitive evidence, and (4) developing 
responsible deployment protocols with appropriate 
uncertainty communication.

Our proof-of-concept validation establishes the technical 
foundation for responsible deployment in public health settings. 
Implementation would incorporate key safeguards including user 
interfaces that display confidence intervals and evidence source 
citations, systematic expert review of system outputs particularly for 
claims near decision boundaries, ongoing validation against expert 
assessments to detect performance drift, and clear guidelines defining 
appropriate use cases for preliminary screening versus situations 
requiring full expert analysis. The framework’s strength lies in 
augmenting rather than replacing expert judgment, providing rapid 
evidence-grounded assessments that enhance human decision-
making efficiency while maintaining oversight essential for public 
health applications.
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Appendix

Glossary of key terms.
Adjacent-Level Agreement: A performance metric measuring the percentage of classifications that fall within one level of the reference 

classification on a multi-level scale (e.g., a claim rated “Likely” by the system when experts rated it “Highly Likely”).
Credibility Score: A numerical value (0–100) assigned to a claim based on weighted assessment across five dimensions: evidence quality 

(40%), scientific consensus (25%), evidence consistency (15%), evidence recency (10%), and scientific plausibility (10%).
Evidence Quality Score (Eq): A component score (0–100) evaluating the methodological rigor of supporting studies, with higher weights 

for systematic reviews, RCTs, and meta-analyses.
Five-Level Classification System: The categorical framework mapping credibility scores to interpretable levels: Highly Unlikely (0–20), 

Unlikely (21–40), Moderate (41–60), Likely (61–80), and Highly Likely (81–100).
Mean Absolute Error (MAE): The average absolute difference between automated and manual numerical scores across all evaluated claims.
Multi-Agent AI Pipeline: A computational framework consisting of multiple specialized AI agents that work sequentially to process 

information, where each agent has distinct responsibilities and passes structured outputs to subsequent agents.
Proof-of-Concept: A preliminary implementation demonstrating technical feasibility and core functionality, intended to validate an 

approach before full-scale development and deployment.
Retrieval-Augmented Generation (RAG): A technique combining large language models with real-time information retrieval from external 

sources to ground responses in current, authoritative evidence rather than relying solely on training data.
Scientific Consensus Score (Sc): A component score (0–100) measuring the degree of agreement across authoritative sources (WHO, CDC, 

peer-reviewed literature) regarding a specific claim.
Scientific Plausibility (Sp): A component score (0–100) assessing whether a claim aligns with established biological mechanisms and 

scientific principles in tobacco and health research.
Serper API: A web search application programming interface providing structured access to authoritative health databases and scientific 

literature for real-time evidence retrieval.
Weighted Cohen’s Kappa (κ): A statistical measure of inter-rater agreement that accounts for partial agreement between classifications, with 

values interpreted as: slight (0–0.20), fair (0.21–0.40), moderate (0.41–0.60), substantial (0.61–0.80), and almost perfect (0.81–1.00).
Zero-Shot Learning: The ability of a language model to perform tasks without task-specific training examples, relying instead on general 

language understanding and structured prompting.
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