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Introduction: Temporal lobe epilepsy (TLE) represents a significant neurological disorder 
with complex genetic underpinnings. This study aimed to develop an interpretable 
deep learning diagnostic model for TLE and identify disease-associated markers.
Methods: Using RNA-seq and microarray data from 287 samples collected from 
eight GEO datasets, we constructed multiple machine learning algorithms including 
Deep Neural Networks (DNN), Extreme Gradient Boosting (XGBoost), Random 
Forest (RF), Logistic Regression (LR), and K-Nearest Neighbors (KNN) to distinguish 
TLE from normal. SHapley Additive exPlanations (SHAP) and Kolmogorov-Arnold 
Networks (KAN) were employed to interpret the model and identify key genes 
associated with TLE pathogenesis.
Results: After comparative analysis, a Deep Neural Network (DNN) model with 
10 optimized genetic features achieved perfect diagnostic performance (AUC = 
1.000, accuracy = 1.000). SHAP interpretation identified DEPDC5, STXBP1, GABRG2, 
SLC2A1, and LGI1 as the most significant TLE-associated genes. The KAN model 
revealed complex nonlinear relationships between these genes and TLE status, 
providing mathematical expressions that capture their contributions. To facilitate 
clinical application, we developed an online diagnostic platform that delivers 
interpretable predictions based on gene expression values.
Discussion: This study advances our understanding of TLE pathogenesis and 
provides a transparent, interpretable diagnostic model, which combines with 
traditional diagnostic methods may significantly improve the accuracy of TLE 
diagnosis, serving as a supplementary tool for clinical assessment.
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1 Introduction

Temporal lobe epilepsy (TLE) is one of the most common forms of focal epilepsy, 
characterized by recurrent seizures originating from the temporal lobes of the brain, 
particularly the hippocampus (Thijs et al., 2019; Wang et al., 2017; Begley et al., 2022). 
Currently, significant advances have been made in neuroimaging and 
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electroencephalography for clinical diagnosis. However, the 
molecular mechanisms underlying TLE pathogenesis remain 
incompletely understood (Schmidt and Schachter, 2014; Jones and 
Reilly, 2016; Jones and Cascino, 2016). Despite advances in 
antiepileptic medications, approximately 30% of TLE patients 
remain resistant to pharmacological treatments, necessitating 
surgical interventions. Nonetheless, 40–50% of individuals remain 
unable to attain enduring seizure freedom following surgical 
intervention (Stockman, 2013), and there exists a deficiency of 
biomarkers to predict treatment response.

This dual dilemma of timely and accurate early diagnosis and 
treatment response assessment highlights the urgency of developing 
objective assessment tools based on molecular characteristics.

Recent technological advances in high-throughput sequencing 
have generated vast amounts of genomic data that offer unprecedented 
opportunities to explore the genetic basis of neurological disorders, 
including epilepsy (Rosenblatt et al., 2024; Cabitza et al., 2021; Cali 
et al., 2022; Verhage and Sørensen, 2020). However, translating this 
wealth of genomic information into clinically relevant insights 
requires sophisticated computational approaches that can effectively 
model complex gene-disease relationships.

While traditional analyses of sc-seq or sn-seq data can reveal 
gene–disease associations, they may miss complex, non-linear 
interactions among genes. Machine learning, particularly deep 
learning algorithms, offers a key advantage in capturing such 
high-dimensional, non-linear patterns, has emerged as a powerful 
tool for analyzing high-dimensional genomic data and identifying 
disease-specific biomarkers (LeCun et  al., 2015). Traditional 
machine learning models, however, often function as “black 
boxes,” providing predictions without revealing the underlying 

biological mechanisms. This lack of interpretability limits their 
utility in clinical settings and scientific discovery.

To address these limitations, there is growing interest in 
developing interpretable deep learning approaches that not only 
deliver accurate predictions but also provide insights into the 
biological mechanisms driving the predictions. Interpretable models 
are crucial for gaining scientific understanding and building trust in 
clinical applications (Lundberg and Lee, 2017; Liu et al., 2024b).

In this study, we  sought to develop an interpretable deep 
learning-based diagnostic model for TLE using RNA-seq and 
microarray data. We employed five machine learning algorithms to 
identify the optimal approach for TLE diagnosis. Furthermore, 
we utilized SHAP and KAN to interpret the model and identify key 
genes associated with TLE pathogenesis. Our research aims to 
advance the molecular understanding of TLE and provide a 
transparent, accurate diagnostic tool with potential applications in 
precision medicine. By identifying key genetic drivers of TLE, 
we hope to contribute to the development of targeted therapies and 
improved patient management strategies.

2 Methods

2.1 Study design

This research was performed as shown in Figure 1. First, data 
collection. Second, model development including algorithms 
comparisons and feature selection, the final model was determined. 
Next, the model interpretation was performed by SHAP and 
KAN. Finally, online diagnostic platform was developed.

FIGURE 1

The diagram of the study design.

https://doi.org/10.3389/frai.2025.1655338
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Wang et al.� 10.3389/frai.2025.1655338

Frontiers in Artificial Intelligence 03 frontiersin.org

2.2 Data source

We downloaded transcriptome RNA-seq and microarray data of 
normal temporal lobe or hippocampus and TLE patients’ hippocampus 
from the GEO database from 2007 to the present. A total of 287 
samples were obtained, including 110 normal samples and 177 TLE 
samples. The datasets were mainly distributed in North America and 
Europe. The detailed information was shown in Table 1.

2.3 Data preprocess

To ensure comparability across datasets derived from different 
platforms, we conducted standardized preprocessing separately for 
RNA-seq and microarray data prior to integration. For RNA-seq 
datasets, raw expression counts were first converted to Transcripts Per 
Million (TPM) to account for sequencing depth and gene length. The 
resulting TPM matrix was then log2-transformed [i.e., log2(TPM + 1)] 
to stabilize variance and reduce the influence of extreme values. For 

microarray datasets, raw probe-level intensity values were background-
corrected and quantile-normalized using platform-specific pipelines. 
Where multiple probes mapped to the same gene, the mean expression 
was taken. Only genes present across all datasets were retained. After 
within-platform normalization, we performed gene intersection to 
ensure consistent dimensions across datasets. Samples with excessive 
missing values or poor quality were excluded. To facilitate multi-
platform integration, the RNA-seq and microarray matrices were 
combined into a single expression matrix, and a batch effect correction 
step using the ComBat algorithm (from the sva R package) was applied 
to remove platform-specific technical variation while preserving 
biological signal. Finally, we integrated multiple datasets to ensure that 
all samples had consistent gene dimensions and expression value 
ranges, providing clean and standardized input data for subsequent 
feature selection and model construction (Supplementary Figure 1).

2.4 Model construction

The integrated expression data were randomly divided into a 
training set (70%) and a testing set (30%). The training set was used to 
fit model parameters and tune hyperparameters, while the testing set 
was reserved to evaluate predictive performance and generalizability. 
Five machine learning algorithms—Deep Neural Network (DNN), 
Extreme Gradient Boosting (XGBoost), Random Forest (RF), Logistic 
Regression (LR), and K-Nearest Neighbors (KNN)—were used to 
construct TLE risk prediction models. For all models, five-fold cross-
validation was applied on the training set to prevent overfitting. 
Specifically, the DNN models were trained using the Adam optimizer 
with cross-entropy as the loss function. Training was conducted with 
the following hyperparameters: Learning rate: 0.001, Batch size: 32, 
Number of epochs: 100, Activation function: ReLU for hidden layers, 
sigmoid for the output layer, Dropout rate: 0.3 to mitigate overfitting. 
To improve model generalization and prevent overfitting, we applied 
early stopping, where training was halted if the validation loss did not 
decrease for 10 consecutive epochs. The best-performing model (based 
on validation loss) was retained for downstream evaluation.

2.5 Feature selection

The preliminary model was constructed using a deep neural 
network (DNN), with input features comprising the expression values 
of all genes. During training, the Adam optimizer was applied with 
cross-entropy as the loss function. To identify the most informative 
features, we  employed SHapley Additive exPlanations (SHAP) to 
evaluate feature contributions to the trained DNN model. SHAP 
assigns each feature a Shapley value representing its marginal 
contribution to model output, allowing us to rank features by their 
mean absolute SHAP values. Based on this ranking, we selected the 
top 34, top 30, and top 10 features for downstream model construction 
and comparison.

2.6 Model evaluation

Area Under the receiver operating characteristic (ROC) Curve 
(AUC), accuracy, precision, recall, and F1 Score were used to evaluate 

TABLE 1  Baseline characteristics of participants.

Variables Total 
(n = 287)

Participants p

Epilepsy 
(n = 169)

Control 
(n = 118)

GSE, n (%) <0.001

 � GSE63808 129 (44.948) 129 (76.331) 0 (0.000)

 � GSE163296 22 (7.666) 22 (13.018) 0 (0.000)

 � GSE28674 18 (6.272) 18 (10.651) 0 (0.000)

 � GSE44456 19 (6.620) 0 (0.000) 19 (16.102)

 � GSE11882 43 (14.983) 0 (0.000) 43 (36.441)

 � GSE7307 16 (5.575) 0 (0.000) 16 (13.559)

 � GSE122063 22 (7.666) 0 (0.000) 22 (18.644)

 � GSE104704 18 (6.272) 0 (0.000) 18 (15.254)

Sex, n (%) <0.001

 � Male 71 (24.739) 18 (10.651) 53 (44.915)

 � Female 69 (24.042) 22 (13.018) 47 (39.831)

 � Unknown 147 (51.220) 129 (76.331) 18 (15.254)

Age_Group, n 

(%)
<0.001

 � 20–40 10 (3.484) 0 (0.000) 10 (8.475)

 � 40–60 32 (11.150) 0 (0.000) 32 (27.119)

 � 60–80 32 (11.150) 0 (0.000) 32 (27.119)

 � 80–100 28 (9.756) 0 (0.000) 28 (23.729)

Unknown 185 (64.460) 169 (100.000) 16 (13.559)

Continents, n 

(%)
<0.001

 � Europe 129 (44.948) 129 (76.331) 0 (0.000)

 � North 

America
118 (41.115) 0 (0.000) 118 (100.000)

 � South 

America
40 (13.937) 40 (23.669) 0 (0.000)
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model performance. The calculation formulas were as follows. The 
four possible outcomes of classification results were true positive (TP), 
false positive (FP), true negative (TN), and false negative (FN).

	

+
=

+ + +
TN TP

Accuracy
TP TN FP TN

	
=

+
TP

Precision
FP TP

	
=

+
TP

Recall
FN TP

	

× ×
=

+
2 Precision Recall

F1 Score
Precision Recall

-

2.7 SHapley Additive exPlanations (SHAP)

SHAP interpretation was based on the Shapley value in game 
theory, offering explanations on both global and local levels by 
assessing the incremental contribution of each feature to the model’s 
predictive outcomes across various samples (Lundberg and Lee, 2017). 
SHAP interpretation was based on Shapley values from cooperative 
game theory, providing both global and local interpretability by 
quantifying the marginal contribution of each feature to the model’s 
prediction across different samples. At the global level, feature 
importance was assessed using two primary visualizations: bar plots 
of mean absolute SHAP values to rank features by their overall 
contribution, and Beeswarm plots to display the distribution of SHAP 
values for each feature across the entire dataset, capturing both the 
importance and directionality of their effects. In addition, dependence 
plots were used to show how the SHAP value of a given feature 
changed with its actual value, thereby highlighting potential nonlinear 
or interaction effects. At the local level, we employed force plots and 
waterfall diagrams to interpret predictions for individual samples. 
Force plots visually illustrated how each feature pushed the model 
output toward or away from a particular classification, while waterfall 
diagrams provided a step-by-step breakdown of how the cumulative 
SHAP values of all features contributed to the final prediction score 
for a single instance. This multi-level interpretability framework 
allowed us not only to identify the most influential genes contributing 
to the diagnostic outcome but also to trace their sample-specific 
effects, thereby enhancing the transparency, biological plausibility, and 
clinical credibility of the model.

2.8 Kolmogorov-Arnold Networks (KAN)

The KAN model was established based on the Kolmogorov-
Arnold representation theorem, possessing the ability to output 
explicit expressions in functional (Liu et al., 2024b; Xu et al., 2024). 
KAN could construct regularization and grid sparsity optimization, 
outputting interpretable mathematical forms that clearly reveal the 
mapping relationship between key input features and model 
predictions. By analyzing the parameter distribution and activation 

patterns in the KAN network, key gene features could be identified 
that influence prediction results, thereby assisting in the inference and 
validation of biological mechanisms.

To visualize the internal architecture and interpret the learned 
representations, network topology plots were generated, displaying 
the organization of hidden nodes and their activation patterns. For 
each selected feature, the corresponding functional mapping was 
extracted directly from the trained KAN and expressed as the 
explicit mathematical formula [e.g., f(x) = a + bx], which was 
further illustrated through fitted curve plots with R2 statistics to 
reflect the quality of the approximation. In addition, sample-
specific importance analysis was conducted to reveal the 
individualized contribution of each gene to model predictions. By 
computing local activation values at key nodes, the KAN provided 
insight into which genes most strongly promoted or inhibited 
disease classification on a per-sample basis. This enabled 
biologically meaningful interpretation at both the population and 
individual levels.

2.9 Online computing platform

The web application of the TLE risk prediction model was 
developed based on the Streamlit framework.

2.10 Statistical analysis

All data analyses were performed using R version 4.2.2 and 
Python version 3.9.12, and all statistical tests were conducted using 
two-sided tests, with p < 0.05 considered statistically significant.

3 Results

3.1 Patients characteristics

This study included a total of 287 samples, with 169 from epilepsy 
cohort and 118 from normal control cohort. The detailed information 
was shown in Table  1. The epilepsy samples were mainly from 
GSE63808 (76.331%), while the normal control samples were 
primarily distributed in GSE11882 (36.441%) and GSE104704 
(15.254%).

3.2 Model development

All the TLE-related features were used to train five machine 
learning algorithms and the diagnostic performance was evaluated 
and compared as shown in Figure 2A; Table 2. All algorithms except 
KNN exhibited an excellent predictive performance with the AUC of 
1.000, the accuracy, precision, recall and F1-socre of 1.000. The 
predictive capability of KNN was commendable as well, with the AUC 
of 0.996, the accuracy of 0.977, the precision, recall and F1-socre of 
0.980. These results suggest that these features held considerable 
significance, as they exhibited robust predictive capabilities across 
various algorithms. DNN was randomly selected for the further 
analysis based on the excellent performance of all algorithms.
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FIGURE 2

ROC curves (A) different algorithms (B) DNN models with different features.
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3.3 Feature optimization

To reduce model complexity and improve model prediction 
performance, feature selection was conducted based on 34, 30, and 10 
features, respectively. As shown in Figure  2B; Table  3, the model 
performance in the test data was also superior with the AUC, accuracy, 
precision, recall and F1-score of 1.000 among the DNN model with 
different features. The predictive performance of DNN model with 10 
features in train data was shown in Supplementary Figure 2. Thus, the 
DNN model with 10 features was identified as the final model in 
this study.

To evaluate the potential overfitting risk due to sample imbalance, 
we performed a sensitivity analysis by excluding GSE63808 from the 
training set. The model was retrained and tested on the remaining 
datasets. Remarkably, the diagnostic model maintained excellent 
performance with an AUC of 1.00 (Supplementary Figure  3), 
demonstrating its robustness and generalizability across 
independent cohorts.

3.4 Model interpretation

3.4.1 SHAP analysis
SHAP was employed to enhance model interpretability. As shown 

in Figure 3A, the most important pathogenic genes related to TLE were 
DEPDC5, STXBP1, GABRG2, SLC2A1, LGI1, GRIN2A, TSC2, 
CDKL5, ARX, KCNQ2. The higher levels of DEPDC5 increased the risk 
of TLE (Figure 3B). Figures 4A,B visualized the contributions of features 
to the diagnostic result for individual patients (TLE or normal). 
Figure 3A displayed a diagnostic outcome for TLE, as GRIN2A, LGI1, 
DEPDC5, and STXBP1 were important drivers for increasing the 
predicted value, while GABRG2 exerted a negative effect. Figure 3B 
showed a predictive result for normal, with STXBP1, DEPDC5, ARX, 
and CDKL5 significantly inhibiting the prediction tendency for 
epilepsy, while LGI1 and GABRG2 slightly increased the predicted 
value. Figures 4C,D displayed the decision-making process of multiple 
features on prediction outcome. The interplay of diverse features pushed 
the diagnostic outcome to TLE or normal. In addition, the scatter 
analysis further revealed the relationship between SHAP values and key 
features (Supplementary Figure 4). STXBP1, CDKL5, GRIN2A, TSC2, 
and ARX made negative contributions to SHAP values, while DEPDC5, 
GABRG2, SLC2A1, LGI1 contributed positively to SHAP values.

3.4.2 KAN optimization
To further improve the interpretability and the transparency 

of the model, the final model was explained and optimized by 

KAN. Figure  5A illustrated the complex and nonlinear 
contributions of essential features. A total of ten genes including 
STXBP1, KCNQ2, CDKL5, GRIN2A, DEPDC5, GABRG2, 
SLC2A1, LGI1, TSC2, and ARX, were utilized as input nodes. 
Each of these input features was connected to intermediate nodes 
through various nonlinear functions (such as sine and logarithm) 
and aggregated through linear combinations or activation 
functions across multiple pathways, ultimately yielding the 
anticipated outcomes. STXBP1, DEPDC5, and LGI1 contributed 
significantly to the output, indicating their key driving role in the 
classification task. The mathematical expression of the KAN 
model was shown in Supplementary Figure  5, which was 
composed of a weighted combination of multiple input features 
after nonlinear transformations. Figure 4B provided a quantitative 
evaluation of the individual contributions of each feature to the 
model’s predictive results. The findings revealed that STXBP1 and 
DEPDC5 exerted a pronounced influence on the predictive 
outcomes, whereas ARX and TSC2 made a lesser impact, 
indicating their restricted discriminative capacity within the 
current model framework. Figures 4C,D illustrated the nonlinear 
mapping relationship between the characteristic values of STXBP1 
and DEPDC5 along with their intermediary nodes. The 
correspondence of STXBP1 to node (1,0) demonstrated an 
excellent fit, with a curve R2 for 0.94, which indicated that the 
nonlinear transformation effectively captured the response 
mechanism linking its characteristic alterations to network 
outputs. Likewise, the mapping relationship of DEPDC5 also 
revealed robust nonlinear fitting (R2 = 0.88), further validating the 
superiority of the KAN model in handling intricate input features. 
Additionally, the pathway enrichment analysis of key genes related 
to TLE was mainly in neuropeptide hormone activity, 
neuropeptide receptor binding, lumenal side of membrane, 
transport vesicle (Supplementary Figures 6–8).

3.5 Online diagnostic platform

To enhance the clinical application of the model, we developed an 
online computer platform.1 As shown in Figure 6, the values of the 
TLE-related genes were entered on the left of the web page, the 
predictive result would appear on the right along with the SHAP 
explanation, which provided a visualizations of feature impacts and a 
mechanistic insight into TLE pathogenesis.

4 Discussions

Although TLE has relatively characteristic clinical 
manifestations, its diagnosis still faces challenges. It was found that 
about 30–40% of TLE patients may not show obvious abnormalities 
in routine electroencephalogram (EEG) examinations, leading to 
diagnostic delays and inappropriate treatment (Bernasconi et al., 
2011). In this study, we  developed a highly accurate diagnostic 
model for TLE using interpretable deep learning approaches. By 

1  https://epilepsy2.streamlit.app

TABLE 2  Model performance of multiple algorithms for epilepsy 
diagnosis.

Model AUC Accuracy Precision Recall F1 
score

DNN 1.000 1.000 1.000 1.000 1.000

XGBoost 1.000 1.000 1.000 1.000 1.000

RF 1.000 1.000 1.000 1.000 1.000

LR 1.000 1.000 1.000 1.000 1.000

KNN 0.996 0.977 0.980 0.980 0.980
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integrating multiple RNA-seq and microarray data and employing 
feature optimization, we  identified a set of 10 key genes that 
demonstrate exceptional discriminative power between TLE and 
normal. The perfect diagnostic performance achieved by our model 
(AUC = 1.000, accuracy = 1.000) across different algorithms 
highlights the robustness of these genetic markers as diagnostic 
indicators for TLE. Our research indicates that combining 
molecular biomarkers with traditional diagnostic methods may 
significantly improve the accuracy of TLE diagnosis. The deep 
learning model we developed based on 10 key genes can serve as a 
supplementary tool for clinical assessment, especially in cases 
where routine imaging examinations are negative, or results 
are uncertain.

To further validate the robustness of our DNN model, 
we  conducted architectural ablation studies by systematically 
modifying the number of hidden layers, units per layer, and activation 
functions. As shown in Supplementary Table 1, the model maintained 
a perfect AUC (1.000) under most architecture variants, demonstrating 
remarkable structural stability. However, removing input 
normalization (A4) led to a notable drop in validation AUC (from 
1.000 to 0.822), highlighting the critical role of normalization in 
preserving model performance. These findings support the soundness 
of our default architecture design and preprocessing pipeline.

The application of interpretability techniques, specifically 
SHAP and KAN, provided valuable insights into the biological 
mechanisms underlying our model’s predictions. SHAP analysis 
revealed that DEPDC5, STXBP1, GABRG2, SLC2A1, and LGI1 
were the most influential genes in the diagnostic model. These 
findings align with previous research implicating these genes in 
epilepsy pathogenesis (Kang and MacDonald, 2016; Li et al., 2024; 
Shen et al., 2017; Larsen et al., 2015; Suls et al., 2008; Boillot et al., 
2014; Dubey et al., 2020; Stafstrom, 2025). For instance, DEPDC5 
mutations have been associated with various focal epilepsies, 
including TLE, through dysregulation of the mTOR pathway, 
which controls neuronal growth and excitability (Liu et al., 2025; 
Hughes et  al., 2017). Similarly, STXBP1 plays a crucial role in 
synaptic vesicle docking and fusion, and its dysfunction has been 
linked to early-onset epileptic encephalopathies (Stamberger 
et al., 2022, 2023; Mignot et al., 2011).

The KAN model further enhanced our understanding by 
providing explicit mathematical expressions that capture the nonlinear 
relationships between gene expression patterns and TLE status. The 
strong fitting curves (R2 = 0.94 for STXBP1 and R2 = 0.88 for 
DEPDC5) demonstrate that KAN effectively modeled the complex 
interactions between these genes and the disease phenotype. This 
mathematical transparency represents a significant advancement over 
traditional “black box” neural networks, offering mechanistic insights 
that could inform targeted therapeutic strategies (Liu et al., 2024a,b; 
Hou et al., 2024).

Pathway enrichment analysis of our identified genes revealed 
significant associations with neuropeptide hormone activity, 
neuropeptide receptor binding, membrane functions, and transport 
vesicles. These biological processes are critical for maintaining 
neuronal homeostasis and synaptic transmission (Strand et al., 1991; 
Hirokawa and Takemura, 2005) further supporting the biological 
relevance of our findings. Disruptions in these pathways could 
contribute to the hyperexcitability and abnormal neuronal 
synchronization characteristic of epileptic seizures.

The development of an online diagnostic platform represents a 
practical translation of our research findings. This user-friendly tool 
allows clinicians to input gene expression values and receive instant, 
interpretable predictions regarding TLE risk. The incorporation of 
SHAP visualizations in the platform enhances its utility by providing 
transparent explanations for each prediction, potentially facilitating 
clinical decision-making and patient communication.

An important clinical distinction in temporal lobe epilepsy 
(TLE) lies between patients with and without hippocampal 
sclerosis (HS), as these subtypes may differ in etiology, pathology, 
and treatment response. However, this distinction was not 
addressed in our study due to the lack of HS-specific annotations 
in the publicly available datasets used. As a result, we were unable 
to perform stratified analyses to explore potential molecular 
differences between HS and non-HS subtypes. Future work 
incorporating high-resolution imaging data or histopathological 
labels will be  critical to disentangle subtype-specific gene 
expression patterns and further refine diagnostic models. Including 
such data may also improve the model’s applicability in precision 
medicine settings.

Despite the promising performance of our model, certain 
limitations should be  acknowledged. First, a large proportion 
(76%) of TLE samples in our dataset were derived from a single 
study (GSE63808), which may introduce potential bias or 
overfitting in the training process. To assess the impact of this 
imbalance, we  performed a sensitivity analysis by excluding 
GSE63808 from the training data and re-evaluated model 
performance. Notably, the model retained excellent discriminatory 
ability, with an AUC of 1.0 (Supplementary Figure 3), thereby 
supporting its robustness across independent datasets. 
Nevertheless, we  recognize that external validation using 
completely independent cohorts—ideally with more balanced 
representation and additional clinical annotations—is essential for 
further verifying the model’s generalizability and 
translational utility.

Another key limitation of this study is the lack of Asian patient 
data. Most of the included samples were from Euro-American 
populations, potentially limiting the model’s generalizability to other 
ethnic groups. Population-specific genetic and environmental factors 
may influence gene expression and disease risk, and thus should not 

TABLE 3  Predictive performance of models with different features.

Model AUC (95%CI) Accuracy Precision Recall F1 score

34 feature 1.000 (1.000, 1.000) 1.000 1.000 1.000 1.000

30 feature 1.000 (1.000, 1.000) 1.000 1.000 1.000 1.000

10 feature 1.000 (1.000, 1.000) 1.000 1.000 1.000 1.000
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FIGURE 3

SHAP global interpretation (A) the Bar diagram (B) the Beeswarm plot.
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be overlooked. Finally, while our interpretability approaches provide 
valuable insights, the complex interplay between genetic, 
environmental, and epigenetic factors in TLE pathogenesis requires 
further investigation.

Future research directions include validating our findings in 
prospective clinical studies, expanding the model to incorporate 
additional data modalities (such as neuroimaging and clinical 
variables), and exploring the potential of our identified genes as 
therapeutic targets. Additionally, investigating the longitudinal 
changes in gene expression patterns throughout disease progression 

could enhance our understanding of TLE pathogenesis and potentially 
enable early intervention strategies.

In conclusion, our study demonstrates the power of interpretable 
deep learning approaches in advancing our understanding of TLE 
pathogenesis and improving diagnostic capabilities. By identifying 
key genetic markers and elucidating their functional relationships, 
we  have contributed to the growing body of knowledge on the 
molecular basis of epilepsy. The developed diagnostic platform offers 
a promising tool for clinical application, potentially facilitating 
personalized medicine approaches in epilepsy management.

FIGURE 4

SHAP local interpretation (A) the f(x) value of the force plot was 1.00, indicating the patient was TLE. GRIN2A, LGI1, DEPDC5, and STXBP1 (red arrows) 
are important drivers of elevated predictive values, while GABRG2 (blue arrow) exerts a negative effect. (B) The f(x) of the force plot was 0.00, indicating 
the patient was normal. (C) The waterfall diagram showed the Ef(x) was 0.595, with the positive contributions of STXBP1 (+0.21), DEPDC5 (+0.13), LGI1 
(+0.06) and GRIN2A (+0.04) and the negative contributions of GABRG2 (−0.06), push the predictive result to TLE as f(x) was 1. (D) The waterfall diagram 
presented a diagnostic result of normal. The baseline forecast value Ef(x) was 0.595, with the negative contributions of STXBP1 (−0.37), DEPDC5 
(−0.21), SLC2A1 (−0.16) and GRIN2A (−0.06) and the positive contributions of CDKL5 (+0.06), TSC2 (+0.06), the final f(x) was 0.002.
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FIGURE 5

KAN interpretation (A) the network analysis (B) feature importance in sample 1. (C,D) Fitting equation between STXBP1, DEPDC5 and node (1,0).

FIGURE 6

The representative image of the TLE risk prediction platform.
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