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Introduction: Temporal lobe epilepsy (TLE) represents a significant neurological disorder
with complex genetic underpinnings. This study aimed to develop an interpretable
deep learning diagnostic model for TLE and identify disease-associated markers.
Methods: Using RNA-seq and microarray data from 287 samples collected from
eight GEO datasets, we constructed multiple machine learning algorithms including
Deep Neural Networks (DNN), Extreme Gradient Boosting (XGBoost), Random
Forest (RF), Logistic Regression (LR), and K-Nearest Neighbors (KNN) to distinguish
TLE from normal. SHapley Additive exPlanations (SHAP) and Kolmogorov-Arnold
Networks (KAN) were employed to interpret the model and identify key genes
associated with TLE pathogenesis.

Results: After comparative analysis, a Deep Neural Network (DNN) model with
10 optimized genetic features achieved perfect diagnostic performance (AUC =
1.000, accuracy = 1.000). SHAP interpretation identified DEPDC5, STXBP1, GABRG2,
SLC2AL, and LGI1 as the most significant TLE-associated genes. The KAN model
revealed complex nonlinear relationships between these genes and TLE status,
providing mathematical expressions that capture their contributions. To facilitate
clinical application, we developed an online diagnostic platform that delivers
interpretable predictions based on gene expression values.

Discussion: This study advances our understanding of TLE pathogenesis and
provides a transparent, interpretable diagnostic model, which combines with
traditional diagnostic methods may significantly improve the accuracy of TLE
diagnosis, serving as a supplementary tool for clinical assessment.

KEYWORDS

temporal lobe epilepsy, diagnosis, biomarker, transcriptome, interpretation,
Kolmogorov-Arnold Networks

1 Introduction

Temporal lobe epilepsy (TLE) is one of the most common forms of focal epilepsy,
characterized by recurrent seizures originating from the temporal lobes of the brain,
particularly the hippocampus (Thijs et al., 2019; Wang et al., 2017; Begley et al., 2022).
Currently, significant advances have been made in neuroimaging and
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electroencephalography for clinical diagnosis. However, the
molecular mechanisms underlying TLE pathogenesis remain
incompletely understood (Schmidt and Schachter, 2014; Jones and
Reilly, 2016; Jones and Cascino, 2016). Despite advances in
antiepileptic medications, approximately 30% of TLE patients
remain resistant to pharmacological treatments, necessitating
surgical interventions. Nonetheless, 40-50% of individuals remain
unable to attain enduring seizure freedom following surgical
intervention (Stockman, 2013), and there exists a deficiency of
biomarkers to predict treatment response.

This dual dilemma of timely and accurate early diagnosis and
treatment response assessment highlights the urgency of developing
objective assessment tools based on molecular characteristics.

Recent technological advances in high-throughput sequencing
have generated vast amounts of genomic data that offer unprecedented
opportunities to explore the genetic basis of neurological disorders,
including epilepsy (Rosenblatt et al., 2024; Cabitza et al., 2021; Cali
et al,, 2022; Verhage and Serensen, 2020). However, translating this
wealth of genomic information into clinically relevant insights
requires sophisticated computational approaches that can effectively
model complex gene-disease relationships.

While traditional analyses of sc-seq or sn-seq data can reveal
gene-disease associations, they may miss complex, non-linear
interactions among genes. Machine learning, particularly deep
learning algorithms, offers a key advantage in capturing such
high-dimensional, non-linear patterns, has emerged as a powerful
tool for analyzing high-dimensional genomic data and identifying
disease-specific biomarkers (LeCun et al., 2015). Traditional
machine learning models, however, often function as “black
boxes,” providing predictions without revealing the underlying
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biological mechanisms. This lack of interpretability limits their
utility in clinical settings and scientific discovery.

To address these limitations, there is growing interest in
developing interpretable deep learning approaches that not only
deliver accurate predictions but also provide insights into the
biological mechanisms driving the predictions. Interpretable models
are crucial for gaining scientific understanding and building trust in
clinical applications (Lundberg and Lee, 2017; Liu et al., 2024b).

In this study, we sought to develop an interpretable deep
learning-based diagnostic model for TLE using RNA-seq and
microarray data. We employed five machine learning algorithms to
identify the optimal approach for TLE diagnosis. Furthermore,
we utilized SHAP and KAN to interpret the model and identify key
genes associated with TLE pathogenesis. Our research aims to
advance the molecular understanding of TLE and provide a
transparent, accurate diagnostic tool with potential applications in
precision medicine. By identifying key genetic drivers of TLE,
we hope to contribute to the development of targeted therapies and
improved patient management strategies.

2 Methods
2.1 Study design

This research was performed as shown in Figure 1. First, data
collection. Second, model development including algorithms
comparisons and feature selection, the final model was determined.
Next, the model interpretation was performed by SHAP and
KAN. Finally, online diagnostic platform was developed.

Data collection

Model development

Model interpretation

+§
8 RNA-seq GEO datasets
Samples (n=287)

Temporal lobe epilepsy (n=177)

Normal (n=110)

FIGURE 1
The diagram of the study design.

Train set (70%)
5 x cross-validation

Test set (30%)

Validation

Five machine learning algorithms

Feature selection

Final model
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2.2 Data source

We downloaded transcriptome RNA-seq and microarray data of
normal temporal lobe or hippocampus and TLE patients” hippocampus
from the GEO database from 2007 to the present. A total of 287
samples were obtained, including 110 normal samples and 177 TLE
samples. The datasets were mainly distributed in North America and
Europe. The detailed information was shown in Table 1.

2.3 Data preprocess

To ensure comparability across datasets derived from different
platforms, we conducted standardized preprocessing separately for
RNA-seq and microarray data prior to integration. For RNA-seq
datasets, raw expression counts were first converted to Transcripts Per
Million (TPM) to account for sequencing depth and gene length. The
resulting TPM matrix was then log,-transformed [i.e., log,(TPM + 1)]
to stabilize variance and reduce the influence of extreme values. For

TABLE 1 Baseline characteristics of participants.

Variables Participants
Epilepsy Control
(n=169) (n=118)
GSE, 1 (%) <0.001
GSE63808 129 (44.948) 129 (76.331) 0 (0.000)
GSE163296 22 (7.666) 22 (13.018) 0 (0.000)
GSE28674 18 (6.272) 18 (10.651) 0 (0.000)
GSE44456 19 (6.620) 0 (0.000) 19 (16.102)
GSE11882 43 (14.983) 0 (0.000) 43 (36.441)
GSE7307 16 (5.575) 0 (0.000) 16 (13.559)
GSE122063 22 (7.666) 0 (0.000) 22 (18.644)
GSE104704 18 (6.272) 0 (0.000) 18 (15.254)
Sex, 1 (%) <0.001
Male 71 (24.739) 18 (10.651) 53 (44.915)
Female 69 (24.042) 22 (13.018) 47 (39.831)
Unknown 147 (51.220) 129 (76.331) 18 (15.254)
2;‘::‘Gmup’ " <0.001
20-40 10 (3.484) 0 (0.000) 10 (8.475)
40-60 32 (11.150) 0 (0.000) 32(27.119)
60-80 32 (11.150) 0 (0.000) 32(27.119)
80-100 28 (9.756) 0 (0.000) 28 (23.729)
Unknown 185 (64.460) 169 (100.000) 16 (13.559)
Continents, n
o) <0.001
Europe 129 (44.948) 129 (76.331) 0 (0.000)
North
America 118 (41.115) 0 (0.000) 118 (100.000)
South
America 40 (13.937) 40 (23.669) 0 (0.000)
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microarray datasets, raw probe-level intensity values were background-
corrected and quantile-normalized using platform-specific pipelines.
Where multiple probes mapped to the same gene, the mean expression
was taken. Only genes present across all datasets were retained. After
within-platform normalization, we performed gene intersection to
ensure consistent dimensions across datasets. Samples with excessive
missing values or poor quality were excluded. To facilitate multi-
platform integration, the RNA-seq and microarray matrices were
combined into a single expression matrix, and a batch effect correction
step using the ComBat algorithm (from the sva R package) was applied
to remove platform-specific technical variation while preserving
biological signal. Finally, we integrated multiple datasets to ensure that
all samples had consistent gene dimensions and expression value
ranges, providing clean and standardized input data for subsequent
feature selection and model construction (Supplementary Figure 1).

2.4 Model construction

The integrated expression data were randomly divided into a
training set (70%) and a testing set (30%). The training set was used to
fit model parameters and tune hyperparameters, while the testing set
was reserved to evaluate predictive performance and generalizability.
Five machine learning algorithms—Deep Neural Network (DNN),
Extreme Gradient Boosting (XGBoost), Random Forest (RF), Logistic
Regression (LR), and K-Nearest Neighbors (KNN)—were used to
construct TLE risk prediction models. For all models, five-fold cross-
validation was applied on the training set to prevent overfitting.
Specifically, the DNN models were trained using the Adam optimizer
with cross-entropy as the loss function. Training was conducted with
the following hyperparameters: Learning rate: 0.001, Batch size: 32,
Number of epochs: 100, Activation function: ReLU for hidden layers,
sigmoid for the output layer, Dropout rate: 0.3 to mitigate overfitting.
To improve model generalization and prevent overfitting, we applied
early stopping, where training was halted if the validation loss did not
decrease for 10 consecutive epochs. The best-performing model (based
on validation loss) was retained for downstream evaluation.

2.5 Feature selection

The preliminary model was constructed using a deep neural
network (DNN), with input features comprising the expression values
of all genes. During training, the Adam optimizer was applied with
cross-entropy as the loss function. To identify the most informative
features, we employed SHapley Additive exPlanations (SHAP) to
evaluate feature contributions to the trained DNN model. SHAP
assigns each feature a Shapley value representing its marginal
contribution to model output, allowing us to rank features by their
mean absolute SHAP values. Based on this ranking, we selected the
top 34, top 30, and top 10 features for downstream model construction
and comparison.

2.6 Model evaluation

Area Under the receiver operating characteristic (ROC) Curve
(AUC), accuracy, precision, recall, and F1 Score were used to evaluate
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model performance. The calculation formulas were as follows. The
four possible outcomes of classification results were true positive (TP),
false positive (FP), true negative (TN), and false negative (FN).

TN+TP
Accuracy =
TP+TN+FP+TN
TP
Precision=——
FP+TP
TP
Recall=——
FN+TP
2 x Precision x Recall
F1-Score=
Precision + Recall

2.7 SHapley Additive exPlanations (SHAP)

SHAP interpretation was based on the Shapley value in game
theory, offering explanations on both global and local levels by
assessing the incremental contribution of each feature to the model’s
predictive outcomes across various samples (Lundberg and Lee, 2017).
SHAP interpretation was based on Shapley values from cooperative
game theory, providing both global and local interpretability by
quantifying the marginal contribution of each feature to the model’s
prediction across different samples. At the global level, feature
importance was assessed using two primary visualizations: bar plots
of mean absolute SHAP values to rank features by their overall
contribution, and Beeswarm plots to display the distribution of SHAP
values for each feature across the entire dataset, capturing both the
importance and directionality of their effects. In addition, dependence
plots were used to show how the SHAP value of a given feature
changed with its actual value, thereby highlighting potential nonlinear
or interaction effects. At the local level, we employed force plots and
waterfall diagrams to interpret predictions for individual samples.
Force plots visually illustrated how each feature pushed the model
output toward or away from a particular classification, while waterfall
diagrams provided a step-by-step breakdown of how the cumulative
SHAP values of all features contributed to the final prediction score
for a single instance. This multi-level interpretability framework
allowed us not only to identify the most influential genes contributing
to the diagnostic outcome but also to trace their sample-specific
effects, thereby enhancing the transparency, biological plausibility, and
clinical credibility of the model.

2.8 Kolmogorov-Arnold Networks (KAN)

The KAN model was established based on the Kolmogorov-
Arnold representation theorem, possessing the ability to output
explicit expressions in functional (Liu et al., 2024b; Xu et al., 2024).
KAN could construct regularization and grid sparsity optimization,
outputting interpretable mathematical forms that clearly reveal the
mapping relationship between key input features and model
predictions. By analyzing the parameter distribution and activation
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patterns in the KAN network, key gene features could be identified
that influence prediction results, thereby assisting in the inference and
validation of biological mechanisms.

To visualize the internal architecture and interpret the learned
representations, network topology plots were generated, displaying
the organization of hidden nodes and their activation patterns. For
each selected feature, the corresponding functional mapping was
extracted directly from the trained KAN and expressed as the
explicit mathematical formula [e.g., f(x) = a + bx], which was
further illustrated through fitted curve plots with R” statistics to
reflect the quality of the approximation. In addition, sample-
specific importance analysis was conducted to reveal the
individualized contribution of each gene to model predictions. By
computing local activation values at key nodes, the KAN provided
insight into which genes most strongly promoted or inhibited
disease classification on a per-sample basis. This enabled
biologically meaningful interpretation at both the population and
individual levels.

2.9 Online computing platform

The web application of the TLE risk prediction model was
developed based on the Streamlit framework.

2.10 Statistical analysis

All data analyses were performed using R version 4.2.2 and
Python version 3.9.12, and all statistical tests were conducted using
two-sided tests, with p < 0.05 considered statistically significant.

3 Results
3.1 Patients characteristics

This study included a total of 287 samples, with 169 from epilepsy
cohort and 118 from normal control cohort. The detailed information
was shown in Table 1. The epilepsy samples were mainly from
GSE63808 (76.331%), while the normal control samples were
primarily distributed in GSE11882 (36.441%) and GSE104704
(15.254%).

3.2 Model development

All the TLE-related features were used to train five machine
learning algorithms and the diagnostic performance was evaluated
and compared as shown in Figure 2A; Table 2. All algorithms except
KNN exhibited an excellent predictive performance with the AUC of
1.000, the accuracy, precision, recall and Fl-socre of 1.000. The
predictive capability of KNN was commendable as well, with the AUC
0f 0.996, the accuracy of 0.977, the precision, recall and F1-socre of
0.980. These results suggest that these features held considerable
significance, as they exhibited robust predictive capabilities across
various algorithms. DNN was randomly selected for the further
analysis based on the excellent performance of all algorithms.
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TABLE 2 Model performance of multiple algorithms for epilepsy
diagnosis.

Model AUC Accuracy Precision Recall F1
score
DNN 1.000 1.000 1.000 1.000 1.000
XGBoost | 1.000 1.000 1.000 1.000 1.000
RF 1.000 1.000 1.000 1.000 1.000
LR 1.000 1.000 1.000 1.000 1.000
KNN 0.996 0.977 0.980 0.980 0.980

3.3 Feature optimization

To reduce model complexity and improve model prediction
performance, feature selection was conducted based on 34, 30, and 10
features, respectively. As shown in Figure 2B; Table 3, the model
performance in the test data was also superior with the AUC, accuracy,
precision, recall and F1-score of 1.000 among the DNN model with
different features. The predictive performance of DNN model with 10
features in train data was shown in Supplementary Figure 2. Thus, the
DNN model with 10 features was identified as the final model in
this study.

To evaluate the potential overfitting risk due to sample imbalance,
we performed a sensitivity analysis by excluding GSE63808 from the
training set. The model was retrained and tested on the remaining
datasets. Remarkably, the diagnostic model maintained excellent
performance with an AUC of 1.00 (Supplementary Figure 3),
robustness across

demonstrating its and  generalizability

independent cohorts.

3.4 Model interpretation

3.4.1 SHAP analysis

SHAP was employed to enhance model interpretability. As shown
in Figure 3A, the most important pathogenic genes related to TLE were
DEPDCS5, STXBP1, GABRG2, SLC2A1, LGI1, GRIN2A, TSC2,
CDKL5, ARX, KCNQ2. The higher levels of DEPDCS5 increased the risk
of TLE (Figure 3B). Figures 4A,B visualized the contributions of features
to the diagnostic result for individual patients (TLE or normal).
Figure 3A displayed a diagnostic outcome for TLE, as GRIN2A, LGI1,
DEPDCS5, and STXBP1 were important drivers for increasing the
predicted value, while GABRG2 exerted a negative effect. Figure 3B
showed a predictive result for normal, with STXBP1, DEPDC5, ARX,
and CDKLS5 significantly inhibiting the prediction tendency for
epilepsy, while LGI1 and GABRG?2 slightly increased the predicted
value. Figures 4C,D displayed the decision-making process of multiple
features on prediction outcome. The interplay of diverse features pushed
the diagnostic outcome to TLE or normal. In addition, the scatter
analysis further revealed the relationship between SHAP values and key
features (Supplementary Figure 4). STXBP1, CDKL5, GRIN2A, TSC2,
and ARX made negative contributions to SHAP values, while DEPDCS5,
GABRG2, SLC2A1, LGI1 contributed positively to SHAP values.

3.4.2 KAN optimization
To further improve the interpretability and the transparency
of the model, the final model was explained and optimized by
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KAN. Figure 5A illustrated the complex and nonlinear
contributions of essential features. A total of ten genes including
STXBP1, KCNQ2, CDKL5, GRIN2A, DEPDC5, GABRG2,
SLC2A1, LGI1, TSC2, and ARX, were utilized as input nodes.
Each of these input features was connected to intermediate nodes
through various nonlinear functions (such as sine and logarithm)
and aggregated through linear combinations or activation
functions across multiple pathways, ultimately yielding the
anticipated outcomes. STXBP1, DEPDC5, and LGI1 contributed
significantly to the output, indicating their key driving role in the
classification task. The mathematical expression of the KAN
model was shown in Supplementary Figure 5, which was
composed of a weighted combination of multiple input features
after nonlinear transformations. Figure 4B provided a quantitative
evaluation of the individual contributions of each feature to the
model’s predictive results. The findings revealed that STXBP1 and
DEPDC5 exerted a pronounced influence on the predictive
outcomes, whereas ARX and TSC2 made a lesser impact,
indicating their restricted discriminative capacity within the
current model framework. Figures 4C,D illustrated the nonlinear
mapping relationship between the characteristic values of STXBP1
and DEPDC5 along with their intermediary nodes. The
correspondence of STXBP1 to node (1,0) demonstrated an
excellent fit, with a curve R? for 0.94, which indicated that the
nonlinear transformation effectively captured the response
mechanism linking its characteristic alterations to network
outputs. Likewise, the mapping relationship of DEPDC5 also
revealed robust nonlinear fitting (R* = 0.88), further validating the
superiority of the KAN model in handling intricate input features.
Additionally, the pathway enrichment analysis of key genes related
to TLE was mainly in neuropeptide hormone activity,
neuropeptide receptor binding, lumenal side of membrane,
transport vesicle (Supplementary Figures 6-8).

3.5 Online diagnostic platform

To enhance the clinical application of the model, we developed an
online computer platform.” As shown in Figure 6, the values of the
TLE-related genes were entered on the left of the web page, the
predictive result would appear on the right along with the SHAP
explanation, which provided a visualizations of feature impacts and a
mechanistic insight into TLE pathogenesis.

4 Discussions

Although TLE has characteristic ~ clinical

manifestations, its diagnosis still faces challenges. It was found that

relatively

about 30-40% of TLE patients may not show obvious abnormalities
in routine electroencephalogram (EEG) examinations, leading to
diagnostic delays and inappropriate treatment (Bernasconi et al.,
2011). In this study, we developed a highly accurate diagnostic
model for TLE using interpretable deep learning approaches. By

1 https://epilepsy2.streamlit.app
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TABLE 3 Predictive performance of models with different features.

10.3389/frai.2025.1655338

Model AUC (95%Cl) Accuracy Precision Recall F1 score
34 feature 1.000 (1.000, 1.000) 1.000 1.000 1.000 1.000
30 feature 1.000 (1.000, 1.000) 1.000 1.000 1.000 1.000
10 feature 1.000 (1.000, 1.000) 1.000 1.000 1.000 1.000

integrating multiple RNA-seq and microarray data and employing
feature optimization, we identified a set of 10 key genes that
demonstrate exceptional discriminative power between TLE and
normal. The perfect diagnostic performance achieved by our model
(AUC = 1.000, accuracy =1.000) across different algorithms
highlights the robustness of these genetic markers as diagnostic
indicators for TLE. Our research indicates that combining
molecular biomarkers with traditional diagnostic methods may
significantly improve the accuracy of TLE diagnosis. The deep
learning model we developed based on 10 key genes can serve as a
supplementary tool for clinical assessment, especially in cases
where routine imaging examinations are negative, or results
are uncertain.

To further validate the robustness of our DNN model,
we conducted architectural ablation studies by systematically
modifying the number of hidden layers, units per layer, and activation
functions. As shown in Supplementary Table 1, the model maintained
aperfect AUC (1.000) under most architecture variants, demonstrating
remarkable structural stability. However, removing input
normalization (A4) led to a notable drop in validation AUC (from
1.000 to 0.822), highlighting the critical role of normalization in
preserving model performance. These findings support the soundness
of our default architecture design and preprocessing pipeline.

The application of interpretability techniques, specifically
SHAP and KAN, provided valuable insights into the biological
mechanisms underlying our model’s predictions. SHAP analysis
revealed that DEPDCS5, STXBP1, GABRG2, SLC2A1, and LGI1
were the most influential genes in the diagnostic model. These
findings align with previous research implicating these genes in
epilepsy pathogenesis (Kang and MacDonald, 2016; Li et al., 2024;
Shen et al., 2017; Larsen et al., 2015; Suls et al., 2008; Boillot et al.,
2014; Dubey et al., 2020; Stafstrom, 2025). For instance, DEPDC5
mutations have been associated with various focal epilepsies,
including TLE, through dysregulation of the mTOR pathway,
which controls neuronal growth and excitability (Liu et al., 2025;
Hughes et al., 2017). Similarly, STXBP1 plays a crucial role in
synaptic vesicle docking and fusion, and its dysfunction has been
linked to early-onset epileptic encephalopathies (Stamberger
et al., 2022, 2023; Mignot et al., 2011).

The KAN model further enhanced our understanding by
providing explicit mathematical expressions that capture the nonlinear
relationships between gene expression patterns and TLE status. The
strong fitting curves (R?*=0.94 for STXBP1 and R*=0.88 for
DEPDC5) demonstrate that KAN effectively modeled the complex
interactions between these genes and the disease phenotype. This
mathematical transparency represents a significant advancement over
traditional “black box” neural networks, offering mechanistic insights
that could inform targeted therapeutic strategies (Liu et al., 2024a,b;
Hou et al., 2024).
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Pathway enrichment analysis of our identified genes revealed
significant associations with neuropeptide hormone activity,
neuropeptide receptor binding, membrane functions, and transport
vesicles. These biological processes are critical for maintaining
neuronal homeostasis and synaptic transmission (Strand et al., 1991;
Hirokawa and Takemura, 2005) further supporting the biological
relevance of our findings. Disruptions in these pathways could
contribute to the hyperexcitability and abnormal neuronal
synchronization characteristic of epileptic seizures.

The development of an online diagnostic platform represents a
practical translation of our research findings. This user-friendly tool
allows clinicians to input gene expression values and receive instant,
interpretable predictions regarding TLE risk. The incorporation of
SHAP visualizations in the platform enhances its utility by providing
transparent explanations for each prediction, potentially facilitating
clinical decision-making and patient communication.

An important clinical distinction in temporal lobe epilepsy
(TLE) lies between patients with and without hippocampal
sclerosis (HS), as these subtypes may differ in etiology, pathology,
and treatment response. However, this distinction was not
addressed in our study due to the lack of HS-specific annotations
in the publicly available datasets used. As a result, we were unable
to perform stratified analyses to explore potential molecular
differences between HS and non-HS subtypes. Future work
incorporating high-resolution imaging data or histopathological
labels will be critical to disentangle subtype-specific gene
expression patterns and further refine diagnostic models. Including
such data may also improve the model’s applicability in precision
medicine settings.

Despite the promising performance of our model, certain
limitations should be acknowledged. First, a large proportion
(76%) of TLE samples in our dataset were derived from a single
study (GSE63808), which may introduce potential bias or
overfitting in the training process. To assess the impact of this
imbalance, we performed a sensitivity analysis by excluding
GSE63808 from the training data and re-evaluated model
performance. Notably, the model retained excellent discriminatory
ability, with an AUC of 1.0 (Supplementary Figure 3), thereby
supporting its robustness across independent datasets.
Nevertheless, we recognize that external validation using
completely independent cohorts—ideally with more balanced
representation and additional clinical annotations—is essential for
further
translational utility.

verifying the model's generalizability = and

Another key limitation of this study is the lack of Asian patient
data. Most of the included samples were from Euro-American
populations, potentially limiting the model’s generalizability to other
ethnic groups. Population-specific genetic and environmental factors

may influence gene expression and disease risk, and thus should not
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SHAP local interpretation (A) the f(x) value of the force plot was 1.00, indicating the patient was TLE. GRIN2A, LGI1, DEPDC5, and STXBP1 (red arrows)
are important drivers of elevated predictive values, while GABRG2 (blue arrow) exerts a negative effect. (B) The f(x) of the force plot was 0.00, indicating
the patient was normal. (C) The waterfall diagram showed the Ef(x) was 0.595, with the positive contributions of STXBP1 (+0.21), DEPDCS5 (+0.13), LGI1
(+0.06) and GRIN2A (+0.04) and the negative contributions of GABRG2 (—0.06), push the predictive result to TLE as f(x) was 1. (D) The waterfall diagram
presented a diagnostic result of normal. The baseline forecast value Ef(x) was 0.595, with the negative contributions of STXBP1 (—0.37), DEPDC5
(=0.21), SLC2A1 (—0.16) and GRIN2A (—0.06) and the positive contributions of CDKL5 (+0.06), TSC2 (+0.06), the final f(x) was 0.002.

be overlooked. Finally, while our interpretability approaches provide

valuable insights, the complex interplay between genetic,
environmental, and epigenetic factors in TLE pathogenesis requires
further investigation.

Future research directions include validating our findings in
prospective clinical studies, expanding the model to incorporate
additional data modalities (such as neuroimaging and clinical
variables), and exploring the potential of our identified genes as
therapeutic targets. Additionally, investigating the longitudinal

changes in gene expression patterns throughout disease progression

Frontiers in Artificial Intelligence

could enhance our understanding of TLE pathogenesis and potentially
enable early intervention strategies.

In conclusion, our study demonstrates the power of interpretable
deep learning approaches in advancing our understanding of TLE
pathogenesis and improving diagnostic capabilities. By identifying
key genetic markers and elucidating their functional relationships,
we have contributed to the growing body of knowledge on the
molecular basis of epilepsy. The developed diagnostic platform offers
a promising tool for clinical application, potentially facilitating
personalized medicine approaches in epilepsy management.
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